1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2023 Collabora ltd. */ 3 4 #include <drm/drm_drv.h> 5 #include <drm/drm_exec.h> 6 #include <drm/drm_gem_shmem_helper.h> 7 #include <drm/drm_managed.h> 8 #include <drm/gpu_scheduler.h> 9 #include <drm/panthor_drm.h> 10 11 #include <linux/build_bug.h> 12 #include <linux/cleanup.h> 13 #include <linux/clk.h> 14 #include <linux/delay.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/dma-resv.h> 17 #include <linux/firmware.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/iopoll.h> 21 #include <linux/iosys-map.h> 22 #include <linux/module.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 26 #include "panthor_devfreq.h" 27 #include "panthor_device.h" 28 #include "panthor_fw.h" 29 #include "panthor_gem.h" 30 #include "panthor_gpu.h" 31 #include "panthor_heap.h" 32 #include "panthor_mmu.h" 33 #include "panthor_regs.h" 34 #include "panthor_sched.h" 35 36 /** 37 * DOC: Scheduler 38 * 39 * Mali CSF hardware adopts a firmware-assisted scheduling model, where 40 * the firmware takes care of scheduling aspects, to some extent. 41 * 42 * The scheduling happens at the scheduling group level, each group 43 * contains 1 to N queues (N is FW/hardware dependent, and exposed 44 * through the firmware interface). Each queue is assigned a command 45 * stream ring buffer, which serves as a way to get jobs submitted to 46 * the GPU, among other things. 47 * 48 * The firmware can schedule a maximum of M groups (M is FW/hardware 49 * dependent, and exposed through the firmware interface). Passed 50 * this maximum number of groups, the kernel must take care of 51 * rotating the groups passed to the firmware so every group gets 52 * a chance to have his queues scheduled for execution. 53 * 54 * The current implementation only supports with kernel-mode queues. 55 * In other terms, userspace doesn't have access to the ring-buffer. 56 * Instead, userspace passes indirect command stream buffers that are 57 * called from the queue ring-buffer by the kernel using a pre-defined 58 * sequence of command stream instructions to ensure the userspace driver 59 * always gets consistent results (cache maintenance, 60 * synchronization, ...). 61 * 62 * We rely on the drm_gpu_scheduler framework to deal with job 63 * dependencies and submission. As any other driver dealing with a 64 * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each 65 * entity has its own job scheduler. When a job is ready to be executed 66 * (all its dependencies are met), it is pushed to the appropriate 67 * queue ring-buffer, and the group is scheduled for execution if it 68 * wasn't already active. 69 * 70 * Kernel-side group scheduling is timeslice-based. When we have less 71 * groups than there are slots, the periodic tick is disabled and we 72 * just let the FW schedule the active groups. When there are more 73 * groups than slots, we let each group a chance to execute stuff for 74 * a given amount of time, and then re-evaluate and pick new groups 75 * to schedule. The group selection algorithm is based on 76 * priority+round-robin. 77 * 78 * Even though user-mode queues is out of the scope right now, the 79 * current design takes them into account by avoiding any guess on the 80 * group/queue state that would be based on information we wouldn't have 81 * if userspace was in charge of the ring-buffer. That's also one of the 82 * reason we don't do 'cooperative' scheduling (encoding FW group slot 83 * reservation as dma_fence that would be returned from the 84 * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as 85 * a queue of waiters, ordered by job submission order). This approach 86 * would work for kernel-mode queues, but would make user-mode queues a 87 * lot more complicated to retrofit. 88 */ 89 90 #define JOB_TIMEOUT_MS 5000 91 92 #define MAX_CSG_PRIO 0xf 93 94 #define NUM_INSTRS_PER_CACHE_LINE (64 / sizeof(u64)) 95 #define MAX_INSTRS_PER_JOB 24 96 97 struct panthor_group; 98 99 /** 100 * struct panthor_csg_slot - Command stream group slot 101 * 102 * This represents a FW slot for a scheduling group. 103 */ 104 struct panthor_csg_slot { 105 /** @group: Scheduling group bound to this slot. */ 106 struct panthor_group *group; 107 108 /** @priority: Group priority. */ 109 u8 priority; 110 111 /** 112 * @idle: True if the group bound to this slot is idle. 113 * 114 * A group is idle when it has nothing waiting for execution on 115 * all its queues, or when queues are blocked waiting for something 116 * to happen (synchronization object). 117 */ 118 bool idle; 119 }; 120 121 /** 122 * enum panthor_csg_priority - Group priority 123 */ 124 enum panthor_csg_priority { 125 /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */ 126 PANTHOR_CSG_PRIORITY_LOW = 0, 127 128 /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */ 129 PANTHOR_CSG_PRIORITY_MEDIUM, 130 131 /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */ 132 PANTHOR_CSG_PRIORITY_HIGH, 133 134 /** 135 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group. 136 * 137 * Real-time priority allows one to preempt scheduling of other 138 * non-real-time groups. When such a group becomes executable, 139 * it will evict the group with the lowest non-rt priority if 140 * there's no free group slot available. 141 */ 142 PANTHOR_CSG_PRIORITY_RT, 143 144 /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */ 145 PANTHOR_CSG_PRIORITY_COUNT, 146 }; 147 148 /** 149 * struct panthor_scheduler - Object used to manage the scheduler 150 */ 151 struct panthor_scheduler { 152 /** @ptdev: Device. */ 153 struct panthor_device *ptdev; 154 155 /** 156 * @wq: Workqueue used by our internal scheduler logic and 157 * drm_gpu_scheduler. 158 * 159 * Used for the scheduler tick, group update or other kind of FW 160 * event processing that can't be handled in the threaded interrupt 161 * path. Also passed to the drm_gpu_scheduler instances embedded 162 * in panthor_queue. 163 */ 164 struct workqueue_struct *wq; 165 166 /** 167 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works. 168 * 169 * We have a queue dedicated to heap chunk allocation works to avoid 170 * blocking the rest of the scheduler if the allocation tries to 171 * reclaim memory. 172 */ 173 struct workqueue_struct *heap_alloc_wq; 174 175 /** @tick_work: Work executed on a scheduling tick. */ 176 struct delayed_work tick_work; 177 178 /** 179 * @sync_upd_work: Work used to process synchronization object updates. 180 * 181 * We use this work to unblock queues/groups that were waiting on a 182 * synchronization object. 183 */ 184 struct work_struct sync_upd_work; 185 186 /** 187 * @fw_events_work: Work used to process FW events outside the interrupt path. 188 * 189 * Even if the interrupt is threaded, we need any event processing 190 * that require taking the panthor_scheduler::lock to be processed 191 * outside the interrupt path so we don't block the tick logic when 192 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the 193 * event processing requires taking this lock, we just delegate all 194 * FW event processing to the scheduler workqueue. 195 */ 196 struct work_struct fw_events_work; 197 198 /** 199 * @fw_events: Bitmask encoding pending FW events. 200 */ 201 atomic_t fw_events; 202 203 /** 204 * @resched_target: When the next tick should occur. 205 * 206 * Expressed in jiffies. 207 */ 208 u64 resched_target; 209 210 /** 211 * @last_tick: When the last tick occurred. 212 * 213 * Expressed in jiffies. 214 */ 215 u64 last_tick; 216 217 /** @tick_period: Tick period in jiffies. */ 218 u64 tick_period; 219 220 /** 221 * @lock: Lock protecting access to all the scheduler fields. 222 * 223 * Should be taken in the tick work, the irq handler, and anywhere the @groups 224 * fields are touched. 225 */ 226 struct mutex lock; 227 228 /** @groups: Various lists used to classify groups. */ 229 struct { 230 /** 231 * @runnable: Runnable group lists. 232 * 233 * When a group has queues that want to execute something, 234 * its panthor_group::run_node should be inserted here. 235 * 236 * One list per-priority. 237 */ 238 struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT]; 239 240 /** 241 * @idle: Idle group lists. 242 * 243 * When all queues of a group are idle (either because they 244 * have nothing to execute, or because they are blocked), the 245 * panthor_group::run_node field should be inserted here. 246 * 247 * One list per-priority. 248 */ 249 struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT]; 250 251 /** 252 * @waiting: List of groups whose queues are blocked on a 253 * synchronization object. 254 * 255 * Insert panthor_group::wait_node here when a group is waiting 256 * for synchronization objects to be signaled. 257 * 258 * This list is evaluated in the @sync_upd_work work. 259 */ 260 struct list_head waiting; 261 } groups; 262 263 /** 264 * @csg_slots: FW command stream group slots. 265 */ 266 struct panthor_csg_slot csg_slots[MAX_CSGS]; 267 268 /** @csg_slot_count: Number of command stream group slots exposed by the FW. */ 269 u32 csg_slot_count; 270 271 /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */ 272 u32 cs_slot_count; 273 274 /** @as_slot_count: Number of address space slots supported by the MMU. */ 275 u32 as_slot_count; 276 277 /** @used_csg_slot_count: Number of command stream group slot currently used. */ 278 u32 used_csg_slot_count; 279 280 /** @sb_slot_count: Number of scoreboard slots. */ 281 u32 sb_slot_count; 282 283 /** 284 * @might_have_idle_groups: True if an active group might have become idle. 285 * 286 * This will force a tick, so other runnable groups can be scheduled if one 287 * or more active groups became idle. 288 */ 289 bool might_have_idle_groups; 290 291 /** @pm: Power management related fields. */ 292 struct { 293 /** @has_ref: True if the scheduler owns a runtime PM reference. */ 294 bool has_ref; 295 } pm; 296 297 /** @reset: Reset related fields. */ 298 struct { 299 /** @lock: Lock protecting the other reset fields. */ 300 struct mutex lock; 301 302 /** 303 * @in_progress: True if a reset is in progress. 304 * 305 * Set to true in panthor_sched_pre_reset() and back to false in 306 * panthor_sched_post_reset(). 307 */ 308 atomic_t in_progress; 309 310 /** 311 * @stopped_groups: List containing all groups that were stopped 312 * before a reset. 313 * 314 * Insert panthor_group::run_node in the pre_reset path. 315 */ 316 struct list_head stopped_groups; 317 } reset; 318 }; 319 320 /** 321 * struct panthor_syncobj_32b - 32-bit FW synchronization object 322 */ 323 struct panthor_syncobj_32b { 324 /** @seqno: Sequence number. */ 325 u32 seqno; 326 327 /** 328 * @status: Status. 329 * 330 * Not zero on failure. 331 */ 332 u32 status; 333 }; 334 335 /** 336 * struct panthor_syncobj_64b - 64-bit FW synchronization object 337 */ 338 struct panthor_syncobj_64b { 339 /** @seqno: Sequence number. */ 340 u64 seqno; 341 342 /** 343 * @status: Status. 344 * 345 * Not zero on failure. 346 */ 347 u32 status; 348 349 /** @pad: MBZ. */ 350 u32 pad; 351 }; 352 353 /** 354 * struct panthor_queue - Execution queue 355 */ 356 struct panthor_queue { 357 /** @scheduler: DRM scheduler used for this queue. */ 358 struct drm_gpu_scheduler scheduler; 359 360 /** @entity: DRM scheduling entity used for this queue. */ 361 struct drm_sched_entity entity; 362 363 /** 364 * @remaining_time: Time remaining before the job timeout expires. 365 * 366 * The job timeout is suspended when the queue is not scheduled by the 367 * FW. Every time we suspend the timer, we need to save the remaining 368 * time so we can restore it later on. 369 */ 370 unsigned long remaining_time; 371 372 /** @timeout_suspended: True if the job timeout was suspended. */ 373 bool timeout_suspended; 374 375 /** 376 * @doorbell_id: Doorbell assigned to this queue. 377 * 378 * Right now, all groups share the same doorbell, and the doorbell ID 379 * is assigned to group_slot + 1 when the group is assigned a slot. But 380 * we might decide to provide fine grained doorbell assignment at some 381 * point, so don't have to wake up all queues in a group every time one 382 * of them is updated. 383 */ 384 u8 doorbell_id; 385 386 /** 387 * @priority: Priority of the queue inside the group. 388 * 389 * Must be less than 16 (Only 4 bits available). 390 */ 391 u8 priority; 392 #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0) 393 394 /** @ringbuf: Command stream ring-buffer. */ 395 struct panthor_kernel_bo *ringbuf; 396 397 /** @iface: Firmware interface. */ 398 struct { 399 /** @mem: FW memory allocated for this interface. */ 400 struct panthor_kernel_bo *mem; 401 402 /** @input: Input interface. */ 403 struct panthor_fw_ringbuf_input_iface *input; 404 405 /** @output: Output interface. */ 406 const struct panthor_fw_ringbuf_output_iface *output; 407 408 /** @input_fw_va: FW virtual address of the input interface buffer. */ 409 u32 input_fw_va; 410 411 /** @output_fw_va: FW virtual address of the output interface buffer. */ 412 u32 output_fw_va; 413 } iface; 414 415 /** 416 * @syncwait: Stores information about the synchronization object this 417 * queue is waiting on. 418 */ 419 struct { 420 /** @gpu_va: GPU address of the synchronization object. */ 421 u64 gpu_va; 422 423 /** @ref: Reference value to compare against. */ 424 u64 ref; 425 426 /** @gt: True if this is a greater-than test. */ 427 bool gt; 428 429 /** @sync64: True if this is a 64-bit sync object. */ 430 bool sync64; 431 432 /** @bo: Buffer object holding the synchronization object. */ 433 struct drm_gem_object *obj; 434 435 /** @offset: Offset of the synchronization object inside @bo. */ 436 u64 offset; 437 438 /** 439 * @kmap: Kernel mapping of the buffer object holding the 440 * synchronization object. 441 */ 442 void *kmap; 443 } syncwait; 444 445 /** @fence_ctx: Fence context fields. */ 446 struct { 447 /** @lock: Used to protect access to all fences allocated by this context. */ 448 spinlock_t lock; 449 450 /** 451 * @id: Fence context ID. 452 * 453 * Allocated with dma_fence_context_alloc(). 454 */ 455 u64 id; 456 457 /** @seqno: Sequence number of the last initialized fence. */ 458 atomic64_t seqno; 459 460 /** 461 * @last_fence: Fence of the last submitted job. 462 * 463 * We return this fence when we get an empty command stream. 464 * This way, we are guaranteed that all earlier jobs have completed 465 * when drm_sched_job::s_fence::finished without having to feed 466 * the CS ring buffer with a dummy job that only signals the fence. 467 */ 468 struct dma_fence *last_fence; 469 470 /** 471 * @in_flight_jobs: List containing all in-flight jobs. 472 * 473 * Used to keep track and signal panthor_job::done_fence when the 474 * synchronization object attached to the queue is signaled. 475 */ 476 struct list_head in_flight_jobs; 477 } fence_ctx; 478 479 /** @profiling: Job profiling data slots and access information. */ 480 struct { 481 /** @slots: Kernel BO holding the slots. */ 482 struct panthor_kernel_bo *slots; 483 484 /** @slot_count: Number of jobs ringbuffer can hold at once. */ 485 u32 slot_count; 486 487 /** @seqno: Index of the next available profiling information slot. */ 488 u32 seqno; 489 } profiling; 490 }; 491 492 /** 493 * enum panthor_group_state - Scheduling group state. 494 */ 495 enum panthor_group_state { 496 /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */ 497 PANTHOR_CS_GROUP_CREATED, 498 499 /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */ 500 PANTHOR_CS_GROUP_ACTIVE, 501 502 /** 503 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is 504 * inactive/suspended right now. 505 */ 506 PANTHOR_CS_GROUP_SUSPENDED, 507 508 /** 509 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated. 510 * 511 * Can no longer be scheduled. The only allowed action is a destruction. 512 */ 513 PANTHOR_CS_GROUP_TERMINATED, 514 515 /** 516 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state. 517 * 518 * The FW returned an inconsistent state. The group is flagged unusable 519 * and can no longer be scheduled. The only allowed action is a 520 * destruction. 521 * 522 * When that happens, we also schedule a FW reset, to start from a fresh 523 * state. 524 */ 525 PANTHOR_CS_GROUP_UNKNOWN_STATE, 526 }; 527 528 /** 529 * struct panthor_group - Scheduling group object 530 */ 531 struct panthor_group { 532 /** @refcount: Reference count */ 533 struct kref refcount; 534 535 /** @ptdev: Device. */ 536 struct panthor_device *ptdev; 537 538 /** @vm: VM bound to the group. */ 539 struct panthor_vm *vm; 540 541 /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */ 542 u64 compute_core_mask; 543 544 /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */ 545 u64 fragment_core_mask; 546 547 /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */ 548 u64 tiler_core_mask; 549 550 /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */ 551 u8 max_compute_cores; 552 553 /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */ 554 u8 max_fragment_cores; 555 556 /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */ 557 u8 max_tiler_cores; 558 559 /** @priority: Group priority (check panthor_csg_priority). */ 560 u8 priority; 561 562 /** @blocked_queues: Bitmask reflecting the blocked queues. */ 563 u32 blocked_queues; 564 565 /** @idle_queues: Bitmask reflecting the idle queues. */ 566 u32 idle_queues; 567 568 /** @fatal_lock: Lock used to protect access to fatal fields. */ 569 spinlock_t fatal_lock; 570 571 /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */ 572 u32 fatal_queues; 573 574 /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */ 575 atomic_t tiler_oom; 576 577 /** @queue_count: Number of queues in this group. */ 578 u32 queue_count; 579 580 /** @queues: Queues owned by this group. */ 581 struct panthor_queue *queues[MAX_CS_PER_CSG]; 582 583 /** 584 * @csg_id: ID of the FW group slot. 585 * 586 * -1 when the group is not scheduled/active. 587 */ 588 int csg_id; 589 590 /** 591 * @destroyed: True when the group has been destroyed. 592 * 593 * If a group is destroyed it becomes useless: no further jobs can be submitted 594 * to its queues. We simply wait for all references to be dropped so we can 595 * release the group object. 596 */ 597 bool destroyed; 598 599 /** 600 * @timedout: True when a timeout occurred on any of the queues owned by 601 * this group. 602 * 603 * Timeouts can be reported by drm_sched or by the FW. If a reset is required, 604 * and the group can't be suspended, this also leads to a timeout. In any case, 605 * any timeout situation is unrecoverable, and the group becomes useless. We 606 * simply wait for all references to be dropped so we can release the group 607 * object. 608 */ 609 bool timedout; 610 611 /** 612 * @innocent: True when the group becomes unusable because the group suspension 613 * failed during a reset. 614 * 615 * Sometimes the FW was put in a bad state by other groups, causing the group 616 * suspension happening in the reset path to fail. In that case, we consider the 617 * group innocent. 618 */ 619 bool innocent; 620 621 /** 622 * @syncobjs: Pool of per-queue synchronization objects. 623 * 624 * One sync object per queue. The position of the sync object is 625 * determined by the queue index. 626 */ 627 struct panthor_kernel_bo *syncobjs; 628 629 /** @fdinfo: Per-file info exposed through /proc/<process>/fdinfo */ 630 struct { 631 /** @data: Total sampled values for jobs in queues from this group. */ 632 struct panthor_gpu_usage data; 633 634 /** 635 * @fdinfo.lock: Spinlock to govern concurrent access from drm file's fdinfo 636 * callback and job post-completion processing function 637 */ 638 spinlock_t lock; 639 640 /** @fdinfo.kbo_sizes: Aggregate size of private kernel BO's held by the group. */ 641 size_t kbo_sizes; 642 } fdinfo; 643 644 /** @state: Group state. */ 645 enum panthor_group_state state; 646 647 /** 648 * @suspend_buf: Suspend buffer. 649 * 650 * Stores the state of the group and its queues when a group is suspended. 651 * Used at resume time to restore the group in its previous state. 652 * 653 * The size of the suspend buffer is exposed through the FW interface. 654 */ 655 struct panthor_kernel_bo *suspend_buf; 656 657 /** 658 * @protm_suspend_buf: Protection mode suspend buffer. 659 * 660 * Stores the state of the group and its queues when a group that's in 661 * protection mode is suspended. 662 * 663 * Used at resume time to restore the group in its previous state. 664 * 665 * The size of the protection mode suspend buffer is exposed through the 666 * FW interface. 667 */ 668 struct panthor_kernel_bo *protm_suspend_buf; 669 670 /** @sync_upd_work: Work used to check/signal job fences. */ 671 struct work_struct sync_upd_work; 672 673 /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */ 674 struct work_struct tiler_oom_work; 675 676 /** @term_work: Work used to finish the group termination procedure. */ 677 struct work_struct term_work; 678 679 /** 680 * @release_work: Work used to release group resources. 681 * 682 * We need to postpone the group release to avoid a deadlock when 683 * the last ref is released in the tick work. 684 */ 685 struct work_struct release_work; 686 687 /** 688 * @run_node: Node used to insert the group in the 689 * panthor_group::groups::{runnable,idle} and 690 * panthor_group::reset.stopped_groups lists. 691 */ 692 struct list_head run_node; 693 694 /** 695 * @wait_node: Node used to insert the group in the 696 * panthor_group::groups::waiting list. 697 */ 698 struct list_head wait_node; 699 }; 700 701 struct panthor_job_profiling_data { 702 struct { 703 u64 before; 704 u64 after; 705 } cycles; 706 707 struct { 708 u64 before; 709 u64 after; 710 } time; 711 }; 712 713 /** 714 * group_queue_work() - Queue a group work 715 * @group: Group to queue the work for. 716 * @wname: Work name. 717 * 718 * Grabs a ref and queue a work item to the scheduler workqueue. If 719 * the work was already queued, we release the reference we grabbed. 720 * 721 * Work callbacks must release the reference we grabbed here. 722 */ 723 #define group_queue_work(group, wname) \ 724 do { \ 725 group_get(group); \ 726 if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \ 727 group_put(group); \ 728 } while (0) 729 730 /** 731 * sched_queue_work() - Queue a scheduler work. 732 * @sched: Scheduler object. 733 * @wname: Work name. 734 * 735 * Conditionally queues a scheduler work if no reset is pending/in-progress. 736 */ 737 #define sched_queue_work(sched, wname) \ 738 do { \ 739 if (!atomic_read(&(sched)->reset.in_progress) && \ 740 !panthor_device_reset_is_pending((sched)->ptdev)) \ 741 queue_work((sched)->wq, &(sched)->wname ## _work); \ 742 } while (0) 743 744 /** 745 * sched_queue_delayed_work() - Queue a scheduler delayed work. 746 * @sched: Scheduler object. 747 * @wname: Work name. 748 * @delay: Work delay in jiffies. 749 * 750 * Conditionally queues a scheduler delayed work if no reset is 751 * pending/in-progress. 752 */ 753 #define sched_queue_delayed_work(sched, wname, delay) \ 754 do { \ 755 if (!atomic_read(&sched->reset.in_progress) && \ 756 !panthor_device_reset_is_pending((sched)->ptdev)) \ 757 mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \ 758 } while (0) 759 760 /* 761 * We currently set the maximum of groups per file to an arbitrary low value. 762 * But this can be updated if we need more. 763 */ 764 #define MAX_GROUPS_PER_POOL 128 765 766 /** 767 * struct panthor_group_pool - Group pool 768 * 769 * Each file get assigned a group pool. 770 */ 771 struct panthor_group_pool { 772 /** @xa: Xarray used to manage group handles. */ 773 struct xarray xa; 774 }; 775 776 /** 777 * struct panthor_job - Used to manage GPU job 778 */ 779 struct panthor_job { 780 /** @base: Inherit from drm_sched_job. */ 781 struct drm_sched_job base; 782 783 /** @refcount: Reference count. */ 784 struct kref refcount; 785 786 /** @group: Group of the queue this job will be pushed to. */ 787 struct panthor_group *group; 788 789 /** @queue_idx: Index of the queue inside @group. */ 790 u32 queue_idx; 791 792 /** @call_info: Information about the userspace command stream call. */ 793 struct { 794 /** @start: GPU address of the userspace command stream. */ 795 u64 start; 796 797 /** @size: Size of the userspace command stream. */ 798 u32 size; 799 800 /** 801 * @latest_flush: Flush ID at the time the userspace command 802 * stream was built. 803 * 804 * Needed for the flush reduction mechanism. 805 */ 806 u32 latest_flush; 807 } call_info; 808 809 /** @ringbuf: Position of this job is in the ring buffer. */ 810 struct { 811 /** @start: Start offset. */ 812 u64 start; 813 814 /** @end: End offset. */ 815 u64 end; 816 } ringbuf; 817 818 /** 819 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs 820 * list. 821 */ 822 struct list_head node; 823 824 /** @done_fence: Fence signaled when the job is finished or cancelled. */ 825 struct dma_fence *done_fence; 826 827 /** @profiling: Job profiling information. */ 828 struct { 829 /** @mask: Current device job profiling enablement bitmask. */ 830 u32 mask; 831 832 /** @slot: Job index in the profiling slots BO. */ 833 u32 slot; 834 } profiling; 835 }; 836 837 static void 838 panthor_queue_put_syncwait_obj(struct panthor_queue *queue) 839 { 840 if (queue->syncwait.kmap) { 841 struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap); 842 843 drm_gem_vunmap(queue->syncwait.obj, &map); 844 queue->syncwait.kmap = NULL; 845 } 846 847 drm_gem_object_put(queue->syncwait.obj); 848 queue->syncwait.obj = NULL; 849 } 850 851 static void * 852 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue) 853 { 854 struct panthor_device *ptdev = group->ptdev; 855 struct panthor_gem_object *bo; 856 struct iosys_map map; 857 int ret; 858 859 if (queue->syncwait.kmap) 860 return queue->syncwait.kmap + queue->syncwait.offset; 861 862 bo = panthor_vm_get_bo_for_va(group->vm, 863 queue->syncwait.gpu_va, 864 &queue->syncwait.offset); 865 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo))) 866 goto err_put_syncwait_obj; 867 868 queue->syncwait.obj = &bo->base.base; 869 ret = drm_gem_vmap(queue->syncwait.obj, &map); 870 if (drm_WARN_ON(&ptdev->base, ret)) 871 goto err_put_syncwait_obj; 872 873 queue->syncwait.kmap = map.vaddr; 874 if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap)) 875 goto err_put_syncwait_obj; 876 877 return queue->syncwait.kmap + queue->syncwait.offset; 878 879 err_put_syncwait_obj: 880 panthor_queue_put_syncwait_obj(queue); 881 return NULL; 882 } 883 884 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue) 885 { 886 if (IS_ERR_OR_NULL(queue)) 887 return; 888 889 drm_sched_entity_destroy(&queue->entity); 890 891 if (queue->scheduler.ops) 892 drm_sched_fini(&queue->scheduler); 893 894 panthor_queue_put_syncwait_obj(queue); 895 896 panthor_kernel_bo_destroy(queue->ringbuf); 897 panthor_kernel_bo_destroy(queue->iface.mem); 898 panthor_kernel_bo_destroy(queue->profiling.slots); 899 900 /* Release the last_fence we were holding, if any. */ 901 dma_fence_put(queue->fence_ctx.last_fence); 902 903 kfree(queue); 904 } 905 906 static void group_release_work(struct work_struct *work) 907 { 908 struct panthor_group *group = container_of(work, 909 struct panthor_group, 910 release_work); 911 u32 i; 912 913 for (i = 0; i < group->queue_count; i++) 914 group_free_queue(group, group->queues[i]); 915 916 panthor_kernel_bo_destroy(group->suspend_buf); 917 panthor_kernel_bo_destroy(group->protm_suspend_buf); 918 panthor_kernel_bo_destroy(group->syncobjs); 919 920 panthor_vm_put(group->vm); 921 kfree(group); 922 } 923 924 static void group_release(struct kref *kref) 925 { 926 struct panthor_group *group = container_of(kref, 927 struct panthor_group, 928 refcount); 929 struct panthor_device *ptdev = group->ptdev; 930 931 drm_WARN_ON(&ptdev->base, group->csg_id >= 0); 932 drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node)); 933 drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node)); 934 935 queue_work(panthor_cleanup_wq, &group->release_work); 936 } 937 938 static void group_put(struct panthor_group *group) 939 { 940 if (group) 941 kref_put(&group->refcount, group_release); 942 } 943 944 static struct panthor_group * 945 group_get(struct panthor_group *group) 946 { 947 if (group) 948 kref_get(&group->refcount); 949 950 return group; 951 } 952 953 /** 954 * group_bind_locked() - Bind a group to a group slot 955 * @group: Group. 956 * @csg_id: Slot. 957 * 958 * Return: 0 on success, a negative error code otherwise. 959 */ 960 static int 961 group_bind_locked(struct panthor_group *group, u32 csg_id) 962 { 963 struct panthor_device *ptdev = group->ptdev; 964 struct panthor_csg_slot *csg_slot; 965 int ret; 966 967 lockdep_assert_held(&ptdev->scheduler->lock); 968 969 if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS || 970 ptdev->scheduler->csg_slots[csg_id].group)) 971 return -EINVAL; 972 973 ret = panthor_vm_active(group->vm); 974 if (ret) 975 return ret; 976 977 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 978 group_get(group); 979 group->csg_id = csg_id; 980 981 /* Dummy doorbell allocation: doorbell is assigned to the group and 982 * all queues use the same doorbell. 983 * 984 * TODO: Implement LRU-based doorbell assignment, so the most often 985 * updated queues get their own doorbell, thus avoiding useless checks 986 * on queues belonging to the same group that are rarely updated. 987 */ 988 for (u32 i = 0; i < group->queue_count; i++) 989 group->queues[i]->doorbell_id = csg_id + 1; 990 991 csg_slot->group = group; 992 993 return 0; 994 } 995 996 /** 997 * group_unbind_locked() - Unbind a group from a slot. 998 * @group: Group to unbind. 999 * 1000 * Return: 0 on success, a negative error code otherwise. 1001 */ 1002 static int 1003 group_unbind_locked(struct panthor_group *group) 1004 { 1005 struct panthor_device *ptdev = group->ptdev; 1006 struct panthor_csg_slot *slot; 1007 1008 lockdep_assert_held(&ptdev->scheduler->lock); 1009 1010 if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS)) 1011 return -EINVAL; 1012 1013 if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE)) 1014 return -EINVAL; 1015 1016 slot = &ptdev->scheduler->csg_slots[group->csg_id]; 1017 panthor_vm_idle(group->vm); 1018 group->csg_id = -1; 1019 1020 /* Tiler OOM events will be re-issued next time the group is scheduled. */ 1021 atomic_set(&group->tiler_oom, 0); 1022 cancel_work(&group->tiler_oom_work); 1023 1024 for (u32 i = 0; i < group->queue_count; i++) 1025 group->queues[i]->doorbell_id = -1; 1026 1027 slot->group = NULL; 1028 1029 group_put(group); 1030 return 0; 1031 } 1032 1033 /** 1034 * cs_slot_prog_locked() - Program a queue slot 1035 * @ptdev: Device. 1036 * @csg_id: Group slot ID. 1037 * @cs_id: Queue slot ID. 1038 * 1039 * Program a queue slot with the queue information so things can start being 1040 * executed on this queue. 1041 * 1042 * The group slot must have a group bound to it already (group_bind_locked()). 1043 */ 1044 static void 1045 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1046 { 1047 struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id]; 1048 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1049 1050 lockdep_assert_held(&ptdev->scheduler->lock); 1051 1052 queue->iface.input->extract = queue->iface.output->extract; 1053 drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract); 1054 1055 cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf); 1056 cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 1057 cs_iface->input->ringbuf_input = queue->iface.input_fw_va; 1058 cs_iface->input->ringbuf_output = queue->iface.output_fw_va; 1059 cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) | 1060 CS_CONFIG_DOORBELL(queue->doorbell_id); 1061 cs_iface->input->ack_irq_mask = ~0; 1062 panthor_fw_update_reqs(cs_iface, req, 1063 CS_IDLE_SYNC_WAIT | 1064 CS_IDLE_EMPTY | 1065 CS_STATE_START | 1066 CS_EXTRACT_EVENT, 1067 CS_IDLE_SYNC_WAIT | 1068 CS_IDLE_EMPTY | 1069 CS_STATE_MASK | 1070 CS_EXTRACT_EVENT); 1071 if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) { 1072 drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time); 1073 queue->timeout_suspended = false; 1074 } 1075 } 1076 1077 /** 1078 * cs_slot_reset_locked() - Reset a queue slot 1079 * @ptdev: Device. 1080 * @csg_id: Group slot. 1081 * @cs_id: Queue slot. 1082 * 1083 * Change the queue slot state to STOP and suspend the queue timeout if 1084 * the queue is not blocked. 1085 * 1086 * The group slot must have a group bound to it (group_bind_locked()). 1087 */ 1088 static int 1089 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1090 { 1091 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1092 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1093 struct panthor_queue *queue = group->queues[cs_id]; 1094 1095 lockdep_assert_held(&ptdev->scheduler->lock); 1096 1097 panthor_fw_update_reqs(cs_iface, req, 1098 CS_STATE_STOP, 1099 CS_STATE_MASK); 1100 1101 /* If the queue is blocked, we want to keep the timeout running, so 1102 * we can detect unbounded waits and kill the group when that happens. 1103 */ 1104 if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) { 1105 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 1106 queue->timeout_suspended = true; 1107 WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS)); 1108 } 1109 1110 return 0; 1111 } 1112 1113 /** 1114 * csg_slot_sync_priority_locked() - Synchronize the group slot priority 1115 * @ptdev: Device. 1116 * @csg_id: Group slot ID. 1117 * 1118 * Group slot priority update happens asynchronously. When we receive a 1119 * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can 1120 * reflect it to our panthor_csg_slot object. 1121 */ 1122 static void 1123 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id) 1124 { 1125 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1126 struct panthor_fw_csg_iface *csg_iface; 1127 1128 lockdep_assert_held(&ptdev->scheduler->lock); 1129 1130 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1131 csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28; 1132 } 1133 1134 /** 1135 * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority 1136 * @ptdev: Device. 1137 * @csg_id: Group slot. 1138 * @cs_id: Queue slot. 1139 * 1140 * Queue state is updated on group suspend or STATUS_UPDATE event. 1141 */ 1142 static void 1143 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1144 { 1145 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1146 struct panthor_queue *queue = group->queues[cs_id]; 1147 struct panthor_fw_cs_iface *cs_iface = 1148 panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id); 1149 1150 u32 status_wait_cond; 1151 1152 switch (cs_iface->output->status_blocked_reason) { 1153 case CS_STATUS_BLOCKED_REASON_UNBLOCKED: 1154 if (queue->iface.input->insert == queue->iface.output->extract && 1155 cs_iface->output->status_scoreboards == 0) 1156 group->idle_queues |= BIT(cs_id); 1157 break; 1158 1159 case CS_STATUS_BLOCKED_REASON_SYNC_WAIT: 1160 if (list_empty(&group->wait_node)) { 1161 list_move_tail(&group->wait_node, 1162 &group->ptdev->scheduler->groups.waiting); 1163 } 1164 1165 /* The queue is only blocked if there's no deferred operation 1166 * pending, which can be checked through the scoreboard status. 1167 */ 1168 if (!cs_iface->output->status_scoreboards) 1169 group->blocked_queues |= BIT(cs_id); 1170 1171 queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr; 1172 queue->syncwait.ref = cs_iface->output->status_wait_sync_value; 1173 status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK; 1174 queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT; 1175 if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) { 1176 u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi; 1177 1178 queue->syncwait.sync64 = true; 1179 queue->syncwait.ref |= sync_val_hi << 32; 1180 } else { 1181 queue->syncwait.sync64 = false; 1182 } 1183 break; 1184 1185 default: 1186 /* Other reasons are not blocking. Consider the queue as runnable 1187 * in those cases. 1188 */ 1189 break; 1190 } 1191 } 1192 1193 static void 1194 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id) 1195 { 1196 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1197 struct panthor_group *group = csg_slot->group; 1198 u32 i; 1199 1200 lockdep_assert_held(&ptdev->scheduler->lock); 1201 1202 group->idle_queues = 0; 1203 group->blocked_queues = 0; 1204 1205 for (i = 0; i < group->queue_count; i++) { 1206 if (group->queues[i]) 1207 cs_slot_sync_queue_state_locked(ptdev, csg_id, i); 1208 } 1209 } 1210 1211 static void 1212 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id) 1213 { 1214 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1215 struct panthor_fw_csg_iface *csg_iface; 1216 struct panthor_group *group; 1217 enum panthor_group_state new_state, old_state; 1218 u32 csg_state; 1219 1220 lockdep_assert_held(&ptdev->scheduler->lock); 1221 1222 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1223 group = csg_slot->group; 1224 1225 if (!group) 1226 return; 1227 1228 old_state = group->state; 1229 csg_state = csg_iface->output->ack & CSG_STATE_MASK; 1230 switch (csg_state) { 1231 case CSG_STATE_START: 1232 case CSG_STATE_RESUME: 1233 new_state = PANTHOR_CS_GROUP_ACTIVE; 1234 break; 1235 case CSG_STATE_TERMINATE: 1236 new_state = PANTHOR_CS_GROUP_TERMINATED; 1237 break; 1238 case CSG_STATE_SUSPEND: 1239 new_state = PANTHOR_CS_GROUP_SUSPENDED; 1240 break; 1241 default: 1242 /* The unknown state might be caused by a FW state corruption, 1243 * which means the group metadata can't be trusted anymore, and 1244 * the SUSPEND operation might propagate the corruption to the 1245 * suspend buffers. Flag the group state as unknown to make 1246 * sure it's unusable after that point. 1247 */ 1248 drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)", 1249 csg_id, csg_state); 1250 new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE; 1251 break; 1252 } 1253 1254 if (old_state == new_state) 1255 return; 1256 1257 /* The unknown state might be caused by a FW issue, reset the FW to 1258 * take a fresh start. 1259 */ 1260 if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE) 1261 panthor_device_schedule_reset(ptdev); 1262 1263 if (new_state == PANTHOR_CS_GROUP_SUSPENDED) 1264 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1265 1266 if (old_state == PANTHOR_CS_GROUP_ACTIVE) { 1267 u32 i; 1268 1269 /* Reset the queue slots so we start from a clean 1270 * state when starting/resuming a new group on this 1271 * CSG slot. No wait needed here, and no ringbell 1272 * either, since the CS slot will only be re-used 1273 * on the next CSG start operation. 1274 */ 1275 for (i = 0; i < group->queue_count; i++) { 1276 if (group->queues[i]) 1277 cs_slot_reset_locked(ptdev, csg_id, i); 1278 } 1279 } 1280 1281 group->state = new_state; 1282 } 1283 1284 static int 1285 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority) 1286 { 1287 struct panthor_fw_csg_iface *csg_iface; 1288 struct panthor_csg_slot *csg_slot; 1289 struct panthor_group *group; 1290 u32 queue_mask = 0, i; 1291 1292 lockdep_assert_held(&ptdev->scheduler->lock); 1293 1294 if (priority > MAX_CSG_PRIO) 1295 return -EINVAL; 1296 1297 if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS)) 1298 return -EINVAL; 1299 1300 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1301 group = csg_slot->group; 1302 if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE) 1303 return 0; 1304 1305 csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id); 1306 1307 for (i = 0; i < group->queue_count; i++) { 1308 if (group->queues[i]) { 1309 cs_slot_prog_locked(ptdev, csg_id, i); 1310 queue_mask |= BIT(i); 1311 } 1312 } 1313 1314 csg_iface->input->allow_compute = group->compute_core_mask; 1315 csg_iface->input->allow_fragment = group->fragment_core_mask; 1316 csg_iface->input->allow_other = group->tiler_core_mask; 1317 csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) | 1318 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) | 1319 CSG_EP_REQ_TILER(group->max_tiler_cores) | 1320 CSG_EP_REQ_PRIORITY(priority); 1321 csg_iface->input->config = panthor_vm_as(group->vm); 1322 1323 if (group->suspend_buf) 1324 csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf); 1325 else 1326 csg_iface->input->suspend_buf = 0; 1327 1328 if (group->protm_suspend_buf) { 1329 csg_iface->input->protm_suspend_buf = 1330 panthor_kernel_bo_gpuva(group->protm_suspend_buf); 1331 } else { 1332 csg_iface->input->protm_suspend_buf = 0; 1333 } 1334 1335 csg_iface->input->ack_irq_mask = ~0; 1336 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask); 1337 return 0; 1338 } 1339 1340 static void 1341 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev, 1342 u32 csg_id, u32 cs_id) 1343 { 1344 struct panthor_scheduler *sched = ptdev->scheduler; 1345 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1346 struct panthor_group *group = csg_slot->group; 1347 struct panthor_fw_cs_iface *cs_iface; 1348 u32 fatal; 1349 u64 info; 1350 1351 lockdep_assert_held(&sched->lock); 1352 1353 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1354 fatal = cs_iface->output->fatal; 1355 info = cs_iface->output->fatal_info; 1356 1357 if (group) 1358 group->fatal_queues |= BIT(cs_id); 1359 1360 if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) { 1361 /* If this exception is unrecoverable, queue a reset, and make 1362 * sure we stop scheduling groups until the reset has happened. 1363 */ 1364 panthor_device_schedule_reset(ptdev); 1365 cancel_delayed_work(&sched->tick_work); 1366 } else { 1367 sched_queue_delayed_work(sched, tick, 0); 1368 } 1369 1370 drm_warn(&ptdev->base, 1371 "CSG slot %d CS slot: %d\n" 1372 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n" 1373 "CS_FATAL.EXCEPTION_DATA: 0x%x\n" 1374 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n", 1375 csg_id, cs_id, 1376 (unsigned int)CS_EXCEPTION_TYPE(fatal), 1377 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)), 1378 (unsigned int)CS_EXCEPTION_DATA(fatal), 1379 info); 1380 } 1381 1382 static void 1383 cs_slot_process_fault_event_locked(struct panthor_device *ptdev, 1384 u32 csg_id, u32 cs_id) 1385 { 1386 struct panthor_scheduler *sched = ptdev->scheduler; 1387 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1388 struct panthor_group *group = csg_slot->group; 1389 struct panthor_queue *queue = group && cs_id < group->queue_count ? 1390 group->queues[cs_id] : NULL; 1391 struct panthor_fw_cs_iface *cs_iface; 1392 u32 fault; 1393 u64 info; 1394 1395 lockdep_assert_held(&sched->lock); 1396 1397 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1398 fault = cs_iface->output->fault; 1399 info = cs_iface->output->fault_info; 1400 1401 if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) { 1402 u64 cs_extract = queue->iface.output->extract; 1403 struct panthor_job *job; 1404 1405 spin_lock(&queue->fence_ctx.lock); 1406 list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) { 1407 if (cs_extract >= job->ringbuf.end) 1408 continue; 1409 1410 if (cs_extract < job->ringbuf.start) 1411 break; 1412 1413 dma_fence_set_error(job->done_fence, -EINVAL); 1414 } 1415 spin_unlock(&queue->fence_ctx.lock); 1416 } 1417 1418 drm_warn(&ptdev->base, 1419 "CSG slot %d CS slot: %d\n" 1420 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n" 1421 "CS_FAULT.EXCEPTION_DATA: 0x%x\n" 1422 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n", 1423 csg_id, cs_id, 1424 (unsigned int)CS_EXCEPTION_TYPE(fault), 1425 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)), 1426 (unsigned int)CS_EXCEPTION_DATA(fault), 1427 info); 1428 } 1429 1430 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id) 1431 { 1432 struct panthor_device *ptdev = group->ptdev; 1433 struct panthor_scheduler *sched = ptdev->scheduler; 1434 u32 renderpasses_in_flight, pending_frag_count; 1435 struct panthor_heap_pool *heaps = NULL; 1436 u64 heap_address, new_chunk_va = 0; 1437 u32 vt_start, vt_end, frag_end; 1438 int ret, csg_id; 1439 1440 mutex_lock(&sched->lock); 1441 csg_id = group->csg_id; 1442 if (csg_id >= 0) { 1443 struct panthor_fw_cs_iface *cs_iface; 1444 1445 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1446 heaps = panthor_vm_get_heap_pool(group->vm, false); 1447 heap_address = cs_iface->output->heap_address; 1448 vt_start = cs_iface->output->heap_vt_start; 1449 vt_end = cs_iface->output->heap_vt_end; 1450 frag_end = cs_iface->output->heap_frag_end; 1451 renderpasses_in_flight = vt_start - frag_end; 1452 pending_frag_count = vt_end - frag_end; 1453 } 1454 mutex_unlock(&sched->lock); 1455 1456 /* The group got scheduled out, we stop here. We will get a new tiler OOM event 1457 * when it's scheduled again. 1458 */ 1459 if (unlikely(csg_id < 0)) 1460 return 0; 1461 1462 if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) { 1463 ret = -EINVAL; 1464 } else { 1465 /* We do the allocation without holding the scheduler lock to avoid 1466 * blocking the scheduling. 1467 */ 1468 ret = panthor_heap_grow(heaps, heap_address, 1469 renderpasses_in_flight, 1470 pending_frag_count, &new_chunk_va); 1471 } 1472 1473 /* If the heap context doesn't have memory for us, we want to let the 1474 * FW try to reclaim memory by waiting for fragment jobs to land or by 1475 * executing the tiler OOM exception handler, which is supposed to 1476 * implement incremental rendering. 1477 */ 1478 if (ret && ret != -ENOMEM) { 1479 drm_warn(&ptdev->base, "Failed to extend the tiler heap\n"); 1480 group->fatal_queues |= BIT(cs_id); 1481 sched_queue_delayed_work(sched, tick, 0); 1482 goto out_put_heap_pool; 1483 } 1484 1485 mutex_lock(&sched->lock); 1486 csg_id = group->csg_id; 1487 if (csg_id >= 0) { 1488 struct panthor_fw_csg_iface *csg_iface; 1489 struct panthor_fw_cs_iface *cs_iface; 1490 1491 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1492 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1493 1494 cs_iface->input->heap_start = new_chunk_va; 1495 cs_iface->input->heap_end = new_chunk_va; 1496 panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM); 1497 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id)); 1498 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1499 } 1500 mutex_unlock(&sched->lock); 1501 1502 /* We allocated a chunck, but couldn't link it to the heap 1503 * context because the group was scheduled out while we were 1504 * allocating memory. We need to return this chunk to the heap. 1505 */ 1506 if (unlikely(csg_id < 0 && new_chunk_va)) 1507 panthor_heap_return_chunk(heaps, heap_address, new_chunk_va); 1508 1509 ret = 0; 1510 1511 out_put_heap_pool: 1512 panthor_heap_pool_put(heaps); 1513 return ret; 1514 } 1515 1516 static void group_tiler_oom_work(struct work_struct *work) 1517 { 1518 struct panthor_group *group = 1519 container_of(work, struct panthor_group, tiler_oom_work); 1520 u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0); 1521 1522 while (tiler_oom) { 1523 u32 cs_id = ffs(tiler_oom) - 1; 1524 1525 group_process_tiler_oom(group, cs_id); 1526 tiler_oom &= ~BIT(cs_id); 1527 } 1528 1529 group_put(group); 1530 } 1531 1532 static void 1533 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev, 1534 u32 csg_id, u32 cs_id) 1535 { 1536 struct panthor_scheduler *sched = ptdev->scheduler; 1537 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1538 struct panthor_group *group = csg_slot->group; 1539 1540 lockdep_assert_held(&sched->lock); 1541 1542 if (drm_WARN_ON(&ptdev->base, !group)) 1543 return; 1544 1545 atomic_or(BIT(cs_id), &group->tiler_oom); 1546 1547 /* We don't use group_queue_work() here because we want to queue the 1548 * work item to the heap_alloc_wq. 1549 */ 1550 group_get(group); 1551 if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work)) 1552 group_put(group); 1553 } 1554 1555 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev, 1556 u32 csg_id, u32 cs_id) 1557 { 1558 struct panthor_fw_cs_iface *cs_iface; 1559 u32 req, ack, events; 1560 1561 lockdep_assert_held(&ptdev->scheduler->lock); 1562 1563 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1564 req = cs_iface->input->req; 1565 ack = cs_iface->output->ack; 1566 events = (req ^ ack) & CS_EVT_MASK; 1567 1568 if (events & CS_FATAL) 1569 cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id); 1570 1571 if (events & CS_FAULT) 1572 cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id); 1573 1574 if (events & CS_TILER_OOM) 1575 cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id); 1576 1577 /* We don't acknowledge the TILER_OOM event since its handling is 1578 * deferred to a separate work. 1579 */ 1580 panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT); 1581 1582 return (events & (CS_FAULT | CS_TILER_OOM)) != 0; 1583 } 1584 1585 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id) 1586 { 1587 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1588 struct panthor_fw_csg_iface *csg_iface; 1589 1590 lockdep_assert_held(&ptdev->scheduler->lock); 1591 1592 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1593 csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE; 1594 } 1595 1596 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id) 1597 { 1598 struct panthor_scheduler *sched = ptdev->scheduler; 1599 1600 lockdep_assert_held(&sched->lock); 1601 1602 sched->might_have_idle_groups = true; 1603 1604 /* Schedule a tick so we can evict idle groups and schedule non-idle 1605 * ones. This will also update runtime PM and devfreq busy/idle states, 1606 * so the device can lower its frequency or get suspended. 1607 */ 1608 sched_queue_delayed_work(sched, tick, 0); 1609 } 1610 1611 static void csg_slot_sync_update_locked(struct panthor_device *ptdev, 1612 u32 csg_id) 1613 { 1614 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1615 struct panthor_group *group = csg_slot->group; 1616 1617 lockdep_assert_held(&ptdev->scheduler->lock); 1618 1619 if (group) 1620 group_queue_work(group, sync_upd); 1621 1622 sched_queue_work(ptdev->scheduler, sync_upd); 1623 } 1624 1625 static void 1626 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id) 1627 { 1628 struct panthor_scheduler *sched = ptdev->scheduler; 1629 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1630 struct panthor_group *group = csg_slot->group; 1631 1632 lockdep_assert_held(&sched->lock); 1633 1634 drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id); 1635 1636 group = csg_slot->group; 1637 if (!drm_WARN_ON(&ptdev->base, !group)) 1638 group->timedout = true; 1639 1640 sched_queue_delayed_work(sched, tick, 0); 1641 } 1642 1643 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id) 1644 { 1645 u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events; 1646 struct panthor_fw_csg_iface *csg_iface; 1647 u32 ring_cs_db_mask = 0; 1648 1649 lockdep_assert_held(&ptdev->scheduler->lock); 1650 1651 if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1652 return; 1653 1654 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1655 req = READ_ONCE(csg_iface->input->req); 1656 ack = READ_ONCE(csg_iface->output->ack); 1657 cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req); 1658 cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack); 1659 csg_events = (req ^ ack) & CSG_EVT_MASK; 1660 1661 /* There may not be any pending CSG/CS interrupts to process */ 1662 if (req == ack && cs_irq_req == cs_irq_ack) 1663 return; 1664 1665 /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before 1666 * examining the CS_ACK & CS_REQ bits. This would ensure that Host 1667 * doesn't miss an interrupt for the CS in the race scenario where 1668 * whilst Host is servicing an interrupt for the CS, firmware sends 1669 * another interrupt for that CS. 1670 */ 1671 csg_iface->input->cs_irq_ack = cs_irq_req; 1672 1673 panthor_fw_update_reqs(csg_iface, req, ack, 1674 CSG_SYNC_UPDATE | 1675 CSG_IDLE | 1676 CSG_PROGRESS_TIMER_EVENT); 1677 1678 if (csg_events & CSG_IDLE) 1679 csg_slot_process_idle_event_locked(ptdev, csg_id); 1680 1681 if (csg_events & CSG_PROGRESS_TIMER_EVENT) 1682 csg_slot_process_progress_timer_event_locked(ptdev, csg_id); 1683 1684 cs_irqs = cs_irq_req ^ cs_irq_ack; 1685 while (cs_irqs) { 1686 u32 cs_id = ffs(cs_irqs) - 1; 1687 1688 if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id)) 1689 ring_cs_db_mask |= BIT(cs_id); 1690 1691 cs_irqs &= ~BIT(cs_id); 1692 } 1693 1694 if (csg_events & CSG_SYNC_UPDATE) 1695 csg_slot_sync_update_locked(ptdev, csg_id); 1696 1697 if (ring_cs_db_mask) 1698 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask); 1699 1700 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1701 } 1702 1703 static void sched_process_idle_event_locked(struct panthor_device *ptdev) 1704 { 1705 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1706 1707 lockdep_assert_held(&ptdev->scheduler->lock); 1708 1709 /* Acknowledge the idle event and schedule a tick. */ 1710 panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE); 1711 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 1712 } 1713 1714 /** 1715 * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ 1716 * @ptdev: Device. 1717 */ 1718 static void sched_process_global_irq_locked(struct panthor_device *ptdev) 1719 { 1720 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1721 u32 req, ack, evts; 1722 1723 lockdep_assert_held(&ptdev->scheduler->lock); 1724 1725 req = READ_ONCE(glb_iface->input->req); 1726 ack = READ_ONCE(glb_iface->output->ack); 1727 evts = (req ^ ack) & GLB_EVT_MASK; 1728 1729 if (evts & GLB_IDLE) 1730 sched_process_idle_event_locked(ptdev); 1731 } 1732 1733 static void process_fw_events_work(struct work_struct *work) 1734 { 1735 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 1736 fw_events_work); 1737 u32 events = atomic_xchg(&sched->fw_events, 0); 1738 struct panthor_device *ptdev = sched->ptdev; 1739 1740 mutex_lock(&sched->lock); 1741 1742 if (events & JOB_INT_GLOBAL_IF) { 1743 sched_process_global_irq_locked(ptdev); 1744 events &= ~JOB_INT_GLOBAL_IF; 1745 } 1746 1747 while (events) { 1748 u32 csg_id = ffs(events) - 1; 1749 1750 sched_process_csg_irq_locked(ptdev, csg_id); 1751 events &= ~BIT(csg_id); 1752 } 1753 1754 mutex_unlock(&sched->lock); 1755 } 1756 1757 /** 1758 * panthor_sched_report_fw_events() - Report FW events to the scheduler. 1759 */ 1760 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events) 1761 { 1762 if (!ptdev->scheduler) 1763 return; 1764 1765 atomic_or(events, &ptdev->scheduler->fw_events); 1766 sched_queue_work(ptdev->scheduler, fw_events); 1767 } 1768 1769 static const char *fence_get_driver_name(struct dma_fence *fence) 1770 { 1771 return "panthor"; 1772 } 1773 1774 static const char *queue_fence_get_timeline_name(struct dma_fence *fence) 1775 { 1776 return "queue-fence"; 1777 } 1778 1779 static const struct dma_fence_ops panthor_queue_fence_ops = { 1780 .get_driver_name = fence_get_driver_name, 1781 .get_timeline_name = queue_fence_get_timeline_name, 1782 }; 1783 1784 struct panthor_csg_slots_upd_ctx { 1785 u32 update_mask; 1786 u32 timedout_mask; 1787 struct { 1788 u32 value; 1789 u32 mask; 1790 } requests[MAX_CSGS]; 1791 }; 1792 1793 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx) 1794 { 1795 memset(ctx, 0, sizeof(*ctx)); 1796 } 1797 1798 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev, 1799 struct panthor_csg_slots_upd_ctx *ctx, 1800 u32 csg_id, u32 value, u32 mask) 1801 { 1802 if (drm_WARN_ON(&ptdev->base, !mask) || 1803 drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1804 return; 1805 1806 ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask); 1807 ctx->requests[csg_id].mask |= mask; 1808 ctx->update_mask |= BIT(csg_id); 1809 } 1810 1811 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev, 1812 struct panthor_csg_slots_upd_ctx *ctx) 1813 { 1814 struct panthor_scheduler *sched = ptdev->scheduler; 1815 u32 update_slots = ctx->update_mask; 1816 1817 lockdep_assert_held(&sched->lock); 1818 1819 if (!ctx->update_mask) 1820 return 0; 1821 1822 while (update_slots) { 1823 struct panthor_fw_csg_iface *csg_iface; 1824 u32 csg_id = ffs(update_slots) - 1; 1825 1826 update_slots &= ~BIT(csg_id); 1827 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1828 panthor_fw_update_reqs(csg_iface, req, 1829 ctx->requests[csg_id].value, 1830 ctx->requests[csg_id].mask); 1831 } 1832 1833 panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask); 1834 1835 update_slots = ctx->update_mask; 1836 while (update_slots) { 1837 struct panthor_fw_csg_iface *csg_iface; 1838 u32 csg_id = ffs(update_slots) - 1; 1839 u32 req_mask = ctx->requests[csg_id].mask, acked; 1840 int ret; 1841 1842 update_slots &= ~BIT(csg_id); 1843 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1844 1845 ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100); 1846 1847 if (acked & CSG_ENDPOINT_CONFIG) 1848 csg_slot_sync_priority_locked(ptdev, csg_id); 1849 1850 if (acked & CSG_STATE_MASK) 1851 csg_slot_sync_state_locked(ptdev, csg_id); 1852 1853 if (acked & CSG_STATUS_UPDATE) { 1854 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1855 csg_slot_sync_idle_state_locked(ptdev, csg_id); 1856 } 1857 1858 if (ret && acked != req_mask && 1859 ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) { 1860 drm_err(&ptdev->base, "CSG %d update request timedout", csg_id); 1861 ctx->timedout_mask |= BIT(csg_id); 1862 } 1863 } 1864 1865 if (ctx->timedout_mask) 1866 return -ETIMEDOUT; 1867 1868 return 0; 1869 } 1870 1871 struct panthor_sched_tick_ctx { 1872 struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT]; 1873 struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT]; 1874 u32 idle_group_count; 1875 u32 group_count; 1876 enum panthor_csg_priority min_priority; 1877 struct panthor_vm *vms[MAX_CS_PER_CSG]; 1878 u32 as_count; 1879 bool immediate_tick; 1880 u32 csg_upd_failed_mask; 1881 }; 1882 1883 static bool 1884 tick_ctx_is_full(const struct panthor_scheduler *sched, 1885 const struct panthor_sched_tick_ctx *ctx) 1886 { 1887 return ctx->group_count == sched->csg_slot_count; 1888 } 1889 1890 static bool 1891 group_is_idle(struct panthor_group *group) 1892 { 1893 struct panthor_device *ptdev = group->ptdev; 1894 u32 inactive_queues; 1895 1896 if (group->csg_id >= 0) 1897 return ptdev->scheduler->csg_slots[group->csg_id].idle; 1898 1899 inactive_queues = group->idle_queues | group->blocked_queues; 1900 return hweight32(inactive_queues) == group->queue_count; 1901 } 1902 1903 static bool 1904 group_can_run(struct panthor_group *group) 1905 { 1906 return group->state != PANTHOR_CS_GROUP_TERMINATED && 1907 group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE && 1908 !group->destroyed && group->fatal_queues == 0 && 1909 !group->timedout; 1910 } 1911 1912 static void 1913 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched, 1914 struct panthor_sched_tick_ctx *ctx, 1915 struct list_head *queue, 1916 bool skip_idle_groups, 1917 bool owned_by_tick_ctx) 1918 { 1919 struct panthor_group *group, *tmp; 1920 1921 if (tick_ctx_is_full(sched, ctx)) 1922 return; 1923 1924 list_for_each_entry_safe(group, tmp, queue, run_node) { 1925 u32 i; 1926 1927 if (!group_can_run(group)) 1928 continue; 1929 1930 if (skip_idle_groups && group_is_idle(group)) 1931 continue; 1932 1933 for (i = 0; i < ctx->as_count; i++) { 1934 if (ctx->vms[i] == group->vm) 1935 break; 1936 } 1937 1938 if (i == ctx->as_count && ctx->as_count == sched->as_slot_count) 1939 continue; 1940 1941 if (!owned_by_tick_ctx) 1942 group_get(group); 1943 1944 list_move_tail(&group->run_node, &ctx->groups[group->priority]); 1945 ctx->group_count++; 1946 if (group_is_idle(group)) 1947 ctx->idle_group_count++; 1948 1949 if (i == ctx->as_count) 1950 ctx->vms[ctx->as_count++] = group->vm; 1951 1952 if (ctx->min_priority > group->priority) 1953 ctx->min_priority = group->priority; 1954 1955 if (tick_ctx_is_full(sched, ctx)) 1956 return; 1957 } 1958 } 1959 1960 static void 1961 tick_ctx_insert_old_group(struct panthor_scheduler *sched, 1962 struct panthor_sched_tick_ctx *ctx, 1963 struct panthor_group *group, 1964 bool full_tick) 1965 { 1966 struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id]; 1967 struct panthor_group *other_group; 1968 1969 if (!full_tick) { 1970 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1971 return; 1972 } 1973 1974 /* Rotate to make sure groups with lower CSG slot 1975 * priorities have a chance to get a higher CSG slot 1976 * priority next time they get picked. This priority 1977 * has an impact on resource request ordering, so it's 1978 * important to make sure we don't let one group starve 1979 * all other groups with the same group priority. 1980 */ 1981 list_for_each_entry(other_group, 1982 &ctx->old_groups[csg_slot->group->priority], 1983 run_node) { 1984 struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id]; 1985 1986 if (other_csg_slot->priority > csg_slot->priority) { 1987 list_add_tail(&csg_slot->group->run_node, &other_group->run_node); 1988 return; 1989 } 1990 } 1991 1992 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1993 } 1994 1995 static void 1996 tick_ctx_init(struct panthor_scheduler *sched, 1997 struct panthor_sched_tick_ctx *ctx, 1998 bool full_tick) 1999 { 2000 struct panthor_device *ptdev = sched->ptdev; 2001 struct panthor_csg_slots_upd_ctx upd_ctx; 2002 int ret; 2003 u32 i; 2004 2005 memset(ctx, 0, sizeof(*ctx)); 2006 csgs_upd_ctx_init(&upd_ctx); 2007 2008 ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT; 2009 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 2010 INIT_LIST_HEAD(&ctx->groups[i]); 2011 INIT_LIST_HEAD(&ctx->old_groups[i]); 2012 } 2013 2014 for (i = 0; i < sched->csg_slot_count; i++) { 2015 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2016 struct panthor_group *group = csg_slot->group; 2017 struct panthor_fw_csg_iface *csg_iface; 2018 2019 if (!group) 2020 continue; 2021 2022 csg_iface = panthor_fw_get_csg_iface(ptdev, i); 2023 group_get(group); 2024 2025 /* If there was unhandled faults on the VM, force processing of 2026 * CSG IRQs, so we can flag the faulty queue. 2027 */ 2028 if (panthor_vm_has_unhandled_faults(group->vm)) { 2029 sched_process_csg_irq_locked(ptdev, i); 2030 2031 /* No fatal fault reported, flag all queues as faulty. */ 2032 if (!group->fatal_queues) 2033 group->fatal_queues |= GENMASK(group->queue_count - 1, 0); 2034 } 2035 2036 tick_ctx_insert_old_group(sched, ctx, group, full_tick); 2037 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 2038 csg_iface->output->ack ^ CSG_STATUS_UPDATE, 2039 CSG_STATUS_UPDATE); 2040 } 2041 2042 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2043 if (ret) { 2044 panthor_device_schedule_reset(ptdev); 2045 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2046 } 2047 } 2048 2049 static void 2050 group_term_post_processing(struct panthor_group *group) 2051 { 2052 struct panthor_job *job, *tmp; 2053 LIST_HEAD(faulty_jobs); 2054 bool cookie; 2055 u32 i = 0; 2056 2057 if (drm_WARN_ON(&group->ptdev->base, group_can_run(group))) 2058 return; 2059 2060 cookie = dma_fence_begin_signalling(); 2061 for (i = 0; i < group->queue_count; i++) { 2062 struct panthor_queue *queue = group->queues[i]; 2063 struct panthor_syncobj_64b *syncobj; 2064 int err; 2065 2066 if (group->fatal_queues & BIT(i)) 2067 err = -EINVAL; 2068 else if (group->timedout) 2069 err = -ETIMEDOUT; 2070 else 2071 err = -ECANCELED; 2072 2073 if (!queue) 2074 continue; 2075 2076 spin_lock(&queue->fence_ctx.lock); 2077 list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) { 2078 list_move_tail(&job->node, &faulty_jobs); 2079 dma_fence_set_error(job->done_fence, err); 2080 dma_fence_signal_locked(job->done_fence); 2081 } 2082 spin_unlock(&queue->fence_ctx.lock); 2083 2084 /* Manually update the syncobj seqno to unblock waiters. */ 2085 syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj)); 2086 syncobj->status = ~0; 2087 syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno); 2088 sched_queue_work(group->ptdev->scheduler, sync_upd); 2089 } 2090 dma_fence_end_signalling(cookie); 2091 2092 list_for_each_entry_safe(job, tmp, &faulty_jobs, node) { 2093 list_del_init(&job->node); 2094 panthor_job_put(&job->base); 2095 } 2096 } 2097 2098 static void group_term_work(struct work_struct *work) 2099 { 2100 struct panthor_group *group = 2101 container_of(work, struct panthor_group, term_work); 2102 2103 group_term_post_processing(group); 2104 group_put(group); 2105 } 2106 2107 static void 2108 tick_ctx_cleanup(struct panthor_scheduler *sched, 2109 struct panthor_sched_tick_ctx *ctx) 2110 { 2111 struct panthor_device *ptdev = sched->ptdev; 2112 struct panthor_group *group, *tmp; 2113 u32 i; 2114 2115 for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) { 2116 list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) { 2117 /* If everything went fine, we should only have groups 2118 * to be terminated in the old_groups lists. 2119 */ 2120 drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask && 2121 group_can_run(group)); 2122 2123 if (!group_can_run(group)) { 2124 list_del_init(&group->run_node); 2125 list_del_init(&group->wait_node); 2126 group_queue_work(group, term); 2127 } else if (group->csg_id >= 0) { 2128 list_del_init(&group->run_node); 2129 } else { 2130 list_move(&group->run_node, 2131 group_is_idle(group) ? 2132 &sched->groups.idle[group->priority] : 2133 &sched->groups.runnable[group->priority]); 2134 } 2135 group_put(group); 2136 } 2137 } 2138 2139 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 2140 /* If everything went fine, the groups to schedule lists should 2141 * be empty. 2142 */ 2143 drm_WARN_ON(&ptdev->base, 2144 !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i])); 2145 2146 list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) { 2147 if (group->csg_id >= 0) { 2148 list_del_init(&group->run_node); 2149 } else { 2150 list_move(&group->run_node, 2151 group_is_idle(group) ? 2152 &sched->groups.idle[group->priority] : 2153 &sched->groups.runnable[group->priority]); 2154 } 2155 group_put(group); 2156 } 2157 } 2158 } 2159 2160 static void 2161 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx) 2162 { 2163 struct panthor_group *group, *tmp; 2164 struct panthor_device *ptdev = sched->ptdev; 2165 struct panthor_csg_slot *csg_slot; 2166 int prio, new_csg_prio = MAX_CSG_PRIO, i; 2167 u32 free_csg_slots = 0; 2168 struct panthor_csg_slots_upd_ctx upd_ctx; 2169 int ret; 2170 2171 csgs_upd_ctx_init(&upd_ctx); 2172 2173 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2174 /* Suspend or terminate evicted groups. */ 2175 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2176 bool term = !group_can_run(group); 2177 int csg_id = group->csg_id; 2178 2179 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2180 continue; 2181 2182 csg_slot = &sched->csg_slots[csg_id]; 2183 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2184 term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND, 2185 CSG_STATE_MASK); 2186 } 2187 2188 /* Update priorities on already running groups. */ 2189 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2190 struct panthor_fw_csg_iface *csg_iface; 2191 int csg_id = group->csg_id; 2192 2193 if (csg_id < 0) { 2194 new_csg_prio--; 2195 continue; 2196 } 2197 2198 csg_slot = &sched->csg_slots[csg_id]; 2199 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2200 if (csg_slot->priority == new_csg_prio) { 2201 new_csg_prio--; 2202 continue; 2203 } 2204 2205 panthor_fw_update_reqs(csg_iface, endpoint_req, 2206 CSG_EP_REQ_PRIORITY(new_csg_prio), 2207 CSG_EP_REQ_PRIORITY_MASK); 2208 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2209 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2210 CSG_ENDPOINT_CONFIG); 2211 new_csg_prio--; 2212 } 2213 } 2214 2215 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2216 if (ret) { 2217 panthor_device_schedule_reset(ptdev); 2218 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2219 return; 2220 } 2221 2222 /* Unbind evicted groups. */ 2223 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2224 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2225 /* This group is gone. Process interrupts to clear 2226 * any pending interrupts before we start the new 2227 * group. 2228 */ 2229 if (group->csg_id >= 0) 2230 sched_process_csg_irq_locked(ptdev, group->csg_id); 2231 2232 group_unbind_locked(group); 2233 } 2234 } 2235 2236 for (i = 0; i < sched->csg_slot_count; i++) { 2237 if (!sched->csg_slots[i].group) 2238 free_csg_slots |= BIT(i); 2239 } 2240 2241 csgs_upd_ctx_init(&upd_ctx); 2242 new_csg_prio = MAX_CSG_PRIO; 2243 2244 /* Start new groups. */ 2245 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2246 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2247 int csg_id = group->csg_id; 2248 struct panthor_fw_csg_iface *csg_iface; 2249 2250 if (csg_id >= 0) { 2251 new_csg_prio--; 2252 continue; 2253 } 2254 2255 csg_id = ffs(free_csg_slots) - 1; 2256 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2257 break; 2258 2259 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2260 csg_slot = &sched->csg_slots[csg_id]; 2261 group_bind_locked(group, csg_id); 2262 csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--); 2263 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2264 group->state == PANTHOR_CS_GROUP_SUSPENDED ? 2265 CSG_STATE_RESUME : CSG_STATE_START, 2266 CSG_STATE_MASK); 2267 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2268 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2269 CSG_ENDPOINT_CONFIG); 2270 free_csg_slots &= ~BIT(csg_id); 2271 } 2272 } 2273 2274 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2275 if (ret) { 2276 panthor_device_schedule_reset(ptdev); 2277 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2278 return; 2279 } 2280 2281 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2282 list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) { 2283 list_del_init(&group->run_node); 2284 2285 /* If the group has been destroyed while we were 2286 * scheduling, ask for an immediate tick to 2287 * re-evaluate as soon as possible and get rid of 2288 * this dangling group. 2289 */ 2290 if (group->destroyed) 2291 ctx->immediate_tick = true; 2292 group_put(group); 2293 } 2294 2295 /* Return evicted groups to the idle or run queues. Groups 2296 * that can no longer be run (because they've been destroyed 2297 * or experienced an unrecoverable error) will be scheduled 2298 * for destruction in tick_ctx_cleanup(). 2299 */ 2300 list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) { 2301 if (!group_can_run(group)) 2302 continue; 2303 2304 if (group_is_idle(group)) 2305 list_move_tail(&group->run_node, &sched->groups.idle[prio]); 2306 else 2307 list_move_tail(&group->run_node, &sched->groups.runnable[prio]); 2308 group_put(group); 2309 } 2310 } 2311 2312 sched->used_csg_slot_count = ctx->group_count; 2313 sched->might_have_idle_groups = ctx->idle_group_count > 0; 2314 } 2315 2316 static u64 2317 tick_ctx_update_resched_target(struct panthor_scheduler *sched, 2318 const struct panthor_sched_tick_ctx *ctx) 2319 { 2320 /* We had space left, no need to reschedule until some external event happens. */ 2321 if (!tick_ctx_is_full(sched, ctx)) 2322 goto no_tick; 2323 2324 /* If idle groups were scheduled, no need to wake up until some external 2325 * event happens (group unblocked, new job submitted, ...). 2326 */ 2327 if (ctx->idle_group_count) 2328 goto no_tick; 2329 2330 if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT)) 2331 goto no_tick; 2332 2333 /* If there are groups of the same priority waiting, we need to 2334 * keep the scheduler ticking, otherwise, we'll just wait for 2335 * new groups with higher priority to be queued. 2336 */ 2337 if (!list_empty(&sched->groups.runnable[ctx->min_priority])) { 2338 u64 resched_target = sched->last_tick + sched->tick_period; 2339 2340 if (time_before64(sched->resched_target, sched->last_tick) || 2341 time_before64(resched_target, sched->resched_target)) 2342 sched->resched_target = resched_target; 2343 2344 return sched->resched_target - sched->last_tick; 2345 } 2346 2347 no_tick: 2348 sched->resched_target = U64_MAX; 2349 return U64_MAX; 2350 } 2351 2352 static void tick_work(struct work_struct *work) 2353 { 2354 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 2355 tick_work.work); 2356 struct panthor_device *ptdev = sched->ptdev; 2357 struct panthor_sched_tick_ctx ctx; 2358 u64 remaining_jiffies = 0, resched_delay; 2359 u64 now = get_jiffies_64(); 2360 int prio, ret, cookie; 2361 2362 if (!drm_dev_enter(&ptdev->base, &cookie)) 2363 return; 2364 2365 ret = panthor_device_resume_and_get(ptdev); 2366 if (drm_WARN_ON(&ptdev->base, ret)) 2367 goto out_dev_exit; 2368 2369 if (time_before64(now, sched->resched_target)) 2370 remaining_jiffies = sched->resched_target - now; 2371 2372 mutex_lock(&sched->lock); 2373 if (panthor_device_reset_is_pending(sched->ptdev)) 2374 goto out_unlock; 2375 2376 tick_ctx_init(sched, &ctx, remaining_jiffies != 0); 2377 if (ctx.csg_upd_failed_mask) 2378 goto out_cleanup_ctx; 2379 2380 if (remaining_jiffies) { 2381 /* Scheduling forced in the middle of a tick. Only RT groups 2382 * can preempt non-RT ones. Currently running RT groups can't be 2383 * preempted. 2384 */ 2385 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2386 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2387 prio--) { 2388 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], 2389 true, true); 2390 if (prio == PANTHOR_CSG_PRIORITY_RT) { 2391 tick_ctx_pick_groups_from_list(sched, &ctx, 2392 &sched->groups.runnable[prio], 2393 true, false); 2394 } 2395 } 2396 } 2397 2398 /* First pick non-idle groups */ 2399 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2400 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2401 prio--) { 2402 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio], 2403 true, false); 2404 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true); 2405 } 2406 2407 /* If we have free CSG slots left, pick idle groups */ 2408 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2409 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2410 prio--) { 2411 /* Check the old_group queue first to avoid reprogramming the slots */ 2412 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true); 2413 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio], 2414 false, false); 2415 } 2416 2417 tick_ctx_apply(sched, &ctx); 2418 if (ctx.csg_upd_failed_mask) 2419 goto out_cleanup_ctx; 2420 2421 if (ctx.idle_group_count == ctx.group_count) { 2422 panthor_devfreq_record_idle(sched->ptdev); 2423 if (sched->pm.has_ref) { 2424 pm_runtime_put_autosuspend(ptdev->base.dev); 2425 sched->pm.has_ref = false; 2426 } 2427 } else { 2428 panthor_devfreq_record_busy(sched->ptdev); 2429 if (!sched->pm.has_ref) { 2430 pm_runtime_get(ptdev->base.dev); 2431 sched->pm.has_ref = true; 2432 } 2433 } 2434 2435 sched->last_tick = now; 2436 resched_delay = tick_ctx_update_resched_target(sched, &ctx); 2437 if (ctx.immediate_tick) 2438 resched_delay = 0; 2439 2440 if (resched_delay != U64_MAX) 2441 sched_queue_delayed_work(sched, tick, resched_delay); 2442 2443 out_cleanup_ctx: 2444 tick_ctx_cleanup(sched, &ctx); 2445 2446 out_unlock: 2447 mutex_unlock(&sched->lock); 2448 pm_runtime_mark_last_busy(ptdev->base.dev); 2449 pm_runtime_put_autosuspend(ptdev->base.dev); 2450 2451 out_dev_exit: 2452 drm_dev_exit(cookie); 2453 } 2454 2455 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx) 2456 { 2457 struct panthor_queue *queue = group->queues[queue_idx]; 2458 union { 2459 struct panthor_syncobj_64b sync64; 2460 struct panthor_syncobj_32b sync32; 2461 } *syncobj; 2462 bool result; 2463 u64 value; 2464 2465 syncobj = panthor_queue_get_syncwait_obj(group, queue); 2466 if (!syncobj) 2467 return -EINVAL; 2468 2469 value = queue->syncwait.sync64 ? 2470 syncobj->sync64.seqno : 2471 syncobj->sync32.seqno; 2472 2473 if (queue->syncwait.gt) 2474 result = value > queue->syncwait.ref; 2475 else 2476 result = value <= queue->syncwait.ref; 2477 2478 if (result) 2479 panthor_queue_put_syncwait_obj(queue); 2480 2481 return result; 2482 } 2483 2484 static void sync_upd_work(struct work_struct *work) 2485 { 2486 struct panthor_scheduler *sched = container_of(work, 2487 struct panthor_scheduler, 2488 sync_upd_work); 2489 struct panthor_group *group, *tmp; 2490 bool immediate_tick = false; 2491 2492 mutex_lock(&sched->lock); 2493 list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) { 2494 u32 tested_queues = group->blocked_queues; 2495 u32 unblocked_queues = 0; 2496 2497 while (tested_queues) { 2498 u32 cs_id = ffs(tested_queues) - 1; 2499 int ret; 2500 2501 ret = panthor_queue_eval_syncwait(group, cs_id); 2502 drm_WARN_ON(&group->ptdev->base, ret < 0); 2503 if (ret) 2504 unblocked_queues |= BIT(cs_id); 2505 2506 tested_queues &= ~BIT(cs_id); 2507 } 2508 2509 if (unblocked_queues) { 2510 group->blocked_queues &= ~unblocked_queues; 2511 2512 if (group->csg_id < 0) { 2513 list_move(&group->run_node, 2514 &sched->groups.runnable[group->priority]); 2515 if (group->priority == PANTHOR_CSG_PRIORITY_RT) 2516 immediate_tick = true; 2517 } 2518 } 2519 2520 if (!group->blocked_queues) 2521 list_del_init(&group->wait_node); 2522 } 2523 mutex_unlock(&sched->lock); 2524 2525 if (immediate_tick) 2526 sched_queue_delayed_work(sched, tick, 0); 2527 } 2528 2529 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask) 2530 { 2531 struct panthor_device *ptdev = group->ptdev; 2532 struct panthor_scheduler *sched = ptdev->scheduler; 2533 struct list_head *queue = &sched->groups.runnable[group->priority]; 2534 u64 delay_jiffies = 0; 2535 bool was_idle; 2536 u64 now; 2537 2538 if (!group_can_run(group)) 2539 return; 2540 2541 /* All updated queues are blocked, no need to wake up the scheduler. */ 2542 if ((queue_mask & group->blocked_queues) == queue_mask) 2543 return; 2544 2545 was_idle = group_is_idle(group); 2546 group->idle_queues &= ~queue_mask; 2547 2548 /* Don't mess up with the lists if we're in a middle of a reset. */ 2549 if (atomic_read(&sched->reset.in_progress)) 2550 return; 2551 2552 if (was_idle && !group_is_idle(group)) 2553 list_move_tail(&group->run_node, queue); 2554 2555 /* RT groups are preemptive. */ 2556 if (group->priority == PANTHOR_CSG_PRIORITY_RT) { 2557 sched_queue_delayed_work(sched, tick, 0); 2558 return; 2559 } 2560 2561 /* Some groups might be idle, force an immediate tick to 2562 * re-evaluate. 2563 */ 2564 if (sched->might_have_idle_groups) { 2565 sched_queue_delayed_work(sched, tick, 0); 2566 return; 2567 } 2568 2569 /* Scheduler is ticking, nothing to do. */ 2570 if (sched->resched_target != U64_MAX) { 2571 /* If there are free slots, force immediating ticking. */ 2572 if (sched->used_csg_slot_count < sched->csg_slot_count) 2573 sched_queue_delayed_work(sched, tick, 0); 2574 2575 return; 2576 } 2577 2578 /* Scheduler tick was off, recalculate the resched_target based on the 2579 * last tick event, and queue the scheduler work. 2580 */ 2581 now = get_jiffies_64(); 2582 sched->resched_target = sched->last_tick + sched->tick_period; 2583 if (sched->used_csg_slot_count == sched->csg_slot_count && 2584 time_before64(now, sched->resched_target)) 2585 delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX); 2586 2587 sched_queue_delayed_work(sched, tick, delay_jiffies); 2588 } 2589 2590 static void queue_stop(struct panthor_queue *queue, 2591 struct panthor_job *bad_job) 2592 { 2593 drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); 2594 } 2595 2596 static void queue_start(struct panthor_queue *queue) 2597 { 2598 struct panthor_job *job; 2599 2600 /* Re-assign the parent fences. */ 2601 list_for_each_entry(job, &queue->scheduler.pending_list, base.list) 2602 job->base.s_fence->parent = dma_fence_get(job->done_fence); 2603 2604 drm_sched_start(&queue->scheduler, 0); 2605 } 2606 2607 static void panthor_group_stop(struct panthor_group *group) 2608 { 2609 struct panthor_scheduler *sched = group->ptdev->scheduler; 2610 2611 lockdep_assert_held(&sched->reset.lock); 2612 2613 for (u32 i = 0; i < group->queue_count; i++) 2614 queue_stop(group->queues[i], NULL); 2615 2616 group_get(group); 2617 list_move_tail(&group->run_node, &sched->reset.stopped_groups); 2618 } 2619 2620 static void panthor_group_start(struct panthor_group *group) 2621 { 2622 struct panthor_scheduler *sched = group->ptdev->scheduler; 2623 2624 lockdep_assert_held(&group->ptdev->scheduler->reset.lock); 2625 2626 for (u32 i = 0; i < group->queue_count; i++) 2627 queue_start(group->queues[i]); 2628 2629 if (group_can_run(group)) { 2630 list_move_tail(&group->run_node, 2631 group_is_idle(group) ? 2632 &sched->groups.idle[group->priority] : 2633 &sched->groups.runnable[group->priority]); 2634 } else { 2635 list_del_init(&group->run_node); 2636 list_del_init(&group->wait_node); 2637 group_queue_work(group, term); 2638 } 2639 2640 group_put(group); 2641 } 2642 2643 static void panthor_sched_immediate_tick(struct panthor_device *ptdev) 2644 { 2645 struct panthor_scheduler *sched = ptdev->scheduler; 2646 2647 sched_queue_delayed_work(sched, tick, 0); 2648 } 2649 2650 /** 2651 * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler. 2652 */ 2653 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev) 2654 { 2655 /* Force a tick to immediately kill faulty groups. */ 2656 if (ptdev->scheduler) 2657 panthor_sched_immediate_tick(ptdev); 2658 } 2659 2660 void panthor_sched_resume(struct panthor_device *ptdev) 2661 { 2662 /* Force a tick to re-evaluate after a resume. */ 2663 panthor_sched_immediate_tick(ptdev); 2664 } 2665 2666 void panthor_sched_suspend(struct panthor_device *ptdev) 2667 { 2668 struct panthor_scheduler *sched = ptdev->scheduler; 2669 struct panthor_csg_slots_upd_ctx upd_ctx; 2670 struct panthor_group *group; 2671 u32 suspended_slots; 2672 u32 i; 2673 2674 mutex_lock(&sched->lock); 2675 csgs_upd_ctx_init(&upd_ctx); 2676 for (i = 0; i < sched->csg_slot_count; i++) { 2677 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2678 2679 if (csg_slot->group) { 2680 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 2681 group_can_run(csg_slot->group) ? 2682 CSG_STATE_SUSPEND : CSG_STATE_TERMINATE, 2683 CSG_STATE_MASK); 2684 } 2685 } 2686 2687 suspended_slots = upd_ctx.update_mask; 2688 2689 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2690 suspended_slots &= ~upd_ctx.timedout_mask; 2691 2692 if (upd_ctx.timedout_mask) { 2693 u32 slot_mask = upd_ctx.timedout_mask; 2694 2695 drm_err(&ptdev->base, "CSG suspend failed, escalating to termination"); 2696 csgs_upd_ctx_init(&upd_ctx); 2697 while (slot_mask) { 2698 u32 csg_id = ffs(slot_mask) - 1; 2699 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2700 2701 /* If the group was still usable before that point, we consider 2702 * it innocent. 2703 */ 2704 if (group_can_run(csg_slot->group)) 2705 csg_slot->group->innocent = true; 2706 2707 /* We consider group suspension failures as fatal and flag the 2708 * group as unusable by setting timedout=true. 2709 */ 2710 csg_slot->group->timedout = true; 2711 2712 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2713 CSG_STATE_TERMINATE, 2714 CSG_STATE_MASK); 2715 slot_mask &= ~BIT(csg_id); 2716 } 2717 2718 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2719 2720 slot_mask = upd_ctx.timedout_mask; 2721 while (slot_mask) { 2722 u32 csg_id = ffs(slot_mask) - 1; 2723 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2724 2725 /* Terminate command timedout, but the soft-reset will 2726 * automatically terminate all active groups, so let's 2727 * force the state to halted here. 2728 */ 2729 if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED) 2730 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2731 slot_mask &= ~BIT(csg_id); 2732 } 2733 } 2734 2735 /* Flush L2 and LSC caches to make sure suspend state is up-to-date. 2736 * If the flush fails, flag all queues for termination. 2737 */ 2738 if (suspended_slots) { 2739 bool flush_caches_failed = false; 2740 u32 slot_mask = suspended_slots; 2741 2742 if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0)) 2743 flush_caches_failed = true; 2744 2745 while (slot_mask) { 2746 u32 csg_id = ffs(slot_mask) - 1; 2747 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2748 2749 if (flush_caches_failed) 2750 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2751 else 2752 csg_slot_sync_update_locked(ptdev, csg_id); 2753 2754 slot_mask &= ~BIT(csg_id); 2755 } 2756 } 2757 2758 for (i = 0; i < sched->csg_slot_count; i++) { 2759 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2760 2761 group = csg_slot->group; 2762 if (!group) 2763 continue; 2764 2765 group_get(group); 2766 2767 if (group->csg_id >= 0) 2768 sched_process_csg_irq_locked(ptdev, group->csg_id); 2769 2770 group_unbind_locked(group); 2771 2772 drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node)); 2773 2774 if (group_can_run(group)) { 2775 list_add(&group->run_node, 2776 &sched->groups.idle[group->priority]); 2777 } else { 2778 /* We don't bother stopping the scheduler if the group is 2779 * faulty, the group termination work will finish the job. 2780 */ 2781 list_del_init(&group->wait_node); 2782 group_queue_work(group, term); 2783 } 2784 group_put(group); 2785 } 2786 mutex_unlock(&sched->lock); 2787 } 2788 2789 void panthor_sched_pre_reset(struct panthor_device *ptdev) 2790 { 2791 struct panthor_scheduler *sched = ptdev->scheduler; 2792 struct panthor_group *group, *group_tmp; 2793 u32 i; 2794 2795 mutex_lock(&sched->reset.lock); 2796 atomic_set(&sched->reset.in_progress, true); 2797 2798 /* Cancel all scheduler works. Once this is done, these works can't be 2799 * scheduled again until the reset operation is complete. 2800 */ 2801 cancel_work_sync(&sched->sync_upd_work); 2802 cancel_delayed_work_sync(&sched->tick_work); 2803 2804 panthor_sched_suspend(ptdev); 2805 2806 /* Stop all groups that might still accept jobs, so we don't get passed 2807 * new jobs while we're resetting. 2808 */ 2809 for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) { 2810 /* All groups should be in the idle lists. */ 2811 drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i])); 2812 list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node) 2813 panthor_group_stop(group); 2814 } 2815 2816 for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) { 2817 list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node) 2818 panthor_group_stop(group); 2819 } 2820 2821 mutex_unlock(&sched->reset.lock); 2822 } 2823 2824 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed) 2825 { 2826 struct panthor_scheduler *sched = ptdev->scheduler; 2827 struct panthor_group *group, *group_tmp; 2828 2829 mutex_lock(&sched->reset.lock); 2830 2831 list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) { 2832 /* Consider all previously running group as terminated if the 2833 * reset failed. 2834 */ 2835 if (reset_failed) 2836 group->state = PANTHOR_CS_GROUP_TERMINATED; 2837 2838 panthor_group_start(group); 2839 } 2840 2841 /* We're done resetting the GPU, clear the reset.in_progress bit so we can 2842 * kick the scheduler. 2843 */ 2844 atomic_set(&sched->reset.in_progress, false); 2845 mutex_unlock(&sched->reset.lock); 2846 2847 /* No need to queue a tick and update syncs if the reset failed. */ 2848 if (!reset_failed) { 2849 sched_queue_delayed_work(sched, tick, 0); 2850 sched_queue_work(sched, sync_upd); 2851 } 2852 } 2853 2854 static void update_fdinfo_stats(struct panthor_job *job) 2855 { 2856 struct panthor_group *group = job->group; 2857 struct panthor_queue *queue = group->queues[job->queue_idx]; 2858 struct panthor_gpu_usage *fdinfo = &group->fdinfo.data; 2859 struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap; 2860 struct panthor_job_profiling_data *data = &slots[job->profiling.slot]; 2861 2862 scoped_guard(spinlock, &group->fdinfo.lock) { 2863 if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES) 2864 fdinfo->cycles += data->cycles.after - data->cycles.before; 2865 if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP) 2866 fdinfo->time += data->time.after - data->time.before; 2867 } 2868 } 2869 2870 void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile) 2871 { 2872 struct panthor_group_pool *gpool = pfile->groups; 2873 struct panthor_group *group; 2874 unsigned long i; 2875 2876 if (IS_ERR_OR_NULL(gpool)) 2877 return; 2878 2879 xa_lock(&gpool->xa); 2880 xa_for_each(&gpool->xa, i, group) { 2881 guard(spinlock)(&group->fdinfo.lock); 2882 pfile->stats.cycles += group->fdinfo.data.cycles; 2883 pfile->stats.time += group->fdinfo.data.time; 2884 group->fdinfo.data.cycles = 0; 2885 group->fdinfo.data.time = 0; 2886 } 2887 xa_unlock(&gpool->xa); 2888 } 2889 2890 static void group_sync_upd_work(struct work_struct *work) 2891 { 2892 struct panthor_group *group = 2893 container_of(work, struct panthor_group, sync_upd_work); 2894 struct panthor_job *job, *job_tmp; 2895 LIST_HEAD(done_jobs); 2896 u32 queue_idx; 2897 bool cookie; 2898 2899 cookie = dma_fence_begin_signalling(); 2900 for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) { 2901 struct panthor_queue *queue = group->queues[queue_idx]; 2902 struct panthor_syncobj_64b *syncobj; 2903 2904 if (!queue) 2905 continue; 2906 2907 syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj)); 2908 2909 spin_lock(&queue->fence_ctx.lock); 2910 list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) { 2911 if (syncobj->seqno < job->done_fence->seqno) 2912 break; 2913 2914 list_move_tail(&job->node, &done_jobs); 2915 dma_fence_signal_locked(job->done_fence); 2916 } 2917 spin_unlock(&queue->fence_ctx.lock); 2918 } 2919 dma_fence_end_signalling(cookie); 2920 2921 list_for_each_entry_safe(job, job_tmp, &done_jobs, node) { 2922 if (job->profiling.mask) 2923 update_fdinfo_stats(job); 2924 list_del_init(&job->node); 2925 panthor_job_put(&job->base); 2926 } 2927 2928 group_put(group); 2929 } 2930 2931 struct panthor_job_ringbuf_instrs { 2932 u64 buffer[MAX_INSTRS_PER_JOB]; 2933 u32 count; 2934 }; 2935 2936 struct panthor_job_instr { 2937 u32 profile_mask; 2938 u64 instr; 2939 }; 2940 2941 #define JOB_INSTR(__prof, __instr) \ 2942 { \ 2943 .profile_mask = __prof, \ 2944 .instr = __instr, \ 2945 } 2946 2947 static void 2948 copy_instrs_to_ringbuf(struct panthor_queue *queue, 2949 struct panthor_job *job, 2950 struct panthor_job_ringbuf_instrs *instrs) 2951 { 2952 u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 2953 u64 start = job->ringbuf.start & (ringbuf_size - 1); 2954 u64 size, written; 2955 2956 /* 2957 * We need to write a whole slot, including any trailing zeroes 2958 * that may come at the end of it. Also, because instrs.buffer has 2959 * been zero-initialised, there's no need to pad it with 0's 2960 */ 2961 instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE); 2962 size = instrs->count * sizeof(u64); 2963 WARN_ON(size > ringbuf_size); 2964 written = min(ringbuf_size - start, size); 2965 2966 memcpy(queue->ringbuf->kmap + start, instrs->buffer, written); 2967 2968 if (written < size) 2969 memcpy(queue->ringbuf->kmap, 2970 &instrs->buffer[written / sizeof(u64)], 2971 size - written); 2972 } 2973 2974 struct panthor_job_cs_params { 2975 u32 profile_mask; 2976 u64 addr_reg; u64 val_reg; 2977 u64 cycle_reg; u64 time_reg; 2978 u64 sync_addr; u64 times_addr; 2979 u64 cs_start; u64 cs_size; 2980 u32 last_flush; u32 waitall_mask; 2981 }; 2982 2983 static void 2984 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params) 2985 { 2986 struct panthor_group *group = job->group; 2987 struct panthor_queue *queue = group->queues[job->queue_idx]; 2988 struct panthor_device *ptdev = group->ptdev; 2989 struct panthor_scheduler *sched = ptdev->scheduler; 2990 2991 params->addr_reg = ptdev->csif_info.cs_reg_count - 2992 ptdev->csif_info.unpreserved_cs_reg_count; 2993 params->val_reg = params->addr_reg + 2; 2994 params->cycle_reg = params->addr_reg; 2995 params->time_reg = params->val_reg; 2996 2997 params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) + 2998 job->queue_idx * sizeof(struct panthor_syncobj_64b); 2999 params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) + 3000 (job->profiling.slot * sizeof(struct panthor_job_profiling_data)); 3001 params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0); 3002 3003 params->cs_start = job->call_info.start; 3004 params->cs_size = job->call_info.size; 3005 params->last_flush = job->call_info.latest_flush; 3006 3007 params->profile_mask = job->profiling.mask; 3008 } 3009 3010 #define JOB_INSTR_ALWAYS(instr) \ 3011 JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr)) 3012 #define JOB_INSTR_TIMESTAMP(instr) \ 3013 JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr)) 3014 #define JOB_INSTR_CYCLES(instr) \ 3015 JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr)) 3016 3017 static void 3018 prepare_job_instrs(const struct panthor_job_cs_params *params, 3019 struct panthor_job_ringbuf_instrs *instrs) 3020 { 3021 const struct panthor_job_instr instr_seq[] = { 3022 /* MOV32 rX+2, cs.latest_flush */ 3023 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush), 3024 /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */ 3025 JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) | 3026 (0 << 16) | 0x233), 3027 /* MOV48 rX:rX+1, cycles_offset */ 3028 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) | 3029 (params->times_addr + 3030 offsetof(struct panthor_job_profiling_data, cycles.before))), 3031 /* STORE_STATE cycles */ 3032 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)), 3033 /* MOV48 rX:rX+1, time_offset */ 3034 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) | 3035 (params->times_addr + 3036 offsetof(struct panthor_job_profiling_data, time.before))), 3037 /* STORE_STATE timer */ 3038 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)), 3039 /* MOV48 rX:rX+1, cs.start */ 3040 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start), 3041 /* MOV32 rX+2, cs.size */ 3042 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size), 3043 /* WAIT(0) => waits for FLUSH_CACHE2 instruction */ 3044 JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)), 3045 /* CALL rX:rX+1, rX+2 */ 3046 JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) | 3047 (params->val_reg << 32)), 3048 /* MOV48 rX:rX+1, cycles_offset */ 3049 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) | 3050 (params->times_addr + 3051 offsetof(struct panthor_job_profiling_data, cycles.after))), 3052 /* STORE_STATE cycles */ 3053 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)), 3054 /* MOV48 rX:rX+1, time_offset */ 3055 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) | 3056 (params->times_addr + 3057 offsetof(struct panthor_job_profiling_data, time.after))), 3058 /* STORE_STATE timer */ 3059 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)), 3060 /* MOV48 rX:rX+1, sync_addr */ 3061 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr), 3062 /* MOV48 rX+2, #1 */ 3063 JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1), 3064 /* WAIT(all) */ 3065 JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)), 3066 /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/ 3067 JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) | 3068 (params->val_reg << 32) | (0 << 16) | 1), 3069 /* ERROR_BARRIER, so we can recover from faults at job boundaries. */ 3070 JOB_INSTR_ALWAYS((47ull << 56)), 3071 }; 3072 u32 pad; 3073 3074 instrs->count = 0; 3075 3076 /* NEED to be cacheline aligned to please the prefetcher. */ 3077 static_assert(sizeof(instrs->buffer) % 64 == 0, 3078 "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline"); 3079 3080 /* Make sure we have enough storage to store the whole sequence. */ 3081 static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) == 3082 ARRAY_SIZE(instrs->buffer), 3083 "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch"); 3084 3085 for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) { 3086 /* If the profile mask of this instruction is not enabled, skip it. */ 3087 if (instr_seq[i].profile_mask && 3088 !(instr_seq[i].profile_mask & params->profile_mask)) 3089 continue; 3090 3091 instrs->buffer[instrs->count++] = instr_seq[i].instr; 3092 } 3093 3094 pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE); 3095 memset(&instrs->buffer[instrs->count], 0, 3096 (pad - instrs->count) * sizeof(instrs->buffer[0])); 3097 instrs->count = pad; 3098 } 3099 3100 static u32 calc_job_credits(u32 profile_mask) 3101 { 3102 struct panthor_job_ringbuf_instrs instrs; 3103 struct panthor_job_cs_params params = { 3104 .profile_mask = profile_mask, 3105 }; 3106 3107 prepare_job_instrs(¶ms, &instrs); 3108 return instrs.count; 3109 } 3110 3111 static struct dma_fence * 3112 queue_run_job(struct drm_sched_job *sched_job) 3113 { 3114 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3115 struct panthor_group *group = job->group; 3116 struct panthor_queue *queue = group->queues[job->queue_idx]; 3117 struct panthor_device *ptdev = group->ptdev; 3118 struct panthor_scheduler *sched = ptdev->scheduler; 3119 struct panthor_job_ringbuf_instrs instrs; 3120 struct panthor_job_cs_params cs_params; 3121 struct dma_fence *done_fence; 3122 int ret; 3123 3124 /* Stream size is zero, nothing to do except making sure all previously 3125 * submitted jobs are done before we signal the 3126 * drm_sched_job::s_fence::finished fence. 3127 */ 3128 if (!job->call_info.size) { 3129 job->done_fence = dma_fence_get(queue->fence_ctx.last_fence); 3130 return dma_fence_get(job->done_fence); 3131 } 3132 3133 ret = panthor_device_resume_and_get(ptdev); 3134 if (drm_WARN_ON(&ptdev->base, ret)) 3135 return ERR_PTR(ret); 3136 3137 mutex_lock(&sched->lock); 3138 if (!group_can_run(group)) { 3139 done_fence = ERR_PTR(-ECANCELED); 3140 goto out_unlock; 3141 } 3142 3143 dma_fence_init(job->done_fence, 3144 &panthor_queue_fence_ops, 3145 &queue->fence_ctx.lock, 3146 queue->fence_ctx.id, 3147 atomic64_inc_return(&queue->fence_ctx.seqno)); 3148 3149 job->profiling.slot = queue->profiling.seqno++; 3150 if (queue->profiling.seqno == queue->profiling.slot_count) 3151 queue->profiling.seqno = 0; 3152 3153 job->ringbuf.start = queue->iface.input->insert; 3154 3155 get_job_cs_params(job, &cs_params); 3156 prepare_job_instrs(&cs_params, &instrs); 3157 copy_instrs_to_ringbuf(queue, job, &instrs); 3158 3159 job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64)); 3160 3161 panthor_job_get(&job->base); 3162 spin_lock(&queue->fence_ctx.lock); 3163 list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs); 3164 spin_unlock(&queue->fence_ctx.lock); 3165 3166 /* Make sure the ring buffer is updated before the INSERT 3167 * register. 3168 */ 3169 wmb(); 3170 3171 queue->iface.input->extract = queue->iface.output->extract; 3172 queue->iface.input->insert = job->ringbuf.end; 3173 3174 if (group->csg_id < 0) { 3175 /* If the queue is blocked, we want to keep the timeout running, so we 3176 * can detect unbounded waits and kill the group when that happens. 3177 * Otherwise, we suspend the timeout so the time we spend waiting for 3178 * a CSG slot is not counted. 3179 */ 3180 if (!(group->blocked_queues & BIT(job->queue_idx)) && 3181 !queue->timeout_suspended) { 3182 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 3183 queue->timeout_suspended = true; 3184 } 3185 3186 group_schedule_locked(group, BIT(job->queue_idx)); 3187 } else { 3188 gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1); 3189 if (!sched->pm.has_ref && 3190 !(group->blocked_queues & BIT(job->queue_idx))) { 3191 pm_runtime_get(ptdev->base.dev); 3192 sched->pm.has_ref = true; 3193 } 3194 panthor_devfreq_record_busy(sched->ptdev); 3195 } 3196 3197 /* Update the last fence. */ 3198 dma_fence_put(queue->fence_ctx.last_fence); 3199 queue->fence_ctx.last_fence = dma_fence_get(job->done_fence); 3200 3201 done_fence = dma_fence_get(job->done_fence); 3202 3203 out_unlock: 3204 mutex_unlock(&sched->lock); 3205 pm_runtime_mark_last_busy(ptdev->base.dev); 3206 pm_runtime_put_autosuspend(ptdev->base.dev); 3207 3208 return done_fence; 3209 } 3210 3211 static enum drm_gpu_sched_stat 3212 queue_timedout_job(struct drm_sched_job *sched_job) 3213 { 3214 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3215 struct panthor_group *group = job->group; 3216 struct panthor_device *ptdev = group->ptdev; 3217 struct panthor_scheduler *sched = ptdev->scheduler; 3218 struct panthor_queue *queue = group->queues[job->queue_idx]; 3219 3220 drm_warn(&ptdev->base, "job timeout\n"); 3221 3222 drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress)); 3223 3224 queue_stop(queue, job); 3225 3226 mutex_lock(&sched->lock); 3227 group->timedout = true; 3228 if (group->csg_id >= 0) { 3229 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 3230 } else { 3231 /* Remove from the run queues, so the scheduler can't 3232 * pick the group on the next tick. 3233 */ 3234 list_del_init(&group->run_node); 3235 list_del_init(&group->wait_node); 3236 3237 group_queue_work(group, term); 3238 } 3239 mutex_unlock(&sched->lock); 3240 3241 queue_start(queue); 3242 3243 return DRM_GPU_SCHED_STAT_RESET; 3244 } 3245 3246 static void queue_free_job(struct drm_sched_job *sched_job) 3247 { 3248 drm_sched_job_cleanup(sched_job); 3249 panthor_job_put(sched_job); 3250 } 3251 3252 static const struct drm_sched_backend_ops panthor_queue_sched_ops = { 3253 .run_job = queue_run_job, 3254 .timedout_job = queue_timedout_job, 3255 .free_job = queue_free_job, 3256 }; 3257 3258 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev, 3259 u32 cs_ringbuf_size) 3260 { 3261 u32 min_profiled_job_instrs = U32_MAX; 3262 u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL); 3263 3264 /* 3265 * We want to calculate the minimum size of a profiled job's CS, 3266 * because since they need additional instructions for the sampling 3267 * of performance metrics, they might take up further slots in 3268 * the queue's ringbuffer. This means we might not need as many job 3269 * slots for keeping track of their profiling information. What we 3270 * need is the maximum number of slots we should allocate to this end, 3271 * which matches the maximum number of profiled jobs we can place 3272 * simultaneously in the queue's ring buffer. 3273 * That has to be calculated separately for every single job profiling 3274 * flag, but not in the case job profiling is disabled, since unprofiled 3275 * jobs don't need to keep track of this at all. 3276 */ 3277 for (u32 i = 0; i < last_flag; i++) { 3278 min_profiled_job_instrs = 3279 min(min_profiled_job_instrs, calc_job_credits(BIT(i))); 3280 } 3281 3282 return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64)); 3283 } 3284 3285 static struct panthor_queue * 3286 group_create_queue(struct panthor_group *group, 3287 const struct drm_panthor_queue_create *args) 3288 { 3289 const struct drm_sched_init_args sched_args = { 3290 .ops = &panthor_queue_sched_ops, 3291 .submit_wq = group->ptdev->scheduler->wq, 3292 .num_rqs = 1, 3293 /* 3294 * The credit limit argument tells us the total number of 3295 * instructions across all CS slots in the ringbuffer, with 3296 * some jobs requiring twice as many as others, depending on 3297 * their profiling status. 3298 */ 3299 .credit_limit = args->ringbuf_size / sizeof(u64), 3300 .timeout = msecs_to_jiffies(JOB_TIMEOUT_MS), 3301 .timeout_wq = group->ptdev->reset.wq, 3302 .name = "panthor-queue", 3303 .dev = group->ptdev->base.dev, 3304 }; 3305 struct drm_gpu_scheduler *drm_sched; 3306 struct panthor_queue *queue; 3307 int ret; 3308 3309 if (args->pad[0] || args->pad[1] || args->pad[2]) 3310 return ERR_PTR(-EINVAL); 3311 3312 if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K || 3313 !is_power_of_2(args->ringbuf_size)) 3314 return ERR_PTR(-EINVAL); 3315 3316 if (args->priority > CSF_MAX_QUEUE_PRIO) 3317 return ERR_PTR(-EINVAL); 3318 3319 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 3320 if (!queue) 3321 return ERR_PTR(-ENOMEM); 3322 3323 queue->fence_ctx.id = dma_fence_context_alloc(1); 3324 spin_lock_init(&queue->fence_ctx.lock); 3325 INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs); 3326 3327 queue->priority = args->priority; 3328 3329 queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm, 3330 args->ringbuf_size, 3331 DRM_PANTHOR_BO_NO_MMAP, 3332 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3333 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3334 PANTHOR_VM_KERNEL_AUTO_VA, 3335 "CS ring buffer"); 3336 if (IS_ERR(queue->ringbuf)) { 3337 ret = PTR_ERR(queue->ringbuf); 3338 goto err_free_queue; 3339 } 3340 3341 ret = panthor_kernel_bo_vmap(queue->ringbuf); 3342 if (ret) 3343 goto err_free_queue; 3344 3345 queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev, 3346 &queue->iface.input, 3347 &queue->iface.output, 3348 &queue->iface.input_fw_va, 3349 &queue->iface.output_fw_va); 3350 if (IS_ERR(queue->iface.mem)) { 3351 ret = PTR_ERR(queue->iface.mem); 3352 goto err_free_queue; 3353 } 3354 3355 queue->profiling.slot_count = 3356 calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size); 3357 3358 queue->profiling.slots = 3359 panthor_kernel_bo_create(group->ptdev, group->vm, 3360 queue->profiling.slot_count * 3361 sizeof(struct panthor_job_profiling_data), 3362 DRM_PANTHOR_BO_NO_MMAP, 3363 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3364 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3365 PANTHOR_VM_KERNEL_AUTO_VA, 3366 "Group job stats"); 3367 3368 if (IS_ERR(queue->profiling.slots)) { 3369 ret = PTR_ERR(queue->profiling.slots); 3370 goto err_free_queue; 3371 } 3372 3373 ret = panthor_kernel_bo_vmap(queue->profiling.slots); 3374 if (ret) 3375 goto err_free_queue; 3376 3377 ret = drm_sched_init(&queue->scheduler, &sched_args); 3378 if (ret) 3379 goto err_free_queue; 3380 3381 drm_sched = &queue->scheduler; 3382 ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL); 3383 3384 return queue; 3385 3386 err_free_queue: 3387 group_free_queue(group, queue); 3388 return ERR_PTR(ret); 3389 } 3390 3391 static void add_group_kbo_sizes(struct panthor_device *ptdev, 3392 struct panthor_group *group) 3393 { 3394 struct panthor_queue *queue; 3395 int i; 3396 3397 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(group))) 3398 return; 3399 if (drm_WARN_ON(&ptdev->base, ptdev != group->ptdev)) 3400 return; 3401 3402 group->fdinfo.kbo_sizes += group->suspend_buf->obj->size; 3403 group->fdinfo.kbo_sizes += group->protm_suspend_buf->obj->size; 3404 group->fdinfo.kbo_sizes += group->syncobjs->obj->size; 3405 3406 for (i = 0; i < group->queue_count; i++) { 3407 queue = group->queues[i]; 3408 group->fdinfo.kbo_sizes += queue->ringbuf->obj->size; 3409 group->fdinfo.kbo_sizes += queue->iface.mem->obj->size; 3410 group->fdinfo.kbo_sizes += queue->profiling.slots->obj->size; 3411 } 3412 } 3413 3414 #define MAX_GROUPS_PER_POOL 128 3415 3416 int panthor_group_create(struct panthor_file *pfile, 3417 const struct drm_panthor_group_create *group_args, 3418 const struct drm_panthor_queue_create *queue_args) 3419 { 3420 struct panthor_device *ptdev = pfile->ptdev; 3421 struct panthor_group_pool *gpool = pfile->groups; 3422 struct panthor_scheduler *sched = ptdev->scheduler; 3423 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3424 struct panthor_group *group = NULL; 3425 u32 gid, i, suspend_size; 3426 int ret; 3427 3428 if (group_args->pad) 3429 return -EINVAL; 3430 3431 if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT) 3432 return -EINVAL; 3433 3434 if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) || 3435 (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) || 3436 (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present)) 3437 return -EINVAL; 3438 3439 if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores || 3440 hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores || 3441 hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores) 3442 return -EINVAL; 3443 3444 group = kzalloc(sizeof(*group), GFP_KERNEL); 3445 if (!group) 3446 return -ENOMEM; 3447 3448 spin_lock_init(&group->fatal_lock); 3449 kref_init(&group->refcount); 3450 group->state = PANTHOR_CS_GROUP_CREATED; 3451 group->csg_id = -1; 3452 3453 group->ptdev = ptdev; 3454 group->max_compute_cores = group_args->max_compute_cores; 3455 group->compute_core_mask = group_args->compute_core_mask; 3456 group->max_fragment_cores = group_args->max_fragment_cores; 3457 group->fragment_core_mask = group_args->fragment_core_mask; 3458 group->max_tiler_cores = group_args->max_tiler_cores; 3459 group->tiler_core_mask = group_args->tiler_core_mask; 3460 group->priority = group_args->priority; 3461 3462 INIT_LIST_HEAD(&group->wait_node); 3463 INIT_LIST_HEAD(&group->run_node); 3464 INIT_WORK(&group->term_work, group_term_work); 3465 INIT_WORK(&group->sync_upd_work, group_sync_upd_work); 3466 INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work); 3467 INIT_WORK(&group->release_work, group_release_work); 3468 3469 group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id); 3470 if (!group->vm) { 3471 ret = -EINVAL; 3472 goto err_put_group; 3473 } 3474 3475 suspend_size = csg_iface->control->suspend_size; 3476 group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3477 if (IS_ERR(group->suspend_buf)) { 3478 ret = PTR_ERR(group->suspend_buf); 3479 group->suspend_buf = NULL; 3480 goto err_put_group; 3481 } 3482 3483 suspend_size = csg_iface->control->protm_suspend_size; 3484 group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3485 if (IS_ERR(group->protm_suspend_buf)) { 3486 ret = PTR_ERR(group->protm_suspend_buf); 3487 group->protm_suspend_buf = NULL; 3488 goto err_put_group; 3489 } 3490 3491 group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm, 3492 group_args->queues.count * 3493 sizeof(struct panthor_syncobj_64b), 3494 DRM_PANTHOR_BO_NO_MMAP, 3495 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3496 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3497 PANTHOR_VM_KERNEL_AUTO_VA, 3498 "Group sync objects"); 3499 if (IS_ERR(group->syncobjs)) { 3500 ret = PTR_ERR(group->syncobjs); 3501 goto err_put_group; 3502 } 3503 3504 ret = panthor_kernel_bo_vmap(group->syncobjs); 3505 if (ret) 3506 goto err_put_group; 3507 3508 memset(group->syncobjs->kmap, 0, 3509 group_args->queues.count * sizeof(struct panthor_syncobj_64b)); 3510 3511 for (i = 0; i < group_args->queues.count; i++) { 3512 group->queues[i] = group_create_queue(group, &queue_args[i]); 3513 if (IS_ERR(group->queues[i])) { 3514 ret = PTR_ERR(group->queues[i]); 3515 group->queues[i] = NULL; 3516 goto err_put_group; 3517 } 3518 3519 group->queue_count++; 3520 } 3521 3522 group->idle_queues = GENMASK(group->queue_count - 1, 0); 3523 3524 ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL); 3525 if (ret) 3526 goto err_put_group; 3527 3528 mutex_lock(&sched->reset.lock); 3529 if (atomic_read(&sched->reset.in_progress)) { 3530 panthor_group_stop(group); 3531 } else { 3532 mutex_lock(&sched->lock); 3533 list_add_tail(&group->run_node, 3534 &sched->groups.idle[group->priority]); 3535 mutex_unlock(&sched->lock); 3536 } 3537 mutex_unlock(&sched->reset.lock); 3538 3539 add_group_kbo_sizes(group->ptdev, group); 3540 spin_lock_init(&group->fdinfo.lock); 3541 3542 return gid; 3543 3544 err_put_group: 3545 group_put(group); 3546 return ret; 3547 } 3548 3549 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle) 3550 { 3551 struct panthor_group_pool *gpool = pfile->groups; 3552 struct panthor_device *ptdev = pfile->ptdev; 3553 struct panthor_scheduler *sched = ptdev->scheduler; 3554 struct panthor_group *group; 3555 3556 group = xa_erase(&gpool->xa, group_handle); 3557 if (!group) 3558 return -EINVAL; 3559 3560 mutex_lock(&sched->reset.lock); 3561 mutex_lock(&sched->lock); 3562 group->destroyed = true; 3563 if (group->csg_id >= 0) { 3564 sched_queue_delayed_work(sched, tick, 0); 3565 } else if (!atomic_read(&sched->reset.in_progress)) { 3566 /* Remove from the run queues, so the scheduler can't 3567 * pick the group on the next tick. 3568 */ 3569 list_del_init(&group->run_node); 3570 list_del_init(&group->wait_node); 3571 group_queue_work(group, term); 3572 } 3573 mutex_unlock(&sched->lock); 3574 mutex_unlock(&sched->reset.lock); 3575 3576 group_put(group); 3577 return 0; 3578 } 3579 3580 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool, 3581 u32 group_handle) 3582 { 3583 struct panthor_group *group; 3584 3585 xa_lock(&pool->xa); 3586 group = group_get(xa_load(&pool->xa, group_handle)); 3587 xa_unlock(&pool->xa); 3588 3589 return group; 3590 } 3591 3592 int panthor_group_get_state(struct panthor_file *pfile, 3593 struct drm_panthor_group_get_state *get_state) 3594 { 3595 struct panthor_group_pool *gpool = pfile->groups; 3596 struct panthor_device *ptdev = pfile->ptdev; 3597 struct panthor_scheduler *sched = ptdev->scheduler; 3598 struct panthor_group *group; 3599 3600 if (get_state->pad) 3601 return -EINVAL; 3602 3603 group = group_from_handle(gpool, get_state->group_handle); 3604 if (!group) 3605 return -EINVAL; 3606 3607 memset(get_state, 0, sizeof(*get_state)); 3608 3609 mutex_lock(&sched->lock); 3610 if (group->timedout) 3611 get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT; 3612 if (group->fatal_queues) { 3613 get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT; 3614 get_state->fatal_queues = group->fatal_queues; 3615 } 3616 if (group->innocent) 3617 get_state->state |= DRM_PANTHOR_GROUP_STATE_INNOCENT; 3618 mutex_unlock(&sched->lock); 3619 3620 group_put(group); 3621 return 0; 3622 } 3623 3624 int panthor_group_pool_create(struct panthor_file *pfile) 3625 { 3626 struct panthor_group_pool *gpool; 3627 3628 gpool = kzalloc(sizeof(*gpool), GFP_KERNEL); 3629 if (!gpool) 3630 return -ENOMEM; 3631 3632 xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1); 3633 pfile->groups = gpool; 3634 return 0; 3635 } 3636 3637 void panthor_group_pool_destroy(struct panthor_file *pfile) 3638 { 3639 struct panthor_group_pool *gpool = pfile->groups; 3640 struct panthor_group *group; 3641 unsigned long i; 3642 3643 if (IS_ERR_OR_NULL(gpool)) 3644 return; 3645 3646 xa_for_each(&gpool->xa, i, group) 3647 panthor_group_destroy(pfile, i); 3648 3649 xa_destroy(&gpool->xa); 3650 kfree(gpool); 3651 pfile->groups = NULL; 3652 } 3653 3654 /** 3655 * panthor_fdinfo_gather_group_mem_info() - Retrieve aggregate size of all private kernel BO's 3656 * belonging to all the groups owned by an open Panthor file 3657 * @pfile: File. 3658 * @stats: Memory statistics to be updated. 3659 * 3660 */ 3661 void 3662 panthor_fdinfo_gather_group_mem_info(struct panthor_file *pfile, 3663 struct drm_memory_stats *stats) 3664 { 3665 struct panthor_group_pool *gpool = pfile->groups; 3666 struct panthor_group *group; 3667 unsigned long i; 3668 3669 if (IS_ERR_OR_NULL(gpool)) 3670 return; 3671 3672 xa_lock(&gpool->xa); 3673 xa_for_each(&gpool->xa, i, group) { 3674 stats->resident += group->fdinfo.kbo_sizes; 3675 if (group->csg_id >= 0) 3676 stats->active += group->fdinfo.kbo_sizes; 3677 } 3678 xa_unlock(&gpool->xa); 3679 } 3680 3681 static void job_release(struct kref *ref) 3682 { 3683 struct panthor_job *job = container_of(ref, struct panthor_job, refcount); 3684 3685 drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node)); 3686 3687 if (job->base.s_fence) 3688 drm_sched_job_cleanup(&job->base); 3689 3690 if (job->done_fence && job->done_fence->ops) 3691 dma_fence_put(job->done_fence); 3692 else 3693 dma_fence_free(job->done_fence); 3694 3695 group_put(job->group); 3696 3697 kfree(job); 3698 } 3699 3700 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job) 3701 { 3702 if (sched_job) { 3703 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3704 3705 kref_get(&job->refcount); 3706 } 3707 3708 return sched_job; 3709 } 3710 3711 void panthor_job_put(struct drm_sched_job *sched_job) 3712 { 3713 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3714 3715 if (sched_job) 3716 kref_put(&job->refcount, job_release); 3717 } 3718 3719 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job) 3720 { 3721 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3722 3723 return job->group->vm; 3724 } 3725 3726 struct drm_sched_job * 3727 panthor_job_create(struct panthor_file *pfile, 3728 u16 group_handle, 3729 const struct drm_panthor_queue_submit *qsubmit, 3730 u64 drm_client_id) 3731 { 3732 struct panthor_group_pool *gpool = pfile->groups; 3733 struct panthor_job *job; 3734 u32 credits; 3735 int ret; 3736 3737 if (qsubmit->pad) 3738 return ERR_PTR(-EINVAL); 3739 3740 /* If stream_addr is zero, so stream_size should be. */ 3741 if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0)) 3742 return ERR_PTR(-EINVAL); 3743 3744 /* Make sure the address is aligned on 64-byte (cacheline) and the size is 3745 * aligned on 8-byte (instruction size). 3746 */ 3747 if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7)) 3748 return ERR_PTR(-EINVAL); 3749 3750 /* bits 24:30 must be zero. */ 3751 if (qsubmit->latest_flush & GENMASK(30, 24)) 3752 return ERR_PTR(-EINVAL); 3753 3754 job = kzalloc(sizeof(*job), GFP_KERNEL); 3755 if (!job) 3756 return ERR_PTR(-ENOMEM); 3757 3758 kref_init(&job->refcount); 3759 job->queue_idx = qsubmit->queue_index; 3760 job->call_info.size = qsubmit->stream_size; 3761 job->call_info.start = qsubmit->stream_addr; 3762 job->call_info.latest_flush = qsubmit->latest_flush; 3763 INIT_LIST_HEAD(&job->node); 3764 3765 job->group = group_from_handle(gpool, group_handle); 3766 if (!job->group) { 3767 ret = -EINVAL; 3768 goto err_put_job; 3769 } 3770 3771 if (!group_can_run(job->group)) { 3772 ret = -EINVAL; 3773 goto err_put_job; 3774 } 3775 3776 if (job->queue_idx >= job->group->queue_count || 3777 !job->group->queues[job->queue_idx]) { 3778 ret = -EINVAL; 3779 goto err_put_job; 3780 } 3781 3782 /* Empty command streams don't need a fence, they'll pick the one from 3783 * the previously submitted job. 3784 */ 3785 if (job->call_info.size) { 3786 job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL); 3787 if (!job->done_fence) { 3788 ret = -ENOMEM; 3789 goto err_put_job; 3790 } 3791 } 3792 3793 job->profiling.mask = pfile->ptdev->profile_mask; 3794 credits = calc_job_credits(job->profiling.mask); 3795 if (credits == 0) { 3796 ret = -EINVAL; 3797 goto err_put_job; 3798 } 3799 3800 ret = drm_sched_job_init(&job->base, 3801 &job->group->queues[job->queue_idx]->entity, 3802 credits, job->group, drm_client_id); 3803 if (ret) 3804 goto err_put_job; 3805 3806 return &job->base; 3807 3808 err_put_job: 3809 panthor_job_put(&job->base); 3810 return ERR_PTR(ret); 3811 } 3812 3813 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job) 3814 { 3815 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3816 3817 panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished, 3818 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP); 3819 } 3820 3821 void panthor_sched_unplug(struct panthor_device *ptdev) 3822 { 3823 struct panthor_scheduler *sched = ptdev->scheduler; 3824 3825 cancel_delayed_work_sync(&sched->tick_work); 3826 3827 mutex_lock(&sched->lock); 3828 if (sched->pm.has_ref) { 3829 pm_runtime_put(ptdev->base.dev); 3830 sched->pm.has_ref = false; 3831 } 3832 mutex_unlock(&sched->lock); 3833 } 3834 3835 static void panthor_sched_fini(struct drm_device *ddev, void *res) 3836 { 3837 struct panthor_scheduler *sched = res; 3838 int prio; 3839 3840 if (!sched || !sched->csg_slot_count) 3841 return; 3842 3843 cancel_delayed_work_sync(&sched->tick_work); 3844 3845 if (sched->wq) 3846 destroy_workqueue(sched->wq); 3847 3848 if (sched->heap_alloc_wq) 3849 destroy_workqueue(sched->heap_alloc_wq); 3850 3851 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3852 drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio])); 3853 drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio])); 3854 } 3855 3856 drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting)); 3857 } 3858 3859 int panthor_sched_init(struct panthor_device *ptdev) 3860 { 3861 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 3862 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3863 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0); 3864 struct panthor_scheduler *sched; 3865 u32 gpu_as_count, num_groups; 3866 int prio, ret; 3867 3868 sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL); 3869 if (!sched) 3870 return -ENOMEM; 3871 3872 /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That 3873 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here. 3874 */ 3875 num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num); 3876 3877 /* The FW-side scheduler might deadlock if two groups with the same 3878 * priority try to access a set of resources that overlaps, with part 3879 * of the resources being allocated to one group and the other part to 3880 * the other group, both groups waiting for the remaining resources to 3881 * be allocated. To avoid that, it is recommended to assign each CSG a 3882 * different priority. In theory we could allow several groups to have 3883 * the same CSG priority if they don't request the same resources, but 3884 * that makes the scheduling logic more complicated, so let's clamp 3885 * the number of CSG slots to MAX_CSG_PRIO + 1 for now. 3886 */ 3887 num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups); 3888 3889 /* We need at least one AS for the MCU and one for the GPU contexts. */ 3890 gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1)); 3891 if (!gpu_as_count) { 3892 drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)", 3893 gpu_as_count + 1); 3894 return -EINVAL; 3895 } 3896 3897 sched->ptdev = ptdev; 3898 sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features); 3899 sched->csg_slot_count = num_groups; 3900 sched->cs_slot_count = csg_iface->control->stream_num; 3901 sched->as_slot_count = gpu_as_count; 3902 ptdev->csif_info.csg_slot_count = sched->csg_slot_count; 3903 ptdev->csif_info.cs_slot_count = sched->cs_slot_count; 3904 ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count; 3905 3906 sched->last_tick = 0; 3907 sched->resched_target = U64_MAX; 3908 sched->tick_period = msecs_to_jiffies(10); 3909 INIT_DELAYED_WORK(&sched->tick_work, tick_work); 3910 INIT_WORK(&sched->sync_upd_work, sync_upd_work); 3911 INIT_WORK(&sched->fw_events_work, process_fw_events_work); 3912 3913 ret = drmm_mutex_init(&ptdev->base, &sched->lock); 3914 if (ret) 3915 return ret; 3916 3917 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3918 INIT_LIST_HEAD(&sched->groups.runnable[prio]); 3919 INIT_LIST_HEAD(&sched->groups.idle[prio]); 3920 } 3921 INIT_LIST_HEAD(&sched->groups.waiting); 3922 3923 ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock); 3924 if (ret) 3925 return ret; 3926 3927 INIT_LIST_HEAD(&sched->reset.stopped_groups); 3928 3929 /* sched->heap_alloc_wq will be used for heap chunk allocation on 3930 * tiler OOM events, which means we can't use the same workqueue for 3931 * the scheduler because works queued by the scheduler are in 3932 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to 3933 * work around this limitation. 3934 * 3935 * FIXME: Ultimately, what we need is a failable/non-blocking GEM 3936 * allocation path that we can call when a heap OOM is reported. The 3937 * FW is smart enough to fall back on other methods if the kernel can't 3938 * allocate memory, and fail the tiling job if none of these 3939 * countermeasures worked. 3940 * 3941 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the 3942 * system is running out of memory. 3943 */ 3944 sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0); 3945 sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 3946 if (!sched->wq || !sched->heap_alloc_wq) { 3947 panthor_sched_fini(&ptdev->base, sched); 3948 drm_err(&ptdev->base, "Failed to allocate the workqueues"); 3949 return -ENOMEM; 3950 } 3951 3952 ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched); 3953 if (ret) 3954 return ret; 3955 3956 ptdev->scheduler = sched; 3957 return 0; 3958 } 3959