xref: /linux/drivers/gpu/drm/radeon/ni_dma.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 /*
2  * Copyright 2010 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 
25 #include "radeon.h"
26 #include "radeon_asic.h"
27 #include "radeon_trace.h"
28 #include "ni.h"
29 #include "nid.h"
30 
31 /*
32  * DMA
33  * Starting with R600, the GPU has an asynchronous
34  * DMA engine.  The programming model is very similar
35  * to the 3D engine (ring buffer, IBs, etc.), but the
36  * DMA controller has it's own packet format that is
37  * different form the PM4 format used by the 3D engine.
38  * It supports copying data, writing embedded data,
39  * solid fills, and a number of other things.  It also
40  * has support for tiling/detiling of buffers.
41  * Cayman and newer support two asynchronous DMA engines.
42  */
43 
44 /**
45  * cayman_dma_get_rptr - get the current read pointer
46  *
47  * @rdev: radeon_device pointer
48  * @ring: radeon ring pointer
49  *
50  * Get the current rptr from the hardware (cayman+).
51  */
52 uint32_t cayman_dma_get_rptr(struct radeon_device *rdev,
53 			     struct radeon_ring *ring)
54 {
55 	u32 rptr, reg;
56 
57 	if (rdev->wb.enabled) {
58 		rptr = rdev->wb.wb[ring->rptr_offs/4];
59 	} else {
60 		if (ring->idx == R600_RING_TYPE_DMA_INDEX)
61 			reg = DMA_RB_RPTR + DMA0_REGISTER_OFFSET;
62 		else
63 			reg = DMA_RB_RPTR + DMA1_REGISTER_OFFSET;
64 
65 		rptr = RREG32(reg);
66 	}
67 
68 	return (rptr & 0x3fffc) >> 2;
69 }
70 
71 /**
72  * cayman_dma_get_wptr - get the current write pointer
73  *
74  * @rdev: radeon_device pointer
75  * @ring: radeon ring pointer
76  *
77  * Get the current wptr from the hardware (cayman+).
78  */
79 uint32_t cayman_dma_get_wptr(struct radeon_device *rdev,
80 			   struct radeon_ring *ring)
81 {
82 	u32 reg;
83 
84 	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
85 		reg = DMA_RB_WPTR + DMA0_REGISTER_OFFSET;
86 	else
87 		reg = DMA_RB_WPTR + DMA1_REGISTER_OFFSET;
88 
89 	return (RREG32(reg) & 0x3fffc) >> 2;
90 }
91 
92 /**
93  * cayman_dma_set_wptr - commit the write pointer
94  *
95  * @rdev: radeon_device pointer
96  * @ring: radeon ring pointer
97  *
98  * Write the wptr back to the hardware (cayman+).
99  */
100 void cayman_dma_set_wptr(struct radeon_device *rdev,
101 			 struct radeon_ring *ring)
102 {
103 	u32 reg;
104 
105 	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
106 		reg = DMA_RB_WPTR + DMA0_REGISTER_OFFSET;
107 	else
108 		reg = DMA_RB_WPTR + DMA1_REGISTER_OFFSET;
109 
110 	WREG32(reg, (ring->wptr << 2) & 0x3fffc);
111 }
112 
113 /**
114  * cayman_dma_ring_ib_execute - Schedule an IB on the DMA engine
115  *
116  * @rdev: radeon_device pointer
117  * @ib: IB object to schedule
118  *
119  * Schedule an IB in the DMA ring (cayman-SI).
120  */
121 void cayman_dma_ring_ib_execute(struct radeon_device *rdev,
122 				struct radeon_ib *ib)
123 {
124 	struct radeon_ring *ring = &rdev->ring[ib->ring];
125 	unsigned vm_id = ib->vm ? ib->vm->ids[ib->ring].id : 0;
126 
127 	if (rdev->wb.enabled) {
128 		u32 next_rptr = ring->wptr + 4;
129 		while ((next_rptr & 7) != 5)
130 			next_rptr++;
131 		next_rptr += 3;
132 		radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1));
133 		radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
134 		radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xff);
135 		radeon_ring_write(ring, next_rptr);
136 	}
137 
138 	/* The indirect buffer packet must end on an 8 DW boundary in the DMA ring.
139 	 * Pad as necessary with NOPs.
140 	 */
141 	while ((ring->wptr & 7) != 5)
142 		radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0));
143 	radeon_ring_write(ring, DMA_IB_PACKET(DMA_PACKET_INDIRECT_BUFFER, vm_id, 0));
144 	radeon_ring_write(ring, (ib->gpu_addr & 0xFFFFFFE0));
145 	radeon_ring_write(ring, (ib->length_dw << 12) | (upper_32_bits(ib->gpu_addr) & 0xFF));
146 
147 }
148 
149 /**
150  * cayman_dma_stop - stop the async dma engines
151  *
152  * @rdev: radeon_device pointer
153  *
154  * Stop the async dma engines (cayman-SI).
155  */
156 void cayman_dma_stop(struct radeon_device *rdev)
157 {
158 	u32 rb_cntl;
159 
160 	if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) ||
161 	    (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX))
162 		radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);
163 
164 	/* dma0 */
165 	rb_cntl = RREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET);
166 	rb_cntl &= ~DMA_RB_ENABLE;
167 	WREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET, rb_cntl);
168 
169 	/* dma1 */
170 	rb_cntl = RREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET);
171 	rb_cntl &= ~DMA_RB_ENABLE;
172 	WREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET, rb_cntl);
173 
174 	rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false;
175 	rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX].ready = false;
176 }
177 
178 /**
179  * cayman_dma_resume - setup and start the async dma engines
180  *
181  * @rdev: radeon_device pointer
182  *
183  * Set up the DMA ring buffers and enable them. (cayman-SI).
184  * Returns 0 for success, error for failure.
185  */
186 int cayman_dma_resume(struct radeon_device *rdev)
187 {
188 	struct radeon_ring *ring;
189 	u32 rb_cntl, dma_cntl, ib_cntl;
190 	u32 rb_bufsz;
191 	u32 reg_offset, wb_offset;
192 	int i, r;
193 
194 	for (i = 0; i < 2; i++) {
195 		if (i == 0) {
196 			ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
197 			reg_offset = DMA0_REGISTER_OFFSET;
198 			wb_offset = R600_WB_DMA_RPTR_OFFSET;
199 		} else {
200 			ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
201 			reg_offset = DMA1_REGISTER_OFFSET;
202 			wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET;
203 		}
204 
205 		WREG32(DMA_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0);
206 		WREG32(DMA_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0);
207 
208 		/* Set ring buffer size in dwords */
209 		rb_bufsz = order_base_2(ring->ring_size / 4);
210 		rb_cntl = rb_bufsz << 1;
211 #ifdef __BIG_ENDIAN
212 		rb_cntl |= DMA_RB_SWAP_ENABLE | DMA_RPTR_WRITEBACK_SWAP_ENABLE;
213 #endif
214 		WREG32(DMA_RB_CNTL + reg_offset, rb_cntl);
215 
216 		/* Initialize the ring buffer's read and write pointers */
217 		WREG32(DMA_RB_RPTR + reg_offset, 0);
218 		WREG32(DMA_RB_WPTR + reg_offset, 0);
219 
220 		/* set the wb address whether it's enabled or not */
221 		WREG32(DMA_RB_RPTR_ADDR_HI + reg_offset,
222 		       upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFF);
223 		WREG32(DMA_RB_RPTR_ADDR_LO + reg_offset,
224 		       ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC));
225 
226 		if (rdev->wb.enabled)
227 			rb_cntl |= DMA_RPTR_WRITEBACK_ENABLE;
228 
229 		WREG32(DMA_RB_BASE + reg_offset, ring->gpu_addr >> 8);
230 
231 		/* enable DMA IBs */
232 		ib_cntl = DMA_IB_ENABLE | CMD_VMID_FORCE;
233 #ifdef __BIG_ENDIAN
234 		ib_cntl |= DMA_IB_SWAP_ENABLE;
235 #endif
236 		WREG32(DMA_IB_CNTL + reg_offset, ib_cntl);
237 
238 		dma_cntl = RREG32(DMA_CNTL + reg_offset);
239 		dma_cntl &= ~CTXEMPTY_INT_ENABLE;
240 		WREG32(DMA_CNTL + reg_offset, dma_cntl);
241 
242 		ring->wptr = 0;
243 		WREG32(DMA_RB_WPTR + reg_offset, ring->wptr << 2);
244 
245 		WREG32(DMA_RB_CNTL + reg_offset, rb_cntl | DMA_RB_ENABLE);
246 
247 		ring->ready = true;
248 
249 		r = radeon_ring_test(rdev, ring->idx, ring);
250 		if (r) {
251 			ring->ready = false;
252 			return r;
253 		}
254 	}
255 
256 	if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) ||
257 	    (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX))
258 		radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size);
259 
260 	return 0;
261 }
262 
263 /**
264  * cayman_dma_fini - tear down the async dma engines
265  *
266  * @rdev: radeon_device pointer
267  *
268  * Stop the async dma engines and free the rings (cayman-SI).
269  */
270 void cayman_dma_fini(struct radeon_device *rdev)
271 {
272 	cayman_dma_stop(rdev);
273 	radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]);
274 	radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]);
275 }
276 
277 /**
278  * cayman_dma_is_lockup - Check if the DMA engine is locked up
279  *
280  * @rdev: radeon_device pointer
281  * @ring: radeon_ring structure holding ring information
282  *
283  * Check if the async DMA engine is locked up.
284  * Returns true if the engine appears to be locked up, false if not.
285  */
286 bool cayman_dma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
287 {
288 	u32 reset_mask = cayman_gpu_check_soft_reset(rdev);
289 	u32 mask;
290 
291 	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
292 		mask = RADEON_RESET_DMA;
293 	else
294 		mask = RADEON_RESET_DMA1;
295 
296 	if (!(reset_mask & mask)) {
297 		radeon_ring_lockup_update(rdev, ring);
298 		return false;
299 	}
300 	return radeon_ring_test_lockup(rdev, ring);
301 }
302 
303 /**
304  * cayman_dma_vm_copy_pages - update PTEs by copying them from the GART
305  *
306  * @rdev: radeon_device pointer
307  * @ib: indirect buffer to fill with commands
308  * @pe: addr of the page entry
309  * @src: src addr where to copy from
310  * @count: number of page entries to update
311  *
312  * Update PTEs by copying them from the GART using the DMA (cayman/TN).
313  */
314 void cayman_dma_vm_copy_pages(struct radeon_device *rdev,
315 			      struct radeon_ib *ib,
316 			      uint64_t pe, uint64_t src,
317 			      unsigned count)
318 {
319 	unsigned ndw;
320 
321 	while (count) {
322 		ndw = count * 2;
323 		if (ndw > 0xFFFFE)
324 			ndw = 0xFFFFE;
325 
326 		ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_COPY,
327 						      0, 0, ndw);
328 		ib->ptr[ib->length_dw++] = lower_32_bits(pe);
329 		ib->ptr[ib->length_dw++] = lower_32_bits(src);
330 		ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff;
331 		ib->ptr[ib->length_dw++] = upper_32_bits(src) & 0xff;
332 
333 		pe += ndw * 4;
334 		src += ndw * 4;
335 		count -= ndw / 2;
336 	}
337 }
338 
339 /**
340  * cayman_dma_vm_write_pages - update PTEs by writing them manually
341  *
342  * @rdev: radeon_device pointer
343  * @ib: indirect buffer to fill with commands
344  * @pe: addr of the page entry
345  * @addr: dst addr to write into pe
346  * @count: number of page entries to update
347  * @incr: increase next addr by incr bytes
348  * @flags: hw access flags
349  *
350  * Update PTEs by writing them manually using the DMA (cayman/TN).
351  */
352 void cayman_dma_vm_write_pages(struct radeon_device *rdev,
353 			       struct radeon_ib *ib,
354 			       uint64_t pe,
355 			       uint64_t addr, unsigned count,
356 			       uint32_t incr, uint32_t flags)
357 {
358 	uint64_t value;
359 	unsigned ndw;
360 
361 	while (count) {
362 		ndw = count * 2;
363 		if (ndw > 0xFFFFE)
364 			ndw = 0xFFFFE;
365 
366 		/* for non-physically contiguous pages (system) */
367 		ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_WRITE,
368 						      0, 0, ndw);
369 		ib->ptr[ib->length_dw++] = pe;
370 		ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff;
371 		for (; ndw > 0; ndw -= 2, --count, pe += 8) {
372 			if (flags & R600_PTE_SYSTEM) {
373 				value = radeon_vm_map_gart(rdev, addr);
374 			} else if (flags & R600_PTE_VALID) {
375 				value = addr;
376 			} else {
377 				value = 0;
378 			}
379 			addr += incr;
380 			value |= flags;
381 			ib->ptr[ib->length_dw++] = value;
382 			ib->ptr[ib->length_dw++] = upper_32_bits(value);
383 		}
384 	}
385 }
386 
387 /**
388  * cayman_dma_vm_set_pages - update the page tables using the DMA
389  *
390  * @rdev: radeon_device pointer
391  * @ib: indirect buffer to fill with commands
392  * @pe: addr of the page entry
393  * @addr: dst addr to write into pe
394  * @count: number of page entries to update
395  * @incr: increase next addr by incr bytes
396  * @flags: hw access flags
397  *
398  * Update the page tables using the DMA (cayman/TN).
399  */
400 void cayman_dma_vm_set_pages(struct radeon_device *rdev,
401 			     struct radeon_ib *ib,
402 			     uint64_t pe,
403 			     uint64_t addr, unsigned count,
404 			     uint32_t incr, uint32_t flags)
405 {
406 	uint64_t value;
407 	unsigned ndw;
408 
409 	while (count) {
410 		ndw = count * 2;
411 		if (ndw > 0xFFFFE)
412 			ndw = 0xFFFFE;
413 
414 		if (flags & R600_PTE_VALID)
415 			value = addr;
416 		else
417 			value = 0;
418 
419 		/* for physically contiguous pages (vram) */
420 		ib->ptr[ib->length_dw++] = DMA_PTE_PDE_PACKET(ndw);
421 		ib->ptr[ib->length_dw++] = pe; /* dst addr */
422 		ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff;
423 		ib->ptr[ib->length_dw++] = flags; /* mask */
424 		ib->ptr[ib->length_dw++] = 0;
425 		ib->ptr[ib->length_dw++] = value; /* value */
426 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
427 		ib->ptr[ib->length_dw++] = incr; /* increment size */
428 		ib->ptr[ib->length_dw++] = 0;
429 
430 		pe += ndw * 4;
431 		addr += (ndw / 2) * incr;
432 		count -= ndw / 2;
433 	}
434 }
435 
436 /**
437  * cayman_dma_vm_pad_ib - pad the IB to the required number of dw
438  *
439  * @ib: indirect buffer to fill with padding
440  *
441  */
442 void cayman_dma_vm_pad_ib(struct radeon_ib *ib)
443 {
444 	while (ib->length_dw & 0x7)
445 		ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0);
446 }
447 
448 void cayman_dma_vm_flush(struct radeon_device *rdev, struct radeon_ring *ring,
449 			 unsigned vm_id, uint64_t pd_addr)
450 {
451 	radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0));
452 	radeon_ring_write(ring, (0xf << 16) | ((VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm_id << 2)) >> 2));
453 	radeon_ring_write(ring, pd_addr >> 12);
454 
455 	/* flush hdp cache */
456 	radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0));
457 	radeon_ring_write(ring, (0xf << 16) | (HDP_MEM_COHERENCY_FLUSH_CNTL >> 2));
458 	radeon_ring_write(ring, 1);
459 
460 	/* bits 0-7 are the VM contexts0-7 */
461 	radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0));
462 	radeon_ring_write(ring, (0xf << 16) | (VM_INVALIDATE_REQUEST >> 2));
463 	radeon_ring_write(ring, 1 << vm_id);
464 
465 	/* wait for invalidate to complete */
466 	radeon_ring_write(ring, DMA_SRBM_READ_PACKET);
467 	radeon_ring_write(ring, (0xff << 20) | (VM_INVALIDATE_REQUEST >> 2));
468 	radeon_ring_write(ring, 0); /* mask */
469 	radeon_ring_write(ring, 0); /* value */
470 }
471 
472