1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Dave Airlie 30 */ 31 32 #include <linux/atomic.h> 33 #include <linux/firmware.h> 34 #include <linux/kref.h> 35 #include <linux/sched/signal.h> 36 #include <linux/seq_file.h> 37 #include <linux/slab.h> 38 #include <linux/wait.h> 39 40 #include <drm/drm_device.h> 41 #include <drm/drm_file.h> 42 43 #include "radeon.h" 44 #include "radeon_reg.h" 45 #include "radeon_trace.h" 46 47 /* 48 * Fences mark an event in the GPUs pipeline and are used 49 * for GPU/CPU synchronization. When the fence is written, 50 * it is expected that all buffers associated with that fence 51 * are no longer in use by the associated ring on the GPU and 52 * that the relevant GPU caches have been flushed. Whether 53 * we use a scratch register or memory location depends on the asic 54 * and whether writeback is enabled. 55 */ 56 57 /** 58 * radeon_fence_write - write a fence value 59 * 60 * @rdev: radeon_device pointer 61 * @seq: sequence number to write 62 * @ring: ring index the fence is associated with 63 * 64 * Writes a fence value to memory or a scratch register (all asics). 65 */ 66 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 67 { 68 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 69 70 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 71 if (drv->cpu_addr) 72 *drv->cpu_addr = cpu_to_le32(seq); 73 } else { 74 WREG32(drv->scratch_reg, seq); 75 } 76 } 77 78 /** 79 * radeon_fence_read - read a fence value 80 * 81 * @rdev: radeon_device pointer 82 * @ring: ring index the fence is associated with 83 * 84 * Reads a fence value from memory or a scratch register (all asics). 85 * Returns the value of the fence read from memory or register. 86 */ 87 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 88 { 89 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 90 u32 seq = 0; 91 92 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 93 if (drv->cpu_addr) 94 seq = le32_to_cpu(*drv->cpu_addr); 95 else 96 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 97 } else { 98 seq = RREG32(drv->scratch_reg); 99 } 100 return seq; 101 } 102 103 /** 104 * radeon_fence_schedule_check - schedule lockup check 105 * 106 * @rdev: radeon_device pointer 107 * @ring: ring index we should work with 108 * 109 * Queues a delayed work item to check for lockups. 110 */ 111 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring) 112 { 113 /* 114 * Do not reset the timer here with mod_delayed_work, 115 * this can livelock in an interaction with TTM delayed destroy. 116 */ 117 queue_delayed_work(system_power_efficient_wq, 118 &rdev->fence_drv[ring].lockup_work, 119 RADEON_FENCE_JIFFIES_TIMEOUT); 120 } 121 122 /** 123 * radeon_fence_emit - emit a fence on the requested ring 124 * 125 * @rdev: radeon_device pointer 126 * @fence: radeon fence object 127 * @ring: ring index the fence is associated with 128 * 129 * Emits a fence command on the requested ring (all asics). 130 * Returns 0 on success, -ENOMEM on failure. 131 */ 132 int radeon_fence_emit(struct radeon_device *rdev, 133 struct radeon_fence **fence, 134 int ring) 135 { 136 u64 seq; 137 138 /* we are protected by the ring emission mutex */ 139 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 140 if ((*fence) == NULL) 141 return -ENOMEM; 142 143 (*fence)->rdev = rdev; 144 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring]; 145 (*fence)->ring = ring; 146 (*fence)->is_vm_update = false; 147 dma_fence_init(&(*fence)->base, &radeon_fence_ops, 148 &rdev->fence_queue.lock, 149 rdev->fence_context + ring, 150 seq); 151 radeon_fence_ring_emit(rdev, ring, *fence); 152 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq); 153 radeon_fence_schedule_check(rdev, ring); 154 return 0; 155 } 156 157 /* 158 * radeon_fence_check_signaled - callback from fence_queue 159 * 160 * this function is called with fence_queue lock held, which is also used 161 * for the fence locking itself, so unlocked variants are used for 162 * fence_signal, and remove_wait_queue. 163 */ 164 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, 165 unsigned int mode, int flags, void *key) 166 { 167 struct radeon_fence *fence; 168 u64 seq; 169 170 fence = container_of(wait, struct radeon_fence, fence_wake); 171 172 /* 173 * We cannot use radeon_fence_process here because we're already 174 * in the waitqueue, in a call from wake_up_all. 175 */ 176 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); 177 if (seq >= fence->seq) { 178 dma_fence_signal_locked(&fence->base); 179 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); 180 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); 181 dma_fence_put(&fence->base); 182 } 183 return 0; 184 } 185 186 /** 187 * radeon_fence_activity - check for fence activity 188 * 189 * @rdev: radeon_device pointer 190 * @ring: ring index the fence is associated with 191 * 192 * Checks the current fence value and calculates the last 193 * signalled fence value. Returns true if activity occured 194 * on the ring, and the fence_queue should be waken up. 195 */ 196 static bool radeon_fence_activity(struct radeon_device *rdev, int ring) 197 { 198 uint64_t seq, last_seq, last_emitted; 199 unsigned int count_loop = 0; 200 bool wake = false; 201 202 /* Note there is a scenario here for an infinite loop but it's 203 * very unlikely to happen. For it to happen, the current polling 204 * process need to be interrupted by another process and another 205 * process needs to update the last_seq btw the atomic read and 206 * xchg of the current process. 207 * 208 * More over for this to go in infinite loop there need to be 209 * continuously new fence signaled ie radeon_fence_read needs 210 * to return a different value each time for both the currently 211 * polling process and the other process that xchg the last_seq 212 * btw atomic read and xchg of the current process. And the 213 * value the other process set as last seq must be higher than 214 * the seq value we just read. Which means that current process 215 * need to be interrupted after radeon_fence_read and before 216 * atomic xchg. 217 * 218 * To be even more safe we count the number of time we loop and 219 * we bail after 10 loop just accepting the fact that we might 220 * have temporarly set the last_seq not to the true real last 221 * seq but to an older one. 222 */ 223 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 224 do { 225 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 226 seq = radeon_fence_read(rdev, ring); 227 seq |= last_seq & 0xffffffff00000000LL; 228 if (seq < last_seq) { 229 seq &= 0xffffffff; 230 seq |= last_emitted & 0xffffffff00000000LL; 231 } 232 233 if (seq <= last_seq || seq > last_emitted) 234 break; 235 236 /* If we loop over we don't want to return without 237 * checking if a fence is signaled as it means that the 238 * seq we just read is different from the previous on. 239 */ 240 wake = true; 241 last_seq = seq; 242 if ((count_loop++) > 10) { 243 /* We looped over too many time leave with the 244 * fact that we might have set an older fence 245 * seq then the current real last seq as signaled 246 * by the hw. 247 */ 248 break; 249 } 250 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 251 252 if (seq < last_emitted) 253 radeon_fence_schedule_check(rdev, ring); 254 255 return wake; 256 } 257 258 /** 259 * radeon_fence_check_lockup - check for hardware lockup 260 * 261 * @work: delayed work item 262 * 263 * Checks for fence activity and if there is none probe 264 * the hardware if a lockup occured. 265 */ 266 static void radeon_fence_check_lockup(struct work_struct *work) 267 { 268 struct radeon_fence_driver *fence_drv; 269 struct radeon_device *rdev; 270 int ring; 271 272 fence_drv = container_of(work, struct radeon_fence_driver, 273 lockup_work.work); 274 rdev = fence_drv->rdev; 275 ring = fence_drv - &rdev->fence_drv[0]; 276 277 if (!down_read_trylock(&rdev->exclusive_lock)) { 278 /* just reschedule the check if a reset is going on */ 279 radeon_fence_schedule_check(rdev, ring); 280 return; 281 } 282 283 if (fence_drv->delayed_irq && rdev->irq.installed) { 284 unsigned long irqflags; 285 286 fence_drv->delayed_irq = false; 287 spin_lock_irqsave(&rdev->irq.lock, irqflags); 288 radeon_irq_set(rdev); 289 spin_unlock_irqrestore(&rdev->irq.lock, irqflags); 290 } 291 292 if (radeon_fence_activity(rdev, ring)) 293 wake_up_all(&rdev->fence_queue); 294 295 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) { 296 297 /* good news we believe it's a lockup */ 298 dev_warn(rdev->dev, "GPU lockup (current fence id 0x%016llx last fence id 0x%016llx on ring %d)\n", 299 (uint64_t)atomic64_read(&fence_drv->last_seq), 300 fence_drv->sync_seq[ring], ring); 301 302 /* remember that we need an reset */ 303 rdev->needs_reset = true; 304 wake_up_all(&rdev->fence_queue); 305 } 306 up_read(&rdev->exclusive_lock); 307 } 308 309 /** 310 * radeon_fence_process - process a fence 311 * 312 * @rdev: radeon_device pointer 313 * @ring: ring index the fence is associated with 314 * 315 * Checks the current fence value and wakes the fence queue 316 * if the sequence number has increased (all asics). 317 */ 318 void radeon_fence_process(struct radeon_device *rdev, int ring) 319 { 320 if (radeon_fence_activity(rdev, ring)) 321 wake_up_all(&rdev->fence_queue); 322 } 323 324 /** 325 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 326 * 327 * @rdev: radeon device pointer 328 * @seq: sequence number 329 * @ring: ring index the fence is associated with 330 * 331 * Check if the last signaled fence sequnce number is >= the requested 332 * sequence number (all asics). 333 * Returns true if the fence has signaled (current fence value 334 * is >= requested value) or false if it has not (current fence 335 * value is < the requested value. Helper function for 336 * radeon_fence_signaled(). 337 */ 338 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 339 u64 seq, unsigned int ring) 340 { 341 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 342 return true; 343 344 /* poll new last sequence at least once */ 345 radeon_fence_process(rdev, ring); 346 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 347 return true; 348 349 return false; 350 } 351 352 static bool radeon_fence_is_signaled(struct dma_fence *f) 353 { 354 struct radeon_fence *fence = to_radeon_fence(f); 355 struct radeon_device *rdev = fence->rdev; 356 unsigned int ring = fence->ring; 357 u64 seq = fence->seq; 358 359 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 360 return true; 361 362 if (down_read_trylock(&rdev->exclusive_lock)) { 363 radeon_fence_process(rdev, ring); 364 up_read(&rdev->exclusive_lock); 365 366 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 367 return true; 368 } 369 return false; 370 } 371 372 /** 373 * radeon_fence_enable_signaling - enable signalling on fence 374 * @f: fence 375 * 376 * This function is called with fence_queue lock held, and adds a callback 377 * to fence_queue that checks if this fence is signaled, and if so it 378 * signals the fence and removes itself. 379 */ 380 static bool radeon_fence_enable_signaling(struct dma_fence *f) 381 { 382 struct radeon_fence *fence = to_radeon_fence(f); 383 struct radeon_device *rdev = fence->rdev; 384 385 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) 386 return false; 387 388 if (down_read_trylock(&rdev->exclusive_lock)) { 389 radeon_irq_kms_sw_irq_get(rdev, fence->ring); 390 391 if (radeon_fence_activity(rdev, fence->ring)) 392 wake_up_all_locked(&rdev->fence_queue); 393 394 /* did fence get signaled after we enabled the sw irq? */ 395 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { 396 radeon_irq_kms_sw_irq_put(rdev, fence->ring); 397 up_read(&rdev->exclusive_lock); 398 return false; 399 } 400 401 up_read(&rdev->exclusive_lock); 402 } else { 403 /* we're probably in a lockup, lets not fiddle too much */ 404 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring)) 405 rdev->fence_drv[fence->ring].delayed_irq = true; 406 radeon_fence_schedule_check(rdev, fence->ring); 407 } 408 409 fence->fence_wake.flags = 0; 410 fence->fence_wake.private = NULL; 411 fence->fence_wake.func = radeon_fence_check_signaled; 412 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); 413 dma_fence_get(f); 414 return true; 415 } 416 417 /** 418 * radeon_fence_signaled - check if a fence has signaled 419 * 420 * @fence: radeon fence object 421 * 422 * Check if the requested fence has signaled (all asics). 423 * Returns true if the fence has signaled or false if it has not. 424 */ 425 bool radeon_fence_signaled(struct radeon_fence *fence) 426 { 427 if (!fence) 428 return true; 429 430 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 431 dma_fence_signal(&fence->base); 432 return true; 433 } 434 return false; 435 } 436 437 /** 438 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 439 * 440 * @rdev: radeon device pointer 441 * @seq: sequence numbers 442 * 443 * Check if the last signaled fence sequnce number is >= the requested 444 * sequence number (all asics). 445 * Returns true if any has signaled (current value is >= requested value) 446 * or false if it has not. Helper function for radeon_fence_wait_seq. 447 */ 448 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 449 { 450 unsigned int i; 451 452 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 453 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 454 return true; 455 } 456 return false; 457 } 458 459 /** 460 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers 461 * 462 * @rdev: radeon device pointer 463 * @target_seq: sequence number(s) we want to wait for 464 * @intr: use interruptable sleep 465 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 466 * 467 * Wait for the requested sequence number(s) to be written by any ring 468 * (all asics). Sequnce number array is indexed by ring id. 469 * @intr selects whether to use interruptable (true) or non-interruptable 470 * (false) sleep when waiting for the sequence number. Helper function 471 * for radeon_fence_wait_*(). 472 * Returns remaining time if the sequence number has passed, 0 when 473 * the wait timeout, or an error for all other cases. 474 * -EDEADLK is returned when a GPU lockup has been detected. 475 */ 476 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev, 477 u64 *target_seq, bool intr, 478 long timeout) 479 { 480 long r; 481 int i; 482 483 if (radeon_fence_any_seq_signaled(rdev, target_seq)) 484 return timeout; 485 486 /* enable IRQs and tracing */ 487 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 488 if (!target_seq[i]) 489 continue; 490 491 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]); 492 radeon_irq_kms_sw_irq_get(rdev, i); 493 } 494 495 if (intr) { 496 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 497 radeon_fence_any_seq_signaled(rdev, target_seq) 498 || rdev->needs_reset), timeout); 499 } else { 500 r = wait_event_timeout(rdev->fence_queue, ( 501 radeon_fence_any_seq_signaled(rdev, target_seq) 502 || rdev->needs_reset), timeout); 503 } 504 505 if (rdev->needs_reset) 506 r = -EDEADLK; 507 508 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 509 if (!target_seq[i]) 510 continue; 511 512 radeon_irq_kms_sw_irq_put(rdev, i); 513 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]); 514 } 515 516 return r; 517 } 518 519 /** 520 * radeon_fence_wait_timeout - wait for a fence to signal with timeout 521 * 522 * @fence: radeon fence object 523 * @intr: use interruptible sleep 524 * 525 * Wait for the requested fence to signal (all asics). 526 * @intr selects whether to use interruptable (true) or non-interruptable 527 * (false) sleep when waiting for the fence. 528 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 529 * Returns remaining time if the sequence number has passed, 0 when 530 * the wait timeout, or an error for all other cases. 531 */ 532 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout) 533 { 534 uint64_t seq[RADEON_NUM_RINGS] = {}; 535 long r; 536 537 /* 538 * This function should not be called on !radeon fences. 539 * If this is the case, it would mean this function can 540 * also be called on radeon fences belonging to another card. 541 * exclusive_lock is not held in that case. 542 */ 543 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base))) 544 return dma_fence_wait(&fence->base, intr); 545 546 seq[fence->ring] = fence->seq; 547 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout); 548 if (r <= 0) 549 return r; 550 551 dma_fence_signal(&fence->base); 552 return r; 553 } 554 555 /** 556 * radeon_fence_wait - wait for a fence to signal 557 * 558 * @fence: radeon fence object 559 * @intr: use interruptible sleep 560 * 561 * Wait for the requested fence to signal (all asics). 562 * @intr selects whether to use interruptable (true) or non-interruptable 563 * (false) sleep when waiting for the fence. 564 * Returns 0 if the fence has passed, error for all other cases. 565 */ 566 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 567 { 568 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT); 569 570 if (r > 0) 571 return 0; 572 else 573 return r; 574 } 575 576 /** 577 * radeon_fence_wait_any - wait for a fence to signal on any ring 578 * 579 * @rdev: radeon device pointer 580 * @fences: radeon fence object(s) 581 * @intr: use interruptable sleep 582 * 583 * Wait for any requested fence to signal (all asics). Fence 584 * array is indexed by ring id. @intr selects whether to use 585 * interruptable (true) or non-interruptable (false) sleep when 586 * waiting for the fences. Used by the suballocator. 587 * Returns 0 if any fence has passed, error for all other cases. 588 */ 589 int radeon_fence_wait_any(struct radeon_device *rdev, 590 struct radeon_fence **fences, 591 bool intr) 592 { 593 uint64_t seq[RADEON_NUM_RINGS]; 594 unsigned int i, num_rings = 0; 595 long r; 596 597 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 598 seq[i] = 0; 599 600 if (!fences[i]) 601 continue; 602 603 seq[i] = fences[i]->seq; 604 ++num_rings; 605 } 606 607 /* nothing to wait for ? */ 608 if (num_rings == 0) 609 return -ENOENT; 610 611 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 612 if (r < 0) 613 return r; 614 615 return 0; 616 } 617 618 /** 619 * radeon_fence_wait_next - wait for the next fence to signal 620 * 621 * @rdev: radeon device pointer 622 * @ring: ring index the fence is associated with 623 * 624 * Wait for the next fence on the requested ring to signal (all asics). 625 * Returns 0 if the next fence has passed, error for all other cases. 626 * Caller must hold ring lock. 627 */ 628 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 629 { 630 uint64_t seq[RADEON_NUM_RINGS] = {}; 631 long r; 632 633 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 634 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 635 /* nothing to wait for, last_seq is already 636 * the last emited fence 637 */ 638 return -ENOENT; 639 } 640 641 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 642 if (r < 0) 643 return r; 644 645 return 0; 646 } 647 648 /** 649 * radeon_fence_wait_empty - wait for all fences to signal 650 * 651 * @rdev: radeon device pointer 652 * @ring: ring index the fence is associated with 653 * 654 * Wait for all fences on the requested ring to signal (all asics). 655 * Returns 0 if the fences have passed, error for all other cases. 656 * Caller must hold ring lock. 657 */ 658 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 659 { 660 uint64_t seq[RADEON_NUM_RINGS] = {}; 661 long r; 662 663 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 664 if (!seq[ring]) 665 return 0; 666 667 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 668 if (r < 0) { 669 if (r == -EDEADLK) 670 return -EDEADLK; 671 672 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n", 673 ring, r); 674 } 675 return 0; 676 } 677 678 /** 679 * radeon_fence_ref - take a ref on a fence 680 * 681 * @fence: radeon fence object 682 * 683 * Take a reference on a fence (all asics). 684 * Returns the fence. 685 */ 686 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 687 { 688 dma_fence_get(&fence->base); 689 return fence; 690 } 691 692 /** 693 * radeon_fence_unref - remove a ref on a fence 694 * 695 * @fence: radeon fence object 696 * 697 * Remove a reference on a fence (all asics). 698 */ 699 void radeon_fence_unref(struct radeon_fence **fence) 700 { 701 struct radeon_fence *tmp = *fence; 702 703 *fence = NULL; 704 if (tmp) 705 dma_fence_put(&tmp->base); 706 } 707 708 /** 709 * radeon_fence_count_emitted - get the count of emitted fences 710 * 711 * @rdev: radeon device pointer 712 * @ring: ring index the fence is associated with 713 * 714 * Get the number of fences emitted on the requested ring (all asics). 715 * Returns the number of emitted fences on the ring. Used by the 716 * dynpm code to ring track activity. 717 */ 718 unsigned int radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 719 { 720 uint64_t emitted; 721 722 /* We are not protected by ring lock when reading the last sequence 723 * but it's ok to report slightly wrong fence count here. 724 */ 725 radeon_fence_process(rdev, ring); 726 emitted = rdev->fence_drv[ring].sync_seq[ring] 727 - atomic64_read(&rdev->fence_drv[ring].last_seq); 728 /* to avoid 32bits warp around */ 729 if (emitted > 0x10000000) 730 emitted = 0x10000000; 731 732 return (unsigned int)emitted; 733 } 734 735 /** 736 * radeon_fence_need_sync - do we need a semaphore 737 * 738 * @fence: radeon fence object 739 * @dst_ring: which ring to check against 740 * 741 * Check if the fence needs to be synced against another ring 742 * (all asics). If so, we need to emit a semaphore. 743 * Returns true if we need to sync with another ring, false if 744 * not. 745 */ 746 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 747 { 748 struct radeon_fence_driver *fdrv; 749 750 if (!fence) 751 return false; 752 753 if (fence->ring == dst_ring) 754 return false; 755 756 /* we are protected by the ring mutex */ 757 fdrv = &fence->rdev->fence_drv[dst_ring]; 758 if (fence->seq <= fdrv->sync_seq[fence->ring]) 759 return false; 760 761 return true; 762 } 763 764 /** 765 * radeon_fence_note_sync - record the sync point 766 * 767 * @fence: radeon fence object 768 * @dst_ring: which ring to check against 769 * 770 * Note the sequence number at which point the fence will 771 * be synced with the requested ring (all asics). 772 */ 773 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 774 { 775 struct radeon_fence_driver *dst, *src; 776 unsigned int i; 777 778 if (!fence) 779 return; 780 781 if (fence->ring == dst_ring) 782 return; 783 784 /* we are protected by the ring mutex */ 785 src = &fence->rdev->fence_drv[fence->ring]; 786 dst = &fence->rdev->fence_drv[dst_ring]; 787 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 788 if (i == dst_ring) 789 continue; 790 791 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 792 } 793 } 794 795 /** 796 * radeon_fence_driver_start_ring - make the fence driver 797 * ready for use on the requested ring. 798 * 799 * @rdev: radeon device pointer 800 * @ring: ring index to start the fence driver on 801 * 802 * Make the fence driver ready for processing (all asics). 803 * Not all asics have all rings, so each asic will only 804 * start the fence driver on the rings it has. 805 * Returns 0 for success, errors for failure. 806 */ 807 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 808 { 809 uint64_t index; 810 int r; 811 812 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 813 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 814 rdev->fence_drv[ring].scratch_reg = 0; 815 if (ring != R600_RING_TYPE_UVD_INDEX) { 816 index = R600_WB_EVENT_OFFSET + ring * 4; 817 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 818 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 819 index; 820 821 } else { 822 /* put fence directly behind firmware */ 823 index = ALIGN(rdev->uvd_fw->size, 8); 824 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index; 825 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 826 } 827 828 } else { 829 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 830 if (r) { 831 dev_err(rdev->dev, "fence failed to get scratch register\n"); 832 return r; 833 } 834 index = RADEON_WB_SCRATCH_OFFSET + 835 rdev->fence_drv[ring].scratch_reg - 836 rdev->scratch.reg_base; 837 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 838 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 839 } 840 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 841 rdev->fence_drv[ring].initialized = true; 842 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n", 843 ring, rdev->fence_drv[ring].gpu_addr); 844 return 0; 845 } 846 847 /** 848 * radeon_fence_driver_init_ring - init the fence driver 849 * for the requested ring. 850 * 851 * @rdev: radeon device pointer 852 * @ring: ring index to start the fence driver on 853 * 854 * Init the fence driver for the requested ring (all asics). 855 * Helper function for radeon_fence_driver_init(). 856 */ 857 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 858 { 859 int i; 860 861 rdev->fence_drv[ring].scratch_reg = -1; 862 rdev->fence_drv[ring].cpu_addr = NULL; 863 rdev->fence_drv[ring].gpu_addr = 0; 864 for (i = 0; i < RADEON_NUM_RINGS; ++i) 865 rdev->fence_drv[ring].sync_seq[i] = 0; 866 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 867 rdev->fence_drv[ring].initialized = false; 868 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work, 869 radeon_fence_check_lockup); 870 rdev->fence_drv[ring].rdev = rdev; 871 } 872 873 /** 874 * radeon_fence_driver_init - init the fence driver 875 * for all possible rings. 876 * 877 * @rdev: radeon device pointer 878 * 879 * Init the fence driver for all possible rings (all asics). 880 * Not all asics have all rings, so each asic will only 881 * start the fence driver on the rings it has using 882 * radeon_fence_driver_start_ring(). 883 */ 884 void radeon_fence_driver_init(struct radeon_device *rdev) 885 { 886 int ring; 887 888 init_waitqueue_head(&rdev->fence_queue); 889 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) 890 radeon_fence_driver_init_ring(rdev, ring); 891 892 radeon_debugfs_fence_init(rdev); 893 } 894 895 /** 896 * radeon_fence_driver_fini - tear down the fence driver 897 * for all possible rings. 898 * 899 * @rdev: radeon device pointer 900 * 901 * Tear down the fence driver for all possible rings (all asics). 902 */ 903 void radeon_fence_driver_fini(struct radeon_device *rdev) 904 { 905 int ring, r; 906 907 mutex_lock(&rdev->ring_lock); 908 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 909 if (!rdev->fence_drv[ring].initialized) 910 continue; 911 r = radeon_fence_wait_empty(rdev, ring); 912 if (r) { 913 /* no need to trigger GPU reset as we are unloading */ 914 radeon_fence_driver_force_completion(rdev, ring); 915 } 916 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 917 wake_up_all(&rdev->fence_queue); 918 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 919 rdev->fence_drv[ring].initialized = false; 920 } 921 mutex_unlock(&rdev->ring_lock); 922 } 923 924 /** 925 * radeon_fence_driver_force_completion - force all fence waiter to complete 926 * 927 * @rdev: radeon device pointer 928 * @ring: the ring to complete 929 * 930 * In case of GPU reset failure make sure no process keep waiting on fence 931 * that will never complete. 932 */ 933 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring) 934 { 935 if (rdev->fence_drv[ring].initialized) { 936 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 937 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 938 } 939 } 940 941 942 /* 943 * Fence debugfs 944 */ 945 #if defined(CONFIG_DEBUG_FS) 946 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data) 947 { 948 struct radeon_device *rdev = m->private; 949 int i, j; 950 951 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 952 if (!rdev->fence_drv[i].initialized) 953 continue; 954 955 radeon_fence_process(rdev, i); 956 957 seq_printf(m, "--- ring %d ---\n", i); 958 seq_printf(m, "Last signaled fence 0x%016llx\n", 959 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 960 seq_printf(m, "Last emitted 0x%016llx\n", 961 rdev->fence_drv[i].sync_seq[i]); 962 963 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 964 if (i != j && rdev->fence_drv[j].initialized) 965 seq_printf(m, "Last sync to ring %d 0x%016llx\n", 966 j, rdev->fence_drv[i].sync_seq[j]); 967 } 968 } 969 return 0; 970 } 971 972 /* 973 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 974 * 975 * Manually trigger a gpu reset at the next fence wait. 976 */ 977 static int radeon_debugfs_gpu_reset(void *data, u64 *val) 978 { 979 struct radeon_device *rdev = (struct radeon_device *)data; 980 981 down_read(&rdev->exclusive_lock); 982 *val = rdev->needs_reset; 983 rdev->needs_reset = true; 984 wake_up_all(&rdev->fence_queue); 985 up_read(&rdev->exclusive_lock); 986 987 return 0; 988 } 989 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info); 990 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops, 991 radeon_debugfs_gpu_reset, NULL, "%lld\n"); 992 #endif 993 994 void radeon_debugfs_fence_init(struct radeon_device *rdev) 995 { 996 #if defined(CONFIG_DEBUG_FS) 997 struct dentry *root = rdev->ddev->primary->debugfs_root; 998 999 debugfs_create_file("radeon_gpu_reset", 0444, root, rdev, 1000 &radeon_debugfs_gpu_reset_fops); 1001 debugfs_create_file("radeon_fence_info", 0444, root, rdev, 1002 &radeon_debugfs_fence_info_fops); 1003 1004 1005 #endif 1006 } 1007 1008 static const char *radeon_fence_get_driver_name(struct dma_fence *fence) 1009 { 1010 return "radeon"; 1011 } 1012 1013 static const char *radeon_fence_get_timeline_name(struct dma_fence *f) 1014 { 1015 struct radeon_fence *fence = to_radeon_fence(f); 1016 1017 switch (fence->ring) { 1018 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; 1019 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; 1020 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; 1021 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; 1022 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; 1023 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; 1024 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1"; 1025 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2"; 1026 default: 1027 WARN_ON_ONCE(1); 1028 return "radeon.unk"; 1029 } 1030 } 1031 1032 static inline bool radeon_test_signaled(struct radeon_fence *fence) 1033 { 1034 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); 1035 } 1036 1037 struct radeon_wait_cb { 1038 struct dma_fence_cb base; 1039 struct task_struct *task; 1040 }; 1041 1042 static void 1043 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 1044 { 1045 struct radeon_wait_cb *wait = 1046 container_of(cb, struct radeon_wait_cb, base); 1047 1048 wake_up_process(wait->task); 1049 } 1050 1051 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr, 1052 signed long t) 1053 { 1054 struct radeon_fence *fence = to_radeon_fence(f); 1055 struct radeon_device *rdev = fence->rdev; 1056 struct radeon_wait_cb cb; 1057 1058 cb.task = current; 1059 1060 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb)) 1061 return t; 1062 1063 while (t > 0) { 1064 if (intr) 1065 set_current_state(TASK_INTERRUPTIBLE); 1066 else 1067 set_current_state(TASK_UNINTERRUPTIBLE); 1068 1069 /* 1070 * radeon_test_signaled must be called after 1071 * set_current_state to prevent a race with wake_up_process 1072 */ 1073 if (radeon_test_signaled(fence)) 1074 break; 1075 1076 if (rdev->needs_reset) { 1077 t = -EDEADLK; 1078 break; 1079 } 1080 1081 t = schedule_timeout(t); 1082 1083 if (t > 0 && intr && signal_pending(current)) 1084 t = -ERESTARTSYS; 1085 } 1086 1087 __set_current_state(TASK_RUNNING); 1088 dma_fence_remove_callback(f, &cb.base); 1089 1090 return t; 1091 } 1092 1093 const struct dma_fence_ops radeon_fence_ops = { 1094 .get_driver_name = radeon_fence_get_driver_name, 1095 .get_timeline_name = radeon_fence_get_timeline_name, 1096 .enable_signaling = radeon_fence_enable_signaling, 1097 .signaled = radeon_fence_is_signaled, 1098 .wait = radeon_fence_default_wait, 1099 .release = NULL, 1100 }; 1101