xref: /linux/drivers/gpu/drm/radeon/radeon_fence.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Dave Airlie
30  */
31 #include <linux/seq_file.h>
32 #include <linux/atomic.h>
33 #include <linux/wait.h>
34 #include <linux/kref.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <drm/drmP.h>
38 #include "radeon_reg.h"
39 #include "radeon.h"
40 #include "radeon_trace.h"
41 
42 /*
43  * Fences
44  * Fences mark an event in the GPUs pipeline and are used
45  * for GPU/CPU synchronization.  When the fence is written,
46  * it is expected that all buffers associated with that fence
47  * are no longer in use by the associated ring on the GPU and
48  * that the the relevant GPU caches have been flushed.  Whether
49  * we use a scratch register or memory location depends on the asic
50  * and whether writeback is enabled.
51  */
52 
53 /**
54  * radeon_fence_write - write a fence value
55  *
56  * @rdev: radeon_device pointer
57  * @seq: sequence number to write
58  * @ring: ring index the fence is associated with
59  *
60  * Writes a fence value to memory or a scratch register (all asics).
61  */
62 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
63 {
64 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
65 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
66 		if (drv->cpu_addr) {
67 			*drv->cpu_addr = cpu_to_le32(seq);
68 		}
69 	} else {
70 		WREG32(drv->scratch_reg, seq);
71 	}
72 }
73 
74 /**
75  * radeon_fence_read - read a fence value
76  *
77  * @rdev: radeon_device pointer
78  * @ring: ring index the fence is associated with
79  *
80  * Reads a fence value from memory or a scratch register (all asics).
81  * Returns the value of the fence read from memory or register.
82  */
83 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
84 {
85 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
86 	u32 seq = 0;
87 
88 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
89 		if (drv->cpu_addr) {
90 			seq = le32_to_cpu(*drv->cpu_addr);
91 		} else {
92 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
93 		}
94 	} else {
95 		seq = RREG32(drv->scratch_reg);
96 	}
97 	return seq;
98 }
99 
100 /**
101  * radeon_fence_schedule_check - schedule lockup check
102  *
103  * @rdev: radeon_device pointer
104  * @ring: ring index we should work with
105  *
106  * Queues a delayed work item to check for lockups.
107  */
108 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
109 {
110 	/*
111 	 * Do not reset the timer here with mod_delayed_work,
112 	 * this can livelock in an interaction with TTM delayed destroy.
113 	 */
114 	queue_delayed_work(system_power_efficient_wq,
115 			   &rdev->fence_drv[ring].lockup_work,
116 			   RADEON_FENCE_JIFFIES_TIMEOUT);
117 }
118 
119 /**
120  * radeon_fence_emit - emit a fence on the requested ring
121  *
122  * @rdev: radeon_device pointer
123  * @fence: radeon fence object
124  * @ring: ring index the fence is associated with
125  *
126  * Emits a fence command on the requested ring (all asics).
127  * Returns 0 on success, -ENOMEM on failure.
128  */
129 int radeon_fence_emit(struct radeon_device *rdev,
130 		      struct radeon_fence **fence,
131 		      int ring)
132 {
133 	u64 seq;
134 
135 	/* we are protected by the ring emission mutex */
136 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
137 	if ((*fence) == NULL) {
138 		return -ENOMEM;
139 	}
140 	(*fence)->rdev = rdev;
141 	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
142 	(*fence)->ring = ring;
143 	(*fence)->is_vm_update = false;
144 	fence_init(&(*fence)->base, &radeon_fence_ops,
145 		   &rdev->fence_queue.lock, rdev->fence_context + ring, seq);
146 	radeon_fence_ring_emit(rdev, ring, *fence);
147 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
148 	radeon_fence_schedule_check(rdev, ring);
149 	return 0;
150 }
151 
152 /**
153  * radeon_fence_check_signaled - callback from fence_queue
154  *
155  * this function is called with fence_queue lock held, which is also used
156  * for the fence locking itself, so unlocked variants are used for
157  * fence_signal, and remove_wait_queue.
158  */
159 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
160 {
161 	struct radeon_fence *fence;
162 	u64 seq;
163 
164 	fence = container_of(wait, struct radeon_fence, fence_wake);
165 
166 	/*
167 	 * We cannot use radeon_fence_process here because we're already
168 	 * in the waitqueue, in a call from wake_up_all.
169 	 */
170 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
171 	if (seq >= fence->seq) {
172 		int ret = fence_signal_locked(&fence->base);
173 
174 		if (!ret)
175 			FENCE_TRACE(&fence->base, "signaled from irq context\n");
176 		else
177 			FENCE_TRACE(&fence->base, "was already signaled\n");
178 
179 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
180 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
181 		fence_put(&fence->base);
182 	} else
183 		FENCE_TRACE(&fence->base, "pending\n");
184 	return 0;
185 }
186 
187 /**
188  * radeon_fence_activity - check for fence activity
189  *
190  * @rdev: radeon_device pointer
191  * @ring: ring index the fence is associated with
192  *
193  * Checks the current fence value and calculates the last
194  * signalled fence value. Returns true if activity occured
195  * on the ring, and the fence_queue should be waken up.
196  */
197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
198 {
199 	uint64_t seq, last_seq, last_emitted;
200 	unsigned count_loop = 0;
201 	bool wake = false;
202 
203 	/* Note there is a scenario here for an infinite loop but it's
204 	 * very unlikely to happen. For it to happen, the current polling
205 	 * process need to be interrupted by another process and another
206 	 * process needs to update the last_seq btw the atomic read and
207 	 * xchg of the current process.
208 	 *
209 	 * More over for this to go in infinite loop there need to be
210 	 * continuously new fence signaled ie radeon_fence_read needs
211 	 * to return a different value each time for both the currently
212 	 * polling process and the other process that xchg the last_seq
213 	 * btw atomic read and xchg of the current process. And the
214 	 * value the other process set as last seq must be higher than
215 	 * the seq value we just read. Which means that current process
216 	 * need to be interrupted after radeon_fence_read and before
217 	 * atomic xchg.
218 	 *
219 	 * To be even more safe we count the number of time we loop and
220 	 * we bail after 10 loop just accepting the fact that we might
221 	 * have temporarly set the last_seq not to the true real last
222 	 * seq but to an older one.
223 	 */
224 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
225 	do {
226 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
227 		seq = radeon_fence_read(rdev, ring);
228 		seq |= last_seq & 0xffffffff00000000LL;
229 		if (seq < last_seq) {
230 			seq &= 0xffffffff;
231 			seq |= last_emitted & 0xffffffff00000000LL;
232 		}
233 
234 		if (seq <= last_seq || seq > last_emitted) {
235 			break;
236 		}
237 		/* If we loop over we don't want to return without
238 		 * checking if a fence is signaled as it means that the
239 		 * seq we just read is different from the previous on.
240 		 */
241 		wake = true;
242 		last_seq = seq;
243 		if ((count_loop++) > 10) {
244 			/* We looped over too many time leave with the
245 			 * fact that we might have set an older fence
246 			 * seq then the current real last seq as signaled
247 			 * by the hw.
248 			 */
249 			break;
250 		}
251 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
252 
253 	if (seq < last_emitted)
254 		radeon_fence_schedule_check(rdev, ring);
255 
256 	return wake;
257 }
258 
259 /**
260  * radeon_fence_check_lockup - check for hardware lockup
261  *
262  * @work: delayed work item
263  *
264  * Checks for fence activity and if there is none probe
265  * the hardware if a lockup occured.
266  */
267 static void radeon_fence_check_lockup(struct work_struct *work)
268 {
269 	struct radeon_fence_driver *fence_drv;
270 	struct radeon_device *rdev;
271 	int ring;
272 
273 	fence_drv = container_of(work, struct radeon_fence_driver,
274 				 lockup_work.work);
275 	rdev = fence_drv->rdev;
276 	ring = fence_drv - &rdev->fence_drv[0];
277 
278 	if (!down_read_trylock(&rdev->exclusive_lock)) {
279 		/* just reschedule the check if a reset is going on */
280 		radeon_fence_schedule_check(rdev, ring);
281 		return;
282 	}
283 
284 	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
285 		unsigned long irqflags;
286 
287 		fence_drv->delayed_irq = false;
288 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
289 		radeon_irq_set(rdev);
290 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
291 	}
292 
293 	if (radeon_fence_activity(rdev, ring))
294 		wake_up_all(&rdev->fence_queue);
295 
296 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
297 
298 		/* good news we believe it's a lockup */
299 		dev_warn(rdev->dev, "GPU lockup (current fence id "
300 			 "0x%016llx last fence id 0x%016llx on ring %d)\n",
301 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
302 			 fence_drv->sync_seq[ring], ring);
303 
304 		/* remember that we need an reset */
305 		rdev->needs_reset = true;
306 		wake_up_all(&rdev->fence_queue);
307 	}
308 	up_read(&rdev->exclusive_lock);
309 }
310 
311 /**
312  * radeon_fence_process - process a fence
313  *
314  * @rdev: radeon_device pointer
315  * @ring: ring index the fence is associated with
316  *
317  * Checks the current fence value and wakes the fence queue
318  * if the sequence number has increased (all asics).
319  */
320 void radeon_fence_process(struct radeon_device *rdev, int ring)
321 {
322 	if (radeon_fence_activity(rdev, ring))
323 		wake_up_all(&rdev->fence_queue);
324 }
325 
326 /**
327  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
328  *
329  * @rdev: radeon device pointer
330  * @seq: sequence number
331  * @ring: ring index the fence is associated with
332  *
333  * Check if the last signaled fence sequnce number is >= the requested
334  * sequence number (all asics).
335  * Returns true if the fence has signaled (current fence value
336  * is >= requested value) or false if it has not (current fence
337  * value is < the requested value.  Helper function for
338  * radeon_fence_signaled().
339  */
340 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
341 				      u64 seq, unsigned ring)
342 {
343 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
344 		return true;
345 	}
346 	/* poll new last sequence at least once */
347 	radeon_fence_process(rdev, ring);
348 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
349 		return true;
350 	}
351 	return false;
352 }
353 
354 static bool radeon_fence_is_signaled(struct fence *f)
355 {
356 	struct radeon_fence *fence = to_radeon_fence(f);
357 	struct radeon_device *rdev = fence->rdev;
358 	unsigned ring = fence->ring;
359 	u64 seq = fence->seq;
360 
361 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
362 		return true;
363 	}
364 
365 	if (down_read_trylock(&rdev->exclusive_lock)) {
366 		radeon_fence_process(rdev, ring);
367 		up_read(&rdev->exclusive_lock);
368 
369 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
370 			return true;
371 		}
372 	}
373 	return false;
374 }
375 
376 /**
377  * radeon_fence_enable_signaling - enable signalling on fence
378  * @fence: fence
379  *
380  * This function is called with fence_queue lock held, and adds a callback
381  * to fence_queue that checks if this fence is signaled, and if so it
382  * signals the fence and removes itself.
383  */
384 static bool radeon_fence_enable_signaling(struct fence *f)
385 {
386 	struct radeon_fence *fence = to_radeon_fence(f);
387 	struct radeon_device *rdev = fence->rdev;
388 
389 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
390 		return false;
391 
392 	if (down_read_trylock(&rdev->exclusive_lock)) {
393 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
394 
395 		if (radeon_fence_activity(rdev, fence->ring))
396 			wake_up_all_locked(&rdev->fence_queue);
397 
398 		/* did fence get signaled after we enabled the sw irq? */
399 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
400 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
401 			up_read(&rdev->exclusive_lock);
402 			return false;
403 		}
404 
405 		up_read(&rdev->exclusive_lock);
406 	} else {
407 		/* we're probably in a lockup, lets not fiddle too much */
408 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
409 			rdev->fence_drv[fence->ring].delayed_irq = true;
410 		radeon_fence_schedule_check(rdev, fence->ring);
411 	}
412 
413 	fence->fence_wake.flags = 0;
414 	fence->fence_wake.private = NULL;
415 	fence->fence_wake.func = radeon_fence_check_signaled;
416 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
417 	fence_get(f);
418 
419 	FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
420 	return true;
421 }
422 
423 /**
424  * radeon_fence_signaled - check if a fence has signaled
425  *
426  * @fence: radeon fence object
427  *
428  * Check if the requested fence has signaled (all asics).
429  * Returns true if the fence has signaled or false if it has not.
430  */
431 bool radeon_fence_signaled(struct radeon_fence *fence)
432 {
433 	if (!fence)
434 		return true;
435 
436 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
437 		int ret;
438 
439 		ret = fence_signal(&fence->base);
440 		if (!ret)
441 			FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
442 		return true;
443 	}
444 	return false;
445 }
446 
447 /**
448  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
449  *
450  * @rdev: radeon device pointer
451  * @seq: sequence numbers
452  *
453  * Check if the last signaled fence sequnce number is >= the requested
454  * sequence number (all asics).
455  * Returns true if any has signaled (current value is >= requested value)
456  * or false if it has not. Helper function for radeon_fence_wait_seq.
457  */
458 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
459 {
460 	unsigned i;
461 
462 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
463 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
464 			return true;
465 	}
466 	return false;
467 }
468 
469 /**
470  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
471  *
472  * @rdev: radeon device pointer
473  * @target_seq: sequence number(s) we want to wait for
474  * @intr: use interruptable sleep
475  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
476  *
477  * Wait for the requested sequence number(s) to be written by any ring
478  * (all asics).  Sequnce number array is indexed by ring id.
479  * @intr selects whether to use interruptable (true) or non-interruptable
480  * (false) sleep when waiting for the sequence number.  Helper function
481  * for radeon_fence_wait_*().
482  * Returns remaining time if the sequence number has passed, 0 when
483  * the wait timeout, or an error for all other cases.
484  * -EDEADLK is returned when a GPU lockup has been detected.
485  */
486 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
487 					  u64 *target_seq, bool intr,
488 					  long timeout)
489 {
490 	long r;
491 	int i;
492 
493 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
494 		return timeout;
495 
496 	/* enable IRQs and tracing */
497 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
498 		if (!target_seq[i])
499 			continue;
500 
501 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
502 		radeon_irq_kms_sw_irq_get(rdev, i);
503 	}
504 
505 	if (intr) {
506 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
507 			radeon_fence_any_seq_signaled(rdev, target_seq)
508 			 || rdev->needs_reset), timeout);
509 	} else {
510 		r = wait_event_timeout(rdev->fence_queue, (
511 			radeon_fence_any_seq_signaled(rdev, target_seq)
512 			 || rdev->needs_reset), timeout);
513 	}
514 
515 	if (rdev->needs_reset)
516 		r = -EDEADLK;
517 
518 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
519 		if (!target_seq[i])
520 			continue;
521 
522 		radeon_irq_kms_sw_irq_put(rdev, i);
523 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
524 	}
525 
526 	return r;
527 }
528 
529 /**
530  * radeon_fence_wait_timeout - wait for a fence to signal with timeout
531  *
532  * @fence: radeon fence object
533  * @intr: use interruptible sleep
534  *
535  * Wait for the requested fence to signal (all asics).
536  * @intr selects whether to use interruptable (true) or non-interruptable
537  * (false) sleep when waiting for the fence.
538  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
539  * Returns remaining time if the sequence number has passed, 0 when
540  * the wait timeout, or an error for all other cases.
541  */
542 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
543 {
544 	uint64_t seq[RADEON_NUM_RINGS] = {};
545 	long r;
546 	int r_sig;
547 
548 	/*
549 	 * This function should not be called on !radeon fences.
550 	 * If this is the case, it would mean this function can
551 	 * also be called on radeon fences belonging to another card.
552 	 * exclusive_lock is not held in that case.
553 	 */
554 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
555 		return fence_wait(&fence->base, intr);
556 
557 	seq[fence->ring] = fence->seq;
558 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
559 	if (r <= 0) {
560 		return r;
561 	}
562 
563 	r_sig = fence_signal(&fence->base);
564 	if (!r_sig)
565 		FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
566 	return r;
567 }
568 
569 /**
570  * radeon_fence_wait - wait for a fence to signal
571  *
572  * @fence: radeon fence object
573  * @intr: use interruptible sleep
574  *
575  * Wait for the requested fence to signal (all asics).
576  * @intr selects whether to use interruptable (true) or non-interruptable
577  * (false) sleep when waiting for the fence.
578  * Returns 0 if the fence has passed, error for all other cases.
579  */
580 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
581 {
582 	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
583 	if (r > 0) {
584 		return 0;
585 	} else {
586 		return r;
587 	}
588 }
589 
590 /**
591  * radeon_fence_wait_any - wait for a fence to signal on any ring
592  *
593  * @rdev: radeon device pointer
594  * @fences: radeon fence object(s)
595  * @intr: use interruptable sleep
596  *
597  * Wait for any requested fence to signal (all asics).  Fence
598  * array is indexed by ring id.  @intr selects whether to use
599  * interruptable (true) or non-interruptable (false) sleep when
600  * waiting for the fences. Used by the suballocator.
601  * Returns 0 if any fence has passed, error for all other cases.
602  */
603 int radeon_fence_wait_any(struct radeon_device *rdev,
604 			  struct radeon_fence **fences,
605 			  bool intr)
606 {
607 	uint64_t seq[RADEON_NUM_RINGS];
608 	unsigned i, num_rings = 0;
609 	long r;
610 
611 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
612 		seq[i] = 0;
613 
614 		if (!fences[i]) {
615 			continue;
616 		}
617 
618 		seq[i] = fences[i]->seq;
619 		++num_rings;
620 	}
621 
622 	/* nothing to wait for ? */
623 	if (num_rings == 0)
624 		return -ENOENT;
625 
626 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
627 	if (r < 0) {
628 		return r;
629 	}
630 	return 0;
631 }
632 
633 /**
634  * radeon_fence_wait_next - wait for the next fence to signal
635  *
636  * @rdev: radeon device pointer
637  * @ring: ring index the fence is associated with
638  *
639  * Wait for the next fence on the requested ring to signal (all asics).
640  * Returns 0 if the next fence has passed, error for all other cases.
641  * Caller must hold ring lock.
642  */
643 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
644 {
645 	uint64_t seq[RADEON_NUM_RINGS] = {};
646 	long r;
647 
648 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
649 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
650 		/* nothing to wait for, last_seq is
651 		   already the last emited fence */
652 		return -ENOENT;
653 	}
654 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
655 	if (r < 0)
656 		return r;
657 	return 0;
658 }
659 
660 /**
661  * radeon_fence_wait_empty - wait for all fences to signal
662  *
663  * @rdev: radeon device pointer
664  * @ring: ring index the fence is associated with
665  *
666  * Wait for all fences on the requested ring to signal (all asics).
667  * Returns 0 if the fences have passed, error for all other cases.
668  * Caller must hold ring lock.
669  */
670 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
671 {
672 	uint64_t seq[RADEON_NUM_RINGS] = {};
673 	long r;
674 
675 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
676 	if (!seq[ring])
677 		return 0;
678 
679 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
680 	if (r < 0) {
681 		if (r == -EDEADLK)
682 			return -EDEADLK;
683 
684 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
685 			ring, r);
686 	}
687 	return 0;
688 }
689 
690 /**
691  * radeon_fence_ref - take a ref on a fence
692  *
693  * @fence: radeon fence object
694  *
695  * Take a reference on a fence (all asics).
696  * Returns the fence.
697  */
698 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
699 {
700 	fence_get(&fence->base);
701 	return fence;
702 }
703 
704 /**
705  * radeon_fence_unref - remove a ref on a fence
706  *
707  * @fence: radeon fence object
708  *
709  * Remove a reference on a fence (all asics).
710  */
711 void radeon_fence_unref(struct radeon_fence **fence)
712 {
713 	struct radeon_fence *tmp = *fence;
714 
715 	*fence = NULL;
716 	if (tmp) {
717 		fence_put(&tmp->base);
718 	}
719 }
720 
721 /**
722  * radeon_fence_count_emitted - get the count of emitted fences
723  *
724  * @rdev: radeon device pointer
725  * @ring: ring index the fence is associated with
726  *
727  * Get the number of fences emitted on the requested ring (all asics).
728  * Returns the number of emitted fences on the ring.  Used by the
729  * dynpm code to ring track activity.
730  */
731 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
732 {
733 	uint64_t emitted;
734 
735 	/* We are not protected by ring lock when reading the last sequence
736 	 * but it's ok to report slightly wrong fence count here.
737 	 */
738 	radeon_fence_process(rdev, ring);
739 	emitted = rdev->fence_drv[ring].sync_seq[ring]
740 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
741 	/* to avoid 32bits warp around */
742 	if (emitted > 0x10000000) {
743 		emitted = 0x10000000;
744 	}
745 	return (unsigned)emitted;
746 }
747 
748 /**
749  * radeon_fence_need_sync - do we need a semaphore
750  *
751  * @fence: radeon fence object
752  * @dst_ring: which ring to check against
753  *
754  * Check if the fence needs to be synced against another ring
755  * (all asics).  If so, we need to emit a semaphore.
756  * Returns true if we need to sync with another ring, false if
757  * not.
758  */
759 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
760 {
761 	struct radeon_fence_driver *fdrv;
762 
763 	if (!fence) {
764 		return false;
765 	}
766 
767 	if (fence->ring == dst_ring) {
768 		return false;
769 	}
770 
771 	/* we are protected by the ring mutex */
772 	fdrv = &fence->rdev->fence_drv[dst_ring];
773 	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
774 		return false;
775 	}
776 
777 	return true;
778 }
779 
780 /**
781  * radeon_fence_note_sync - record the sync point
782  *
783  * @fence: radeon fence object
784  * @dst_ring: which ring to check against
785  *
786  * Note the sequence number at which point the fence will
787  * be synced with the requested ring (all asics).
788  */
789 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
790 {
791 	struct radeon_fence_driver *dst, *src;
792 	unsigned i;
793 
794 	if (!fence) {
795 		return;
796 	}
797 
798 	if (fence->ring == dst_ring) {
799 		return;
800 	}
801 
802 	/* we are protected by the ring mutex */
803 	src = &fence->rdev->fence_drv[fence->ring];
804 	dst = &fence->rdev->fence_drv[dst_ring];
805 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
806 		if (i == dst_ring) {
807 			continue;
808 		}
809 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
810 	}
811 }
812 
813 /**
814  * radeon_fence_driver_start_ring - make the fence driver
815  * ready for use on the requested ring.
816  *
817  * @rdev: radeon device pointer
818  * @ring: ring index to start the fence driver on
819  *
820  * Make the fence driver ready for processing (all asics).
821  * Not all asics have all rings, so each asic will only
822  * start the fence driver on the rings it has.
823  * Returns 0 for success, errors for failure.
824  */
825 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
826 {
827 	uint64_t index;
828 	int r;
829 
830 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
831 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
832 		rdev->fence_drv[ring].scratch_reg = 0;
833 		if (ring != R600_RING_TYPE_UVD_INDEX) {
834 			index = R600_WB_EVENT_OFFSET + ring * 4;
835 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
836 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
837 							 index;
838 
839 		} else {
840 			/* put fence directly behind firmware */
841 			index = ALIGN(rdev->uvd_fw->size, 8);
842 			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
843 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
844 		}
845 
846 	} else {
847 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
848 		if (r) {
849 			dev_err(rdev->dev, "fence failed to get scratch register\n");
850 			return r;
851 		}
852 		index = RADEON_WB_SCRATCH_OFFSET +
853 			rdev->fence_drv[ring].scratch_reg -
854 			rdev->scratch.reg_base;
855 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
856 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
857 	}
858 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
859 	rdev->fence_drv[ring].initialized = true;
860 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
861 		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
862 	return 0;
863 }
864 
865 /**
866  * radeon_fence_driver_init_ring - init the fence driver
867  * for the requested ring.
868  *
869  * @rdev: radeon device pointer
870  * @ring: ring index to start the fence driver on
871  *
872  * Init the fence driver for the requested ring (all asics).
873  * Helper function for radeon_fence_driver_init().
874  */
875 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
876 {
877 	int i;
878 
879 	rdev->fence_drv[ring].scratch_reg = -1;
880 	rdev->fence_drv[ring].cpu_addr = NULL;
881 	rdev->fence_drv[ring].gpu_addr = 0;
882 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
883 		rdev->fence_drv[ring].sync_seq[i] = 0;
884 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
885 	rdev->fence_drv[ring].initialized = false;
886 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
887 			  radeon_fence_check_lockup);
888 	rdev->fence_drv[ring].rdev = rdev;
889 }
890 
891 /**
892  * radeon_fence_driver_init - init the fence driver
893  * for all possible rings.
894  *
895  * @rdev: radeon device pointer
896  *
897  * Init the fence driver for all possible rings (all asics).
898  * Not all asics have all rings, so each asic will only
899  * start the fence driver on the rings it has using
900  * radeon_fence_driver_start_ring().
901  * Returns 0 for success.
902  */
903 int radeon_fence_driver_init(struct radeon_device *rdev)
904 {
905 	int ring;
906 
907 	init_waitqueue_head(&rdev->fence_queue);
908 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
909 		radeon_fence_driver_init_ring(rdev, ring);
910 	}
911 	if (radeon_debugfs_fence_init(rdev)) {
912 		dev_err(rdev->dev, "fence debugfs file creation failed\n");
913 	}
914 	return 0;
915 }
916 
917 /**
918  * radeon_fence_driver_fini - tear down the fence driver
919  * for all possible rings.
920  *
921  * @rdev: radeon device pointer
922  *
923  * Tear down the fence driver for all possible rings (all asics).
924  */
925 void radeon_fence_driver_fini(struct radeon_device *rdev)
926 {
927 	int ring, r;
928 
929 	mutex_lock(&rdev->ring_lock);
930 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
931 		if (!rdev->fence_drv[ring].initialized)
932 			continue;
933 		r = radeon_fence_wait_empty(rdev, ring);
934 		if (r) {
935 			/* no need to trigger GPU reset as we are unloading */
936 			radeon_fence_driver_force_completion(rdev, ring);
937 		}
938 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
939 		wake_up_all(&rdev->fence_queue);
940 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
941 		rdev->fence_drv[ring].initialized = false;
942 	}
943 	mutex_unlock(&rdev->ring_lock);
944 }
945 
946 /**
947  * radeon_fence_driver_force_completion - force all fence waiter to complete
948  *
949  * @rdev: radeon device pointer
950  * @ring: the ring to complete
951  *
952  * In case of GPU reset failure make sure no process keep waiting on fence
953  * that will never complete.
954  */
955 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
956 {
957 	if (rdev->fence_drv[ring].initialized) {
958 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
959 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
960 	}
961 }
962 
963 
964 /*
965  * Fence debugfs
966  */
967 #if defined(CONFIG_DEBUG_FS)
968 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
969 {
970 	struct drm_info_node *node = (struct drm_info_node *)m->private;
971 	struct drm_device *dev = node->minor->dev;
972 	struct radeon_device *rdev = dev->dev_private;
973 	int i, j;
974 
975 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
976 		if (!rdev->fence_drv[i].initialized)
977 			continue;
978 
979 		radeon_fence_process(rdev, i);
980 
981 		seq_printf(m, "--- ring %d ---\n", i);
982 		seq_printf(m, "Last signaled fence 0x%016llx\n",
983 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
984 		seq_printf(m, "Last emitted        0x%016llx\n",
985 			   rdev->fence_drv[i].sync_seq[i]);
986 
987 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
988 			if (i != j && rdev->fence_drv[j].initialized)
989 				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
990 					   j, rdev->fence_drv[i].sync_seq[j]);
991 		}
992 	}
993 	return 0;
994 }
995 
996 /**
997  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
998  *
999  * Manually trigger a gpu reset at the next fence wait.
1000  */
1001 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1002 {
1003 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1004 	struct drm_device *dev = node->minor->dev;
1005 	struct radeon_device *rdev = dev->dev_private;
1006 
1007 	down_read(&rdev->exclusive_lock);
1008 	seq_printf(m, "%d\n", rdev->needs_reset);
1009 	rdev->needs_reset = true;
1010 	wake_up_all(&rdev->fence_queue);
1011 	up_read(&rdev->exclusive_lock);
1012 
1013 	return 0;
1014 }
1015 
1016 static struct drm_info_list radeon_debugfs_fence_list[] = {
1017 	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1018 	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1019 };
1020 #endif
1021 
1022 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1023 {
1024 #if defined(CONFIG_DEBUG_FS)
1025 	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1026 #else
1027 	return 0;
1028 #endif
1029 }
1030 
1031 static const char *radeon_fence_get_driver_name(struct fence *fence)
1032 {
1033 	return "radeon";
1034 }
1035 
1036 static const char *radeon_fence_get_timeline_name(struct fence *f)
1037 {
1038 	struct radeon_fence *fence = to_radeon_fence(f);
1039 	switch (fence->ring) {
1040 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1041 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1042 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1043 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1044 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1045 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1046 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1047 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1048 	default: WARN_ON_ONCE(1); return "radeon.unk";
1049 	}
1050 }
1051 
1052 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1053 {
1054 	return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1055 }
1056 
1057 struct radeon_wait_cb {
1058 	struct fence_cb base;
1059 	struct task_struct *task;
1060 };
1061 
1062 static void
1063 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
1064 {
1065 	struct radeon_wait_cb *wait =
1066 		container_of(cb, struct radeon_wait_cb, base);
1067 
1068 	wake_up_process(wait->task);
1069 }
1070 
1071 static signed long radeon_fence_default_wait(struct fence *f, bool intr,
1072 					     signed long t)
1073 {
1074 	struct radeon_fence *fence = to_radeon_fence(f);
1075 	struct radeon_device *rdev = fence->rdev;
1076 	struct radeon_wait_cb cb;
1077 
1078 	cb.task = current;
1079 
1080 	if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1081 		return t;
1082 
1083 	while (t > 0) {
1084 		if (intr)
1085 			set_current_state(TASK_INTERRUPTIBLE);
1086 		else
1087 			set_current_state(TASK_UNINTERRUPTIBLE);
1088 
1089 		/*
1090 		 * radeon_test_signaled must be called after
1091 		 * set_current_state to prevent a race with wake_up_process
1092 		 */
1093 		if (radeon_test_signaled(fence))
1094 			break;
1095 
1096 		if (rdev->needs_reset) {
1097 			t = -EDEADLK;
1098 			break;
1099 		}
1100 
1101 		t = schedule_timeout(t);
1102 
1103 		if (t > 0 && intr && signal_pending(current))
1104 			t = -ERESTARTSYS;
1105 	}
1106 
1107 	__set_current_state(TASK_RUNNING);
1108 	fence_remove_callback(f, &cb.base);
1109 
1110 	return t;
1111 }
1112 
1113 const struct fence_ops radeon_fence_ops = {
1114 	.get_driver_name = radeon_fence_get_driver_name,
1115 	.get_timeline_name = radeon_fence_get_timeline_name,
1116 	.enable_signaling = radeon_fence_enable_signaling,
1117 	.signaled = radeon_fence_is_signaled,
1118 	.wait = radeon_fence_default_wait,
1119 	.release = NULL,
1120 };
1121