1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Dave Airlie 30 */ 31 32 #include <linux/atomic.h> 33 #include <linux/firmware.h> 34 #include <linux/kref.h> 35 #include <linux/sched/signal.h> 36 #include <linux/seq_file.h> 37 #include <linux/slab.h> 38 #include <linux/wait.h> 39 40 #include <drm/drm_debugfs.h> 41 #include <drm/drm_device.h> 42 #include <drm/drm_file.h> 43 44 #include "radeon.h" 45 #include "radeon_reg.h" 46 #include "radeon_trace.h" 47 48 /* 49 * Fences 50 * Fences mark an event in the GPUs pipeline and are used 51 * for GPU/CPU synchronization. When the fence is written, 52 * it is expected that all buffers associated with that fence 53 * are no longer in use by the associated ring on the GPU and 54 * that the the relevant GPU caches have been flushed. Whether 55 * we use a scratch register or memory location depends on the asic 56 * and whether writeback is enabled. 57 */ 58 59 /** 60 * radeon_fence_write - write a fence value 61 * 62 * @rdev: radeon_device pointer 63 * @seq: sequence number to write 64 * @ring: ring index the fence is associated with 65 * 66 * Writes a fence value to memory or a scratch register (all asics). 67 */ 68 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 69 { 70 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 71 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 72 if (drv->cpu_addr) { 73 *drv->cpu_addr = cpu_to_le32(seq); 74 } 75 } else { 76 WREG32(drv->scratch_reg, seq); 77 } 78 } 79 80 /** 81 * radeon_fence_read - read a fence value 82 * 83 * @rdev: radeon_device pointer 84 * @ring: ring index the fence is associated with 85 * 86 * Reads a fence value from memory or a scratch register (all asics). 87 * Returns the value of the fence read from memory or register. 88 */ 89 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 90 { 91 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 92 u32 seq = 0; 93 94 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 95 if (drv->cpu_addr) { 96 seq = le32_to_cpu(*drv->cpu_addr); 97 } else { 98 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 99 } 100 } else { 101 seq = RREG32(drv->scratch_reg); 102 } 103 return seq; 104 } 105 106 /** 107 * radeon_fence_schedule_check - schedule lockup check 108 * 109 * @rdev: radeon_device pointer 110 * @ring: ring index we should work with 111 * 112 * Queues a delayed work item to check for lockups. 113 */ 114 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring) 115 { 116 /* 117 * Do not reset the timer here with mod_delayed_work, 118 * this can livelock in an interaction with TTM delayed destroy. 119 */ 120 queue_delayed_work(system_power_efficient_wq, 121 &rdev->fence_drv[ring].lockup_work, 122 RADEON_FENCE_JIFFIES_TIMEOUT); 123 } 124 125 /** 126 * radeon_fence_emit - emit a fence on the requested ring 127 * 128 * @rdev: radeon_device pointer 129 * @fence: radeon fence object 130 * @ring: ring index the fence is associated with 131 * 132 * Emits a fence command on the requested ring (all asics). 133 * Returns 0 on success, -ENOMEM on failure. 134 */ 135 int radeon_fence_emit(struct radeon_device *rdev, 136 struct radeon_fence **fence, 137 int ring) 138 { 139 u64 seq; 140 141 /* we are protected by the ring emission mutex */ 142 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 143 if ((*fence) == NULL) { 144 return -ENOMEM; 145 } 146 (*fence)->rdev = rdev; 147 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring]; 148 (*fence)->ring = ring; 149 (*fence)->is_vm_update = false; 150 dma_fence_init(&(*fence)->base, &radeon_fence_ops, 151 &rdev->fence_queue.lock, 152 rdev->fence_context + ring, 153 seq); 154 radeon_fence_ring_emit(rdev, ring, *fence); 155 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq); 156 radeon_fence_schedule_check(rdev, ring); 157 return 0; 158 } 159 160 /** 161 * radeon_fence_check_signaled - callback from fence_queue 162 * 163 * this function is called with fence_queue lock held, which is also used 164 * for the fence locking itself, so unlocked variants are used for 165 * fence_signal, and remove_wait_queue. 166 */ 167 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key) 168 { 169 struct radeon_fence *fence; 170 u64 seq; 171 172 fence = container_of(wait, struct radeon_fence, fence_wake); 173 174 /* 175 * We cannot use radeon_fence_process here because we're already 176 * in the waitqueue, in a call from wake_up_all. 177 */ 178 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); 179 if (seq >= fence->seq) { 180 int ret = dma_fence_signal_locked(&fence->base); 181 182 if (!ret) 183 DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n"); 184 else 185 DMA_FENCE_TRACE(&fence->base, "was already signaled\n"); 186 187 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); 188 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); 189 dma_fence_put(&fence->base); 190 } else 191 DMA_FENCE_TRACE(&fence->base, "pending\n"); 192 return 0; 193 } 194 195 /** 196 * radeon_fence_activity - check for fence activity 197 * 198 * @rdev: radeon_device pointer 199 * @ring: ring index the fence is associated with 200 * 201 * Checks the current fence value and calculates the last 202 * signalled fence value. Returns true if activity occured 203 * on the ring, and the fence_queue should be waken up. 204 */ 205 static bool radeon_fence_activity(struct radeon_device *rdev, int ring) 206 { 207 uint64_t seq, last_seq, last_emitted; 208 unsigned count_loop = 0; 209 bool wake = false; 210 211 /* Note there is a scenario here for an infinite loop but it's 212 * very unlikely to happen. For it to happen, the current polling 213 * process need to be interrupted by another process and another 214 * process needs to update the last_seq btw the atomic read and 215 * xchg of the current process. 216 * 217 * More over for this to go in infinite loop there need to be 218 * continuously new fence signaled ie radeon_fence_read needs 219 * to return a different value each time for both the currently 220 * polling process and the other process that xchg the last_seq 221 * btw atomic read and xchg of the current process. And the 222 * value the other process set as last seq must be higher than 223 * the seq value we just read. Which means that current process 224 * need to be interrupted after radeon_fence_read and before 225 * atomic xchg. 226 * 227 * To be even more safe we count the number of time we loop and 228 * we bail after 10 loop just accepting the fact that we might 229 * have temporarly set the last_seq not to the true real last 230 * seq but to an older one. 231 */ 232 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 233 do { 234 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 235 seq = radeon_fence_read(rdev, ring); 236 seq |= last_seq & 0xffffffff00000000LL; 237 if (seq < last_seq) { 238 seq &= 0xffffffff; 239 seq |= last_emitted & 0xffffffff00000000LL; 240 } 241 242 if (seq <= last_seq || seq > last_emitted) { 243 break; 244 } 245 /* If we loop over we don't want to return without 246 * checking if a fence is signaled as it means that the 247 * seq we just read is different from the previous on. 248 */ 249 wake = true; 250 last_seq = seq; 251 if ((count_loop++) > 10) { 252 /* We looped over too many time leave with the 253 * fact that we might have set an older fence 254 * seq then the current real last seq as signaled 255 * by the hw. 256 */ 257 break; 258 } 259 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 260 261 if (seq < last_emitted) 262 radeon_fence_schedule_check(rdev, ring); 263 264 return wake; 265 } 266 267 /** 268 * radeon_fence_check_lockup - check for hardware lockup 269 * 270 * @work: delayed work item 271 * 272 * Checks for fence activity and if there is none probe 273 * the hardware if a lockup occured. 274 */ 275 static void radeon_fence_check_lockup(struct work_struct *work) 276 { 277 struct radeon_fence_driver *fence_drv; 278 struct radeon_device *rdev; 279 int ring; 280 281 fence_drv = container_of(work, struct radeon_fence_driver, 282 lockup_work.work); 283 rdev = fence_drv->rdev; 284 ring = fence_drv - &rdev->fence_drv[0]; 285 286 if (!down_read_trylock(&rdev->exclusive_lock)) { 287 /* just reschedule the check if a reset is going on */ 288 radeon_fence_schedule_check(rdev, ring); 289 return; 290 } 291 292 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) { 293 unsigned long irqflags; 294 295 fence_drv->delayed_irq = false; 296 spin_lock_irqsave(&rdev->irq.lock, irqflags); 297 radeon_irq_set(rdev); 298 spin_unlock_irqrestore(&rdev->irq.lock, irqflags); 299 } 300 301 if (radeon_fence_activity(rdev, ring)) 302 wake_up_all(&rdev->fence_queue); 303 304 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) { 305 306 /* good news we believe it's a lockup */ 307 dev_warn(rdev->dev, "GPU lockup (current fence id " 308 "0x%016llx last fence id 0x%016llx on ring %d)\n", 309 (uint64_t)atomic64_read(&fence_drv->last_seq), 310 fence_drv->sync_seq[ring], ring); 311 312 /* remember that we need an reset */ 313 rdev->needs_reset = true; 314 wake_up_all(&rdev->fence_queue); 315 } 316 up_read(&rdev->exclusive_lock); 317 } 318 319 /** 320 * radeon_fence_process - process a fence 321 * 322 * @rdev: radeon_device pointer 323 * @ring: ring index the fence is associated with 324 * 325 * Checks the current fence value and wakes the fence queue 326 * if the sequence number has increased (all asics). 327 */ 328 void radeon_fence_process(struct radeon_device *rdev, int ring) 329 { 330 if (radeon_fence_activity(rdev, ring)) 331 wake_up_all(&rdev->fence_queue); 332 } 333 334 /** 335 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 336 * 337 * @rdev: radeon device pointer 338 * @seq: sequence number 339 * @ring: ring index the fence is associated with 340 * 341 * Check if the last signaled fence sequnce number is >= the requested 342 * sequence number (all asics). 343 * Returns true if the fence has signaled (current fence value 344 * is >= requested value) or false if it has not (current fence 345 * value is < the requested value. Helper function for 346 * radeon_fence_signaled(). 347 */ 348 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 349 u64 seq, unsigned ring) 350 { 351 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 352 return true; 353 } 354 /* poll new last sequence at least once */ 355 radeon_fence_process(rdev, ring); 356 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 357 return true; 358 } 359 return false; 360 } 361 362 static bool radeon_fence_is_signaled(struct dma_fence *f) 363 { 364 struct radeon_fence *fence = to_radeon_fence(f); 365 struct radeon_device *rdev = fence->rdev; 366 unsigned ring = fence->ring; 367 u64 seq = fence->seq; 368 369 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 370 return true; 371 } 372 373 if (down_read_trylock(&rdev->exclusive_lock)) { 374 radeon_fence_process(rdev, ring); 375 up_read(&rdev->exclusive_lock); 376 377 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 378 return true; 379 } 380 } 381 return false; 382 } 383 384 /** 385 * radeon_fence_enable_signaling - enable signalling on fence 386 * @fence: fence 387 * 388 * This function is called with fence_queue lock held, and adds a callback 389 * to fence_queue that checks if this fence is signaled, and if so it 390 * signals the fence and removes itself. 391 */ 392 static bool radeon_fence_enable_signaling(struct dma_fence *f) 393 { 394 struct radeon_fence *fence = to_radeon_fence(f); 395 struct radeon_device *rdev = fence->rdev; 396 397 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) 398 return false; 399 400 if (down_read_trylock(&rdev->exclusive_lock)) { 401 radeon_irq_kms_sw_irq_get(rdev, fence->ring); 402 403 if (radeon_fence_activity(rdev, fence->ring)) 404 wake_up_all_locked(&rdev->fence_queue); 405 406 /* did fence get signaled after we enabled the sw irq? */ 407 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { 408 radeon_irq_kms_sw_irq_put(rdev, fence->ring); 409 up_read(&rdev->exclusive_lock); 410 return false; 411 } 412 413 up_read(&rdev->exclusive_lock); 414 } else { 415 /* we're probably in a lockup, lets not fiddle too much */ 416 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring)) 417 rdev->fence_drv[fence->ring].delayed_irq = true; 418 radeon_fence_schedule_check(rdev, fence->ring); 419 } 420 421 fence->fence_wake.flags = 0; 422 fence->fence_wake.private = NULL; 423 fence->fence_wake.func = radeon_fence_check_signaled; 424 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); 425 dma_fence_get(f); 426 427 DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring); 428 return true; 429 } 430 431 /** 432 * radeon_fence_signaled - check if a fence has signaled 433 * 434 * @fence: radeon fence object 435 * 436 * Check if the requested fence has signaled (all asics). 437 * Returns true if the fence has signaled or false if it has not. 438 */ 439 bool radeon_fence_signaled(struct radeon_fence *fence) 440 { 441 if (!fence) 442 return true; 443 444 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 445 int ret; 446 447 ret = dma_fence_signal(&fence->base); 448 if (!ret) 449 DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n"); 450 return true; 451 } 452 return false; 453 } 454 455 /** 456 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 457 * 458 * @rdev: radeon device pointer 459 * @seq: sequence numbers 460 * 461 * Check if the last signaled fence sequnce number is >= the requested 462 * sequence number (all asics). 463 * Returns true if any has signaled (current value is >= requested value) 464 * or false if it has not. Helper function for radeon_fence_wait_seq. 465 */ 466 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 467 { 468 unsigned i; 469 470 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 471 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 472 return true; 473 } 474 return false; 475 } 476 477 /** 478 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers 479 * 480 * @rdev: radeon device pointer 481 * @target_seq: sequence number(s) we want to wait for 482 * @intr: use interruptable sleep 483 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 484 * 485 * Wait for the requested sequence number(s) to be written by any ring 486 * (all asics). Sequnce number array is indexed by ring id. 487 * @intr selects whether to use interruptable (true) or non-interruptable 488 * (false) sleep when waiting for the sequence number. Helper function 489 * for radeon_fence_wait_*(). 490 * Returns remaining time if the sequence number has passed, 0 when 491 * the wait timeout, or an error for all other cases. 492 * -EDEADLK is returned when a GPU lockup has been detected. 493 */ 494 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev, 495 u64 *target_seq, bool intr, 496 long timeout) 497 { 498 long r; 499 int i; 500 501 if (radeon_fence_any_seq_signaled(rdev, target_seq)) 502 return timeout; 503 504 /* enable IRQs and tracing */ 505 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 506 if (!target_seq[i]) 507 continue; 508 509 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]); 510 radeon_irq_kms_sw_irq_get(rdev, i); 511 } 512 513 if (intr) { 514 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 515 radeon_fence_any_seq_signaled(rdev, target_seq) 516 || rdev->needs_reset), timeout); 517 } else { 518 r = wait_event_timeout(rdev->fence_queue, ( 519 radeon_fence_any_seq_signaled(rdev, target_seq) 520 || rdev->needs_reset), timeout); 521 } 522 523 if (rdev->needs_reset) 524 r = -EDEADLK; 525 526 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 527 if (!target_seq[i]) 528 continue; 529 530 radeon_irq_kms_sw_irq_put(rdev, i); 531 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]); 532 } 533 534 return r; 535 } 536 537 /** 538 * radeon_fence_wait_timeout - wait for a fence to signal with timeout 539 * 540 * @fence: radeon fence object 541 * @intr: use interruptible sleep 542 * 543 * Wait for the requested fence to signal (all asics). 544 * @intr selects whether to use interruptable (true) or non-interruptable 545 * (false) sleep when waiting for the fence. 546 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 547 * Returns remaining time if the sequence number has passed, 0 when 548 * the wait timeout, or an error for all other cases. 549 */ 550 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout) 551 { 552 uint64_t seq[RADEON_NUM_RINGS] = {}; 553 long r; 554 int r_sig; 555 556 /* 557 * This function should not be called on !radeon fences. 558 * If this is the case, it would mean this function can 559 * also be called on radeon fences belonging to another card. 560 * exclusive_lock is not held in that case. 561 */ 562 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base))) 563 return dma_fence_wait(&fence->base, intr); 564 565 seq[fence->ring] = fence->seq; 566 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout); 567 if (r <= 0) { 568 return r; 569 } 570 571 r_sig = dma_fence_signal(&fence->base); 572 if (!r_sig) 573 DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n"); 574 return r; 575 } 576 577 /** 578 * radeon_fence_wait - wait for a fence to signal 579 * 580 * @fence: radeon fence object 581 * @intr: use interruptible sleep 582 * 583 * Wait for the requested fence to signal (all asics). 584 * @intr selects whether to use interruptable (true) or non-interruptable 585 * (false) sleep when waiting for the fence. 586 * Returns 0 if the fence has passed, error for all other cases. 587 */ 588 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 589 { 590 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT); 591 if (r > 0) { 592 return 0; 593 } else { 594 return r; 595 } 596 } 597 598 /** 599 * radeon_fence_wait_any - wait for a fence to signal on any ring 600 * 601 * @rdev: radeon device pointer 602 * @fences: radeon fence object(s) 603 * @intr: use interruptable sleep 604 * 605 * Wait for any requested fence to signal (all asics). Fence 606 * array is indexed by ring id. @intr selects whether to use 607 * interruptable (true) or non-interruptable (false) sleep when 608 * waiting for the fences. Used by the suballocator. 609 * Returns 0 if any fence has passed, error for all other cases. 610 */ 611 int radeon_fence_wait_any(struct radeon_device *rdev, 612 struct radeon_fence **fences, 613 bool intr) 614 { 615 uint64_t seq[RADEON_NUM_RINGS]; 616 unsigned i, num_rings = 0; 617 long r; 618 619 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 620 seq[i] = 0; 621 622 if (!fences[i]) { 623 continue; 624 } 625 626 seq[i] = fences[i]->seq; 627 ++num_rings; 628 } 629 630 /* nothing to wait for ? */ 631 if (num_rings == 0) 632 return -ENOENT; 633 634 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 635 if (r < 0) { 636 return r; 637 } 638 return 0; 639 } 640 641 /** 642 * radeon_fence_wait_next - wait for the next fence to signal 643 * 644 * @rdev: radeon device pointer 645 * @ring: ring index the fence is associated with 646 * 647 * Wait for the next fence on the requested ring to signal (all asics). 648 * Returns 0 if the next fence has passed, error for all other cases. 649 * Caller must hold ring lock. 650 */ 651 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 652 { 653 uint64_t seq[RADEON_NUM_RINGS] = {}; 654 long r; 655 656 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 657 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 658 /* nothing to wait for, last_seq is 659 already the last emited fence */ 660 return -ENOENT; 661 } 662 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 663 if (r < 0) 664 return r; 665 return 0; 666 } 667 668 /** 669 * radeon_fence_wait_empty - wait for all fences to signal 670 * 671 * @rdev: radeon device pointer 672 * @ring: ring index the fence is associated with 673 * 674 * Wait for all fences on the requested ring to signal (all asics). 675 * Returns 0 if the fences have passed, error for all other cases. 676 * Caller must hold ring lock. 677 */ 678 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 679 { 680 uint64_t seq[RADEON_NUM_RINGS] = {}; 681 long r; 682 683 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 684 if (!seq[ring]) 685 return 0; 686 687 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 688 if (r < 0) { 689 if (r == -EDEADLK) 690 return -EDEADLK; 691 692 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n", 693 ring, r); 694 } 695 return 0; 696 } 697 698 /** 699 * radeon_fence_ref - take a ref on a fence 700 * 701 * @fence: radeon fence object 702 * 703 * Take a reference on a fence (all asics). 704 * Returns the fence. 705 */ 706 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 707 { 708 dma_fence_get(&fence->base); 709 return fence; 710 } 711 712 /** 713 * radeon_fence_unref - remove a ref on a fence 714 * 715 * @fence: radeon fence object 716 * 717 * Remove a reference on a fence (all asics). 718 */ 719 void radeon_fence_unref(struct radeon_fence **fence) 720 { 721 struct radeon_fence *tmp = *fence; 722 723 *fence = NULL; 724 if (tmp) { 725 dma_fence_put(&tmp->base); 726 } 727 } 728 729 /** 730 * radeon_fence_count_emitted - get the count of emitted fences 731 * 732 * @rdev: radeon device pointer 733 * @ring: ring index the fence is associated with 734 * 735 * Get the number of fences emitted on the requested ring (all asics). 736 * Returns the number of emitted fences on the ring. Used by the 737 * dynpm code to ring track activity. 738 */ 739 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 740 { 741 uint64_t emitted; 742 743 /* We are not protected by ring lock when reading the last sequence 744 * but it's ok to report slightly wrong fence count here. 745 */ 746 radeon_fence_process(rdev, ring); 747 emitted = rdev->fence_drv[ring].sync_seq[ring] 748 - atomic64_read(&rdev->fence_drv[ring].last_seq); 749 /* to avoid 32bits warp around */ 750 if (emitted > 0x10000000) { 751 emitted = 0x10000000; 752 } 753 return (unsigned)emitted; 754 } 755 756 /** 757 * radeon_fence_need_sync - do we need a semaphore 758 * 759 * @fence: radeon fence object 760 * @dst_ring: which ring to check against 761 * 762 * Check if the fence needs to be synced against another ring 763 * (all asics). If so, we need to emit a semaphore. 764 * Returns true if we need to sync with another ring, false if 765 * not. 766 */ 767 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 768 { 769 struct radeon_fence_driver *fdrv; 770 771 if (!fence) { 772 return false; 773 } 774 775 if (fence->ring == dst_ring) { 776 return false; 777 } 778 779 /* we are protected by the ring mutex */ 780 fdrv = &fence->rdev->fence_drv[dst_ring]; 781 if (fence->seq <= fdrv->sync_seq[fence->ring]) { 782 return false; 783 } 784 785 return true; 786 } 787 788 /** 789 * radeon_fence_note_sync - record the sync point 790 * 791 * @fence: radeon fence object 792 * @dst_ring: which ring to check against 793 * 794 * Note the sequence number at which point the fence will 795 * be synced with the requested ring (all asics). 796 */ 797 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 798 { 799 struct radeon_fence_driver *dst, *src; 800 unsigned i; 801 802 if (!fence) { 803 return; 804 } 805 806 if (fence->ring == dst_ring) { 807 return; 808 } 809 810 /* we are protected by the ring mutex */ 811 src = &fence->rdev->fence_drv[fence->ring]; 812 dst = &fence->rdev->fence_drv[dst_ring]; 813 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 814 if (i == dst_ring) { 815 continue; 816 } 817 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 818 } 819 } 820 821 /** 822 * radeon_fence_driver_start_ring - make the fence driver 823 * ready for use on the requested ring. 824 * 825 * @rdev: radeon device pointer 826 * @ring: ring index to start the fence driver on 827 * 828 * Make the fence driver ready for processing (all asics). 829 * Not all asics have all rings, so each asic will only 830 * start the fence driver on the rings it has. 831 * Returns 0 for success, errors for failure. 832 */ 833 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 834 { 835 uint64_t index; 836 int r; 837 838 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 839 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 840 rdev->fence_drv[ring].scratch_reg = 0; 841 if (ring != R600_RING_TYPE_UVD_INDEX) { 842 index = R600_WB_EVENT_OFFSET + ring * 4; 843 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 844 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 845 index; 846 847 } else { 848 /* put fence directly behind firmware */ 849 index = ALIGN(rdev->uvd_fw->size, 8); 850 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index; 851 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 852 } 853 854 } else { 855 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 856 if (r) { 857 dev_err(rdev->dev, "fence failed to get scratch register\n"); 858 return r; 859 } 860 index = RADEON_WB_SCRATCH_OFFSET + 861 rdev->fence_drv[ring].scratch_reg - 862 rdev->scratch.reg_base; 863 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 864 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 865 } 866 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 867 rdev->fence_drv[ring].initialized = true; 868 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n", 869 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr); 870 return 0; 871 } 872 873 /** 874 * radeon_fence_driver_init_ring - init the fence driver 875 * for the requested ring. 876 * 877 * @rdev: radeon device pointer 878 * @ring: ring index to start the fence driver on 879 * 880 * Init the fence driver for the requested ring (all asics). 881 * Helper function for radeon_fence_driver_init(). 882 */ 883 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 884 { 885 int i; 886 887 rdev->fence_drv[ring].scratch_reg = -1; 888 rdev->fence_drv[ring].cpu_addr = NULL; 889 rdev->fence_drv[ring].gpu_addr = 0; 890 for (i = 0; i < RADEON_NUM_RINGS; ++i) 891 rdev->fence_drv[ring].sync_seq[i] = 0; 892 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 893 rdev->fence_drv[ring].initialized = false; 894 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work, 895 radeon_fence_check_lockup); 896 rdev->fence_drv[ring].rdev = rdev; 897 } 898 899 /** 900 * radeon_fence_driver_init - init the fence driver 901 * for all possible rings. 902 * 903 * @rdev: radeon device pointer 904 * 905 * Init the fence driver for all possible rings (all asics). 906 * Not all asics have all rings, so each asic will only 907 * start the fence driver on the rings it has using 908 * radeon_fence_driver_start_ring(). 909 * Returns 0 for success. 910 */ 911 int radeon_fence_driver_init(struct radeon_device *rdev) 912 { 913 int ring; 914 915 init_waitqueue_head(&rdev->fence_queue); 916 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 917 radeon_fence_driver_init_ring(rdev, ring); 918 } 919 if (radeon_debugfs_fence_init(rdev)) { 920 dev_err(rdev->dev, "fence debugfs file creation failed\n"); 921 } 922 return 0; 923 } 924 925 /** 926 * radeon_fence_driver_fini - tear down the fence driver 927 * for all possible rings. 928 * 929 * @rdev: radeon device pointer 930 * 931 * Tear down the fence driver for all possible rings (all asics). 932 */ 933 void radeon_fence_driver_fini(struct radeon_device *rdev) 934 { 935 int ring, r; 936 937 mutex_lock(&rdev->ring_lock); 938 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 939 if (!rdev->fence_drv[ring].initialized) 940 continue; 941 r = radeon_fence_wait_empty(rdev, ring); 942 if (r) { 943 /* no need to trigger GPU reset as we are unloading */ 944 radeon_fence_driver_force_completion(rdev, ring); 945 } 946 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 947 wake_up_all(&rdev->fence_queue); 948 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 949 rdev->fence_drv[ring].initialized = false; 950 } 951 mutex_unlock(&rdev->ring_lock); 952 } 953 954 /** 955 * radeon_fence_driver_force_completion - force all fence waiter to complete 956 * 957 * @rdev: radeon device pointer 958 * @ring: the ring to complete 959 * 960 * In case of GPU reset failure make sure no process keep waiting on fence 961 * that will never complete. 962 */ 963 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring) 964 { 965 if (rdev->fence_drv[ring].initialized) { 966 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 967 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 968 } 969 } 970 971 972 /* 973 * Fence debugfs 974 */ 975 #if defined(CONFIG_DEBUG_FS) 976 static int radeon_debugfs_fence_info(struct seq_file *m, void *data) 977 { 978 struct drm_info_node *node = (struct drm_info_node *)m->private; 979 struct drm_device *dev = node->minor->dev; 980 struct radeon_device *rdev = dev->dev_private; 981 int i, j; 982 983 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 984 if (!rdev->fence_drv[i].initialized) 985 continue; 986 987 radeon_fence_process(rdev, i); 988 989 seq_printf(m, "--- ring %d ---\n", i); 990 seq_printf(m, "Last signaled fence 0x%016llx\n", 991 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 992 seq_printf(m, "Last emitted 0x%016llx\n", 993 rdev->fence_drv[i].sync_seq[i]); 994 995 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 996 if (i != j && rdev->fence_drv[j].initialized) 997 seq_printf(m, "Last sync to ring %d 0x%016llx\n", 998 j, rdev->fence_drv[i].sync_seq[j]); 999 } 1000 } 1001 return 0; 1002 } 1003 1004 /** 1005 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 1006 * 1007 * Manually trigger a gpu reset at the next fence wait. 1008 */ 1009 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data) 1010 { 1011 struct drm_info_node *node = (struct drm_info_node *) m->private; 1012 struct drm_device *dev = node->minor->dev; 1013 struct radeon_device *rdev = dev->dev_private; 1014 1015 down_read(&rdev->exclusive_lock); 1016 seq_printf(m, "%d\n", rdev->needs_reset); 1017 rdev->needs_reset = true; 1018 wake_up_all(&rdev->fence_queue); 1019 up_read(&rdev->exclusive_lock); 1020 1021 return 0; 1022 } 1023 1024 static struct drm_info_list radeon_debugfs_fence_list[] = { 1025 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL}, 1026 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL} 1027 }; 1028 #endif 1029 1030 int radeon_debugfs_fence_init(struct radeon_device *rdev) 1031 { 1032 #if defined(CONFIG_DEBUG_FS) 1033 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2); 1034 #else 1035 return 0; 1036 #endif 1037 } 1038 1039 static const char *radeon_fence_get_driver_name(struct dma_fence *fence) 1040 { 1041 return "radeon"; 1042 } 1043 1044 static const char *radeon_fence_get_timeline_name(struct dma_fence *f) 1045 { 1046 struct radeon_fence *fence = to_radeon_fence(f); 1047 switch (fence->ring) { 1048 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; 1049 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; 1050 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; 1051 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; 1052 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; 1053 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; 1054 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1"; 1055 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2"; 1056 default: WARN_ON_ONCE(1); return "radeon.unk"; 1057 } 1058 } 1059 1060 static inline bool radeon_test_signaled(struct radeon_fence *fence) 1061 { 1062 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); 1063 } 1064 1065 struct radeon_wait_cb { 1066 struct dma_fence_cb base; 1067 struct task_struct *task; 1068 }; 1069 1070 static void 1071 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 1072 { 1073 struct radeon_wait_cb *wait = 1074 container_of(cb, struct radeon_wait_cb, base); 1075 1076 wake_up_process(wait->task); 1077 } 1078 1079 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr, 1080 signed long t) 1081 { 1082 struct radeon_fence *fence = to_radeon_fence(f); 1083 struct radeon_device *rdev = fence->rdev; 1084 struct radeon_wait_cb cb; 1085 1086 cb.task = current; 1087 1088 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb)) 1089 return t; 1090 1091 while (t > 0) { 1092 if (intr) 1093 set_current_state(TASK_INTERRUPTIBLE); 1094 else 1095 set_current_state(TASK_UNINTERRUPTIBLE); 1096 1097 /* 1098 * radeon_test_signaled must be called after 1099 * set_current_state to prevent a race with wake_up_process 1100 */ 1101 if (radeon_test_signaled(fence)) 1102 break; 1103 1104 if (rdev->needs_reset) { 1105 t = -EDEADLK; 1106 break; 1107 } 1108 1109 t = schedule_timeout(t); 1110 1111 if (t > 0 && intr && signal_pending(current)) 1112 t = -ERESTARTSYS; 1113 } 1114 1115 __set_current_state(TASK_RUNNING); 1116 dma_fence_remove_callback(f, &cb.base); 1117 1118 return t; 1119 } 1120 1121 const struct dma_fence_ops radeon_fence_ops = { 1122 .get_driver_name = radeon_fence_get_driver_name, 1123 .get_timeline_name = radeon_fence_get_timeline_name, 1124 .enable_signaling = radeon_fence_enable_signaling, 1125 .signaled = radeon_fence_is_signaled, 1126 .wait = radeon_fence_default_wait, 1127 .release = NULL, 1128 }; 1129