xref: /linux/drivers/gpu/drm/radeon/radeon_fence.c (revision 8fc4e4aa2bfca8d32e8bc2a01526ea2da450e6cb)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Dave Airlie
30  */
31 
32 #include <linux/atomic.h>
33 #include <linux/firmware.h>
34 #include <linux/kref.h>
35 #include <linux/sched/signal.h>
36 #include <linux/seq_file.h>
37 #include <linux/slab.h>
38 #include <linux/wait.h>
39 
40 #include <drm/drm_device.h>
41 #include <drm/drm_file.h>
42 
43 #include "radeon.h"
44 #include "radeon_reg.h"
45 #include "radeon_trace.h"
46 
47 /*
48  * Fences
49  * Fences mark an event in the GPUs pipeline and are used
50  * for GPU/CPU synchronization.  When the fence is written,
51  * it is expected that all buffers associated with that fence
52  * are no longer in use by the associated ring on the GPU and
53  * that the the relevant GPU caches have been flushed.  Whether
54  * we use a scratch register or memory location depends on the asic
55  * and whether writeback is enabled.
56  */
57 
58 /**
59  * radeon_fence_write - write a fence value
60  *
61  * @rdev: radeon_device pointer
62  * @seq: sequence number to write
63  * @ring: ring index the fence is associated with
64  *
65  * Writes a fence value to memory or a scratch register (all asics).
66  */
67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
68 {
69 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
70 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
71 		if (drv->cpu_addr) {
72 			*drv->cpu_addr = cpu_to_le32(seq);
73 		}
74 	} else {
75 		WREG32(drv->scratch_reg, seq);
76 	}
77 }
78 
79 /**
80  * radeon_fence_read - read a fence value
81  *
82  * @rdev: radeon_device pointer
83  * @ring: ring index the fence is associated with
84  *
85  * Reads a fence value from memory or a scratch register (all asics).
86  * Returns the value of the fence read from memory or register.
87  */
88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
89 {
90 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
91 	u32 seq = 0;
92 
93 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
94 		if (drv->cpu_addr) {
95 			seq = le32_to_cpu(*drv->cpu_addr);
96 		} else {
97 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
98 		}
99 	} else {
100 		seq = RREG32(drv->scratch_reg);
101 	}
102 	return seq;
103 }
104 
105 /**
106  * radeon_fence_schedule_check - schedule lockup check
107  *
108  * @rdev: radeon_device pointer
109  * @ring: ring index we should work with
110  *
111  * Queues a delayed work item to check for lockups.
112  */
113 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
114 {
115 	/*
116 	 * Do not reset the timer here with mod_delayed_work,
117 	 * this can livelock in an interaction with TTM delayed destroy.
118 	 */
119 	queue_delayed_work(system_power_efficient_wq,
120 			   &rdev->fence_drv[ring].lockup_work,
121 			   RADEON_FENCE_JIFFIES_TIMEOUT);
122 }
123 
124 /**
125  * radeon_fence_emit - emit a fence on the requested ring
126  *
127  * @rdev: radeon_device pointer
128  * @fence: radeon fence object
129  * @ring: ring index the fence is associated with
130  *
131  * Emits a fence command on the requested ring (all asics).
132  * Returns 0 on success, -ENOMEM on failure.
133  */
134 int radeon_fence_emit(struct radeon_device *rdev,
135 		      struct radeon_fence **fence,
136 		      int ring)
137 {
138 	u64 seq;
139 
140 	/* we are protected by the ring emission mutex */
141 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
142 	if ((*fence) == NULL) {
143 		return -ENOMEM;
144 	}
145 	(*fence)->rdev = rdev;
146 	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
147 	(*fence)->ring = ring;
148 	(*fence)->is_vm_update = false;
149 	dma_fence_init(&(*fence)->base, &radeon_fence_ops,
150 		       &rdev->fence_queue.lock,
151 		       rdev->fence_context + ring,
152 		       seq);
153 	radeon_fence_ring_emit(rdev, ring, *fence);
154 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
155 	radeon_fence_schedule_check(rdev, ring);
156 	return 0;
157 }
158 
159 /*
160  * radeon_fence_check_signaled - callback from fence_queue
161  *
162  * this function is called with fence_queue lock held, which is also used
163  * for the fence locking itself, so unlocked variants are used for
164  * fence_signal, and remove_wait_queue.
165  */
166 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
167 {
168 	struct radeon_fence *fence;
169 	u64 seq;
170 
171 	fence = container_of(wait, struct radeon_fence, fence_wake);
172 
173 	/*
174 	 * We cannot use radeon_fence_process here because we're already
175 	 * in the waitqueue, in a call from wake_up_all.
176 	 */
177 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
178 	if (seq >= fence->seq) {
179 		int ret = dma_fence_signal_locked(&fence->base);
180 
181 		if (!ret)
182 			DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
183 		else
184 			DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
185 
186 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
187 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
188 		dma_fence_put(&fence->base);
189 	} else
190 		DMA_FENCE_TRACE(&fence->base, "pending\n");
191 	return 0;
192 }
193 
194 /**
195  * radeon_fence_activity - check for fence activity
196  *
197  * @rdev: radeon_device pointer
198  * @ring: ring index the fence is associated with
199  *
200  * Checks the current fence value and calculates the last
201  * signalled fence value. Returns true if activity occured
202  * on the ring, and the fence_queue should be waken up.
203  */
204 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
205 {
206 	uint64_t seq, last_seq, last_emitted;
207 	unsigned count_loop = 0;
208 	bool wake = false;
209 
210 	/* Note there is a scenario here for an infinite loop but it's
211 	 * very unlikely to happen. For it to happen, the current polling
212 	 * process need to be interrupted by another process and another
213 	 * process needs to update the last_seq btw the atomic read and
214 	 * xchg of the current process.
215 	 *
216 	 * More over for this to go in infinite loop there need to be
217 	 * continuously new fence signaled ie radeon_fence_read needs
218 	 * to return a different value each time for both the currently
219 	 * polling process and the other process that xchg the last_seq
220 	 * btw atomic read and xchg of the current process. And the
221 	 * value the other process set as last seq must be higher than
222 	 * the seq value we just read. Which means that current process
223 	 * need to be interrupted after radeon_fence_read and before
224 	 * atomic xchg.
225 	 *
226 	 * To be even more safe we count the number of time we loop and
227 	 * we bail after 10 loop just accepting the fact that we might
228 	 * have temporarly set the last_seq not to the true real last
229 	 * seq but to an older one.
230 	 */
231 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
232 	do {
233 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
234 		seq = radeon_fence_read(rdev, ring);
235 		seq |= last_seq & 0xffffffff00000000LL;
236 		if (seq < last_seq) {
237 			seq &= 0xffffffff;
238 			seq |= last_emitted & 0xffffffff00000000LL;
239 		}
240 
241 		if (seq <= last_seq || seq > last_emitted) {
242 			break;
243 		}
244 		/* If we loop over we don't want to return without
245 		 * checking if a fence is signaled as it means that the
246 		 * seq we just read is different from the previous on.
247 		 */
248 		wake = true;
249 		last_seq = seq;
250 		if ((count_loop++) > 10) {
251 			/* We looped over too many time leave with the
252 			 * fact that we might have set an older fence
253 			 * seq then the current real last seq as signaled
254 			 * by the hw.
255 			 */
256 			break;
257 		}
258 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
259 
260 	if (seq < last_emitted)
261 		radeon_fence_schedule_check(rdev, ring);
262 
263 	return wake;
264 }
265 
266 /**
267  * radeon_fence_check_lockup - check for hardware lockup
268  *
269  * @work: delayed work item
270  *
271  * Checks for fence activity and if there is none probe
272  * the hardware if a lockup occured.
273  */
274 static void radeon_fence_check_lockup(struct work_struct *work)
275 {
276 	struct radeon_fence_driver *fence_drv;
277 	struct radeon_device *rdev;
278 	int ring;
279 
280 	fence_drv = container_of(work, struct radeon_fence_driver,
281 				 lockup_work.work);
282 	rdev = fence_drv->rdev;
283 	ring = fence_drv - &rdev->fence_drv[0];
284 
285 	if (!down_read_trylock(&rdev->exclusive_lock)) {
286 		/* just reschedule the check if a reset is going on */
287 		radeon_fence_schedule_check(rdev, ring);
288 		return;
289 	}
290 
291 	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
292 		unsigned long irqflags;
293 
294 		fence_drv->delayed_irq = false;
295 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
296 		radeon_irq_set(rdev);
297 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
298 	}
299 
300 	if (radeon_fence_activity(rdev, ring))
301 		wake_up_all(&rdev->fence_queue);
302 
303 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
304 
305 		/* good news we believe it's a lockup */
306 		dev_warn(rdev->dev, "GPU lockup (current fence id "
307 			 "0x%016llx last fence id 0x%016llx on ring %d)\n",
308 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
309 			 fence_drv->sync_seq[ring], ring);
310 
311 		/* remember that we need an reset */
312 		rdev->needs_reset = true;
313 		wake_up_all(&rdev->fence_queue);
314 	}
315 	up_read(&rdev->exclusive_lock);
316 }
317 
318 /**
319  * radeon_fence_process - process a fence
320  *
321  * @rdev: radeon_device pointer
322  * @ring: ring index the fence is associated with
323  *
324  * Checks the current fence value and wakes the fence queue
325  * if the sequence number has increased (all asics).
326  */
327 void radeon_fence_process(struct radeon_device *rdev, int ring)
328 {
329 	if (radeon_fence_activity(rdev, ring))
330 		wake_up_all(&rdev->fence_queue);
331 }
332 
333 /**
334  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
335  *
336  * @rdev: radeon device pointer
337  * @seq: sequence number
338  * @ring: ring index the fence is associated with
339  *
340  * Check if the last signaled fence sequnce number is >= the requested
341  * sequence number (all asics).
342  * Returns true if the fence has signaled (current fence value
343  * is >= requested value) or false if it has not (current fence
344  * value is < the requested value.  Helper function for
345  * radeon_fence_signaled().
346  */
347 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
348 				      u64 seq, unsigned ring)
349 {
350 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
351 		return true;
352 	}
353 	/* poll new last sequence at least once */
354 	radeon_fence_process(rdev, ring);
355 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
356 		return true;
357 	}
358 	return false;
359 }
360 
361 static bool radeon_fence_is_signaled(struct dma_fence *f)
362 {
363 	struct radeon_fence *fence = to_radeon_fence(f);
364 	struct radeon_device *rdev = fence->rdev;
365 	unsigned ring = fence->ring;
366 	u64 seq = fence->seq;
367 
368 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
369 		return true;
370 	}
371 
372 	if (down_read_trylock(&rdev->exclusive_lock)) {
373 		radeon_fence_process(rdev, ring);
374 		up_read(&rdev->exclusive_lock);
375 
376 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
377 			return true;
378 		}
379 	}
380 	return false;
381 }
382 
383 /**
384  * radeon_fence_enable_signaling - enable signalling on fence
385  * @f: fence
386  *
387  * This function is called with fence_queue lock held, and adds a callback
388  * to fence_queue that checks if this fence is signaled, and if so it
389  * signals the fence and removes itself.
390  */
391 static bool radeon_fence_enable_signaling(struct dma_fence *f)
392 {
393 	struct radeon_fence *fence = to_radeon_fence(f);
394 	struct radeon_device *rdev = fence->rdev;
395 
396 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
397 		return false;
398 
399 	if (down_read_trylock(&rdev->exclusive_lock)) {
400 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
401 
402 		if (radeon_fence_activity(rdev, fence->ring))
403 			wake_up_all_locked(&rdev->fence_queue);
404 
405 		/* did fence get signaled after we enabled the sw irq? */
406 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
407 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
408 			up_read(&rdev->exclusive_lock);
409 			return false;
410 		}
411 
412 		up_read(&rdev->exclusive_lock);
413 	} else {
414 		/* we're probably in a lockup, lets not fiddle too much */
415 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
416 			rdev->fence_drv[fence->ring].delayed_irq = true;
417 		radeon_fence_schedule_check(rdev, fence->ring);
418 	}
419 
420 	fence->fence_wake.flags = 0;
421 	fence->fence_wake.private = NULL;
422 	fence->fence_wake.func = radeon_fence_check_signaled;
423 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
424 	dma_fence_get(f);
425 
426 	DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
427 	return true;
428 }
429 
430 /**
431  * radeon_fence_signaled - check if a fence has signaled
432  *
433  * @fence: radeon fence object
434  *
435  * Check if the requested fence has signaled (all asics).
436  * Returns true if the fence has signaled or false if it has not.
437  */
438 bool radeon_fence_signaled(struct radeon_fence *fence)
439 {
440 	if (!fence)
441 		return true;
442 
443 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
444 		int ret;
445 
446 		ret = dma_fence_signal(&fence->base);
447 		if (!ret)
448 			DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
449 		return true;
450 	}
451 	return false;
452 }
453 
454 /**
455  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
456  *
457  * @rdev: radeon device pointer
458  * @seq: sequence numbers
459  *
460  * Check if the last signaled fence sequnce number is >= the requested
461  * sequence number (all asics).
462  * Returns true if any has signaled (current value is >= requested value)
463  * or false if it has not. Helper function for radeon_fence_wait_seq.
464  */
465 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
466 {
467 	unsigned i;
468 
469 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
470 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
471 			return true;
472 	}
473 	return false;
474 }
475 
476 /**
477  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
478  *
479  * @rdev: radeon device pointer
480  * @target_seq: sequence number(s) we want to wait for
481  * @intr: use interruptable sleep
482  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
483  *
484  * Wait for the requested sequence number(s) to be written by any ring
485  * (all asics).  Sequnce number array is indexed by ring id.
486  * @intr selects whether to use interruptable (true) or non-interruptable
487  * (false) sleep when waiting for the sequence number.  Helper function
488  * for radeon_fence_wait_*().
489  * Returns remaining time if the sequence number has passed, 0 when
490  * the wait timeout, or an error for all other cases.
491  * -EDEADLK is returned when a GPU lockup has been detected.
492  */
493 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
494 					  u64 *target_seq, bool intr,
495 					  long timeout)
496 {
497 	long r;
498 	int i;
499 
500 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
501 		return timeout;
502 
503 	/* enable IRQs and tracing */
504 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
505 		if (!target_seq[i])
506 			continue;
507 
508 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
509 		radeon_irq_kms_sw_irq_get(rdev, i);
510 	}
511 
512 	if (intr) {
513 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
514 			radeon_fence_any_seq_signaled(rdev, target_seq)
515 			 || rdev->needs_reset), timeout);
516 	} else {
517 		r = wait_event_timeout(rdev->fence_queue, (
518 			radeon_fence_any_seq_signaled(rdev, target_seq)
519 			 || rdev->needs_reset), timeout);
520 	}
521 
522 	if (rdev->needs_reset)
523 		r = -EDEADLK;
524 
525 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
526 		if (!target_seq[i])
527 			continue;
528 
529 		radeon_irq_kms_sw_irq_put(rdev, i);
530 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
531 	}
532 
533 	return r;
534 }
535 
536 /**
537  * radeon_fence_wait_timeout - wait for a fence to signal with timeout
538  *
539  * @fence: radeon fence object
540  * @intr: use interruptible sleep
541  *
542  * Wait for the requested fence to signal (all asics).
543  * @intr selects whether to use interruptable (true) or non-interruptable
544  * (false) sleep when waiting for the fence.
545  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
546  * Returns remaining time if the sequence number has passed, 0 when
547  * the wait timeout, or an error for all other cases.
548  */
549 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
550 {
551 	uint64_t seq[RADEON_NUM_RINGS] = {};
552 	long r;
553 	int r_sig;
554 
555 	/*
556 	 * This function should not be called on !radeon fences.
557 	 * If this is the case, it would mean this function can
558 	 * also be called on radeon fences belonging to another card.
559 	 * exclusive_lock is not held in that case.
560 	 */
561 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
562 		return dma_fence_wait(&fence->base, intr);
563 
564 	seq[fence->ring] = fence->seq;
565 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
566 	if (r <= 0) {
567 		return r;
568 	}
569 
570 	r_sig = dma_fence_signal(&fence->base);
571 	if (!r_sig)
572 		DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
573 	return r;
574 }
575 
576 /**
577  * radeon_fence_wait - wait for a fence to signal
578  *
579  * @fence: radeon fence object
580  * @intr: use interruptible sleep
581  *
582  * Wait for the requested fence to signal (all asics).
583  * @intr selects whether to use interruptable (true) or non-interruptable
584  * (false) sleep when waiting for the fence.
585  * Returns 0 if the fence has passed, error for all other cases.
586  */
587 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
588 {
589 	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
590 	if (r > 0) {
591 		return 0;
592 	} else {
593 		return r;
594 	}
595 }
596 
597 /**
598  * radeon_fence_wait_any - wait for a fence to signal on any ring
599  *
600  * @rdev: radeon device pointer
601  * @fences: radeon fence object(s)
602  * @intr: use interruptable sleep
603  *
604  * Wait for any requested fence to signal (all asics).  Fence
605  * array is indexed by ring id.  @intr selects whether to use
606  * interruptable (true) or non-interruptable (false) sleep when
607  * waiting for the fences. Used by the suballocator.
608  * Returns 0 if any fence has passed, error for all other cases.
609  */
610 int radeon_fence_wait_any(struct radeon_device *rdev,
611 			  struct radeon_fence **fences,
612 			  bool intr)
613 {
614 	uint64_t seq[RADEON_NUM_RINGS];
615 	unsigned i, num_rings = 0;
616 	long r;
617 
618 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
619 		seq[i] = 0;
620 
621 		if (!fences[i]) {
622 			continue;
623 		}
624 
625 		seq[i] = fences[i]->seq;
626 		++num_rings;
627 	}
628 
629 	/* nothing to wait for ? */
630 	if (num_rings == 0)
631 		return -ENOENT;
632 
633 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
634 	if (r < 0) {
635 		return r;
636 	}
637 	return 0;
638 }
639 
640 /**
641  * radeon_fence_wait_next - wait for the next fence to signal
642  *
643  * @rdev: radeon device pointer
644  * @ring: ring index the fence is associated with
645  *
646  * Wait for the next fence on the requested ring to signal (all asics).
647  * Returns 0 if the next fence has passed, error for all other cases.
648  * Caller must hold ring lock.
649  */
650 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
651 {
652 	uint64_t seq[RADEON_NUM_RINGS] = {};
653 	long r;
654 
655 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
656 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
657 		/* nothing to wait for, last_seq is
658 		   already the last emited fence */
659 		return -ENOENT;
660 	}
661 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
662 	if (r < 0)
663 		return r;
664 	return 0;
665 }
666 
667 /**
668  * radeon_fence_wait_empty - wait for all fences to signal
669  *
670  * @rdev: radeon device pointer
671  * @ring: ring index the fence is associated with
672  *
673  * Wait for all fences on the requested ring to signal (all asics).
674  * Returns 0 if the fences have passed, error for all other cases.
675  * Caller must hold ring lock.
676  */
677 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
678 {
679 	uint64_t seq[RADEON_NUM_RINGS] = {};
680 	long r;
681 
682 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
683 	if (!seq[ring])
684 		return 0;
685 
686 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
687 	if (r < 0) {
688 		if (r == -EDEADLK)
689 			return -EDEADLK;
690 
691 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
692 			ring, r);
693 	}
694 	return 0;
695 }
696 
697 /**
698  * radeon_fence_ref - take a ref on a fence
699  *
700  * @fence: radeon fence object
701  *
702  * Take a reference on a fence (all asics).
703  * Returns the fence.
704  */
705 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
706 {
707 	dma_fence_get(&fence->base);
708 	return fence;
709 }
710 
711 /**
712  * radeon_fence_unref - remove a ref on a fence
713  *
714  * @fence: radeon fence object
715  *
716  * Remove a reference on a fence (all asics).
717  */
718 void radeon_fence_unref(struct radeon_fence **fence)
719 {
720 	struct radeon_fence *tmp = *fence;
721 
722 	*fence = NULL;
723 	if (tmp) {
724 		dma_fence_put(&tmp->base);
725 	}
726 }
727 
728 /**
729  * radeon_fence_count_emitted - get the count of emitted fences
730  *
731  * @rdev: radeon device pointer
732  * @ring: ring index the fence is associated with
733  *
734  * Get the number of fences emitted on the requested ring (all asics).
735  * Returns the number of emitted fences on the ring.  Used by the
736  * dynpm code to ring track activity.
737  */
738 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
739 {
740 	uint64_t emitted;
741 
742 	/* We are not protected by ring lock when reading the last sequence
743 	 * but it's ok to report slightly wrong fence count here.
744 	 */
745 	radeon_fence_process(rdev, ring);
746 	emitted = rdev->fence_drv[ring].sync_seq[ring]
747 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
748 	/* to avoid 32bits warp around */
749 	if (emitted > 0x10000000) {
750 		emitted = 0x10000000;
751 	}
752 	return (unsigned)emitted;
753 }
754 
755 /**
756  * radeon_fence_need_sync - do we need a semaphore
757  *
758  * @fence: radeon fence object
759  * @dst_ring: which ring to check against
760  *
761  * Check if the fence needs to be synced against another ring
762  * (all asics).  If so, we need to emit a semaphore.
763  * Returns true if we need to sync with another ring, false if
764  * not.
765  */
766 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
767 {
768 	struct radeon_fence_driver *fdrv;
769 
770 	if (!fence) {
771 		return false;
772 	}
773 
774 	if (fence->ring == dst_ring) {
775 		return false;
776 	}
777 
778 	/* we are protected by the ring mutex */
779 	fdrv = &fence->rdev->fence_drv[dst_ring];
780 	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
781 		return false;
782 	}
783 
784 	return true;
785 }
786 
787 /**
788  * radeon_fence_note_sync - record the sync point
789  *
790  * @fence: radeon fence object
791  * @dst_ring: which ring to check against
792  *
793  * Note the sequence number at which point the fence will
794  * be synced with the requested ring (all asics).
795  */
796 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
797 {
798 	struct radeon_fence_driver *dst, *src;
799 	unsigned i;
800 
801 	if (!fence) {
802 		return;
803 	}
804 
805 	if (fence->ring == dst_ring) {
806 		return;
807 	}
808 
809 	/* we are protected by the ring mutex */
810 	src = &fence->rdev->fence_drv[fence->ring];
811 	dst = &fence->rdev->fence_drv[dst_ring];
812 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
813 		if (i == dst_ring) {
814 			continue;
815 		}
816 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
817 	}
818 }
819 
820 /**
821  * radeon_fence_driver_start_ring - make the fence driver
822  * ready for use on the requested ring.
823  *
824  * @rdev: radeon device pointer
825  * @ring: ring index to start the fence driver on
826  *
827  * Make the fence driver ready for processing (all asics).
828  * Not all asics have all rings, so each asic will only
829  * start the fence driver on the rings it has.
830  * Returns 0 for success, errors for failure.
831  */
832 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
833 {
834 	uint64_t index;
835 	int r;
836 
837 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
838 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
839 		rdev->fence_drv[ring].scratch_reg = 0;
840 		if (ring != R600_RING_TYPE_UVD_INDEX) {
841 			index = R600_WB_EVENT_OFFSET + ring * 4;
842 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
843 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
844 							 index;
845 
846 		} else {
847 			/* put fence directly behind firmware */
848 			index = ALIGN(rdev->uvd_fw->size, 8);
849 			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
850 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
851 		}
852 
853 	} else {
854 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
855 		if (r) {
856 			dev_err(rdev->dev, "fence failed to get scratch register\n");
857 			return r;
858 		}
859 		index = RADEON_WB_SCRATCH_OFFSET +
860 			rdev->fence_drv[ring].scratch_reg -
861 			rdev->scratch.reg_base;
862 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
863 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
864 	}
865 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
866 	rdev->fence_drv[ring].initialized = true;
867 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n",
868 		 ring, rdev->fence_drv[ring].gpu_addr);
869 	return 0;
870 }
871 
872 /**
873  * radeon_fence_driver_init_ring - init the fence driver
874  * for the requested ring.
875  *
876  * @rdev: radeon device pointer
877  * @ring: ring index to start the fence driver on
878  *
879  * Init the fence driver for the requested ring (all asics).
880  * Helper function for radeon_fence_driver_init().
881  */
882 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
883 {
884 	int i;
885 
886 	rdev->fence_drv[ring].scratch_reg = -1;
887 	rdev->fence_drv[ring].cpu_addr = NULL;
888 	rdev->fence_drv[ring].gpu_addr = 0;
889 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
890 		rdev->fence_drv[ring].sync_seq[i] = 0;
891 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
892 	rdev->fence_drv[ring].initialized = false;
893 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
894 			  radeon_fence_check_lockup);
895 	rdev->fence_drv[ring].rdev = rdev;
896 }
897 
898 /**
899  * radeon_fence_driver_init - init the fence driver
900  * for all possible rings.
901  *
902  * @rdev: radeon device pointer
903  *
904  * Init the fence driver for all possible rings (all asics).
905  * Not all asics have all rings, so each asic will only
906  * start the fence driver on the rings it has using
907  * radeon_fence_driver_start_ring().
908  * Returns 0 for success.
909  */
910 int radeon_fence_driver_init(struct radeon_device *rdev)
911 {
912 	int ring;
913 
914 	init_waitqueue_head(&rdev->fence_queue);
915 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
916 		radeon_fence_driver_init_ring(rdev, ring);
917 	}
918 
919 	radeon_debugfs_fence_init(rdev);
920 
921 	return 0;
922 }
923 
924 /**
925  * radeon_fence_driver_fini - tear down the fence driver
926  * for all possible rings.
927  *
928  * @rdev: radeon device pointer
929  *
930  * Tear down the fence driver for all possible rings (all asics).
931  */
932 void radeon_fence_driver_fini(struct radeon_device *rdev)
933 {
934 	int ring, r;
935 
936 	mutex_lock(&rdev->ring_lock);
937 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
938 		if (!rdev->fence_drv[ring].initialized)
939 			continue;
940 		r = radeon_fence_wait_empty(rdev, ring);
941 		if (r) {
942 			/* no need to trigger GPU reset as we are unloading */
943 			radeon_fence_driver_force_completion(rdev, ring);
944 		}
945 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
946 		wake_up_all(&rdev->fence_queue);
947 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
948 		rdev->fence_drv[ring].initialized = false;
949 	}
950 	mutex_unlock(&rdev->ring_lock);
951 }
952 
953 /**
954  * radeon_fence_driver_force_completion - force all fence waiter to complete
955  *
956  * @rdev: radeon device pointer
957  * @ring: the ring to complete
958  *
959  * In case of GPU reset failure make sure no process keep waiting on fence
960  * that will never complete.
961  */
962 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
963 {
964 	if (rdev->fence_drv[ring].initialized) {
965 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
966 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
967 	}
968 }
969 
970 
971 /*
972  * Fence debugfs
973  */
974 #if defined(CONFIG_DEBUG_FS)
975 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data)
976 {
977 	struct radeon_device *rdev = (struct radeon_device *)m->private;
978 	int i, j;
979 
980 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
981 		if (!rdev->fence_drv[i].initialized)
982 			continue;
983 
984 		radeon_fence_process(rdev, i);
985 
986 		seq_printf(m, "--- ring %d ---\n", i);
987 		seq_printf(m, "Last signaled fence 0x%016llx\n",
988 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
989 		seq_printf(m, "Last emitted        0x%016llx\n",
990 			   rdev->fence_drv[i].sync_seq[i]);
991 
992 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
993 			if (i != j && rdev->fence_drv[j].initialized)
994 				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
995 					   j, rdev->fence_drv[i].sync_seq[j]);
996 		}
997 	}
998 	return 0;
999 }
1000 
1001 /*
1002  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1003  *
1004  * Manually trigger a gpu reset at the next fence wait.
1005  */
1006 static int radeon_debugfs_gpu_reset(void *data, u64 *val)
1007 {
1008 	struct radeon_device *rdev = (struct radeon_device *)data;
1009 
1010 	down_read(&rdev->exclusive_lock);
1011 	*val = rdev->needs_reset;
1012 	rdev->needs_reset = true;
1013 	wake_up_all(&rdev->fence_queue);
1014 	up_read(&rdev->exclusive_lock);
1015 
1016 	return 0;
1017 }
1018 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info);
1019 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops,
1020 			 radeon_debugfs_gpu_reset, NULL, "%lld\n");
1021 #endif
1022 
1023 void radeon_debugfs_fence_init(struct radeon_device *rdev)
1024 {
1025 #if defined(CONFIG_DEBUG_FS)
1026 	struct dentry *root = rdev->ddev->primary->debugfs_root;
1027 
1028 	debugfs_create_file("radeon_gpu_reset", 0444, root, rdev,
1029 			    &radeon_debugfs_gpu_reset_fops);
1030 	debugfs_create_file("radeon_fence_info", 0444, root, rdev,
1031 			    &radeon_debugfs_fence_info_fops);
1032 
1033 
1034 #endif
1035 }
1036 
1037 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1038 {
1039 	return "radeon";
1040 }
1041 
1042 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1043 {
1044 	struct radeon_fence *fence = to_radeon_fence(f);
1045 	switch (fence->ring) {
1046 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1047 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1048 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1049 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1050 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1051 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1052 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1053 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1054 	default: WARN_ON_ONCE(1); return "radeon.unk";
1055 	}
1056 }
1057 
1058 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1059 {
1060 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1061 }
1062 
1063 struct radeon_wait_cb {
1064 	struct dma_fence_cb base;
1065 	struct task_struct *task;
1066 };
1067 
1068 static void
1069 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1070 {
1071 	struct radeon_wait_cb *wait =
1072 		container_of(cb, struct radeon_wait_cb, base);
1073 
1074 	wake_up_process(wait->task);
1075 }
1076 
1077 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1078 					     signed long t)
1079 {
1080 	struct radeon_fence *fence = to_radeon_fence(f);
1081 	struct radeon_device *rdev = fence->rdev;
1082 	struct radeon_wait_cb cb;
1083 
1084 	cb.task = current;
1085 
1086 	if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1087 		return t;
1088 
1089 	while (t > 0) {
1090 		if (intr)
1091 			set_current_state(TASK_INTERRUPTIBLE);
1092 		else
1093 			set_current_state(TASK_UNINTERRUPTIBLE);
1094 
1095 		/*
1096 		 * radeon_test_signaled must be called after
1097 		 * set_current_state to prevent a race with wake_up_process
1098 		 */
1099 		if (radeon_test_signaled(fence))
1100 			break;
1101 
1102 		if (rdev->needs_reset) {
1103 			t = -EDEADLK;
1104 			break;
1105 		}
1106 
1107 		t = schedule_timeout(t);
1108 
1109 		if (t > 0 && intr && signal_pending(current))
1110 			t = -ERESTARTSYS;
1111 	}
1112 
1113 	__set_current_state(TASK_RUNNING);
1114 	dma_fence_remove_callback(f, &cb.base);
1115 
1116 	return t;
1117 }
1118 
1119 const struct dma_fence_ops radeon_fence_ops = {
1120 	.get_driver_name = radeon_fence_get_driver_name,
1121 	.get_timeline_name = radeon_fence_get_timeline_name,
1122 	.enable_signaling = radeon_fence_enable_signaling,
1123 	.signaled = radeon_fence_is_signaled,
1124 	.wait = radeon_fence_default_wait,
1125 	.release = NULL,
1126 };
1127