1 /* utility to create the register check tables 2 * this includes inlined list.h safe for userspace. 3 * 4 * Copyright 2009 Jerome Glisse 5 * Copyright 2009 Red Hat Inc. 6 * 7 * Authors: 8 * Jerome Glisse 9 * Dave Airlie 10 */ 11 12 #include <sys/types.h> 13 #include <stdlib.h> 14 #include <string.h> 15 #include <stdio.h> 16 #include <regex.h> 17 #include <libgen.h> 18 19 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER) 20 /** 21 * container_of - cast a member of a structure out to the containing structure 22 * @ptr: the pointer to the member. 23 * @type: the type of the container struct this is embedded in. 24 * @member: the name of the member within the struct. 25 * 26 */ 27 #define container_of(ptr, type, member) ({ \ 28 const typeof(((type *)0)->member)*__mptr = (ptr); \ 29 (type *)((char *)__mptr - offsetof(type, member)); }) 30 31 /* 32 * Simple doubly linked list implementation. 33 * 34 * Some of the internal functions ("__xxx") are useful when 35 * manipulating whole lists rather than single entries, as 36 * sometimes we already know the next/prev entries and we can 37 * generate better code by using them directly rather than 38 * using the generic single-entry routines. 39 */ 40 41 struct list_head { 42 struct list_head *next, *prev; 43 }; 44 45 #define LIST_HEAD_INIT(name) { &(name), &(name) } 46 47 #define LIST_HEAD(name) \ 48 struct list_head name = LIST_HEAD_INIT(name) 49 50 static inline void INIT_LIST_HEAD(struct list_head *list) 51 { 52 list->next = list; 53 list->prev = list; 54 } 55 56 /* 57 * Insert a new entry between two known consecutive entries. 58 * 59 * This is only for internal list manipulation where we know 60 * the prev/next entries already! 61 */ 62 #ifndef CONFIG_DEBUG_LIST 63 static inline void __list_add(struct list_head *new, 64 struct list_head *prev, struct list_head *next) 65 { 66 next->prev = new; 67 new->next = next; 68 new->prev = prev; 69 prev->next = new; 70 } 71 #else 72 extern void __list_add(struct list_head *new, 73 struct list_head *prev, struct list_head *next); 74 #endif 75 76 /** 77 * list_add - add a new entry 78 * @new: new entry to be added 79 * @head: list head to add it after 80 * 81 * Insert a new entry after the specified head. 82 * This is good for implementing stacks. 83 */ 84 static inline void list_add(struct list_head *new, struct list_head *head) 85 { 86 __list_add(new, head, head->next); 87 } 88 89 /** 90 * list_add_tail - add a new entry 91 * @new: new entry to be added 92 * @head: list head to add it before 93 * 94 * Insert a new entry before the specified head. 95 * This is useful for implementing queues. 96 */ 97 static inline void list_add_tail(struct list_head *new, struct list_head *head) 98 { 99 __list_add(new, head->prev, head); 100 } 101 102 /* 103 * Delete a list entry by making the prev/next entries 104 * point to each other. 105 * 106 * This is only for internal list manipulation where we know 107 * the prev/next entries already! 108 */ 109 static inline void __list_del(struct list_head *prev, struct list_head *next) 110 { 111 next->prev = prev; 112 prev->next = next; 113 } 114 115 /** 116 * list_del - deletes entry from list. 117 * @entry: the element to delete from the list. 118 * Note: list_empty() on entry does not return true after this, the entry is 119 * in an undefined state. 120 */ 121 #ifndef CONFIG_DEBUG_LIST 122 static inline void list_del(struct list_head *entry) 123 { 124 __list_del(entry->prev, entry->next); 125 entry->next = (void *)0xDEADBEEF; 126 entry->prev = (void *)0xBEEFDEAD; 127 } 128 #else 129 extern void list_del(struct list_head *entry); 130 #endif 131 132 /** 133 * list_replace - replace old entry by new one 134 * @old : the element to be replaced 135 * @new : the new element to insert 136 * 137 * If @old was empty, it will be overwritten. 138 */ 139 static inline void list_replace(struct list_head *old, struct list_head *new) 140 { 141 new->next = old->next; 142 new->next->prev = new; 143 new->prev = old->prev; 144 new->prev->next = new; 145 } 146 147 static inline void list_replace_init(struct list_head *old, 148 struct list_head *new) 149 { 150 list_replace(old, new); 151 INIT_LIST_HEAD(old); 152 } 153 154 /** 155 * list_del_init - deletes entry from list and reinitialize it. 156 * @entry: the element to delete from the list. 157 */ 158 static inline void list_del_init(struct list_head *entry) 159 { 160 __list_del(entry->prev, entry->next); 161 INIT_LIST_HEAD(entry); 162 } 163 164 /** 165 * list_move - delete from one list and add as another's head 166 * @list: the entry to move 167 * @head: the head that will precede our entry 168 */ 169 static inline void list_move(struct list_head *list, struct list_head *head) 170 { 171 __list_del(list->prev, list->next); 172 list_add(list, head); 173 } 174 175 /** 176 * list_move_tail - delete from one list and add as another's tail 177 * @list: the entry to move 178 * @head: the head that will follow our entry 179 */ 180 static inline void list_move_tail(struct list_head *list, 181 struct list_head *head) 182 { 183 __list_del(list->prev, list->next); 184 list_add_tail(list, head); 185 } 186 187 /** 188 * list_is_last - tests whether @list is the last entry in list @head 189 * @list: the entry to test 190 * @head: the head of the list 191 */ 192 static inline int list_is_last(const struct list_head *list, 193 const struct list_head *head) 194 { 195 return list->next == head; 196 } 197 198 /** 199 * list_empty - tests whether a list is empty 200 * @head: the list to test. 201 */ 202 static inline int list_empty(const struct list_head *head) 203 { 204 return head->next == head; 205 } 206 207 /** 208 * list_empty_careful - tests whether a list is empty and not being modified 209 * @head: the list to test 210 * 211 * Description: 212 * tests whether a list is empty _and_ checks that no other CPU might be 213 * in the process of modifying either member (next or prev) 214 * 215 * NOTE: using list_empty_careful() without synchronization 216 * can only be safe if the only activity that can happen 217 * to the list entry is list_del_init(). Eg. it cannot be used 218 * if another CPU could re-list_add() it. 219 */ 220 static inline int list_empty_careful(const struct list_head *head) 221 { 222 struct list_head *next = head->next; 223 return (next == head) && (next == head->prev); 224 } 225 226 /** 227 * list_is_singular - tests whether a list has just one entry. 228 * @head: the list to test. 229 */ 230 static inline int list_is_singular(const struct list_head *head) 231 { 232 return !list_empty(head) && (head->next == head->prev); 233 } 234 235 static inline void __list_cut_position(struct list_head *list, 236 struct list_head *head, 237 struct list_head *entry) 238 { 239 struct list_head *new_first = entry->next; 240 list->next = head->next; 241 list->next->prev = list; 242 list->prev = entry; 243 entry->next = list; 244 head->next = new_first; 245 new_first->prev = head; 246 } 247 248 /** 249 * list_cut_position - cut a list into two 250 * @list: a new list to add all removed entries 251 * @head: a list with entries 252 * @entry: an entry within head, could be the head itself 253 * and if so we won't cut the list 254 * 255 * This helper moves the initial part of @head, up to and 256 * including @entry, from @head to @list. You should 257 * pass on @entry an element you know is on @head. @list 258 * should be an empty list or a list you do not care about 259 * losing its data. 260 * 261 */ 262 static inline void list_cut_position(struct list_head *list, 263 struct list_head *head, 264 struct list_head *entry) 265 { 266 if (list_empty(head)) 267 return; 268 if (list_is_singular(head) && (head->next != entry && head != entry)) 269 return; 270 if (entry == head) 271 INIT_LIST_HEAD(list); 272 else 273 __list_cut_position(list, head, entry); 274 } 275 276 static inline void __list_splice(const struct list_head *list, 277 struct list_head *prev, struct list_head *next) 278 { 279 struct list_head *first = list->next; 280 struct list_head *last = list->prev; 281 282 first->prev = prev; 283 prev->next = first; 284 285 last->next = next; 286 next->prev = last; 287 } 288 289 /** 290 * list_splice - join two lists, this is designed for stacks 291 * @list: the new list to add. 292 * @head: the place to add it in the first list. 293 */ 294 static inline void list_splice(const struct list_head *list, 295 struct list_head *head) 296 { 297 if (!list_empty(list)) 298 __list_splice(list, head, head->next); 299 } 300 301 /** 302 * list_splice_tail - join two lists, each list being a queue 303 * @list: the new list to add. 304 * @head: the place to add it in the first list. 305 */ 306 static inline void list_splice_tail(struct list_head *list, 307 struct list_head *head) 308 { 309 if (!list_empty(list)) 310 __list_splice(list, head->prev, head); 311 } 312 313 /** 314 * list_splice_init - join two lists and reinitialise the emptied list. 315 * @list: the new list to add. 316 * @head: the place to add it in the first list. 317 * 318 * The list at @list is reinitialised 319 */ 320 static inline void list_splice_init(struct list_head *list, 321 struct list_head *head) 322 { 323 if (!list_empty(list)) { 324 __list_splice(list, head, head->next); 325 INIT_LIST_HEAD(list); 326 } 327 } 328 329 /** 330 * list_splice_tail_init - join two lists and reinitialise the emptied list 331 * @list: the new list to add. 332 * @head: the place to add it in the first list. 333 * 334 * Each of the lists is a queue. 335 * The list at @list is reinitialised 336 */ 337 static inline void list_splice_tail_init(struct list_head *list, 338 struct list_head *head) 339 { 340 if (!list_empty(list)) { 341 __list_splice(list, head->prev, head); 342 INIT_LIST_HEAD(list); 343 } 344 } 345 346 /** 347 * list_entry - get the struct for this entry 348 * @ptr: the &struct list_head pointer. 349 * @type: the type of the struct this is embedded in. 350 * @member: the name of the list_struct within the struct. 351 */ 352 #define list_entry(ptr, type, member) \ 353 container_of(ptr, type, member) 354 355 /** 356 * list_first_entry - get the first element from a list 357 * @ptr: the list head to take the element from. 358 * @type: the type of the struct this is embedded in. 359 * @member: the name of the list_struct within the struct. 360 * 361 * Note, that list is expected to be not empty. 362 */ 363 #define list_first_entry(ptr, type, member) \ 364 list_entry((ptr)->next, type, member) 365 366 /** 367 * list_for_each - iterate over a list 368 * @pos: the &struct list_head to use as a loop cursor. 369 * @head: the head for your list. 370 */ 371 #define list_for_each(pos, head) \ 372 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 373 pos = pos->next) 374 375 /** 376 * list_for_each_prev - iterate over a list backwards 377 * @pos: the &struct list_head to use as a loop cursor. 378 * @head: the head for your list. 379 */ 380 #define list_for_each_prev(pos, head) \ 381 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 382 pos = pos->prev) 383 384 /** 385 * list_for_each_safe - iterate over a list safe against removal of list entry 386 * @pos: the &struct list_head to use as a loop cursor. 387 * @n: another &struct list_head to use as temporary storage 388 * @head: the head for your list. 389 */ 390 #define list_for_each_safe(pos, n, head) \ 391 for (pos = (head)->next, n = pos->next; pos != (head); \ 392 pos = n, n = pos->next) 393 394 /** 395 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry 396 * @pos: the &struct list_head to use as a loop cursor. 397 * @n: another &struct list_head to use as temporary storage 398 * @head: the head for your list. 399 */ 400 #define list_for_each_prev_safe(pos, n, head) \ 401 for (pos = (head)->prev, n = pos->prev; \ 402 prefetch(pos->prev), pos != (head); \ 403 pos = n, n = pos->prev) 404 405 /** 406 * list_for_each_entry - iterate over list of given type 407 * @pos: the type * to use as a loop cursor. 408 * @head: the head for your list. 409 * @member: the name of the list_struct within the struct. 410 */ 411 #define list_for_each_entry(pos, head, member) \ 412 for (pos = list_entry((head)->next, typeof(*pos), member); \ 413 &pos->member != (head); \ 414 pos = list_entry(pos->member.next, typeof(*pos), member)) 415 416 /** 417 * list_for_each_entry_reverse - iterate backwards over list of given type. 418 * @pos: the type * to use as a loop cursor. 419 * @head: the head for your list. 420 * @member: the name of the list_struct within the struct. 421 */ 422 #define list_for_each_entry_reverse(pos, head, member) \ 423 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 424 prefetch(pos->member.prev), &pos->member != (head); \ 425 pos = list_entry(pos->member.prev, typeof(*pos), member)) 426 427 /** 428 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 429 * @pos: the type * to use as a start point 430 * @head: the head of the list 431 * @member: the name of the list_struct within the struct. 432 * 433 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 434 */ 435 #define list_prepare_entry(pos, head, member) \ 436 ((pos) ? : list_entry(head, typeof(*pos), member)) 437 438 /** 439 * list_for_each_entry_continue - continue iteration over list of given type 440 * @pos: the type * to use as a loop cursor. 441 * @head: the head for your list. 442 * @member: the name of the list_struct within the struct. 443 * 444 * Continue to iterate over list of given type, continuing after 445 * the current position. 446 */ 447 #define list_for_each_entry_continue(pos, head, member) \ 448 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 449 prefetch(pos->member.next), &pos->member != (head); \ 450 pos = list_entry(pos->member.next, typeof(*pos), member)) 451 452 /** 453 * list_for_each_entry_continue_reverse - iterate backwards from the given point 454 * @pos: the type * to use as a loop cursor. 455 * @head: the head for your list. 456 * @member: the name of the list_struct within the struct. 457 * 458 * Start to iterate over list of given type backwards, continuing after 459 * the current position. 460 */ 461 #define list_for_each_entry_continue_reverse(pos, head, member) \ 462 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \ 463 prefetch(pos->member.prev), &pos->member != (head); \ 464 pos = list_entry(pos->member.prev, typeof(*pos), member)) 465 466 /** 467 * list_for_each_entry_from - iterate over list of given type from the current point 468 * @pos: the type * to use as a loop cursor. 469 * @head: the head for your list. 470 * @member: the name of the list_struct within the struct. 471 * 472 * Iterate over list of given type, continuing from current position. 473 */ 474 #define list_for_each_entry_from(pos, head, member) \ 475 for (; prefetch(pos->member.next), &pos->member != (head); \ 476 pos = list_entry(pos->member.next, typeof(*pos), member)) 477 478 /** 479 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 480 * @pos: the type * to use as a loop cursor. 481 * @n: another type * to use as temporary storage 482 * @head: the head for your list. 483 * @member: the name of the list_struct within the struct. 484 */ 485 #define list_for_each_entry_safe(pos, n, head, member) \ 486 for (pos = list_entry((head)->next, typeof(*pos), member), \ 487 n = list_entry(pos->member.next, typeof(*pos), member); \ 488 &pos->member != (head); \ 489 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 490 491 /** 492 * list_for_each_entry_safe_continue 493 * @pos: the type * to use as a loop cursor. 494 * @n: another type * to use as temporary storage 495 * @head: the head for your list. 496 * @member: the name of the list_struct within the struct. 497 * 498 * Iterate over list of given type, continuing after current point, 499 * safe against removal of list entry. 500 */ 501 #define list_for_each_entry_safe_continue(pos, n, head, member) \ 502 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 503 n = list_entry(pos->member.next, typeof(*pos), member); \ 504 &pos->member != (head); \ 505 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 506 507 /** 508 * list_for_each_entry_safe_from 509 * @pos: the type * to use as a loop cursor. 510 * @n: another type * to use as temporary storage 511 * @head: the head for your list. 512 * @member: the name of the list_struct within the struct. 513 * 514 * Iterate over list of given type from current point, safe against 515 * removal of list entry. 516 */ 517 #define list_for_each_entry_safe_from(pos, n, head, member) \ 518 for (n = list_entry(pos->member.next, typeof(*pos), member); \ 519 &pos->member != (head); \ 520 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 521 522 /** 523 * list_for_each_entry_safe_reverse 524 * @pos: the type * to use as a loop cursor. 525 * @n: another type * to use as temporary storage 526 * @head: the head for your list. 527 * @member: the name of the list_struct within the struct. 528 * 529 * Iterate backwards over list of given type, safe against removal 530 * of list entry. 531 */ 532 #define list_for_each_entry_safe_reverse(pos, n, head, member) \ 533 for (pos = list_entry((head)->prev, typeof(*pos), member), \ 534 n = list_entry(pos->member.prev, typeof(*pos), member); \ 535 &pos->member != (head); \ 536 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 537 538 struct offset { 539 struct list_head list; 540 unsigned offset; 541 }; 542 543 struct table { 544 struct list_head offsets; 545 unsigned offset_max; 546 unsigned nentry; 547 unsigned *table; 548 char *gpu_prefix; 549 }; 550 551 static struct offset *offset_new(unsigned o) 552 { 553 struct offset *offset; 554 555 offset = (struct offset *)malloc(sizeof(struct offset)); 556 if (offset) { 557 INIT_LIST_HEAD(&offset->list); 558 offset->offset = o; 559 } 560 return offset; 561 } 562 563 static void table_offset_add(struct table *t, struct offset *offset) 564 { 565 list_add_tail(&offset->list, &t->offsets); 566 } 567 568 static void table_init(struct table *t) 569 { 570 INIT_LIST_HEAD(&t->offsets); 571 t->offset_max = 0; 572 t->nentry = 0; 573 t->table = NULL; 574 } 575 576 static void table_print(struct table *t) 577 { 578 unsigned nlloop, i, j, n, c, id; 579 580 nlloop = (t->nentry + 3) / 4; 581 c = t->nentry; 582 printf("static const unsigned %s_reg_safe_bm[%d] = {\n", t->gpu_prefix, 583 t->nentry); 584 for (i = 0, id = 0; i < nlloop; i++) { 585 n = 4; 586 if (n > c) 587 n = c; 588 c -= n; 589 for (j = 0; j < n; j++) { 590 if (j == 0) 591 printf("\t"); 592 else 593 printf(" "); 594 printf("0x%08X,", t->table[id++]); 595 } 596 printf("\n"); 597 } 598 printf("};\n"); 599 } 600 601 static int table_build(struct table *t) 602 { 603 struct offset *offset; 604 unsigned i, m; 605 606 t->nentry = ((t->offset_max >> 2) + 31) / 32; 607 t->table = (unsigned *)malloc(sizeof(unsigned) * t->nentry); 608 if (t->table == NULL) 609 return -1; 610 memset(t->table, 0xff, sizeof(unsigned) * t->nentry); 611 list_for_each_entry(offset, &t->offsets, list) { 612 i = (offset->offset >> 2) / 32; 613 m = (offset->offset >> 2) & 31; 614 m = 1 << m; 615 t->table[i] ^= m; 616 } 617 return 0; 618 } 619 620 static char gpu_name[10]; 621 static int parser_auth(struct table *t, const char *filename) 622 { 623 FILE *file; 624 regex_t mask_rex; 625 regmatch_t match[4]; 626 char buf[1024]; 627 size_t end; 628 int len; 629 int done = 0; 630 int r; 631 unsigned o; 632 struct offset *offset; 633 char last_reg_s[10]; 634 int last_reg; 635 636 if (regcomp 637 (&mask_rex, "(0x[0-9a-fA-F]*) *([_a-zA-Z0-9]*)", REG_EXTENDED)) { 638 fprintf(stderr, "Failed to compile regular expression\n"); 639 return -1; 640 } 641 file = fopen(filename, "r"); 642 if (file == NULL) { 643 fprintf(stderr, "Failed to open: %s\n", filename); 644 return -1; 645 } 646 fseek(file, 0, SEEK_END); 647 end = ftell(file); 648 fseek(file, 0, SEEK_SET); 649 650 /* get header */ 651 if (fgets(buf, 1024, file) == NULL) { 652 fclose(file); 653 return -1; 654 } 655 656 /* first line will contain the last register 657 * and gpu name */ 658 sscanf(buf, "%9s %9s", gpu_name, last_reg_s); 659 t->gpu_prefix = gpu_name; 660 last_reg = strtol(last_reg_s, NULL, 16); 661 662 do { 663 if (fgets(buf, 1024, file) == NULL) { 664 fclose(file); 665 return -1; 666 } 667 len = strlen(buf); 668 if (ftell(file) == end) 669 done = 1; 670 if (len) { 671 r = regexec(&mask_rex, buf, 4, match, 0); 672 if (r == REG_NOMATCH) { 673 } else if (r) { 674 fprintf(stderr, 675 "Error matching regular expression %d in %s\n", 676 r, filename); 677 fclose(file); 678 return -1; 679 } else { 680 buf[match[0].rm_eo] = 0; 681 buf[match[1].rm_eo] = 0; 682 buf[match[2].rm_eo] = 0; 683 o = strtol(&buf[match[1].rm_so], NULL, 16); 684 offset = offset_new(o); 685 table_offset_add(t, offset); 686 if (o > t->offset_max) 687 t->offset_max = o; 688 } 689 } 690 } while (!done); 691 fclose(file); 692 if (t->offset_max < last_reg) 693 t->offset_max = last_reg; 694 return table_build(t); 695 } 696 697 int main(int argc, char *argv[]) 698 { 699 struct table t; 700 701 if (argc != 2) { 702 fprintf(stderr, "Usage: %s <authfile>\n", argv[0]); 703 exit(1); 704 } 705 table_init(&t); 706 if (parser_auth(&t, argv[1])) { 707 fprintf(stderr, "Failed to parse file %s\n", argv[1]); 708 return -1; 709 } 710 table_print(&t); 711 return 0; 712 } 713