xref: /linux/drivers/gpu/drm/radeon/radeon_fence.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Dave Airlie
30  */
31 #include <linux/seq_file.h>
32 #include <linux/atomic.h>
33 #include <linux/wait.h>
34 #include <linux/kref.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <drm/drmP.h>
38 #include "radeon_reg.h"
39 #include "radeon.h"
40 #include "radeon_trace.h"
41 
42 /*
43  * Fences
44  * Fences mark an event in the GPUs pipeline and are used
45  * for GPU/CPU synchronization.  When the fence is written,
46  * it is expected that all buffers associated with that fence
47  * are no longer in use by the associated ring on the GPU and
48  * that the the relevant GPU caches have been flushed.  Whether
49  * we use a scratch register or memory location depends on the asic
50  * and whether writeback is enabled.
51  */
52 
53 /**
54  * radeon_fence_write - write a fence value
55  *
56  * @rdev: radeon_device pointer
57  * @seq: sequence number to write
58  * @ring: ring index the fence is associated with
59  *
60  * Writes a fence value to memory or a scratch register (all asics).
61  */
62 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
63 {
64 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
65 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
66 		if (drv->cpu_addr) {
67 			*drv->cpu_addr = cpu_to_le32(seq);
68 		}
69 	} else {
70 		WREG32(drv->scratch_reg, seq);
71 	}
72 }
73 
74 /**
75  * radeon_fence_read - read a fence value
76  *
77  * @rdev: radeon_device pointer
78  * @ring: ring index the fence is associated with
79  *
80  * Reads a fence value from memory or a scratch register (all asics).
81  * Returns the value of the fence read from memory or register.
82  */
83 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
84 {
85 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
86 	u32 seq = 0;
87 
88 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
89 		if (drv->cpu_addr) {
90 			seq = le32_to_cpu(*drv->cpu_addr);
91 		} else {
92 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
93 		}
94 	} else {
95 		seq = RREG32(drv->scratch_reg);
96 	}
97 	return seq;
98 }
99 
100 /**
101  * radeon_fence_schedule_check - schedule lockup check
102  *
103  * @rdev: radeon_device pointer
104  * @ring: ring index we should work with
105  *
106  * Queues a delayed work item to check for lockups.
107  */
108 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
109 {
110 	/*
111 	 * Do not reset the timer here with mod_delayed_work,
112 	 * this can livelock in an interaction with TTM delayed destroy.
113 	 */
114 	queue_delayed_work(system_power_efficient_wq,
115 			   &rdev->fence_drv[ring].lockup_work,
116 			   RADEON_FENCE_JIFFIES_TIMEOUT);
117 }
118 
119 /**
120  * radeon_fence_emit - emit a fence on the requested ring
121  *
122  * @rdev: radeon_device pointer
123  * @fence: radeon fence object
124  * @ring: ring index the fence is associated with
125  *
126  * Emits a fence command on the requested ring (all asics).
127  * Returns 0 on success, -ENOMEM on failure.
128  */
129 int radeon_fence_emit(struct radeon_device *rdev,
130 		      struct radeon_fence **fence,
131 		      int ring)
132 {
133 	u64 seq;
134 
135 	/* we are protected by the ring emission mutex */
136 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
137 	if ((*fence) == NULL) {
138 		return -ENOMEM;
139 	}
140 	(*fence)->rdev = rdev;
141 	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
142 	(*fence)->ring = ring;
143 	(*fence)->is_vm_update = false;
144 	dma_fence_init(&(*fence)->base, &radeon_fence_ops,
145 		       &rdev->fence_queue.lock,
146 		       rdev->fence_context + ring,
147 		       seq);
148 	radeon_fence_ring_emit(rdev, ring, *fence);
149 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
150 	radeon_fence_schedule_check(rdev, ring);
151 	return 0;
152 }
153 
154 /**
155  * radeon_fence_check_signaled - callback from fence_queue
156  *
157  * this function is called with fence_queue lock held, which is also used
158  * for the fence locking itself, so unlocked variants are used for
159  * fence_signal, and remove_wait_queue.
160  */
161 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
162 {
163 	struct radeon_fence *fence;
164 	u64 seq;
165 
166 	fence = container_of(wait, struct radeon_fence, fence_wake);
167 
168 	/*
169 	 * We cannot use radeon_fence_process here because we're already
170 	 * in the waitqueue, in a call from wake_up_all.
171 	 */
172 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
173 	if (seq >= fence->seq) {
174 		int ret = dma_fence_signal_locked(&fence->base);
175 
176 		if (!ret)
177 			DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
178 		else
179 			DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
180 
181 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
182 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
183 		dma_fence_put(&fence->base);
184 	} else
185 		DMA_FENCE_TRACE(&fence->base, "pending\n");
186 	return 0;
187 }
188 
189 /**
190  * radeon_fence_activity - check for fence activity
191  *
192  * @rdev: radeon_device pointer
193  * @ring: ring index the fence is associated with
194  *
195  * Checks the current fence value and calculates the last
196  * signalled fence value. Returns true if activity occured
197  * on the ring, and the fence_queue should be waken up.
198  */
199 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
200 {
201 	uint64_t seq, last_seq, last_emitted;
202 	unsigned count_loop = 0;
203 	bool wake = false;
204 
205 	/* Note there is a scenario here for an infinite loop but it's
206 	 * very unlikely to happen. For it to happen, the current polling
207 	 * process need to be interrupted by another process and another
208 	 * process needs to update the last_seq btw the atomic read and
209 	 * xchg of the current process.
210 	 *
211 	 * More over for this to go in infinite loop there need to be
212 	 * continuously new fence signaled ie radeon_fence_read needs
213 	 * to return a different value each time for both the currently
214 	 * polling process and the other process that xchg the last_seq
215 	 * btw atomic read and xchg of the current process. And the
216 	 * value the other process set as last seq must be higher than
217 	 * the seq value we just read. Which means that current process
218 	 * need to be interrupted after radeon_fence_read and before
219 	 * atomic xchg.
220 	 *
221 	 * To be even more safe we count the number of time we loop and
222 	 * we bail after 10 loop just accepting the fact that we might
223 	 * have temporarly set the last_seq not to the true real last
224 	 * seq but to an older one.
225 	 */
226 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
227 	do {
228 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
229 		seq = radeon_fence_read(rdev, ring);
230 		seq |= last_seq & 0xffffffff00000000LL;
231 		if (seq < last_seq) {
232 			seq &= 0xffffffff;
233 			seq |= last_emitted & 0xffffffff00000000LL;
234 		}
235 
236 		if (seq <= last_seq || seq > last_emitted) {
237 			break;
238 		}
239 		/* If we loop over we don't want to return without
240 		 * checking if a fence is signaled as it means that the
241 		 * seq we just read is different from the previous on.
242 		 */
243 		wake = true;
244 		last_seq = seq;
245 		if ((count_loop++) > 10) {
246 			/* We looped over too many time leave with the
247 			 * fact that we might have set an older fence
248 			 * seq then the current real last seq as signaled
249 			 * by the hw.
250 			 */
251 			break;
252 		}
253 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
254 
255 	if (seq < last_emitted)
256 		radeon_fence_schedule_check(rdev, ring);
257 
258 	return wake;
259 }
260 
261 /**
262  * radeon_fence_check_lockup - check for hardware lockup
263  *
264  * @work: delayed work item
265  *
266  * Checks for fence activity and if there is none probe
267  * the hardware if a lockup occured.
268  */
269 static void radeon_fence_check_lockup(struct work_struct *work)
270 {
271 	struct radeon_fence_driver *fence_drv;
272 	struct radeon_device *rdev;
273 	int ring;
274 
275 	fence_drv = container_of(work, struct radeon_fence_driver,
276 				 lockup_work.work);
277 	rdev = fence_drv->rdev;
278 	ring = fence_drv - &rdev->fence_drv[0];
279 
280 	if (!down_read_trylock(&rdev->exclusive_lock)) {
281 		/* just reschedule the check if a reset is going on */
282 		radeon_fence_schedule_check(rdev, ring);
283 		return;
284 	}
285 
286 	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
287 		unsigned long irqflags;
288 
289 		fence_drv->delayed_irq = false;
290 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
291 		radeon_irq_set(rdev);
292 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
293 	}
294 
295 	if (radeon_fence_activity(rdev, ring))
296 		wake_up_all(&rdev->fence_queue);
297 
298 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
299 
300 		/* good news we believe it's a lockup */
301 		dev_warn(rdev->dev, "GPU lockup (current fence id "
302 			 "0x%016llx last fence id 0x%016llx on ring %d)\n",
303 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
304 			 fence_drv->sync_seq[ring], ring);
305 
306 		/* remember that we need an reset */
307 		rdev->needs_reset = true;
308 		wake_up_all(&rdev->fence_queue);
309 	}
310 	up_read(&rdev->exclusive_lock);
311 }
312 
313 /**
314  * radeon_fence_process - process a fence
315  *
316  * @rdev: radeon_device pointer
317  * @ring: ring index the fence is associated with
318  *
319  * Checks the current fence value and wakes the fence queue
320  * if the sequence number has increased (all asics).
321  */
322 void radeon_fence_process(struct radeon_device *rdev, int ring)
323 {
324 	if (radeon_fence_activity(rdev, ring))
325 		wake_up_all(&rdev->fence_queue);
326 }
327 
328 /**
329  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
330  *
331  * @rdev: radeon device pointer
332  * @seq: sequence number
333  * @ring: ring index the fence is associated with
334  *
335  * Check if the last signaled fence sequnce number is >= the requested
336  * sequence number (all asics).
337  * Returns true if the fence has signaled (current fence value
338  * is >= requested value) or false if it has not (current fence
339  * value is < the requested value.  Helper function for
340  * radeon_fence_signaled().
341  */
342 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
343 				      u64 seq, unsigned ring)
344 {
345 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
346 		return true;
347 	}
348 	/* poll new last sequence at least once */
349 	radeon_fence_process(rdev, ring);
350 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
351 		return true;
352 	}
353 	return false;
354 }
355 
356 static bool radeon_fence_is_signaled(struct dma_fence *f)
357 {
358 	struct radeon_fence *fence = to_radeon_fence(f);
359 	struct radeon_device *rdev = fence->rdev;
360 	unsigned ring = fence->ring;
361 	u64 seq = fence->seq;
362 
363 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
364 		return true;
365 	}
366 
367 	if (down_read_trylock(&rdev->exclusive_lock)) {
368 		radeon_fence_process(rdev, ring);
369 		up_read(&rdev->exclusive_lock);
370 
371 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
372 			return true;
373 		}
374 	}
375 	return false;
376 }
377 
378 /**
379  * radeon_fence_enable_signaling - enable signalling on fence
380  * @fence: fence
381  *
382  * This function is called with fence_queue lock held, and adds a callback
383  * to fence_queue that checks if this fence is signaled, and if so it
384  * signals the fence and removes itself.
385  */
386 static bool radeon_fence_enable_signaling(struct dma_fence *f)
387 {
388 	struct radeon_fence *fence = to_radeon_fence(f);
389 	struct radeon_device *rdev = fence->rdev;
390 
391 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
392 		return false;
393 
394 	if (down_read_trylock(&rdev->exclusive_lock)) {
395 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
396 
397 		if (radeon_fence_activity(rdev, fence->ring))
398 			wake_up_all_locked(&rdev->fence_queue);
399 
400 		/* did fence get signaled after we enabled the sw irq? */
401 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
402 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
403 			up_read(&rdev->exclusive_lock);
404 			return false;
405 		}
406 
407 		up_read(&rdev->exclusive_lock);
408 	} else {
409 		/* we're probably in a lockup, lets not fiddle too much */
410 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
411 			rdev->fence_drv[fence->ring].delayed_irq = true;
412 		radeon_fence_schedule_check(rdev, fence->ring);
413 	}
414 
415 	fence->fence_wake.flags = 0;
416 	fence->fence_wake.private = NULL;
417 	fence->fence_wake.func = radeon_fence_check_signaled;
418 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
419 	dma_fence_get(f);
420 
421 	DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
422 	return true;
423 }
424 
425 /**
426  * radeon_fence_signaled - check if a fence has signaled
427  *
428  * @fence: radeon fence object
429  *
430  * Check if the requested fence has signaled (all asics).
431  * Returns true if the fence has signaled or false if it has not.
432  */
433 bool radeon_fence_signaled(struct radeon_fence *fence)
434 {
435 	if (!fence)
436 		return true;
437 
438 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
439 		int ret;
440 
441 		ret = dma_fence_signal(&fence->base);
442 		if (!ret)
443 			DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
444 		return true;
445 	}
446 	return false;
447 }
448 
449 /**
450  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
451  *
452  * @rdev: radeon device pointer
453  * @seq: sequence numbers
454  *
455  * Check if the last signaled fence sequnce number is >= the requested
456  * sequence number (all asics).
457  * Returns true if any has signaled (current value is >= requested value)
458  * or false if it has not. Helper function for radeon_fence_wait_seq.
459  */
460 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
461 {
462 	unsigned i;
463 
464 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
465 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
466 			return true;
467 	}
468 	return false;
469 }
470 
471 /**
472  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
473  *
474  * @rdev: radeon device pointer
475  * @target_seq: sequence number(s) we want to wait for
476  * @intr: use interruptable sleep
477  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
478  *
479  * Wait for the requested sequence number(s) to be written by any ring
480  * (all asics).  Sequnce number array is indexed by ring id.
481  * @intr selects whether to use interruptable (true) or non-interruptable
482  * (false) sleep when waiting for the sequence number.  Helper function
483  * for radeon_fence_wait_*().
484  * Returns remaining time if the sequence number has passed, 0 when
485  * the wait timeout, or an error for all other cases.
486  * -EDEADLK is returned when a GPU lockup has been detected.
487  */
488 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
489 					  u64 *target_seq, bool intr,
490 					  long timeout)
491 {
492 	long r;
493 	int i;
494 
495 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
496 		return timeout;
497 
498 	/* enable IRQs and tracing */
499 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
500 		if (!target_seq[i])
501 			continue;
502 
503 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
504 		radeon_irq_kms_sw_irq_get(rdev, i);
505 	}
506 
507 	if (intr) {
508 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
509 			radeon_fence_any_seq_signaled(rdev, target_seq)
510 			 || rdev->needs_reset), timeout);
511 	} else {
512 		r = wait_event_timeout(rdev->fence_queue, (
513 			radeon_fence_any_seq_signaled(rdev, target_seq)
514 			 || rdev->needs_reset), timeout);
515 	}
516 
517 	if (rdev->needs_reset)
518 		r = -EDEADLK;
519 
520 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
521 		if (!target_seq[i])
522 			continue;
523 
524 		radeon_irq_kms_sw_irq_put(rdev, i);
525 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
526 	}
527 
528 	return r;
529 }
530 
531 /**
532  * radeon_fence_wait_timeout - wait for a fence to signal with timeout
533  *
534  * @fence: radeon fence object
535  * @intr: use interruptible sleep
536  *
537  * Wait for the requested fence to signal (all asics).
538  * @intr selects whether to use interruptable (true) or non-interruptable
539  * (false) sleep when waiting for the fence.
540  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
541  * Returns remaining time if the sequence number has passed, 0 when
542  * the wait timeout, or an error for all other cases.
543  */
544 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
545 {
546 	uint64_t seq[RADEON_NUM_RINGS] = {};
547 	long r;
548 	int r_sig;
549 
550 	/*
551 	 * This function should not be called on !radeon fences.
552 	 * If this is the case, it would mean this function can
553 	 * also be called on radeon fences belonging to another card.
554 	 * exclusive_lock is not held in that case.
555 	 */
556 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
557 		return dma_fence_wait(&fence->base, intr);
558 
559 	seq[fence->ring] = fence->seq;
560 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
561 	if (r <= 0) {
562 		return r;
563 	}
564 
565 	r_sig = dma_fence_signal(&fence->base);
566 	if (!r_sig)
567 		DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
568 	return r;
569 }
570 
571 /**
572  * radeon_fence_wait - wait for a fence to signal
573  *
574  * @fence: radeon fence object
575  * @intr: use interruptible sleep
576  *
577  * Wait for the requested fence to signal (all asics).
578  * @intr selects whether to use interruptable (true) or non-interruptable
579  * (false) sleep when waiting for the fence.
580  * Returns 0 if the fence has passed, error for all other cases.
581  */
582 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
583 {
584 	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
585 	if (r > 0) {
586 		return 0;
587 	} else {
588 		return r;
589 	}
590 }
591 
592 /**
593  * radeon_fence_wait_any - wait for a fence to signal on any ring
594  *
595  * @rdev: radeon device pointer
596  * @fences: radeon fence object(s)
597  * @intr: use interruptable sleep
598  *
599  * Wait for any requested fence to signal (all asics).  Fence
600  * array is indexed by ring id.  @intr selects whether to use
601  * interruptable (true) or non-interruptable (false) sleep when
602  * waiting for the fences. Used by the suballocator.
603  * Returns 0 if any fence has passed, error for all other cases.
604  */
605 int radeon_fence_wait_any(struct radeon_device *rdev,
606 			  struct radeon_fence **fences,
607 			  bool intr)
608 {
609 	uint64_t seq[RADEON_NUM_RINGS];
610 	unsigned i, num_rings = 0;
611 	long r;
612 
613 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
614 		seq[i] = 0;
615 
616 		if (!fences[i]) {
617 			continue;
618 		}
619 
620 		seq[i] = fences[i]->seq;
621 		++num_rings;
622 	}
623 
624 	/* nothing to wait for ? */
625 	if (num_rings == 0)
626 		return -ENOENT;
627 
628 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
629 	if (r < 0) {
630 		return r;
631 	}
632 	return 0;
633 }
634 
635 /**
636  * radeon_fence_wait_next - wait for the next fence to signal
637  *
638  * @rdev: radeon device pointer
639  * @ring: ring index the fence is associated with
640  *
641  * Wait for the next fence on the requested ring to signal (all asics).
642  * Returns 0 if the next fence has passed, error for all other cases.
643  * Caller must hold ring lock.
644  */
645 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
646 {
647 	uint64_t seq[RADEON_NUM_RINGS] = {};
648 	long r;
649 
650 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
651 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
652 		/* nothing to wait for, last_seq is
653 		   already the last emited fence */
654 		return -ENOENT;
655 	}
656 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
657 	if (r < 0)
658 		return r;
659 	return 0;
660 }
661 
662 /**
663  * radeon_fence_wait_empty - wait for all fences to signal
664  *
665  * @rdev: radeon device pointer
666  * @ring: ring index the fence is associated with
667  *
668  * Wait for all fences on the requested ring to signal (all asics).
669  * Returns 0 if the fences have passed, error for all other cases.
670  * Caller must hold ring lock.
671  */
672 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
673 {
674 	uint64_t seq[RADEON_NUM_RINGS] = {};
675 	long r;
676 
677 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
678 	if (!seq[ring])
679 		return 0;
680 
681 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
682 	if (r < 0) {
683 		if (r == -EDEADLK)
684 			return -EDEADLK;
685 
686 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
687 			ring, r);
688 	}
689 	return 0;
690 }
691 
692 /**
693  * radeon_fence_ref - take a ref on a fence
694  *
695  * @fence: radeon fence object
696  *
697  * Take a reference on a fence (all asics).
698  * Returns the fence.
699  */
700 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
701 {
702 	dma_fence_get(&fence->base);
703 	return fence;
704 }
705 
706 /**
707  * radeon_fence_unref - remove a ref on a fence
708  *
709  * @fence: radeon fence object
710  *
711  * Remove a reference on a fence (all asics).
712  */
713 void radeon_fence_unref(struct radeon_fence **fence)
714 {
715 	struct radeon_fence *tmp = *fence;
716 
717 	*fence = NULL;
718 	if (tmp) {
719 		dma_fence_put(&tmp->base);
720 	}
721 }
722 
723 /**
724  * radeon_fence_count_emitted - get the count of emitted fences
725  *
726  * @rdev: radeon device pointer
727  * @ring: ring index the fence is associated with
728  *
729  * Get the number of fences emitted on the requested ring (all asics).
730  * Returns the number of emitted fences on the ring.  Used by the
731  * dynpm code to ring track activity.
732  */
733 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
734 {
735 	uint64_t emitted;
736 
737 	/* We are not protected by ring lock when reading the last sequence
738 	 * but it's ok to report slightly wrong fence count here.
739 	 */
740 	radeon_fence_process(rdev, ring);
741 	emitted = rdev->fence_drv[ring].sync_seq[ring]
742 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
743 	/* to avoid 32bits warp around */
744 	if (emitted > 0x10000000) {
745 		emitted = 0x10000000;
746 	}
747 	return (unsigned)emitted;
748 }
749 
750 /**
751  * radeon_fence_need_sync - do we need a semaphore
752  *
753  * @fence: radeon fence object
754  * @dst_ring: which ring to check against
755  *
756  * Check if the fence needs to be synced against another ring
757  * (all asics).  If so, we need to emit a semaphore.
758  * Returns true if we need to sync with another ring, false if
759  * not.
760  */
761 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
762 {
763 	struct radeon_fence_driver *fdrv;
764 
765 	if (!fence) {
766 		return false;
767 	}
768 
769 	if (fence->ring == dst_ring) {
770 		return false;
771 	}
772 
773 	/* we are protected by the ring mutex */
774 	fdrv = &fence->rdev->fence_drv[dst_ring];
775 	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
776 		return false;
777 	}
778 
779 	return true;
780 }
781 
782 /**
783  * radeon_fence_note_sync - record the sync point
784  *
785  * @fence: radeon fence object
786  * @dst_ring: which ring to check against
787  *
788  * Note the sequence number at which point the fence will
789  * be synced with the requested ring (all asics).
790  */
791 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
792 {
793 	struct radeon_fence_driver *dst, *src;
794 	unsigned i;
795 
796 	if (!fence) {
797 		return;
798 	}
799 
800 	if (fence->ring == dst_ring) {
801 		return;
802 	}
803 
804 	/* we are protected by the ring mutex */
805 	src = &fence->rdev->fence_drv[fence->ring];
806 	dst = &fence->rdev->fence_drv[dst_ring];
807 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
808 		if (i == dst_ring) {
809 			continue;
810 		}
811 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
812 	}
813 }
814 
815 /**
816  * radeon_fence_driver_start_ring - make the fence driver
817  * ready for use on the requested ring.
818  *
819  * @rdev: radeon device pointer
820  * @ring: ring index to start the fence driver on
821  *
822  * Make the fence driver ready for processing (all asics).
823  * Not all asics have all rings, so each asic will only
824  * start the fence driver on the rings it has.
825  * Returns 0 for success, errors for failure.
826  */
827 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
828 {
829 	uint64_t index;
830 	int r;
831 
832 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
833 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
834 		rdev->fence_drv[ring].scratch_reg = 0;
835 		if (ring != R600_RING_TYPE_UVD_INDEX) {
836 			index = R600_WB_EVENT_OFFSET + ring * 4;
837 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
838 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
839 							 index;
840 
841 		} else {
842 			/* put fence directly behind firmware */
843 			index = ALIGN(rdev->uvd_fw->size, 8);
844 			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
845 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
846 		}
847 
848 	} else {
849 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
850 		if (r) {
851 			dev_err(rdev->dev, "fence failed to get scratch register\n");
852 			return r;
853 		}
854 		index = RADEON_WB_SCRATCH_OFFSET +
855 			rdev->fence_drv[ring].scratch_reg -
856 			rdev->scratch.reg_base;
857 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
858 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
859 	}
860 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
861 	rdev->fence_drv[ring].initialized = true;
862 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
863 		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
864 	return 0;
865 }
866 
867 /**
868  * radeon_fence_driver_init_ring - init the fence driver
869  * for the requested ring.
870  *
871  * @rdev: radeon device pointer
872  * @ring: ring index to start the fence driver on
873  *
874  * Init the fence driver for the requested ring (all asics).
875  * Helper function for radeon_fence_driver_init().
876  */
877 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
878 {
879 	int i;
880 
881 	rdev->fence_drv[ring].scratch_reg = -1;
882 	rdev->fence_drv[ring].cpu_addr = NULL;
883 	rdev->fence_drv[ring].gpu_addr = 0;
884 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
885 		rdev->fence_drv[ring].sync_seq[i] = 0;
886 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
887 	rdev->fence_drv[ring].initialized = false;
888 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
889 			  radeon_fence_check_lockup);
890 	rdev->fence_drv[ring].rdev = rdev;
891 }
892 
893 /**
894  * radeon_fence_driver_init - init the fence driver
895  * for all possible rings.
896  *
897  * @rdev: radeon device pointer
898  *
899  * Init the fence driver for all possible rings (all asics).
900  * Not all asics have all rings, so each asic will only
901  * start the fence driver on the rings it has using
902  * radeon_fence_driver_start_ring().
903  * Returns 0 for success.
904  */
905 int radeon_fence_driver_init(struct radeon_device *rdev)
906 {
907 	int ring;
908 
909 	init_waitqueue_head(&rdev->fence_queue);
910 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
911 		radeon_fence_driver_init_ring(rdev, ring);
912 	}
913 	if (radeon_debugfs_fence_init(rdev)) {
914 		dev_err(rdev->dev, "fence debugfs file creation failed\n");
915 	}
916 	return 0;
917 }
918 
919 /**
920  * radeon_fence_driver_fini - tear down the fence driver
921  * for all possible rings.
922  *
923  * @rdev: radeon device pointer
924  *
925  * Tear down the fence driver for all possible rings (all asics).
926  */
927 void radeon_fence_driver_fini(struct radeon_device *rdev)
928 {
929 	int ring, r;
930 
931 	mutex_lock(&rdev->ring_lock);
932 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
933 		if (!rdev->fence_drv[ring].initialized)
934 			continue;
935 		r = radeon_fence_wait_empty(rdev, ring);
936 		if (r) {
937 			/* no need to trigger GPU reset as we are unloading */
938 			radeon_fence_driver_force_completion(rdev, ring);
939 		}
940 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
941 		wake_up_all(&rdev->fence_queue);
942 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
943 		rdev->fence_drv[ring].initialized = false;
944 	}
945 	mutex_unlock(&rdev->ring_lock);
946 }
947 
948 /**
949  * radeon_fence_driver_force_completion - force all fence waiter to complete
950  *
951  * @rdev: radeon device pointer
952  * @ring: the ring to complete
953  *
954  * In case of GPU reset failure make sure no process keep waiting on fence
955  * that will never complete.
956  */
957 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
958 {
959 	if (rdev->fence_drv[ring].initialized) {
960 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
961 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
962 	}
963 }
964 
965 
966 /*
967  * Fence debugfs
968  */
969 #if defined(CONFIG_DEBUG_FS)
970 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
971 {
972 	struct drm_info_node *node = (struct drm_info_node *)m->private;
973 	struct drm_device *dev = node->minor->dev;
974 	struct radeon_device *rdev = dev->dev_private;
975 	int i, j;
976 
977 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
978 		if (!rdev->fence_drv[i].initialized)
979 			continue;
980 
981 		radeon_fence_process(rdev, i);
982 
983 		seq_printf(m, "--- ring %d ---\n", i);
984 		seq_printf(m, "Last signaled fence 0x%016llx\n",
985 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
986 		seq_printf(m, "Last emitted        0x%016llx\n",
987 			   rdev->fence_drv[i].sync_seq[i]);
988 
989 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
990 			if (i != j && rdev->fence_drv[j].initialized)
991 				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
992 					   j, rdev->fence_drv[i].sync_seq[j]);
993 		}
994 	}
995 	return 0;
996 }
997 
998 /**
999  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1000  *
1001  * Manually trigger a gpu reset at the next fence wait.
1002  */
1003 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1004 {
1005 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1006 	struct drm_device *dev = node->minor->dev;
1007 	struct radeon_device *rdev = dev->dev_private;
1008 
1009 	down_read(&rdev->exclusive_lock);
1010 	seq_printf(m, "%d\n", rdev->needs_reset);
1011 	rdev->needs_reset = true;
1012 	wake_up_all(&rdev->fence_queue);
1013 	up_read(&rdev->exclusive_lock);
1014 
1015 	return 0;
1016 }
1017 
1018 static struct drm_info_list radeon_debugfs_fence_list[] = {
1019 	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1020 	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1021 };
1022 #endif
1023 
1024 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1025 {
1026 #if defined(CONFIG_DEBUG_FS)
1027 	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1028 #else
1029 	return 0;
1030 #endif
1031 }
1032 
1033 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1034 {
1035 	return "radeon";
1036 }
1037 
1038 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1039 {
1040 	struct radeon_fence *fence = to_radeon_fence(f);
1041 	switch (fence->ring) {
1042 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1043 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1044 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1045 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1046 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1047 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1048 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1049 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1050 	default: WARN_ON_ONCE(1); return "radeon.unk";
1051 	}
1052 }
1053 
1054 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1055 {
1056 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1057 }
1058 
1059 struct radeon_wait_cb {
1060 	struct dma_fence_cb base;
1061 	struct task_struct *task;
1062 };
1063 
1064 static void
1065 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1066 {
1067 	struct radeon_wait_cb *wait =
1068 		container_of(cb, struct radeon_wait_cb, base);
1069 
1070 	wake_up_process(wait->task);
1071 }
1072 
1073 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1074 					     signed long t)
1075 {
1076 	struct radeon_fence *fence = to_radeon_fence(f);
1077 	struct radeon_device *rdev = fence->rdev;
1078 	struct radeon_wait_cb cb;
1079 
1080 	cb.task = current;
1081 
1082 	if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1083 		return t;
1084 
1085 	while (t > 0) {
1086 		if (intr)
1087 			set_current_state(TASK_INTERRUPTIBLE);
1088 		else
1089 			set_current_state(TASK_UNINTERRUPTIBLE);
1090 
1091 		/*
1092 		 * radeon_test_signaled must be called after
1093 		 * set_current_state to prevent a race with wake_up_process
1094 		 */
1095 		if (radeon_test_signaled(fence))
1096 			break;
1097 
1098 		if (rdev->needs_reset) {
1099 			t = -EDEADLK;
1100 			break;
1101 		}
1102 
1103 		t = schedule_timeout(t);
1104 
1105 		if (t > 0 && intr && signal_pending(current))
1106 			t = -ERESTARTSYS;
1107 	}
1108 
1109 	__set_current_state(TASK_RUNNING);
1110 	dma_fence_remove_callback(f, &cb.base);
1111 
1112 	return t;
1113 }
1114 
1115 const struct dma_fence_ops radeon_fence_ops = {
1116 	.get_driver_name = radeon_fence_get_driver_name,
1117 	.get_timeline_name = radeon_fence_get_timeline_name,
1118 	.enable_signaling = radeon_fence_enable_signaling,
1119 	.signaled = radeon_fence_is_signaled,
1120 	.wait = radeon_fence_default_wait,
1121 	.release = NULL,
1122 };
1123