1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Dave Airlie 30 */ 31 32 #include <linux/atomic.h> 33 #include <linux/debugfs.h> 34 #include <linux/firmware.h> 35 #include <linux/kref.h> 36 #include <linux/sched/signal.h> 37 #include <linux/seq_file.h> 38 #include <linux/slab.h> 39 #include <linux/wait.h> 40 41 #include <drm/drm_device.h> 42 #include <drm/drm_file.h> 43 44 #include "radeon.h" 45 #include "radeon_reg.h" 46 #include "radeon_trace.h" 47 48 /* 49 * Fences mark an event in the GPUs pipeline and are used 50 * for GPU/CPU synchronization. When the fence is written, 51 * it is expected that all buffers associated with that fence 52 * are no longer in use by the associated ring on the GPU and 53 * that the relevant GPU caches have been flushed. Whether 54 * we use a scratch register or memory location depends on the asic 55 * and whether writeback is enabled. 56 */ 57 58 /** 59 * radeon_fence_write - write a fence value 60 * 61 * @rdev: radeon_device pointer 62 * @seq: sequence number to write 63 * @ring: ring index the fence is associated with 64 * 65 * Writes a fence value to memory or a scratch register (all asics). 66 */ 67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 68 { 69 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 70 71 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 72 if (drv->cpu_addr) 73 *drv->cpu_addr = cpu_to_le32(seq); 74 } else { 75 WREG32(drv->scratch_reg, seq); 76 } 77 } 78 79 /** 80 * radeon_fence_read - read a fence value 81 * 82 * @rdev: radeon_device pointer 83 * @ring: ring index the fence is associated with 84 * 85 * Reads a fence value from memory or a scratch register (all asics). 86 * Returns the value of the fence read from memory or register. 87 */ 88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 89 { 90 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 91 u32 seq = 0; 92 93 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 94 if (drv->cpu_addr) 95 seq = le32_to_cpu(*drv->cpu_addr); 96 else 97 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 98 } else { 99 seq = RREG32(drv->scratch_reg); 100 } 101 return seq; 102 } 103 104 /** 105 * radeon_fence_schedule_check - schedule lockup check 106 * 107 * @rdev: radeon_device pointer 108 * @ring: ring index we should work with 109 * 110 * Queues a delayed work item to check for lockups. 111 */ 112 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring) 113 { 114 /* 115 * Do not reset the timer here with mod_delayed_work, 116 * this can livelock in an interaction with TTM delayed destroy. 117 */ 118 queue_delayed_work(system_power_efficient_wq, 119 &rdev->fence_drv[ring].lockup_work, 120 RADEON_FENCE_JIFFIES_TIMEOUT); 121 } 122 123 /** 124 * radeon_fence_emit - emit a fence on the requested ring 125 * 126 * @rdev: radeon_device pointer 127 * @fence: radeon fence object 128 * @ring: ring index the fence is associated with 129 * 130 * Emits a fence command on the requested ring (all asics). 131 * Returns 0 on success, -ENOMEM on failure. 132 */ 133 int radeon_fence_emit(struct radeon_device *rdev, 134 struct radeon_fence **fence, 135 int ring) 136 { 137 u64 seq; 138 139 /* we are protected by the ring emission mutex */ 140 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 141 if ((*fence) == NULL) 142 return -ENOMEM; 143 144 (*fence)->rdev = rdev; 145 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring]; 146 (*fence)->ring = ring; 147 (*fence)->is_vm_update = false; 148 dma_fence_init(&(*fence)->base, &radeon_fence_ops, 149 &rdev->fence_queue.lock, 150 rdev->fence_context + ring, 151 seq); 152 radeon_fence_ring_emit(rdev, ring, *fence); 153 trace_radeon_fence_emit(rdev_to_drm(rdev), ring, (*fence)->seq); 154 radeon_fence_schedule_check(rdev, ring); 155 return 0; 156 } 157 158 /* 159 * radeon_fence_check_signaled - callback from fence_queue 160 * 161 * this function is called with fence_queue lock held, which is also used 162 * for the fence locking itself, so unlocked variants are used for 163 * fence_signal, and remove_wait_queue. 164 */ 165 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, 166 unsigned int mode, int flags, void *key) 167 { 168 struct radeon_fence *fence; 169 u64 seq; 170 171 fence = container_of(wait, struct radeon_fence, fence_wake); 172 173 /* 174 * We cannot use radeon_fence_process here because we're already 175 * in the waitqueue, in a call from wake_up_all. 176 */ 177 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); 178 if (seq >= fence->seq) { 179 dma_fence_signal_locked(&fence->base); 180 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); 181 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); 182 dma_fence_put(&fence->base); 183 } 184 return 0; 185 } 186 187 /** 188 * radeon_fence_activity - check for fence activity 189 * 190 * @rdev: radeon_device pointer 191 * @ring: ring index the fence is associated with 192 * 193 * Checks the current fence value and calculates the last 194 * signalled fence value. Returns true if activity occured 195 * on the ring, and the fence_queue should be waken up. 196 */ 197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring) 198 { 199 uint64_t seq, last_seq, last_emitted; 200 unsigned int count_loop = 0; 201 bool wake = false; 202 203 /* Note there is a scenario here for an infinite loop but it's 204 * very unlikely to happen. For it to happen, the current polling 205 * process need to be interrupted by another process and another 206 * process needs to update the last_seq btw the atomic read and 207 * xchg of the current process. 208 * 209 * More over for this to go in infinite loop there need to be 210 * continuously new fence signaled ie radeon_fence_read needs 211 * to return a different value each time for both the currently 212 * polling process and the other process that xchg the last_seq 213 * btw atomic read and xchg of the current process. And the 214 * value the other process set as last seq must be higher than 215 * the seq value we just read. Which means that current process 216 * need to be interrupted after radeon_fence_read and before 217 * atomic xchg. 218 * 219 * To be even more safe we count the number of time we loop and 220 * we bail after 10 loop just accepting the fact that we might 221 * have temporarly set the last_seq not to the true real last 222 * seq but to an older one. 223 */ 224 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 225 do { 226 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 227 seq = radeon_fence_read(rdev, ring); 228 seq |= last_seq & 0xffffffff00000000LL; 229 if (seq < last_seq) { 230 seq &= 0xffffffff; 231 seq |= last_emitted & 0xffffffff00000000LL; 232 } 233 234 if (seq <= last_seq || seq > last_emitted) 235 break; 236 237 /* If we loop over we don't want to return without 238 * checking if a fence is signaled as it means that the 239 * seq we just read is different from the previous on. 240 */ 241 wake = true; 242 last_seq = seq; 243 if ((count_loop++) > 10) { 244 /* We looped over too many time leave with the 245 * fact that we might have set an older fence 246 * seq then the current real last seq as signaled 247 * by the hw. 248 */ 249 break; 250 } 251 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 252 253 if (seq < last_emitted) 254 radeon_fence_schedule_check(rdev, ring); 255 256 return wake; 257 } 258 259 /** 260 * radeon_fence_check_lockup - check for hardware lockup 261 * 262 * @work: delayed work item 263 * 264 * Checks for fence activity and if there is none probe 265 * the hardware if a lockup occured. 266 */ 267 static void radeon_fence_check_lockup(struct work_struct *work) 268 { 269 struct radeon_fence_driver *fence_drv; 270 struct radeon_device *rdev; 271 int ring; 272 273 fence_drv = container_of(work, struct radeon_fence_driver, 274 lockup_work.work); 275 rdev = fence_drv->rdev; 276 ring = fence_drv - &rdev->fence_drv[0]; 277 278 if (!down_read_trylock(&rdev->exclusive_lock)) { 279 /* just reschedule the check if a reset is going on */ 280 radeon_fence_schedule_check(rdev, ring); 281 return; 282 } 283 284 if (fence_drv->delayed_irq && rdev->irq.installed) { 285 unsigned long irqflags; 286 287 fence_drv->delayed_irq = false; 288 spin_lock_irqsave(&rdev->irq.lock, irqflags); 289 radeon_irq_set(rdev); 290 spin_unlock_irqrestore(&rdev->irq.lock, irqflags); 291 } 292 293 if (radeon_fence_activity(rdev, ring)) 294 wake_up_all(&rdev->fence_queue); 295 296 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) { 297 298 /* good news we believe it's a lockup */ 299 dev_warn(rdev->dev, "GPU lockup (current fence id 0x%016llx last fence id 0x%016llx on ring %d)\n", 300 (uint64_t)atomic64_read(&fence_drv->last_seq), 301 fence_drv->sync_seq[ring], ring); 302 303 /* remember that we need an reset */ 304 rdev->needs_reset = true; 305 wake_up_all(&rdev->fence_queue); 306 } 307 up_read(&rdev->exclusive_lock); 308 } 309 310 /** 311 * radeon_fence_process - process a fence 312 * 313 * @rdev: radeon_device pointer 314 * @ring: ring index the fence is associated with 315 * 316 * Checks the current fence value and wakes the fence queue 317 * if the sequence number has increased (all asics). 318 */ 319 void radeon_fence_process(struct radeon_device *rdev, int ring) 320 { 321 if (radeon_fence_activity(rdev, ring)) 322 wake_up_all(&rdev->fence_queue); 323 } 324 325 /** 326 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 327 * 328 * @rdev: radeon device pointer 329 * @seq: sequence number 330 * @ring: ring index the fence is associated with 331 * 332 * Check if the last signaled fence sequnce number is >= the requested 333 * sequence number (all asics). 334 * Returns true if the fence has signaled (current fence value 335 * is >= requested value) or false if it has not (current fence 336 * value is < the requested value. Helper function for 337 * radeon_fence_signaled(). 338 */ 339 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 340 u64 seq, unsigned int ring) 341 { 342 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 343 return true; 344 345 /* poll new last sequence at least once */ 346 radeon_fence_process(rdev, ring); 347 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 348 return true; 349 350 return false; 351 } 352 353 static bool radeon_fence_is_signaled(struct dma_fence *f) 354 { 355 struct radeon_fence *fence = to_radeon_fence(f); 356 struct radeon_device *rdev = fence->rdev; 357 unsigned int ring = fence->ring; 358 u64 seq = fence->seq; 359 360 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 361 return true; 362 363 return false; 364 } 365 366 /** 367 * radeon_fence_enable_signaling - enable signalling on fence 368 * @f: fence 369 * 370 * This function is called with fence_queue lock held, and adds a callback 371 * to fence_queue that checks if this fence is signaled, and if so it 372 * signals the fence and removes itself. 373 */ 374 static bool radeon_fence_enable_signaling(struct dma_fence *f) 375 { 376 struct radeon_fence *fence = to_radeon_fence(f); 377 struct radeon_device *rdev = fence->rdev; 378 379 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) 380 return false; 381 382 if (down_read_trylock(&rdev->exclusive_lock)) { 383 radeon_irq_kms_sw_irq_get(rdev, fence->ring); 384 385 if (radeon_fence_activity(rdev, fence->ring)) 386 wake_up_all_locked(&rdev->fence_queue); 387 388 /* did fence get signaled after we enabled the sw irq? */ 389 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { 390 radeon_irq_kms_sw_irq_put(rdev, fence->ring); 391 up_read(&rdev->exclusive_lock); 392 return false; 393 } 394 395 up_read(&rdev->exclusive_lock); 396 } else { 397 /* we're probably in a lockup, lets not fiddle too much */ 398 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring)) 399 rdev->fence_drv[fence->ring].delayed_irq = true; 400 radeon_fence_schedule_check(rdev, fence->ring); 401 } 402 403 fence->fence_wake.flags = 0; 404 fence->fence_wake.private = NULL; 405 fence->fence_wake.func = radeon_fence_check_signaled; 406 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); 407 dma_fence_get(f); 408 return true; 409 } 410 411 /** 412 * radeon_fence_signaled - check if a fence has signaled 413 * 414 * @fence: radeon fence object 415 * 416 * Check if the requested fence has signaled (all asics). 417 * Returns true if the fence has signaled or false if it has not. 418 */ 419 bool radeon_fence_signaled(struct radeon_fence *fence) 420 { 421 if (!fence) 422 return true; 423 424 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 425 dma_fence_signal(&fence->base); 426 return true; 427 } 428 return false; 429 } 430 431 /** 432 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 433 * 434 * @rdev: radeon device pointer 435 * @seq: sequence numbers 436 * 437 * Check if the last signaled fence sequnce number is >= the requested 438 * sequence number (all asics). 439 * Returns true if any has signaled (current value is >= requested value) 440 * or false if it has not. Helper function for radeon_fence_wait_seq. 441 */ 442 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 443 { 444 unsigned int i; 445 446 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 447 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 448 return true; 449 } 450 return false; 451 } 452 453 /** 454 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers 455 * 456 * @rdev: radeon device pointer 457 * @target_seq: sequence number(s) we want to wait for 458 * @intr: use interruptable sleep 459 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 460 * 461 * Wait for the requested sequence number(s) to be written by any ring 462 * (all asics). Sequnce number array is indexed by ring id. 463 * @intr selects whether to use interruptable (true) or non-interruptable 464 * (false) sleep when waiting for the sequence number. Helper function 465 * for radeon_fence_wait_*(). 466 * Returns remaining time if the sequence number has passed, 0 when 467 * the wait timeout, or an error for all other cases. 468 * -EDEADLK is returned when a GPU lockup has been detected. 469 */ 470 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev, 471 u64 *target_seq, bool intr, 472 long timeout) 473 { 474 long r; 475 int i; 476 477 if (radeon_fence_any_seq_signaled(rdev, target_seq)) 478 return timeout; 479 480 /* enable IRQs and tracing */ 481 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 482 if (!target_seq[i]) 483 continue; 484 485 trace_radeon_fence_wait_begin(rdev_to_drm(rdev), i, target_seq[i]); 486 radeon_irq_kms_sw_irq_get(rdev, i); 487 } 488 489 if (intr) { 490 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 491 radeon_fence_any_seq_signaled(rdev, target_seq) 492 || rdev->needs_reset), timeout); 493 } else { 494 r = wait_event_timeout(rdev->fence_queue, ( 495 radeon_fence_any_seq_signaled(rdev, target_seq) 496 || rdev->needs_reset), timeout); 497 } 498 499 if (rdev->needs_reset) 500 r = -EDEADLK; 501 502 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 503 if (!target_seq[i]) 504 continue; 505 506 radeon_irq_kms_sw_irq_put(rdev, i); 507 trace_radeon_fence_wait_end(rdev_to_drm(rdev), i, target_seq[i]); 508 } 509 510 return r; 511 } 512 513 /** 514 * radeon_fence_wait_timeout - wait for a fence to signal with timeout 515 * 516 * @fence: radeon fence object 517 * @intr: use interruptible sleep 518 * 519 * Wait for the requested fence to signal (all asics). 520 * @intr selects whether to use interruptable (true) or non-interruptable 521 * (false) sleep when waiting for the fence. 522 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 523 * Returns remaining time if the sequence number has passed, 0 when 524 * the wait timeout, or an error for all other cases. 525 */ 526 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout) 527 { 528 uint64_t seq[RADEON_NUM_RINGS] = {}; 529 long r; 530 531 /* 532 * This function should not be called on !radeon fences. 533 * If this is the case, it would mean this function can 534 * also be called on radeon fences belonging to another card. 535 * exclusive_lock is not held in that case. 536 */ 537 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base))) 538 return dma_fence_wait(&fence->base, intr); 539 540 seq[fence->ring] = fence->seq; 541 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout); 542 if (r <= 0) 543 return r; 544 545 dma_fence_signal(&fence->base); 546 return r; 547 } 548 549 /** 550 * radeon_fence_wait - wait for a fence to signal 551 * 552 * @fence: radeon fence object 553 * @intr: use interruptible sleep 554 * 555 * Wait for the requested fence to signal (all asics). 556 * @intr selects whether to use interruptable (true) or non-interruptable 557 * (false) sleep when waiting for the fence. 558 * Returns 0 if the fence has passed, error for all other cases. 559 */ 560 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 561 { 562 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT); 563 564 if (r > 0) 565 return 0; 566 else 567 return r; 568 } 569 570 /** 571 * radeon_fence_wait_next - wait for the next fence to signal 572 * 573 * @rdev: radeon device pointer 574 * @ring: ring index the fence is associated with 575 * 576 * Wait for the next fence on the requested ring to signal (all asics). 577 * Returns 0 if the next fence has passed, error for all other cases. 578 * Caller must hold ring lock. 579 */ 580 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 581 { 582 uint64_t seq[RADEON_NUM_RINGS] = {}; 583 long r; 584 585 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 586 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 587 /* nothing to wait for, last_seq is already 588 * the last emited fence 589 */ 590 return -ENOENT; 591 } 592 593 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 594 if (r < 0) 595 return r; 596 597 return 0; 598 } 599 600 /** 601 * radeon_fence_wait_empty - wait for all fences to signal 602 * 603 * @rdev: radeon device pointer 604 * @ring: ring index the fence is associated with 605 * 606 * Wait for all fences on the requested ring to signal (all asics). 607 * Returns 0 if the fences have passed, error for all other cases. 608 * Caller must hold ring lock. 609 */ 610 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 611 { 612 uint64_t seq[RADEON_NUM_RINGS] = {}; 613 long r; 614 615 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 616 if (!seq[ring]) 617 return 0; 618 619 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 620 if (r < 0) { 621 if (r == -EDEADLK) 622 return -EDEADLK; 623 624 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n", 625 ring, r); 626 } 627 return 0; 628 } 629 630 /** 631 * radeon_fence_ref - take a ref on a fence 632 * 633 * @fence: radeon fence object 634 * 635 * Take a reference on a fence (all asics). 636 * Returns the fence. 637 */ 638 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 639 { 640 dma_fence_get(&fence->base); 641 return fence; 642 } 643 644 /** 645 * radeon_fence_unref - remove a ref on a fence 646 * 647 * @fence: radeon fence object 648 * 649 * Remove a reference on a fence (all asics). 650 */ 651 void radeon_fence_unref(struct radeon_fence **fence) 652 { 653 struct radeon_fence *tmp = *fence; 654 655 *fence = NULL; 656 if (tmp) 657 dma_fence_put(&tmp->base); 658 } 659 660 /** 661 * radeon_fence_count_emitted - get the count of emitted fences 662 * 663 * @rdev: radeon device pointer 664 * @ring: ring index the fence is associated with 665 * 666 * Get the number of fences emitted on the requested ring (all asics). 667 * Returns the number of emitted fences on the ring. Used by the 668 * dynpm code to ring track activity. 669 */ 670 unsigned int radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 671 { 672 uint64_t emitted; 673 674 /* We are not protected by ring lock when reading the last sequence 675 * but it's ok to report slightly wrong fence count here. 676 */ 677 radeon_fence_process(rdev, ring); 678 emitted = rdev->fence_drv[ring].sync_seq[ring] 679 - atomic64_read(&rdev->fence_drv[ring].last_seq); 680 /* to avoid 32bits warp around */ 681 if (emitted > 0x10000000) 682 emitted = 0x10000000; 683 684 return (unsigned int)emitted; 685 } 686 687 /** 688 * radeon_fence_need_sync - do we need a semaphore 689 * 690 * @fence: radeon fence object 691 * @dst_ring: which ring to check against 692 * 693 * Check if the fence needs to be synced against another ring 694 * (all asics). If so, we need to emit a semaphore. 695 * Returns true if we need to sync with another ring, false if 696 * not. 697 */ 698 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 699 { 700 struct radeon_fence_driver *fdrv; 701 702 if (!fence) 703 return false; 704 705 if (fence->ring == dst_ring) 706 return false; 707 708 /* we are protected by the ring mutex */ 709 fdrv = &fence->rdev->fence_drv[dst_ring]; 710 if (fence->seq <= fdrv->sync_seq[fence->ring]) 711 return false; 712 713 return true; 714 } 715 716 /** 717 * radeon_fence_note_sync - record the sync point 718 * 719 * @fence: radeon fence object 720 * @dst_ring: which ring to check against 721 * 722 * Note the sequence number at which point the fence will 723 * be synced with the requested ring (all asics). 724 */ 725 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 726 { 727 struct radeon_fence_driver *dst, *src; 728 unsigned int i; 729 730 if (!fence) 731 return; 732 733 if (fence->ring == dst_ring) 734 return; 735 736 /* we are protected by the ring mutex */ 737 src = &fence->rdev->fence_drv[fence->ring]; 738 dst = &fence->rdev->fence_drv[dst_ring]; 739 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 740 if (i == dst_ring) 741 continue; 742 743 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 744 } 745 } 746 747 /** 748 * radeon_fence_driver_start_ring - make the fence driver 749 * ready for use on the requested ring. 750 * 751 * @rdev: radeon device pointer 752 * @ring: ring index to start the fence driver on 753 * 754 * Make the fence driver ready for processing (all asics). 755 * Not all asics have all rings, so each asic will only 756 * start the fence driver on the rings it has. 757 * Returns 0 for success, errors for failure. 758 */ 759 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 760 { 761 uint64_t index; 762 int r; 763 764 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 765 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 766 rdev->fence_drv[ring].scratch_reg = 0; 767 if (ring != R600_RING_TYPE_UVD_INDEX) { 768 index = R600_WB_EVENT_OFFSET + ring * 4; 769 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 770 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 771 index; 772 773 } else { 774 /* put fence directly behind firmware */ 775 index = ALIGN(rdev->uvd_fw->size, 8); 776 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index; 777 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 778 } 779 780 } else { 781 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 782 if (r) { 783 dev_err(rdev->dev, "fence failed to get scratch register\n"); 784 return r; 785 } 786 index = RADEON_WB_SCRATCH_OFFSET + 787 rdev->fence_drv[ring].scratch_reg - 788 rdev->scratch.reg_base; 789 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 790 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 791 } 792 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 793 rdev->fence_drv[ring].initialized = true; 794 dev_info(rdev->dev, "fence driver on ring %d uses gpu addr 0x%016llx\n", 795 ring, rdev->fence_drv[ring].gpu_addr); 796 return 0; 797 } 798 799 /** 800 * radeon_fence_driver_init_ring - init the fence driver 801 * for the requested ring. 802 * 803 * @rdev: radeon device pointer 804 * @ring: ring index to start the fence driver on 805 * 806 * Init the fence driver for the requested ring (all asics). 807 * Helper function for radeon_fence_driver_init(). 808 */ 809 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 810 { 811 int i; 812 813 rdev->fence_drv[ring].scratch_reg = -1; 814 rdev->fence_drv[ring].cpu_addr = NULL; 815 rdev->fence_drv[ring].gpu_addr = 0; 816 for (i = 0; i < RADEON_NUM_RINGS; ++i) 817 rdev->fence_drv[ring].sync_seq[i] = 0; 818 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 819 rdev->fence_drv[ring].initialized = false; 820 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work, 821 radeon_fence_check_lockup); 822 rdev->fence_drv[ring].rdev = rdev; 823 } 824 825 /** 826 * radeon_fence_driver_init - init the fence driver 827 * for all possible rings. 828 * 829 * @rdev: radeon device pointer 830 * 831 * Init the fence driver for all possible rings (all asics). 832 * Not all asics have all rings, so each asic will only 833 * start the fence driver on the rings it has using 834 * radeon_fence_driver_start_ring(). 835 */ 836 void radeon_fence_driver_init(struct radeon_device *rdev) 837 { 838 int ring; 839 840 init_waitqueue_head(&rdev->fence_queue); 841 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) 842 radeon_fence_driver_init_ring(rdev, ring); 843 844 radeon_debugfs_fence_init(rdev); 845 } 846 847 /** 848 * radeon_fence_driver_fini - tear down the fence driver 849 * for all possible rings. 850 * 851 * @rdev: radeon device pointer 852 * 853 * Tear down the fence driver for all possible rings (all asics). 854 */ 855 void radeon_fence_driver_fini(struct radeon_device *rdev) 856 { 857 int ring, r; 858 859 mutex_lock(&rdev->ring_lock); 860 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 861 if (!rdev->fence_drv[ring].initialized) 862 continue; 863 r = radeon_fence_wait_empty(rdev, ring); 864 if (r) { 865 /* no need to trigger GPU reset as we are unloading */ 866 radeon_fence_driver_force_completion(rdev, ring); 867 } 868 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 869 wake_up_all(&rdev->fence_queue); 870 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 871 rdev->fence_drv[ring].initialized = false; 872 } 873 mutex_unlock(&rdev->ring_lock); 874 } 875 876 /** 877 * radeon_fence_driver_force_completion - force all fence waiter to complete 878 * 879 * @rdev: radeon device pointer 880 * @ring: the ring to complete 881 * 882 * In case of GPU reset failure make sure no process keep waiting on fence 883 * that will never complete. 884 */ 885 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring) 886 { 887 if (rdev->fence_drv[ring].initialized) { 888 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 889 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 890 } 891 } 892 893 894 /* 895 * Fence debugfs 896 */ 897 #if defined(CONFIG_DEBUG_FS) 898 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data) 899 { 900 struct radeon_device *rdev = m->private; 901 int i, j; 902 903 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 904 if (!rdev->fence_drv[i].initialized) 905 continue; 906 907 radeon_fence_process(rdev, i); 908 909 seq_printf(m, "--- ring %d ---\n", i); 910 seq_printf(m, "Last signaled fence 0x%016llx\n", 911 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 912 seq_printf(m, "Last emitted 0x%016llx\n", 913 rdev->fence_drv[i].sync_seq[i]); 914 915 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 916 if (i != j && rdev->fence_drv[j].initialized) 917 seq_printf(m, "Last sync to ring %d 0x%016llx\n", 918 j, rdev->fence_drv[i].sync_seq[j]); 919 } 920 } 921 return 0; 922 } 923 924 /* 925 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 926 * 927 * Manually trigger a gpu reset at the next fence wait. 928 */ 929 static int radeon_debugfs_gpu_reset(void *data, u64 *val) 930 { 931 struct radeon_device *rdev = (struct radeon_device *)data; 932 933 down_read(&rdev->exclusive_lock); 934 *val = rdev->needs_reset; 935 rdev->needs_reset = true; 936 wake_up_all(&rdev->fence_queue); 937 up_read(&rdev->exclusive_lock); 938 939 return 0; 940 } 941 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info); 942 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops, 943 radeon_debugfs_gpu_reset, NULL, "%lld\n"); 944 #endif 945 946 void radeon_debugfs_fence_init(struct radeon_device *rdev) 947 { 948 #if defined(CONFIG_DEBUG_FS) 949 struct dentry *root = rdev_to_drm(rdev)->primary->debugfs_root; 950 951 debugfs_create_file("radeon_gpu_reset", 0444, root, rdev, 952 &radeon_debugfs_gpu_reset_fops); 953 debugfs_create_file("radeon_fence_info", 0444, root, rdev, 954 &radeon_debugfs_fence_info_fops); 955 956 957 #endif 958 } 959 960 static const char *radeon_fence_get_driver_name(struct dma_fence *fence) 961 { 962 return "radeon"; 963 } 964 965 static const char *radeon_fence_get_timeline_name(struct dma_fence *f) 966 { 967 struct radeon_fence *fence = to_radeon_fence(f); 968 969 switch (fence->ring) { 970 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; 971 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; 972 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; 973 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; 974 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; 975 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; 976 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1"; 977 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2"; 978 default: 979 WARN_ON_ONCE(1); 980 return "radeon.unk"; 981 } 982 } 983 984 static inline bool radeon_test_signaled(struct radeon_fence *fence) 985 { 986 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); 987 } 988 989 struct radeon_wait_cb { 990 struct dma_fence_cb base; 991 struct task_struct *task; 992 }; 993 994 static void 995 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 996 { 997 struct radeon_wait_cb *wait = 998 container_of(cb, struct radeon_wait_cb, base); 999 1000 wake_up_process(wait->task); 1001 } 1002 1003 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr, 1004 signed long t) 1005 { 1006 struct radeon_fence *fence = to_radeon_fence(f); 1007 struct radeon_device *rdev = fence->rdev; 1008 struct radeon_wait_cb cb; 1009 1010 cb.task = current; 1011 1012 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb)) 1013 return t; 1014 1015 while (t > 0) { 1016 if (intr) 1017 set_current_state(TASK_INTERRUPTIBLE); 1018 else 1019 set_current_state(TASK_UNINTERRUPTIBLE); 1020 1021 /* 1022 * radeon_test_signaled must be called after 1023 * set_current_state to prevent a race with wake_up_process 1024 */ 1025 if (radeon_test_signaled(fence)) 1026 break; 1027 1028 if (rdev->needs_reset) { 1029 t = -EDEADLK; 1030 break; 1031 } 1032 1033 t = schedule_timeout(t); 1034 1035 if (t > 0 && intr && signal_pending(current)) 1036 t = -ERESTARTSYS; 1037 } 1038 1039 __set_current_state(TASK_RUNNING); 1040 dma_fence_remove_callback(f, &cb.base); 1041 1042 return t; 1043 } 1044 1045 const struct dma_fence_ops radeon_fence_ops = { 1046 .get_driver_name = radeon_fence_get_driver_name, 1047 .get_timeline_name = radeon_fence_get_timeline_name, 1048 .enable_signaling = radeon_fence_enable_signaling, 1049 .signaled = radeon_fence_is_signaled, 1050 .wait = radeon_fence_default_wait, 1051 .release = NULL, 1052 }; 1053