1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2023 Collabora ltd. */ 3 4 #include <drm/drm_drv.h> 5 #include <drm/drm_exec.h> 6 #include <drm/drm_gem_shmem_helper.h> 7 #include <drm/drm_managed.h> 8 #include <drm/gpu_scheduler.h> 9 #include <drm/panthor_drm.h> 10 11 #include <linux/build_bug.h> 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/dma-resv.h> 16 #include <linux/firmware.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/iosys-map.h> 21 #include <linux/module.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 25 #include "panthor_devfreq.h" 26 #include "panthor_device.h" 27 #include "panthor_fw.h" 28 #include "panthor_gem.h" 29 #include "panthor_gpu.h" 30 #include "panthor_heap.h" 31 #include "panthor_mmu.h" 32 #include "panthor_regs.h" 33 #include "panthor_sched.h" 34 35 /** 36 * DOC: Scheduler 37 * 38 * Mali CSF hardware adopts a firmware-assisted scheduling model, where 39 * the firmware takes care of scheduling aspects, to some extent. 40 * 41 * The scheduling happens at the scheduling group level, each group 42 * contains 1 to N queues (N is FW/hardware dependent, and exposed 43 * through the firmware interface). Each queue is assigned a command 44 * stream ring buffer, which serves as a way to get jobs submitted to 45 * the GPU, among other things. 46 * 47 * The firmware can schedule a maximum of M groups (M is FW/hardware 48 * dependent, and exposed through the firmware interface). Passed 49 * this maximum number of groups, the kernel must take care of 50 * rotating the groups passed to the firmware so every group gets 51 * a chance to have his queues scheduled for execution. 52 * 53 * The current implementation only supports with kernel-mode queues. 54 * In other terms, userspace doesn't have access to the ring-buffer. 55 * Instead, userspace passes indirect command stream buffers that are 56 * called from the queue ring-buffer by the kernel using a pre-defined 57 * sequence of command stream instructions to ensure the userspace driver 58 * always gets consistent results (cache maintenance, 59 * synchronization, ...). 60 * 61 * We rely on the drm_gpu_scheduler framework to deal with job 62 * dependencies and submission. As any other driver dealing with a 63 * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each 64 * entity has its own job scheduler. When a job is ready to be executed 65 * (all its dependencies are met), it is pushed to the appropriate 66 * queue ring-buffer, and the group is scheduled for execution if it 67 * wasn't already active. 68 * 69 * Kernel-side group scheduling is timeslice-based. When we have less 70 * groups than there are slots, the periodic tick is disabled and we 71 * just let the FW schedule the active groups. When there are more 72 * groups than slots, we let each group a chance to execute stuff for 73 * a given amount of time, and then re-evaluate and pick new groups 74 * to schedule. The group selection algorithm is based on 75 * priority+round-robin. 76 * 77 * Even though user-mode queues is out of the scope right now, the 78 * current design takes them into account by avoiding any guess on the 79 * group/queue state that would be based on information we wouldn't have 80 * if userspace was in charge of the ring-buffer. That's also one of the 81 * reason we don't do 'cooperative' scheduling (encoding FW group slot 82 * reservation as dma_fence that would be returned from the 83 * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as 84 * a queue of waiters, ordered by job submission order). This approach 85 * would work for kernel-mode queues, but would make user-mode queues a 86 * lot more complicated to retrofit. 87 */ 88 89 #define JOB_TIMEOUT_MS 5000 90 91 #define MIN_CS_PER_CSG 8 92 93 #define MIN_CSGS 3 94 #define MAX_CSG_PRIO 0xf 95 96 struct panthor_group; 97 98 /** 99 * struct panthor_csg_slot - Command stream group slot 100 * 101 * This represents a FW slot for a scheduling group. 102 */ 103 struct panthor_csg_slot { 104 /** @group: Scheduling group bound to this slot. */ 105 struct panthor_group *group; 106 107 /** @priority: Group priority. */ 108 u8 priority; 109 110 /** 111 * @idle: True if the group bound to this slot is idle. 112 * 113 * A group is idle when it has nothing waiting for execution on 114 * all its queues, or when queues are blocked waiting for something 115 * to happen (synchronization object). 116 */ 117 bool idle; 118 }; 119 120 /** 121 * enum panthor_csg_priority - Group priority 122 */ 123 enum panthor_csg_priority { 124 /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */ 125 PANTHOR_CSG_PRIORITY_LOW = 0, 126 127 /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */ 128 PANTHOR_CSG_PRIORITY_MEDIUM, 129 130 /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */ 131 PANTHOR_CSG_PRIORITY_HIGH, 132 133 /** 134 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group. 135 * 136 * Real-time priority allows one to preempt scheduling of other 137 * non-real-time groups. When such a group becomes executable, 138 * it will evict the group with the lowest non-rt priority if 139 * there's no free group slot available. 140 * 141 * Currently not exposed to userspace. 142 */ 143 PANTHOR_CSG_PRIORITY_RT, 144 145 /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */ 146 PANTHOR_CSG_PRIORITY_COUNT, 147 }; 148 149 /** 150 * struct panthor_scheduler - Object used to manage the scheduler 151 */ 152 struct panthor_scheduler { 153 /** @ptdev: Device. */ 154 struct panthor_device *ptdev; 155 156 /** 157 * @wq: Workqueue used by our internal scheduler logic and 158 * drm_gpu_scheduler. 159 * 160 * Used for the scheduler tick, group update or other kind of FW 161 * event processing that can't be handled in the threaded interrupt 162 * path. Also passed to the drm_gpu_scheduler instances embedded 163 * in panthor_queue. 164 */ 165 struct workqueue_struct *wq; 166 167 /** 168 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works. 169 * 170 * We have a queue dedicated to heap chunk allocation works to avoid 171 * blocking the rest of the scheduler if the allocation tries to 172 * reclaim memory. 173 */ 174 struct workqueue_struct *heap_alloc_wq; 175 176 /** @tick_work: Work executed on a scheduling tick. */ 177 struct delayed_work tick_work; 178 179 /** 180 * @sync_upd_work: Work used to process synchronization object updates. 181 * 182 * We use this work to unblock queues/groups that were waiting on a 183 * synchronization object. 184 */ 185 struct work_struct sync_upd_work; 186 187 /** 188 * @fw_events_work: Work used to process FW events outside the interrupt path. 189 * 190 * Even if the interrupt is threaded, we need any event processing 191 * that require taking the panthor_scheduler::lock to be processed 192 * outside the interrupt path so we don't block the tick logic when 193 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the 194 * event processing requires taking this lock, we just delegate all 195 * FW event processing to the scheduler workqueue. 196 */ 197 struct work_struct fw_events_work; 198 199 /** 200 * @fw_events: Bitmask encoding pending FW events. 201 */ 202 atomic_t fw_events; 203 204 /** 205 * @resched_target: When the next tick should occur. 206 * 207 * Expressed in jiffies. 208 */ 209 u64 resched_target; 210 211 /** 212 * @last_tick: When the last tick occurred. 213 * 214 * Expressed in jiffies. 215 */ 216 u64 last_tick; 217 218 /** @tick_period: Tick period in jiffies. */ 219 u64 tick_period; 220 221 /** 222 * @lock: Lock protecting access to all the scheduler fields. 223 * 224 * Should be taken in the tick work, the irq handler, and anywhere the @groups 225 * fields are touched. 226 */ 227 struct mutex lock; 228 229 /** @groups: Various lists used to classify groups. */ 230 struct { 231 /** 232 * @runnable: Runnable group lists. 233 * 234 * When a group has queues that want to execute something, 235 * its panthor_group::run_node should be inserted here. 236 * 237 * One list per-priority. 238 */ 239 struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT]; 240 241 /** 242 * @idle: Idle group lists. 243 * 244 * When all queues of a group are idle (either because they 245 * have nothing to execute, or because they are blocked), the 246 * panthor_group::run_node field should be inserted here. 247 * 248 * One list per-priority. 249 */ 250 struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT]; 251 252 /** 253 * @waiting: List of groups whose queues are blocked on a 254 * synchronization object. 255 * 256 * Insert panthor_group::wait_node here when a group is waiting 257 * for synchronization objects to be signaled. 258 * 259 * This list is evaluated in the @sync_upd_work work. 260 */ 261 struct list_head waiting; 262 } groups; 263 264 /** 265 * @csg_slots: FW command stream group slots. 266 */ 267 struct panthor_csg_slot csg_slots[MAX_CSGS]; 268 269 /** @csg_slot_count: Number of command stream group slots exposed by the FW. */ 270 u32 csg_slot_count; 271 272 /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */ 273 u32 cs_slot_count; 274 275 /** @as_slot_count: Number of address space slots supported by the MMU. */ 276 u32 as_slot_count; 277 278 /** @used_csg_slot_count: Number of command stream group slot currently used. */ 279 u32 used_csg_slot_count; 280 281 /** @sb_slot_count: Number of scoreboard slots. */ 282 u32 sb_slot_count; 283 284 /** 285 * @might_have_idle_groups: True if an active group might have become idle. 286 * 287 * This will force a tick, so other runnable groups can be scheduled if one 288 * or more active groups became idle. 289 */ 290 bool might_have_idle_groups; 291 292 /** @pm: Power management related fields. */ 293 struct { 294 /** @has_ref: True if the scheduler owns a runtime PM reference. */ 295 bool has_ref; 296 } pm; 297 298 /** @reset: Reset related fields. */ 299 struct { 300 /** @lock: Lock protecting the other reset fields. */ 301 struct mutex lock; 302 303 /** 304 * @in_progress: True if a reset is in progress. 305 * 306 * Set to true in panthor_sched_pre_reset() and back to false in 307 * panthor_sched_post_reset(). 308 */ 309 atomic_t in_progress; 310 311 /** 312 * @stopped_groups: List containing all groups that were stopped 313 * before a reset. 314 * 315 * Insert panthor_group::run_node in the pre_reset path. 316 */ 317 struct list_head stopped_groups; 318 } reset; 319 }; 320 321 /** 322 * struct panthor_syncobj_32b - 32-bit FW synchronization object 323 */ 324 struct panthor_syncobj_32b { 325 /** @seqno: Sequence number. */ 326 u32 seqno; 327 328 /** 329 * @status: Status. 330 * 331 * Not zero on failure. 332 */ 333 u32 status; 334 }; 335 336 /** 337 * struct panthor_syncobj_64b - 64-bit FW synchronization object 338 */ 339 struct panthor_syncobj_64b { 340 /** @seqno: Sequence number. */ 341 u64 seqno; 342 343 /** 344 * @status: Status. 345 * 346 * Not zero on failure. 347 */ 348 u32 status; 349 350 /** @pad: MBZ. */ 351 u32 pad; 352 }; 353 354 /** 355 * struct panthor_queue - Execution queue 356 */ 357 struct panthor_queue { 358 /** @scheduler: DRM scheduler used for this queue. */ 359 struct drm_gpu_scheduler scheduler; 360 361 /** @entity: DRM scheduling entity used for this queue. */ 362 struct drm_sched_entity entity; 363 364 /** 365 * @remaining_time: Time remaining before the job timeout expires. 366 * 367 * The job timeout is suspended when the queue is not scheduled by the 368 * FW. Every time we suspend the timer, we need to save the remaining 369 * time so we can restore it later on. 370 */ 371 unsigned long remaining_time; 372 373 /** @timeout_suspended: True if the job timeout was suspended. */ 374 bool timeout_suspended; 375 376 /** 377 * @doorbell_id: Doorbell assigned to this queue. 378 * 379 * Right now, all groups share the same doorbell, and the doorbell ID 380 * is assigned to group_slot + 1 when the group is assigned a slot. But 381 * we might decide to provide fine grained doorbell assignment at some 382 * point, so don't have to wake up all queues in a group every time one 383 * of them is updated. 384 */ 385 u8 doorbell_id; 386 387 /** 388 * @priority: Priority of the queue inside the group. 389 * 390 * Must be less than 16 (Only 4 bits available). 391 */ 392 u8 priority; 393 #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0) 394 395 /** @ringbuf: Command stream ring-buffer. */ 396 struct panthor_kernel_bo *ringbuf; 397 398 /** @iface: Firmware interface. */ 399 struct { 400 /** @mem: FW memory allocated for this interface. */ 401 struct panthor_kernel_bo *mem; 402 403 /** @input: Input interface. */ 404 struct panthor_fw_ringbuf_input_iface *input; 405 406 /** @output: Output interface. */ 407 const struct panthor_fw_ringbuf_output_iface *output; 408 409 /** @input_fw_va: FW virtual address of the input interface buffer. */ 410 u32 input_fw_va; 411 412 /** @output_fw_va: FW virtual address of the output interface buffer. */ 413 u32 output_fw_va; 414 } iface; 415 416 /** 417 * @syncwait: Stores information about the synchronization object this 418 * queue is waiting on. 419 */ 420 struct { 421 /** @gpu_va: GPU address of the synchronization object. */ 422 u64 gpu_va; 423 424 /** @ref: Reference value to compare against. */ 425 u64 ref; 426 427 /** @gt: True if this is a greater-than test. */ 428 bool gt; 429 430 /** @sync64: True if this is a 64-bit sync object. */ 431 bool sync64; 432 433 /** @bo: Buffer object holding the synchronization object. */ 434 struct drm_gem_object *obj; 435 436 /** @offset: Offset of the synchronization object inside @bo. */ 437 u64 offset; 438 439 /** 440 * @kmap: Kernel mapping of the buffer object holding the 441 * synchronization object. 442 */ 443 void *kmap; 444 } syncwait; 445 446 /** @fence_ctx: Fence context fields. */ 447 struct { 448 /** @lock: Used to protect access to all fences allocated by this context. */ 449 spinlock_t lock; 450 451 /** 452 * @id: Fence context ID. 453 * 454 * Allocated with dma_fence_context_alloc(). 455 */ 456 u64 id; 457 458 /** @seqno: Sequence number of the last initialized fence. */ 459 atomic64_t seqno; 460 461 /** 462 * @last_fence: Fence of the last submitted job. 463 * 464 * We return this fence when we get an empty command stream. 465 * This way, we are guaranteed that all earlier jobs have completed 466 * when drm_sched_job::s_fence::finished without having to feed 467 * the CS ring buffer with a dummy job that only signals the fence. 468 */ 469 struct dma_fence *last_fence; 470 471 /** 472 * @in_flight_jobs: List containing all in-flight jobs. 473 * 474 * Used to keep track and signal panthor_job::done_fence when the 475 * synchronization object attached to the queue is signaled. 476 */ 477 struct list_head in_flight_jobs; 478 } fence_ctx; 479 }; 480 481 /** 482 * enum panthor_group_state - Scheduling group state. 483 */ 484 enum panthor_group_state { 485 /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */ 486 PANTHOR_CS_GROUP_CREATED, 487 488 /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */ 489 PANTHOR_CS_GROUP_ACTIVE, 490 491 /** 492 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is 493 * inactive/suspended right now. 494 */ 495 PANTHOR_CS_GROUP_SUSPENDED, 496 497 /** 498 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated. 499 * 500 * Can no longer be scheduled. The only allowed action is a destruction. 501 */ 502 PANTHOR_CS_GROUP_TERMINATED, 503 504 /** 505 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state. 506 * 507 * The FW returned an inconsistent state. The group is flagged unusable 508 * and can no longer be scheduled. The only allowed action is a 509 * destruction. 510 * 511 * When that happens, we also schedule a FW reset, to start from a fresh 512 * state. 513 */ 514 PANTHOR_CS_GROUP_UNKNOWN_STATE, 515 }; 516 517 /** 518 * struct panthor_group - Scheduling group object 519 */ 520 struct panthor_group { 521 /** @refcount: Reference count */ 522 struct kref refcount; 523 524 /** @ptdev: Device. */ 525 struct panthor_device *ptdev; 526 527 /** @vm: VM bound to the group. */ 528 struct panthor_vm *vm; 529 530 /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */ 531 u64 compute_core_mask; 532 533 /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */ 534 u64 fragment_core_mask; 535 536 /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */ 537 u64 tiler_core_mask; 538 539 /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */ 540 u8 max_compute_cores; 541 542 /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */ 543 u8 max_fragment_cores; 544 545 /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */ 546 u8 max_tiler_cores; 547 548 /** @priority: Group priority (check panthor_csg_priority). */ 549 u8 priority; 550 551 /** @blocked_queues: Bitmask reflecting the blocked queues. */ 552 u32 blocked_queues; 553 554 /** @idle_queues: Bitmask reflecting the idle queues. */ 555 u32 idle_queues; 556 557 /** @fatal_lock: Lock used to protect access to fatal fields. */ 558 spinlock_t fatal_lock; 559 560 /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */ 561 u32 fatal_queues; 562 563 /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */ 564 atomic_t tiler_oom; 565 566 /** @queue_count: Number of queues in this group. */ 567 u32 queue_count; 568 569 /** @queues: Queues owned by this group. */ 570 struct panthor_queue *queues[MAX_CS_PER_CSG]; 571 572 /** 573 * @csg_id: ID of the FW group slot. 574 * 575 * -1 when the group is not scheduled/active. 576 */ 577 int csg_id; 578 579 /** 580 * @destroyed: True when the group has been destroyed. 581 * 582 * If a group is destroyed it becomes useless: no further jobs can be submitted 583 * to its queues. We simply wait for all references to be dropped so we can 584 * release the group object. 585 */ 586 bool destroyed; 587 588 /** 589 * @timedout: True when a timeout occurred on any of the queues owned by 590 * this group. 591 * 592 * Timeouts can be reported by drm_sched or by the FW. If a reset is required, 593 * and the group can't be suspended, this also leads to a timeout. In any case, 594 * any timeout situation is unrecoverable, and the group becomes useless. We 595 * simply wait for all references to be dropped so we can release the group 596 * object. 597 */ 598 bool timedout; 599 600 /** 601 * @syncobjs: Pool of per-queue synchronization objects. 602 * 603 * One sync object per queue. The position of the sync object is 604 * determined by the queue index. 605 */ 606 struct panthor_kernel_bo *syncobjs; 607 608 /** @state: Group state. */ 609 enum panthor_group_state state; 610 611 /** 612 * @suspend_buf: Suspend buffer. 613 * 614 * Stores the state of the group and its queues when a group is suspended. 615 * Used at resume time to restore the group in its previous state. 616 * 617 * The size of the suspend buffer is exposed through the FW interface. 618 */ 619 struct panthor_kernel_bo *suspend_buf; 620 621 /** 622 * @protm_suspend_buf: Protection mode suspend buffer. 623 * 624 * Stores the state of the group and its queues when a group that's in 625 * protection mode is suspended. 626 * 627 * Used at resume time to restore the group in its previous state. 628 * 629 * The size of the protection mode suspend buffer is exposed through the 630 * FW interface. 631 */ 632 struct panthor_kernel_bo *protm_suspend_buf; 633 634 /** @sync_upd_work: Work used to check/signal job fences. */ 635 struct work_struct sync_upd_work; 636 637 /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */ 638 struct work_struct tiler_oom_work; 639 640 /** @term_work: Work used to finish the group termination procedure. */ 641 struct work_struct term_work; 642 643 /** 644 * @release_work: Work used to release group resources. 645 * 646 * We need to postpone the group release to avoid a deadlock when 647 * the last ref is released in the tick work. 648 */ 649 struct work_struct release_work; 650 651 /** 652 * @run_node: Node used to insert the group in the 653 * panthor_group::groups::{runnable,idle} and 654 * panthor_group::reset.stopped_groups lists. 655 */ 656 struct list_head run_node; 657 658 /** 659 * @wait_node: Node used to insert the group in the 660 * panthor_group::groups::waiting list. 661 */ 662 struct list_head wait_node; 663 }; 664 665 /** 666 * group_queue_work() - Queue a group work 667 * @group: Group to queue the work for. 668 * @wname: Work name. 669 * 670 * Grabs a ref and queue a work item to the scheduler workqueue. If 671 * the work was already queued, we release the reference we grabbed. 672 * 673 * Work callbacks must release the reference we grabbed here. 674 */ 675 #define group_queue_work(group, wname) \ 676 do { \ 677 group_get(group); \ 678 if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \ 679 group_put(group); \ 680 } while (0) 681 682 /** 683 * sched_queue_work() - Queue a scheduler work. 684 * @sched: Scheduler object. 685 * @wname: Work name. 686 * 687 * Conditionally queues a scheduler work if no reset is pending/in-progress. 688 */ 689 #define sched_queue_work(sched, wname) \ 690 do { \ 691 if (!atomic_read(&(sched)->reset.in_progress) && \ 692 !panthor_device_reset_is_pending((sched)->ptdev)) \ 693 queue_work((sched)->wq, &(sched)->wname ## _work); \ 694 } while (0) 695 696 /** 697 * sched_queue_delayed_work() - Queue a scheduler delayed work. 698 * @sched: Scheduler object. 699 * @wname: Work name. 700 * @delay: Work delay in jiffies. 701 * 702 * Conditionally queues a scheduler delayed work if no reset is 703 * pending/in-progress. 704 */ 705 #define sched_queue_delayed_work(sched, wname, delay) \ 706 do { \ 707 if (!atomic_read(&sched->reset.in_progress) && \ 708 !panthor_device_reset_is_pending((sched)->ptdev)) \ 709 mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \ 710 } while (0) 711 712 /* 713 * We currently set the maximum of groups per file to an arbitrary low value. 714 * But this can be updated if we need more. 715 */ 716 #define MAX_GROUPS_PER_POOL 128 717 718 /** 719 * struct panthor_group_pool - Group pool 720 * 721 * Each file get assigned a group pool. 722 */ 723 struct panthor_group_pool { 724 /** @xa: Xarray used to manage group handles. */ 725 struct xarray xa; 726 }; 727 728 /** 729 * struct panthor_job - Used to manage GPU job 730 */ 731 struct panthor_job { 732 /** @base: Inherit from drm_sched_job. */ 733 struct drm_sched_job base; 734 735 /** @refcount: Reference count. */ 736 struct kref refcount; 737 738 /** @group: Group of the queue this job will be pushed to. */ 739 struct panthor_group *group; 740 741 /** @queue_idx: Index of the queue inside @group. */ 742 u32 queue_idx; 743 744 /** @call_info: Information about the userspace command stream call. */ 745 struct { 746 /** @start: GPU address of the userspace command stream. */ 747 u64 start; 748 749 /** @size: Size of the userspace command stream. */ 750 u32 size; 751 752 /** 753 * @latest_flush: Flush ID at the time the userspace command 754 * stream was built. 755 * 756 * Needed for the flush reduction mechanism. 757 */ 758 u32 latest_flush; 759 } call_info; 760 761 /** @ringbuf: Position of this job is in the ring buffer. */ 762 struct { 763 /** @start: Start offset. */ 764 u64 start; 765 766 /** @end: End offset. */ 767 u64 end; 768 } ringbuf; 769 770 /** 771 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs 772 * list. 773 */ 774 struct list_head node; 775 776 /** @done_fence: Fence signaled when the job is finished or cancelled. */ 777 struct dma_fence *done_fence; 778 }; 779 780 static void 781 panthor_queue_put_syncwait_obj(struct panthor_queue *queue) 782 { 783 if (queue->syncwait.kmap) { 784 struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap); 785 786 drm_gem_vunmap_unlocked(queue->syncwait.obj, &map); 787 queue->syncwait.kmap = NULL; 788 } 789 790 drm_gem_object_put(queue->syncwait.obj); 791 queue->syncwait.obj = NULL; 792 } 793 794 static void * 795 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue) 796 { 797 struct panthor_device *ptdev = group->ptdev; 798 struct panthor_gem_object *bo; 799 struct iosys_map map; 800 int ret; 801 802 if (queue->syncwait.kmap) 803 return queue->syncwait.kmap + queue->syncwait.offset; 804 805 bo = panthor_vm_get_bo_for_va(group->vm, 806 queue->syncwait.gpu_va, 807 &queue->syncwait.offset); 808 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo))) 809 goto err_put_syncwait_obj; 810 811 queue->syncwait.obj = &bo->base.base; 812 ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map); 813 if (drm_WARN_ON(&ptdev->base, ret)) 814 goto err_put_syncwait_obj; 815 816 queue->syncwait.kmap = map.vaddr; 817 if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap)) 818 goto err_put_syncwait_obj; 819 820 return queue->syncwait.kmap + queue->syncwait.offset; 821 822 err_put_syncwait_obj: 823 panthor_queue_put_syncwait_obj(queue); 824 return NULL; 825 } 826 827 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue) 828 { 829 if (IS_ERR_OR_NULL(queue)) 830 return; 831 832 if (queue->entity.fence_context) 833 drm_sched_entity_destroy(&queue->entity); 834 835 if (queue->scheduler.ops) 836 drm_sched_fini(&queue->scheduler); 837 838 panthor_queue_put_syncwait_obj(queue); 839 840 panthor_kernel_bo_destroy(queue->ringbuf); 841 panthor_kernel_bo_destroy(queue->iface.mem); 842 843 /* Release the last_fence we were holding, if any. */ 844 dma_fence_put(queue->fence_ctx.last_fence); 845 846 kfree(queue); 847 } 848 849 static void group_release_work(struct work_struct *work) 850 { 851 struct panthor_group *group = container_of(work, 852 struct panthor_group, 853 release_work); 854 u32 i; 855 856 for (i = 0; i < group->queue_count; i++) 857 group_free_queue(group, group->queues[i]); 858 859 panthor_kernel_bo_destroy(group->suspend_buf); 860 panthor_kernel_bo_destroy(group->protm_suspend_buf); 861 panthor_kernel_bo_destroy(group->syncobjs); 862 863 panthor_vm_put(group->vm); 864 kfree(group); 865 } 866 867 static void group_release(struct kref *kref) 868 { 869 struct panthor_group *group = container_of(kref, 870 struct panthor_group, 871 refcount); 872 struct panthor_device *ptdev = group->ptdev; 873 874 drm_WARN_ON(&ptdev->base, group->csg_id >= 0); 875 drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node)); 876 drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node)); 877 878 queue_work(panthor_cleanup_wq, &group->release_work); 879 } 880 881 static void group_put(struct panthor_group *group) 882 { 883 if (group) 884 kref_put(&group->refcount, group_release); 885 } 886 887 static struct panthor_group * 888 group_get(struct panthor_group *group) 889 { 890 if (group) 891 kref_get(&group->refcount); 892 893 return group; 894 } 895 896 /** 897 * group_bind_locked() - Bind a group to a group slot 898 * @group: Group. 899 * @csg_id: Slot. 900 * 901 * Return: 0 on success, a negative error code otherwise. 902 */ 903 static int 904 group_bind_locked(struct panthor_group *group, u32 csg_id) 905 { 906 struct panthor_device *ptdev = group->ptdev; 907 struct panthor_csg_slot *csg_slot; 908 int ret; 909 910 lockdep_assert_held(&ptdev->scheduler->lock); 911 912 if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS || 913 ptdev->scheduler->csg_slots[csg_id].group)) 914 return -EINVAL; 915 916 ret = panthor_vm_active(group->vm); 917 if (ret) 918 return ret; 919 920 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 921 group_get(group); 922 group->csg_id = csg_id; 923 924 /* Dummy doorbell allocation: doorbell is assigned to the group and 925 * all queues use the same doorbell. 926 * 927 * TODO: Implement LRU-based doorbell assignment, so the most often 928 * updated queues get their own doorbell, thus avoiding useless checks 929 * on queues belonging to the same group that are rarely updated. 930 */ 931 for (u32 i = 0; i < group->queue_count; i++) 932 group->queues[i]->doorbell_id = csg_id + 1; 933 934 csg_slot->group = group; 935 936 return 0; 937 } 938 939 /** 940 * group_unbind_locked() - Unbind a group from a slot. 941 * @group: Group to unbind. 942 * 943 * Return: 0 on success, a negative error code otherwise. 944 */ 945 static int 946 group_unbind_locked(struct panthor_group *group) 947 { 948 struct panthor_device *ptdev = group->ptdev; 949 struct panthor_csg_slot *slot; 950 951 lockdep_assert_held(&ptdev->scheduler->lock); 952 953 if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS)) 954 return -EINVAL; 955 956 if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE)) 957 return -EINVAL; 958 959 slot = &ptdev->scheduler->csg_slots[group->csg_id]; 960 panthor_vm_idle(group->vm); 961 group->csg_id = -1; 962 963 /* Tiler OOM events will be re-issued next time the group is scheduled. */ 964 atomic_set(&group->tiler_oom, 0); 965 cancel_work(&group->tiler_oom_work); 966 967 for (u32 i = 0; i < group->queue_count; i++) 968 group->queues[i]->doorbell_id = -1; 969 970 slot->group = NULL; 971 972 group_put(group); 973 return 0; 974 } 975 976 /** 977 * cs_slot_prog_locked() - Program a queue slot 978 * @ptdev: Device. 979 * @csg_id: Group slot ID. 980 * @cs_id: Queue slot ID. 981 * 982 * Program a queue slot with the queue information so things can start being 983 * executed on this queue. 984 * 985 * The group slot must have a group bound to it already (group_bind_locked()). 986 */ 987 static void 988 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 989 { 990 struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id]; 991 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 992 993 lockdep_assert_held(&ptdev->scheduler->lock); 994 995 queue->iface.input->extract = queue->iface.output->extract; 996 drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract); 997 998 cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf); 999 cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 1000 cs_iface->input->ringbuf_input = queue->iface.input_fw_va; 1001 cs_iface->input->ringbuf_output = queue->iface.output_fw_va; 1002 cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) | 1003 CS_CONFIG_DOORBELL(queue->doorbell_id); 1004 cs_iface->input->ack_irq_mask = ~0; 1005 panthor_fw_update_reqs(cs_iface, req, 1006 CS_IDLE_SYNC_WAIT | 1007 CS_IDLE_EMPTY | 1008 CS_STATE_START | 1009 CS_EXTRACT_EVENT, 1010 CS_IDLE_SYNC_WAIT | 1011 CS_IDLE_EMPTY | 1012 CS_STATE_MASK | 1013 CS_EXTRACT_EVENT); 1014 if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) { 1015 drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time); 1016 queue->timeout_suspended = false; 1017 } 1018 } 1019 1020 /** 1021 * cs_slot_reset_locked() - Reset a queue slot 1022 * @ptdev: Device. 1023 * @csg_id: Group slot. 1024 * @cs_id: Queue slot. 1025 * 1026 * Change the queue slot state to STOP and suspend the queue timeout if 1027 * the queue is not blocked. 1028 * 1029 * The group slot must have a group bound to it (group_bind_locked()). 1030 */ 1031 static int 1032 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1033 { 1034 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1035 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1036 struct panthor_queue *queue = group->queues[cs_id]; 1037 1038 lockdep_assert_held(&ptdev->scheduler->lock); 1039 1040 panthor_fw_update_reqs(cs_iface, req, 1041 CS_STATE_STOP, 1042 CS_STATE_MASK); 1043 1044 /* If the queue is blocked, we want to keep the timeout running, so 1045 * we can detect unbounded waits and kill the group when that happens. 1046 */ 1047 if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) { 1048 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 1049 queue->timeout_suspended = true; 1050 WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS)); 1051 } 1052 1053 return 0; 1054 } 1055 1056 /** 1057 * csg_slot_sync_priority_locked() - Synchronize the group slot priority 1058 * @ptdev: Device. 1059 * @csg_id: Group slot ID. 1060 * 1061 * Group slot priority update happens asynchronously. When we receive a 1062 * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can 1063 * reflect it to our panthor_csg_slot object. 1064 */ 1065 static void 1066 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id) 1067 { 1068 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1069 struct panthor_fw_csg_iface *csg_iface; 1070 1071 lockdep_assert_held(&ptdev->scheduler->lock); 1072 1073 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1074 csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28; 1075 } 1076 1077 /** 1078 * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority 1079 * @ptdev: Device. 1080 * @csg_id: Group slot. 1081 * @cs_id: Queue slot. 1082 * 1083 * Queue state is updated on group suspend or STATUS_UPDATE event. 1084 */ 1085 static void 1086 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1087 { 1088 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1089 struct panthor_queue *queue = group->queues[cs_id]; 1090 struct panthor_fw_cs_iface *cs_iface = 1091 panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id); 1092 1093 u32 status_wait_cond; 1094 1095 switch (cs_iface->output->status_blocked_reason) { 1096 case CS_STATUS_BLOCKED_REASON_UNBLOCKED: 1097 if (queue->iface.input->insert == queue->iface.output->extract && 1098 cs_iface->output->status_scoreboards == 0) 1099 group->idle_queues |= BIT(cs_id); 1100 break; 1101 1102 case CS_STATUS_BLOCKED_REASON_SYNC_WAIT: 1103 if (list_empty(&group->wait_node)) { 1104 list_move_tail(&group->wait_node, 1105 &group->ptdev->scheduler->groups.waiting); 1106 } 1107 1108 /* The queue is only blocked if there's no deferred operation 1109 * pending, which can be checked through the scoreboard status. 1110 */ 1111 if (!cs_iface->output->status_scoreboards) 1112 group->blocked_queues |= BIT(cs_id); 1113 1114 queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr; 1115 queue->syncwait.ref = cs_iface->output->status_wait_sync_value; 1116 status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK; 1117 queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT; 1118 if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) { 1119 u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi; 1120 1121 queue->syncwait.sync64 = true; 1122 queue->syncwait.ref |= sync_val_hi << 32; 1123 } else { 1124 queue->syncwait.sync64 = false; 1125 } 1126 break; 1127 1128 default: 1129 /* Other reasons are not blocking. Consider the queue as runnable 1130 * in those cases. 1131 */ 1132 break; 1133 } 1134 } 1135 1136 static void 1137 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id) 1138 { 1139 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1140 struct panthor_group *group = csg_slot->group; 1141 u32 i; 1142 1143 lockdep_assert_held(&ptdev->scheduler->lock); 1144 1145 group->idle_queues = 0; 1146 group->blocked_queues = 0; 1147 1148 for (i = 0; i < group->queue_count; i++) { 1149 if (group->queues[i]) 1150 cs_slot_sync_queue_state_locked(ptdev, csg_id, i); 1151 } 1152 } 1153 1154 static void 1155 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id) 1156 { 1157 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1158 struct panthor_fw_csg_iface *csg_iface; 1159 struct panthor_group *group; 1160 enum panthor_group_state new_state, old_state; 1161 u32 csg_state; 1162 1163 lockdep_assert_held(&ptdev->scheduler->lock); 1164 1165 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1166 group = csg_slot->group; 1167 1168 if (!group) 1169 return; 1170 1171 old_state = group->state; 1172 csg_state = csg_iface->output->ack & CSG_STATE_MASK; 1173 switch (csg_state) { 1174 case CSG_STATE_START: 1175 case CSG_STATE_RESUME: 1176 new_state = PANTHOR_CS_GROUP_ACTIVE; 1177 break; 1178 case CSG_STATE_TERMINATE: 1179 new_state = PANTHOR_CS_GROUP_TERMINATED; 1180 break; 1181 case CSG_STATE_SUSPEND: 1182 new_state = PANTHOR_CS_GROUP_SUSPENDED; 1183 break; 1184 default: 1185 /* The unknown state might be caused by a FW state corruption, 1186 * which means the group metadata can't be trusted anymore, and 1187 * the SUSPEND operation might propagate the corruption to the 1188 * suspend buffers. Flag the group state as unknown to make 1189 * sure it's unusable after that point. 1190 */ 1191 drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)", 1192 csg_id, csg_state); 1193 new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE; 1194 break; 1195 } 1196 1197 if (old_state == new_state) 1198 return; 1199 1200 /* The unknown state might be caused by a FW issue, reset the FW to 1201 * take a fresh start. 1202 */ 1203 if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE) 1204 panthor_device_schedule_reset(ptdev); 1205 1206 if (new_state == PANTHOR_CS_GROUP_SUSPENDED) 1207 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1208 1209 if (old_state == PANTHOR_CS_GROUP_ACTIVE) { 1210 u32 i; 1211 1212 /* Reset the queue slots so we start from a clean 1213 * state when starting/resuming a new group on this 1214 * CSG slot. No wait needed here, and no ringbell 1215 * either, since the CS slot will only be re-used 1216 * on the next CSG start operation. 1217 */ 1218 for (i = 0; i < group->queue_count; i++) { 1219 if (group->queues[i]) 1220 cs_slot_reset_locked(ptdev, csg_id, i); 1221 } 1222 } 1223 1224 group->state = new_state; 1225 } 1226 1227 static int 1228 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority) 1229 { 1230 struct panthor_fw_csg_iface *csg_iface; 1231 struct panthor_csg_slot *csg_slot; 1232 struct panthor_group *group; 1233 u32 queue_mask = 0, i; 1234 1235 lockdep_assert_held(&ptdev->scheduler->lock); 1236 1237 if (priority > MAX_CSG_PRIO) 1238 return -EINVAL; 1239 1240 if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS)) 1241 return -EINVAL; 1242 1243 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1244 group = csg_slot->group; 1245 if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE) 1246 return 0; 1247 1248 csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id); 1249 1250 for (i = 0; i < group->queue_count; i++) { 1251 if (group->queues[i]) { 1252 cs_slot_prog_locked(ptdev, csg_id, i); 1253 queue_mask |= BIT(i); 1254 } 1255 } 1256 1257 csg_iface->input->allow_compute = group->compute_core_mask; 1258 csg_iface->input->allow_fragment = group->fragment_core_mask; 1259 csg_iface->input->allow_other = group->tiler_core_mask; 1260 csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) | 1261 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) | 1262 CSG_EP_REQ_TILER(group->max_tiler_cores) | 1263 CSG_EP_REQ_PRIORITY(priority); 1264 csg_iface->input->config = panthor_vm_as(group->vm); 1265 1266 if (group->suspend_buf) 1267 csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf); 1268 else 1269 csg_iface->input->suspend_buf = 0; 1270 1271 if (group->protm_suspend_buf) { 1272 csg_iface->input->protm_suspend_buf = 1273 panthor_kernel_bo_gpuva(group->protm_suspend_buf); 1274 } else { 1275 csg_iface->input->protm_suspend_buf = 0; 1276 } 1277 1278 csg_iface->input->ack_irq_mask = ~0; 1279 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask); 1280 return 0; 1281 } 1282 1283 static void 1284 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev, 1285 u32 csg_id, u32 cs_id) 1286 { 1287 struct panthor_scheduler *sched = ptdev->scheduler; 1288 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1289 struct panthor_group *group = csg_slot->group; 1290 struct panthor_fw_cs_iface *cs_iface; 1291 u32 fatal; 1292 u64 info; 1293 1294 lockdep_assert_held(&sched->lock); 1295 1296 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1297 fatal = cs_iface->output->fatal; 1298 info = cs_iface->output->fatal_info; 1299 1300 if (group) 1301 group->fatal_queues |= BIT(cs_id); 1302 1303 if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) { 1304 /* If this exception is unrecoverable, queue a reset, and make 1305 * sure we stop scheduling groups until the reset has happened. 1306 */ 1307 panthor_device_schedule_reset(ptdev); 1308 cancel_delayed_work(&sched->tick_work); 1309 } else { 1310 sched_queue_delayed_work(sched, tick, 0); 1311 } 1312 1313 drm_warn(&ptdev->base, 1314 "CSG slot %d CS slot: %d\n" 1315 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n" 1316 "CS_FATAL.EXCEPTION_DATA: 0x%x\n" 1317 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n", 1318 csg_id, cs_id, 1319 (unsigned int)CS_EXCEPTION_TYPE(fatal), 1320 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)), 1321 (unsigned int)CS_EXCEPTION_DATA(fatal), 1322 info); 1323 } 1324 1325 static void 1326 cs_slot_process_fault_event_locked(struct panthor_device *ptdev, 1327 u32 csg_id, u32 cs_id) 1328 { 1329 struct panthor_scheduler *sched = ptdev->scheduler; 1330 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1331 struct panthor_group *group = csg_slot->group; 1332 struct panthor_queue *queue = group && cs_id < group->queue_count ? 1333 group->queues[cs_id] : NULL; 1334 struct panthor_fw_cs_iface *cs_iface; 1335 u32 fault; 1336 u64 info; 1337 1338 lockdep_assert_held(&sched->lock); 1339 1340 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1341 fault = cs_iface->output->fault; 1342 info = cs_iface->output->fault_info; 1343 1344 if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) { 1345 u64 cs_extract = queue->iface.output->extract; 1346 struct panthor_job *job; 1347 1348 spin_lock(&queue->fence_ctx.lock); 1349 list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) { 1350 if (cs_extract >= job->ringbuf.end) 1351 continue; 1352 1353 if (cs_extract < job->ringbuf.start) 1354 break; 1355 1356 dma_fence_set_error(job->done_fence, -EINVAL); 1357 } 1358 spin_unlock(&queue->fence_ctx.lock); 1359 } 1360 1361 drm_warn(&ptdev->base, 1362 "CSG slot %d CS slot: %d\n" 1363 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n" 1364 "CS_FAULT.EXCEPTION_DATA: 0x%x\n" 1365 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n", 1366 csg_id, cs_id, 1367 (unsigned int)CS_EXCEPTION_TYPE(fault), 1368 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)), 1369 (unsigned int)CS_EXCEPTION_DATA(fault), 1370 info); 1371 } 1372 1373 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id) 1374 { 1375 struct panthor_device *ptdev = group->ptdev; 1376 struct panthor_scheduler *sched = ptdev->scheduler; 1377 u32 renderpasses_in_flight, pending_frag_count; 1378 struct panthor_heap_pool *heaps = NULL; 1379 u64 heap_address, new_chunk_va = 0; 1380 u32 vt_start, vt_end, frag_end; 1381 int ret, csg_id; 1382 1383 mutex_lock(&sched->lock); 1384 csg_id = group->csg_id; 1385 if (csg_id >= 0) { 1386 struct panthor_fw_cs_iface *cs_iface; 1387 1388 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1389 heaps = panthor_vm_get_heap_pool(group->vm, false); 1390 heap_address = cs_iface->output->heap_address; 1391 vt_start = cs_iface->output->heap_vt_start; 1392 vt_end = cs_iface->output->heap_vt_end; 1393 frag_end = cs_iface->output->heap_frag_end; 1394 renderpasses_in_flight = vt_start - frag_end; 1395 pending_frag_count = vt_end - frag_end; 1396 } 1397 mutex_unlock(&sched->lock); 1398 1399 /* The group got scheduled out, we stop here. We will get a new tiler OOM event 1400 * when it's scheduled again. 1401 */ 1402 if (unlikely(csg_id < 0)) 1403 return 0; 1404 1405 if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) { 1406 ret = -EINVAL; 1407 } else { 1408 /* We do the allocation without holding the scheduler lock to avoid 1409 * blocking the scheduling. 1410 */ 1411 ret = panthor_heap_grow(heaps, heap_address, 1412 renderpasses_in_flight, 1413 pending_frag_count, &new_chunk_va); 1414 } 1415 1416 /* If the heap context doesn't have memory for us, we want to let the 1417 * FW try to reclaim memory by waiting for fragment jobs to land or by 1418 * executing the tiler OOM exception handler, which is supposed to 1419 * implement incremental rendering. 1420 */ 1421 if (ret && ret != -ENOMEM) { 1422 drm_warn(&ptdev->base, "Failed to extend the tiler heap\n"); 1423 group->fatal_queues |= BIT(cs_id); 1424 sched_queue_delayed_work(sched, tick, 0); 1425 goto out_put_heap_pool; 1426 } 1427 1428 mutex_lock(&sched->lock); 1429 csg_id = group->csg_id; 1430 if (csg_id >= 0) { 1431 struct panthor_fw_csg_iface *csg_iface; 1432 struct panthor_fw_cs_iface *cs_iface; 1433 1434 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1435 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1436 1437 cs_iface->input->heap_start = new_chunk_va; 1438 cs_iface->input->heap_end = new_chunk_va; 1439 panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM); 1440 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id)); 1441 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1442 } 1443 mutex_unlock(&sched->lock); 1444 1445 /* We allocated a chunck, but couldn't link it to the heap 1446 * context because the group was scheduled out while we were 1447 * allocating memory. We need to return this chunk to the heap. 1448 */ 1449 if (unlikely(csg_id < 0 && new_chunk_va)) 1450 panthor_heap_return_chunk(heaps, heap_address, new_chunk_va); 1451 1452 ret = 0; 1453 1454 out_put_heap_pool: 1455 panthor_heap_pool_put(heaps); 1456 return ret; 1457 } 1458 1459 static void group_tiler_oom_work(struct work_struct *work) 1460 { 1461 struct panthor_group *group = 1462 container_of(work, struct panthor_group, tiler_oom_work); 1463 u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0); 1464 1465 while (tiler_oom) { 1466 u32 cs_id = ffs(tiler_oom) - 1; 1467 1468 group_process_tiler_oom(group, cs_id); 1469 tiler_oom &= ~BIT(cs_id); 1470 } 1471 1472 group_put(group); 1473 } 1474 1475 static void 1476 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev, 1477 u32 csg_id, u32 cs_id) 1478 { 1479 struct panthor_scheduler *sched = ptdev->scheduler; 1480 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1481 struct panthor_group *group = csg_slot->group; 1482 1483 lockdep_assert_held(&sched->lock); 1484 1485 if (drm_WARN_ON(&ptdev->base, !group)) 1486 return; 1487 1488 atomic_or(BIT(cs_id), &group->tiler_oom); 1489 1490 /* We don't use group_queue_work() here because we want to queue the 1491 * work item to the heap_alloc_wq. 1492 */ 1493 group_get(group); 1494 if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work)) 1495 group_put(group); 1496 } 1497 1498 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev, 1499 u32 csg_id, u32 cs_id) 1500 { 1501 struct panthor_fw_cs_iface *cs_iface; 1502 u32 req, ack, events; 1503 1504 lockdep_assert_held(&ptdev->scheduler->lock); 1505 1506 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1507 req = cs_iface->input->req; 1508 ack = cs_iface->output->ack; 1509 events = (req ^ ack) & CS_EVT_MASK; 1510 1511 if (events & CS_FATAL) 1512 cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id); 1513 1514 if (events & CS_FAULT) 1515 cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id); 1516 1517 if (events & CS_TILER_OOM) 1518 cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id); 1519 1520 /* We don't acknowledge the TILER_OOM event since its handling is 1521 * deferred to a separate work. 1522 */ 1523 panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT); 1524 1525 return (events & (CS_FAULT | CS_TILER_OOM)) != 0; 1526 } 1527 1528 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id) 1529 { 1530 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1531 struct panthor_fw_csg_iface *csg_iface; 1532 1533 lockdep_assert_held(&ptdev->scheduler->lock); 1534 1535 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1536 csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE; 1537 } 1538 1539 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id) 1540 { 1541 struct panthor_scheduler *sched = ptdev->scheduler; 1542 1543 lockdep_assert_held(&sched->lock); 1544 1545 sched->might_have_idle_groups = true; 1546 1547 /* Schedule a tick so we can evict idle groups and schedule non-idle 1548 * ones. This will also update runtime PM and devfreq busy/idle states, 1549 * so the device can lower its frequency or get suspended. 1550 */ 1551 sched_queue_delayed_work(sched, tick, 0); 1552 } 1553 1554 static void csg_slot_sync_update_locked(struct panthor_device *ptdev, 1555 u32 csg_id) 1556 { 1557 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1558 struct panthor_group *group = csg_slot->group; 1559 1560 lockdep_assert_held(&ptdev->scheduler->lock); 1561 1562 if (group) 1563 group_queue_work(group, sync_upd); 1564 1565 sched_queue_work(ptdev->scheduler, sync_upd); 1566 } 1567 1568 static void 1569 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id) 1570 { 1571 struct panthor_scheduler *sched = ptdev->scheduler; 1572 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1573 struct panthor_group *group = csg_slot->group; 1574 1575 lockdep_assert_held(&sched->lock); 1576 1577 drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id); 1578 1579 group = csg_slot->group; 1580 if (!drm_WARN_ON(&ptdev->base, !group)) 1581 group->timedout = true; 1582 1583 sched_queue_delayed_work(sched, tick, 0); 1584 } 1585 1586 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id) 1587 { 1588 u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events; 1589 struct panthor_fw_csg_iface *csg_iface; 1590 u32 ring_cs_db_mask = 0; 1591 1592 lockdep_assert_held(&ptdev->scheduler->lock); 1593 1594 if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1595 return; 1596 1597 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1598 req = READ_ONCE(csg_iface->input->req); 1599 ack = READ_ONCE(csg_iface->output->ack); 1600 cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req); 1601 cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack); 1602 csg_events = (req ^ ack) & CSG_EVT_MASK; 1603 1604 /* There may not be any pending CSG/CS interrupts to process */ 1605 if (req == ack && cs_irq_req == cs_irq_ack) 1606 return; 1607 1608 /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before 1609 * examining the CS_ACK & CS_REQ bits. This would ensure that Host 1610 * doesn't miss an interrupt for the CS in the race scenario where 1611 * whilst Host is servicing an interrupt for the CS, firmware sends 1612 * another interrupt for that CS. 1613 */ 1614 csg_iface->input->cs_irq_ack = cs_irq_req; 1615 1616 panthor_fw_update_reqs(csg_iface, req, ack, 1617 CSG_SYNC_UPDATE | 1618 CSG_IDLE | 1619 CSG_PROGRESS_TIMER_EVENT); 1620 1621 if (csg_events & CSG_IDLE) 1622 csg_slot_process_idle_event_locked(ptdev, csg_id); 1623 1624 if (csg_events & CSG_PROGRESS_TIMER_EVENT) 1625 csg_slot_process_progress_timer_event_locked(ptdev, csg_id); 1626 1627 cs_irqs = cs_irq_req ^ cs_irq_ack; 1628 while (cs_irqs) { 1629 u32 cs_id = ffs(cs_irqs) - 1; 1630 1631 if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id)) 1632 ring_cs_db_mask |= BIT(cs_id); 1633 1634 cs_irqs &= ~BIT(cs_id); 1635 } 1636 1637 if (csg_events & CSG_SYNC_UPDATE) 1638 csg_slot_sync_update_locked(ptdev, csg_id); 1639 1640 if (ring_cs_db_mask) 1641 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask); 1642 1643 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1644 } 1645 1646 static void sched_process_idle_event_locked(struct panthor_device *ptdev) 1647 { 1648 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1649 1650 lockdep_assert_held(&ptdev->scheduler->lock); 1651 1652 /* Acknowledge the idle event and schedule a tick. */ 1653 panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE); 1654 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 1655 } 1656 1657 /** 1658 * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ 1659 * @ptdev: Device. 1660 */ 1661 static void sched_process_global_irq_locked(struct panthor_device *ptdev) 1662 { 1663 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1664 u32 req, ack, evts; 1665 1666 lockdep_assert_held(&ptdev->scheduler->lock); 1667 1668 req = READ_ONCE(glb_iface->input->req); 1669 ack = READ_ONCE(glb_iface->output->ack); 1670 evts = (req ^ ack) & GLB_EVT_MASK; 1671 1672 if (evts & GLB_IDLE) 1673 sched_process_idle_event_locked(ptdev); 1674 } 1675 1676 static void process_fw_events_work(struct work_struct *work) 1677 { 1678 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 1679 fw_events_work); 1680 u32 events = atomic_xchg(&sched->fw_events, 0); 1681 struct panthor_device *ptdev = sched->ptdev; 1682 1683 mutex_lock(&sched->lock); 1684 1685 if (events & JOB_INT_GLOBAL_IF) { 1686 sched_process_global_irq_locked(ptdev); 1687 events &= ~JOB_INT_GLOBAL_IF; 1688 } 1689 1690 while (events) { 1691 u32 csg_id = ffs(events) - 1; 1692 1693 sched_process_csg_irq_locked(ptdev, csg_id); 1694 events &= ~BIT(csg_id); 1695 } 1696 1697 mutex_unlock(&sched->lock); 1698 } 1699 1700 /** 1701 * panthor_sched_report_fw_events() - Report FW events to the scheduler. 1702 */ 1703 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events) 1704 { 1705 if (!ptdev->scheduler) 1706 return; 1707 1708 atomic_or(events, &ptdev->scheduler->fw_events); 1709 sched_queue_work(ptdev->scheduler, fw_events); 1710 } 1711 1712 static const char *fence_get_driver_name(struct dma_fence *fence) 1713 { 1714 return "panthor"; 1715 } 1716 1717 static const char *queue_fence_get_timeline_name(struct dma_fence *fence) 1718 { 1719 return "queue-fence"; 1720 } 1721 1722 static const struct dma_fence_ops panthor_queue_fence_ops = { 1723 .get_driver_name = fence_get_driver_name, 1724 .get_timeline_name = queue_fence_get_timeline_name, 1725 }; 1726 1727 struct panthor_csg_slots_upd_ctx { 1728 u32 update_mask; 1729 u32 timedout_mask; 1730 struct { 1731 u32 value; 1732 u32 mask; 1733 } requests[MAX_CSGS]; 1734 }; 1735 1736 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx) 1737 { 1738 memset(ctx, 0, sizeof(*ctx)); 1739 } 1740 1741 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev, 1742 struct panthor_csg_slots_upd_ctx *ctx, 1743 u32 csg_id, u32 value, u32 mask) 1744 { 1745 if (drm_WARN_ON(&ptdev->base, !mask) || 1746 drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1747 return; 1748 1749 ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask); 1750 ctx->requests[csg_id].mask |= mask; 1751 ctx->update_mask |= BIT(csg_id); 1752 } 1753 1754 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev, 1755 struct panthor_csg_slots_upd_ctx *ctx) 1756 { 1757 struct panthor_scheduler *sched = ptdev->scheduler; 1758 u32 update_slots = ctx->update_mask; 1759 1760 lockdep_assert_held(&sched->lock); 1761 1762 if (!ctx->update_mask) 1763 return 0; 1764 1765 while (update_slots) { 1766 struct panthor_fw_csg_iface *csg_iface; 1767 u32 csg_id = ffs(update_slots) - 1; 1768 1769 update_slots &= ~BIT(csg_id); 1770 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1771 panthor_fw_update_reqs(csg_iface, req, 1772 ctx->requests[csg_id].value, 1773 ctx->requests[csg_id].mask); 1774 } 1775 1776 panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask); 1777 1778 update_slots = ctx->update_mask; 1779 while (update_slots) { 1780 struct panthor_fw_csg_iface *csg_iface; 1781 u32 csg_id = ffs(update_slots) - 1; 1782 u32 req_mask = ctx->requests[csg_id].mask, acked; 1783 int ret; 1784 1785 update_slots &= ~BIT(csg_id); 1786 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1787 1788 ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100); 1789 1790 if (acked & CSG_ENDPOINT_CONFIG) 1791 csg_slot_sync_priority_locked(ptdev, csg_id); 1792 1793 if (acked & CSG_STATE_MASK) 1794 csg_slot_sync_state_locked(ptdev, csg_id); 1795 1796 if (acked & CSG_STATUS_UPDATE) { 1797 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1798 csg_slot_sync_idle_state_locked(ptdev, csg_id); 1799 } 1800 1801 if (ret && acked != req_mask && 1802 ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) { 1803 drm_err(&ptdev->base, "CSG %d update request timedout", csg_id); 1804 ctx->timedout_mask |= BIT(csg_id); 1805 } 1806 } 1807 1808 if (ctx->timedout_mask) 1809 return -ETIMEDOUT; 1810 1811 return 0; 1812 } 1813 1814 struct panthor_sched_tick_ctx { 1815 struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT]; 1816 struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT]; 1817 u32 idle_group_count; 1818 u32 group_count; 1819 enum panthor_csg_priority min_priority; 1820 struct panthor_vm *vms[MAX_CS_PER_CSG]; 1821 u32 as_count; 1822 bool immediate_tick; 1823 u32 csg_upd_failed_mask; 1824 }; 1825 1826 static bool 1827 tick_ctx_is_full(const struct panthor_scheduler *sched, 1828 const struct panthor_sched_tick_ctx *ctx) 1829 { 1830 return ctx->group_count == sched->csg_slot_count; 1831 } 1832 1833 static bool 1834 group_is_idle(struct panthor_group *group) 1835 { 1836 struct panthor_device *ptdev = group->ptdev; 1837 u32 inactive_queues; 1838 1839 if (group->csg_id >= 0) 1840 return ptdev->scheduler->csg_slots[group->csg_id].idle; 1841 1842 inactive_queues = group->idle_queues | group->blocked_queues; 1843 return hweight32(inactive_queues) == group->queue_count; 1844 } 1845 1846 static bool 1847 group_can_run(struct panthor_group *group) 1848 { 1849 return group->state != PANTHOR_CS_GROUP_TERMINATED && 1850 group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE && 1851 !group->destroyed && group->fatal_queues == 0 && 1852 !group->timedout; 1853 } 1854 1855 static void 1856 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched, 1857 struct panthor_sched_tick_ctx *ctx, 1858 struct list_head *queue, 1859 bool skip_idle_groups, 1860 bool owned_by_tick_ctx) 1861 { 1862 struct panthor_group *group, *tmp; 1863 1864 if (tick_ctx_is_full(sched, ctx)) 1865 return; 1866 1867 list_for_each_entry_safe(group, tmp, queue, run_node) { 1868 u32 i; 1869 1870 if (!group_can_run(group)) 1871 continue; 1872 1873 if (skip_idle_groups && group_is_idle(group)) 1874 continue; 1875 1876 for (i = 0; i < ctx->as_count; i++) { 1877 if (ctx->vms[i] == group->vm) 1878 break; 1879 } 1880 1881 if (i == ctx->as_count && ctx->as_count == sched->as_slot_count) 1882 continue; 1883 1884 if (!owned_by_tick_ctx) 1885 group_get(group); 1886 1887 list_move_tail(&group->run_node, &ctx->groups[group->priority]); 1888 ctx->group_count++; 1889 if (group_is_idle(group)) 1890 ctx->idle_group_count++; 1891 1892 if (i == ctx->as_count) 1893 ctx->vms[ctx->as_count++] = group->vm; 1894 1895 if (ctx->min_priority > group->priority) 1896 ctx->min_priority = group->priority; 1897 1898 if (tick_ctx_is_full(sched, ctx)) 1899 return; 1900 } 1901 } 1902 1903 static void 1904 tick_ctx_insert_old_group(struct panthor_scheduler *sched, 1905 struct panthor_sched_tick_ctx *ctx, 1906 struct panthor_group *group, 1907 bool full_tick) 1908 { 1909 struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id]; 1910 struct panthor_group *other_group; 1911 1912 if (!full_tick) { 1913 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1914 return; 1915 } 1916 1917 /* Rotate to make sure groups with lower CSG slot 1918 * priorities have a chance to get a higher CSG slot 1919 * priority next time they get picked. This priority 1920 * has an impact on resource request ordering, so it's 1921 * important to make sure we don't let one group starve 1922 * all other groups with the same group priority. 1923 */ 1924 list_for_each_entry(other_group, 1925 &ctx->old_groups[csg_slot->group->priority], 1926 run_node) { 1927 struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id]; 1928 1929 if (other_csg_slot->priority > csg_slot->priority) { 1930 list_add_tail(&csg_slot->group->run_node, &other_group->run_node); 1931 return; 1932 } 1933 } 1934 1935 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1936 } 1937 1938 static void 1939 tick_ctx_init(struct panthor_scheduler *sched, 1940 struct panthor_sched_tick_ctx *ctx, 1941 bool full_tick) 1942 { 1943 struct panthor_device *ptdev = sched->ptdev; 1944 struct panthor_csg_slots_upd_ctx upd_ctx; 1945 int ret; 1946 u32 i; 1947 1948 memset(ctx, 0, sizeof(*ctx)); 1949 csgs_upd_ctx_init(&upd_ctx); 1950 1951 ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT; 1952 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 1953 INIT_LIST_HEAD(&ctx->groups[i]); 1954 INIT_LIST_HEAD(&ctx->old_groups[i]); 1955 } 1956 1957 for (i = 0; i < sched->csg_slot_count; i++) { 1958 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 1959 struct panthor_group *group = csg_slot->group; 1960 struct panthor_fw_csg_iface *csg_iface; 1961 1962 if (!group) 1963 continue; 1964 1965 csg_iface = panthor_fw_get_csg_iface(ptdev, i); 1966 group_get(group); 1967 1968 /* If there was unhandled faults on the VM, force processing of 1969 * CSG IRQs, so we can flag the faulty queue. 1970 */ 1971 if (panthor_vm_has_unhandled_faults(group->vm)) { 1972 sched_process_csg_irq_locked(ptdev, i); 1973 1974 /* No fatal fault reported, flag all queues as faulty. */ 1975 if (!group->fatal_queues) 1976 group->fatal_queues |= GENMASK(group->queue_count - 1, 0); 1977 } 1978 1979 tick_ctx_insert_old_group(sched, ctx, group, full_tick); 1980 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 1981 csg_iface->output->ack ^ CSG_STATUS_UPDATE, 1982 CSG_STATUS_UPDATE); 1983 } 1984 1985 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 1986 if (ret) { 1987 panthor_device_schedule_reset(ptdev); 1988 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 1989 } 1990 } 1991 1992 #define NUM_INSTRS_PER_SLOT 16 1993 1994 static void 1995 group_term_post_processing(struct panthor_group *group) 1996 { 1997 struct panthor_job *job, *tmp; 1998 LIST_HEAD(faulty_jobs); 1999 bool cookie; 2000 u32 i = 0; 2001 2002 if (drm_WARN_ON(&group->ptdev->base, group_can_run(group))) 2003 return; 2004 2005 cookie = dma_fence_begin_signalling(); 2006 for (i = 0; i < group->queue_count; i++) { 2007 struct panthor_queue *queue = group->queues[i]; 2008 struct panthor_syncobj_64b *syncobj; 2009 int err; 2010 2011 if (group->fatal_queues & BIT(i)) 2012 err = -EINVAL; 2013 else if (group->timedout) 2014 err = -ETIMEDOUT; 2015 else 2016 err = -ECANCELED; 2017 2018 if (!queue) 2019 continue; 2020 2021 spin_lock(&queue->fence_ctx.lock); 2022 list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) { 2023 list_move_tail(&job->node, &faulty_jobs); 2024 dma_fence_set_error(job->done_fence, err); 2025 dma_fence_signal_locked(job->done_fence); 2026 } 2027 spin_unlock(&queue->fence_ctx.lock); 2028 2029 /* Manually update the syncobj seqno to unblock waiters. */ 2030 syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj)); 2031 syncobj->status = ~0; 2032 syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno); 2033 sched_queue_work(group->ptdev->scheduler, sync_upd); 2034 } 2035 dma_fence_end_signalling(cookie); 2036 2037 list_for_each_entry_safe(job, tmp, &faulty_jobs, node) { 2038 list_del_init(&job->node); 2039 panthor_job_put(&job->base); 2040 } 2041 } 2042 2043 static void group_term_work(struct work_struct *work) 2044 { 2045 struct panthor_group *group = 2046 container_of(work, struct panthor_group, term_work); 2047 2048 group_term_post_processing(group); 2049 group_put(group); 2050 } 2051 2052 static void 2053 tick_ctx_cleanup(struct panthor_scheduler *sched, 2054 struct panthor_sched_tick_ctx *ctx) 2055 { 2056 struct panthor_device *ptdev = sched->ptdev; 2057 struct panthor_group *group, *tmp; 2058 u32 i; 2059 2060 for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) { 2061 list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) { 2062 /* If everything went fine, we should only have groups 2063 * to be terminated in the old_groups lists. 2064 */ 2065 drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask && 2066 group_can_run(group)); 2067 2068 if (!group_can_run(group)) { 2069 list_del_init(&group->run_node); 2070 list_del_init(&group->wait_node); 2071 group_queue_work(group, term); 2072 } else if (group->csg_id >= 0) { 2073 list_del_init(&group->run_node); 2074 } else { 2075 list_move(&group->run_node, 2076 group_is_idle(group) ? 2077 &sched->groups.idle[group->priority] : 2078 &sched->groups.runnable[group->priority]); 2079 } 2080 group_put(group); 2081 } 2082 } 2083 2084 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 2085 /* If everything went fine, the groups to schedule lists should 2086 * be empty. 2087 */ 2088 drm_WARN_ON(&ptdev->base, 2089 !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i])); 2090 2091 list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) { 2092 if (group->csg_id >= 0) { 2093 list_del_init(&group->run_node); 2094 } else { 2095 list_move(&group->run_node, 2096 group_is_idle(group) ? 2097 &sched->groups.idle[group->priority] : 2098 &sched->groups.runnable[group->priority]); 2099 } 2100 group_put(group); 2101 } 2102 } 2103 } 2104 2105 static void 2106 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx) 2107 { 2108 struct panthor_group *group, *tmp; 2109 struct panthor_device *ptdev = sched->ptdev; 2110 struct panthor_csg_slot *csg_slot; 2111 int prio, new_csg_prio = MAX_CSG_PRIO, i; 2112 u32 free_csg_slots = 0; 2113 struct panthor_csg_slots_upd_ctx upd_ctx; 2114 int ret; 2115 2116 csgs_upd_ctx_init(&upd_ctx); 2117 2118 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2119 /* Suspend or terminate evicted groups. */ 2120 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2121 bool term = !group_can_run(group); 2122 int csg_id = group->csg_id; 2123 2124 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2125 continue; 2126 2127 csg_slot = &sched->csg_slots[csg_id]; 2128 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2129 term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND, 2130 CSG_STATE_MASK); 2131 } 2132 2133 /* Update priorities on already running groups. */ 2134 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2135 struct panthor_fw_csg_iface *csg_iface; 2136 int csg_id = group->csg_id; 2137 2138 if (csg_id < 0) { 2139 new_csg_prio--; 2140 continue; 2141 } 2142 2143 csg_slot = &sched->csg_slots[csg_id]; 2144 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2145 if (csg_slot->priority == new_csg_prio) { 2146 new_csg_prio--; 2147 continue; 2148 } 2149 2150 panthor_fw_update_reqs(csg_iface, endpoint_req, 2151 CSG_EP_REQ_PRIORITY(new_csg_prio), 2152 CSG_EP_REQ_PRIORITY_MASK); 2153 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2154 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2155 CSG_ENDPOINT_CONFIG); 2156 new_csg_prio--; 2157 } 2158 } 2159 2160 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2161 if (ret) { 2162 panthor_device_schedule_reset(ptdev); 2163 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2164 return; 2165 } 2166 2167 /* Unbind evicted groups. */ 2168 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2169 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2170 /* This group is gone. Process interrupts to clear 2171 * any pending interrupts before we start the new 2172 * group. 2173 */ 2174 if (group->csg_id >= 0) 2175 sched_process_csg_irq_locked(ptdev, group->csg_id); 2176 2177 group_unbind_locked(group); 2178 } 2179 } 2180 2181 for (i = 0; i < sched->csg_slot_count; i++) { 2182 if (!sched->csg_slots[i].group) 2183 free_csg_slots |= BIT(i); 2184 } 2185 2186 csgs_upd_ctx_init(&upd_ctx); 2187 new_csg_prio = MAX_CSG_PRIO; 2188 2189 /* Start new groups. */ 2190 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2191 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2192 int csg_id = group->csg_id; 2193 struct panthor_fw_csg_iface *csg_iface; 2194 2195 if (csg_id >= 0) { 2196 new_csg_prio--; 2197 continue; 2198 } 2199 2200 csg_id = ffs(free_csg_slots) - 1; 2201 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2202 break; 2203 2204 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2205 csg_slot = &sched->csg_slots[csg_id]; 2206 group_bind_locked(group, csg_id); 2207 csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--); 2208 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2209 group->state == PANTHOR_CS_GROUP_SUSPENDED ? 2210 CSG_STATE_RESUME : CSG_STATE_START, 2211 CSG_STATE_MASK); 2212 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2213 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2214 CSG_ENDPOINT_CONFIG); 2215 free_csg_slots &= ~BIT(csg_id); 2216 } 2217 } 2218 2219 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2220 if (ret) { 2221 panthor_device_schedule_reset(ptdev); 2222 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2223 return; 2224 } 2225 2226 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2227 list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) { 2228 list_del_init(&group->run_node); 2229 2230 /* If the group has been destroyed while we were 2231 * scheduling, ask for an immediate tick to 2232 * re-evaluate as soon as possible and get rid of 2233 * this dangling group. 2234 */ 2235 if (group->destroyed) 2236 ctx->immediate_tick = true; 2237 group_put(group); 2238 } 2239 2240 /* Return evicted groups to the idle or run queues. Groups 2241 * that can no longer be run (because they've been destroyed 2242 * or experienced an unrecoverable error) will be scheduled 2243 * for destruction in tick_ctx_cleanup(). 2244 */ 2245 list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) { 2246 if (!group_can_run(group)) 2247 continue; 2248 2249 if (group_is_idle(group)) 2250 list_move_tail(&group->run_node, &sched->groups.idle[prio]); 2251 else 2252 list_move_tail(&group->run_node, &sched->groups.runnable[prio]); 2253 group_put(group); 2254 } 2255 } 2256 2257 sched->used_csg_slot_count = ctx->group_count; 2258 sched->might_have_idle_groups = ctx->idle_group_count > 0; 2259 } 2260 2261 static u64 2262 tick_ctx_update_resched_target(struct panthor_scheduler *sched, 2263 const struct panthor_sched_tick_ctx *ctx) 2264 { 2265 /* We had space left, no need to reschedule until some external event happens. */ 2266 if (!tick_ctx_is_full(sched, ctx)) 2267 goto no_tick; 2268 2269 /* If idle groups were scheduled, no need to wake up until some external 2270 * event happens (group unblocked, new job submitted, ...). 2271 */ 2272 if (ctx->idle_group_count) 2273 goto no_tick; 2274 2275 if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT)) 2276 goto no_tick; 2277 2278 /* If there are groups of the same priority waiting, we need to 2279 * keep the scheduler ticking, otherwise, we'll just wait for 2280 * new groups with higher priority to be queued. 2281 */ 2282 if (!list_empty(&sched->groups.runnable[ctx->min_priority])) { 2283 u64 resched_target = sched->last_tick + sched->tick_period; 2284 2285 if (time_before64(sched->resched_target, sched->last_tick) || 2286 time_before64(resched_target, sched->resched_target)) 2287 sched->resched_target = resched_target; 2288 2289 return sched->resched_target - sched->last_tick; 2290 } 2291 2292 no_tick: 2293 sched->resched_target = U64_MAX; 2294 return U64_MAX; 2295 } 2296 2297 static void tick_work(struct work_struct *work) 2298 { 2299 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 2300 tick_work.work); 2301 struct panthor_device *ptdev = sched->ptdev; 2302 struct panthor_sched_tick_ctx ctx; 2303 u64 remaining_jiffies = 0, resched_delay; 2304 u64 now = get_jiffies_64(); 2305 int prio, ret, cookie; 2306 2307 if (!drm_dev_enter(&ptdev->base, &cookie)) 2308 return; 2309 2310 ret = pm_runtime_resume_and_get(ptdev->base.dev); 2311 if (drm_WARN_ON(&ptdev->base, ret)) 2312 goto out_dev_exit; 2313 2314 if (time_before64(now, sched->resched_target)) 2315 remaining_jiffies = sched->resched_target - now; 2316 2317 mutex_lock(&sched->lock); 2318 if (panthor_device_reset_is_pending(sched->ptdev)) 2319 goto out_unlock; 2320 2321 tick_ctx_init(sched, &ctx, remaining_jiffies != 0); 2322 if (ctx.csg_upd_failed_mask) 2323 goto out_cleanup_ctx; 2324 2325 if (remaining_jiffies) { 2326 /* Scheduling forced in the middle of a tick. Only RT groups 2327 * can preempt non-RT ones. Currently running RT groups can't be 2328 * preempted. 2329 */ 2330 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2331 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2332 prio--) { 2333 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], 2334 true, true); 2335 if (prio == PANTHOR_CSG_PRIORITY_RT) { 2336 tick_ctx_pick_groups_from_list(sched, &ctx, 2337 &sched->groups.runnable[prio], 2338 true, false); 2339 } 2340 } 2341 } 2342 2343 /* First pick non-idle groups */ 2344 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2345 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2346 prio--) { 2347 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio], 2348 true, false); 2349 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true); 2350 } 2351 2352 /* If we have free CSG slots left, pick idle groups */ 2353 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2354 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2355 prio--) { 2356 /* Check the old_group queue first to avoid reprogramming the slots */ 2357 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true); 2358 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio], 2359 false, false); 2360 } 2361 2362 tick_ctx_apply(sched, &ctx); 2363 if (ctx.csg_upd_failed_mask) 2364 goto out_cleanup_ctx; 2365 2366 if (ctx.idle_group_count == ctx.group_count) { 2367 panthor_devfreq_record_idle(sched->ptdev); 2368 if (sched->pm.has_ref) { 2369 pm_runtime_put_autosuspend(ptdev->base.dev); 2370 sched->pm.has_ref = false; 2371 } 2372 } else { 2373 panthor_devfreq_record_busy(sched->ptdev); 2374 if (!sched->pm.has_ref) { 2375 pm_runtime_get(ptdev->base.dev); 2376 sched->pm.has_ref = true; 2377 } 2378 } 2379 2380 sched->last_tick = now; 2381 resched_delay = tick_ctx_update_resched_target(sched, &ctx); 2382 if (ctx.immediate_tick) 2383 resched_delay = 0; 2384 2385 if (resched_delay != U64_MAX) 2386 sched_queue_delayed_work(sched, tick, resched_delay); 2387 2388 out_cleanup_ctx: 2389 tick_ctx_cleanup(sched, &ctx); 2390 2391 out_unlock: 2392 mutex_unlock(&sched->lock); 2393 pm_runtime_mark_last_busy(ptdev->base.dev); 2394 pm_runtime_put_autosuspend(ptdev->base.dev); 2395 2396 out_dev_exit: 2397 drm_dev_exit(cookie); 2398 } 2399 2400 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx) 2401 { 2402 struct panthor_queue *queue = group->queues[queue_idx]; 2403 union { 2404 struct panthor_syncobj_64b sync64; 2405 struct panthor_syncobj_32b sync32; 2406 } *syncobj; 2407 bool result; 2408 u64 value; 2409 2410 syncobj = panthor_queue_get_syncwait_obj(group, queue); 2411 if (!syncobj) 2412 return -EINVAL; 2413 2414 value = queue->syncwait.sync64 ? 2415 syncobj->sync64.seqno : 2416 syncobj->sync32.seqno; 2417 2418 if (queue->syncwait.gt) 2419 result = value > queue->syncwait.ref; 2420 else 2421 result = value <= queue->syncwait.ref; 2422 2423 if (result) 2424 panthor_queue_put_syncwait_obj(queue); 2425 2426 return result; 2427 } 2428 2429 static void sync_upd_work(struct work_struct *work) 2430 { 2431 struct panthor_scheduler *sched = container_of(work, 2432 struct panthor_scheduler, 2433 sync_upd_work); 2434 struct panthor_group *group, *tmp; 2435 bool immediate_tick = false; 2436 2437 mutex_lock(&sched->lock); 2438 list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) { 2439 u32 tested_queues = group->blocked_queues; 2440 u32 unblocked_queues = 0; 2441 2442 while (tested_queues) { 2443 u32 cs_id = ffs(tested_queues) - 1; 2444 int ret; 2445 2446 ret = panthor_queue_eval_syncwait(group, cs_id); 2447 drm_WARN_ON(&group->ptdev->base, ret < 0); 2448 if (ret) 2449 unblocked_queues |= BIT(cs_id); 2450 2451 tested_queues &= ~BIT(cs_id); 2452 } 2453 2454 if (unblocked_queues) { 2455 group->blocked_queues &= ~unblocked_queues; 2456 2457 if (group->csg_id < 0) { 2458 list_move(&group->run_node, 2459 &sched->groups.runnable[group->priority]); 2460 if (group->priority == PANTHOR_CSG_PRIORITY_RT) 2461 immediate_tick = true; 2462 } 2463 } 2464 2465 if (!group->blocked_queues) 2466 list_del_init(&group->wait_node); 2467 } 2468 mutex_unlock(&sched->lock); 2469 2470 if (immediate_tick) 2471 sched_queue_delayed_work(sched, tick, 0); 2472 } 2473 2474 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask) 2475 { 2476 struct panthor_device *ptdev = group->ptdev; 2477 struct panthor_scheduler *sched = ptdev->scheduler; 2478 struct list_head *queue = &sched->groups.runnable[group->priority]; 2479 u64 delay_jiffies = 0; 2480 bool was_idle; 2481 u64 now; 2482 2483 if (!group_can_run(group)) 2484 return; 2485 2486 /* All updated queues are blocked, no need to wake up the scheduler. */ 2487 if ((queue_mask & group->blocked_queues) == queue_mask) 2488 return; 2489 2490 was_idle = group_is_idle(group); 2491 group->idle_queues &= ~queue_mask; 2492 2493 /* Don't mess up with the lists if we're in a middle of a reset. */ 2494 if (atomic_read(&sched->reset.in_progress)) 2495 return; 2496 2497 if (was_idle && !group_is_idle(group)) 2498 list_move_tail(&group->run_node, queue); 2499 2500 /* RT groups are preemptive. */ 2501 if (group->priority == PANTHOR_CSG_PRIORITY_RT) { 2502 sched_queue_delayed_work(sched, tick, 0); 2503 return; 2504 } 2505 2506 /* Some groups might be idle, force an immediate tick to 2507 * re-evaluate. 2508 */ 2509 if (sched->might_have_idle_groups) { 2510 sched_queue_delayed_work(sched, tick, 0); 2511 return; 2512 } 2513 2514 /* Scheduler is ticking, nothing to do. */ 2515 if (sched->resched_target != U64_MAX) { 2516 /* If there are free slots, force immediating ticking. */ 2517 if (sched->used_csg_slot_count < sched->csg_slot_count) 2518 sched_queue_delayed_work(sched, tick, 0); 2519 2520 return; 2521 } 2522 2523 /* Scheduler tick was off, recalculate the resched_target based on the 2524 * last tick event, and queue the scheduler work. 2525 */ 2526 now = get_jiffies_64(); 2527 sched->resched_target = sched->last_tick + sched->tick_period; 2528 if (sched->used_csg_slot_count == sched->csg_slot_count && 2529 time_before64(now, sched->resched_target)) 2530 delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX); 2531 2532 sched_queue_delayed_work(sched, tick, delay_jiffies); 2533 } 2534 2535 static void queue_stop(struct panthor_queue *queue, 2536 struct panthor_job *bad_job) 2537 { 2538 drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); 2539 } 2540 2541 static void queue_start(struct panthor_queue *queue) 2542 { 2543 struct panthor_job *job; 2544 2545 /* Re-assign the parent fences. */ 2546 list_for_each_entry(job, &queue->scheduler.pending_list, base.list) 2547 job->base.s_fence->parent = dma_fence_get(job->done_fence); 2548 2549 drm_sched_start(&queue->scheduler); 2550 } 2551 2552 static void panthor_group_stop(struct panthor_group *group) 2553 { 2554 struct panthor_scheduler *sched = group->ptdev->scheduler; 2555 2556 lockdep_assert_held(&sched->reset.lock); 2557 2558 for (u32 i = 0; i < group->queue_count; i++) 2559 queue_stop(group->queues[i], NULL); 2560 2561 group_get(group); 2562 list_move_tail(&group->run_node, &sched->reset.stopped_groups); 2563 } 2564 2565 static void panthor_group_start(struct panthor_group *group) 2566 { 2567 struct panthor_scheduler *sched = group->ptdev->scheduler; 2568 2569 lockdep_assert_held(&group->ptdev->scheduler->reset.lock); 2570 2571 for (u32 i = 0; i < group->queue_count; i++) 2572 queue_start(group->queues[i]); 2573 2574 if (group_can_run(group)) { 2575 list_move_tail(&group->run_node, 2576 group_is_idle(group) ? 2577 &sched->groups.idle[group->priority] : 2578 &sched->groups.runnable[group->priority]); 2579 } else { 2580 list_del_init(&group->run_node); 2581 list_del_init(&group->wait_node); 2582 group_queue_work(group, term); 2583 } 2584 2585 group_put(group); 2586 } 2587 2588 static void panthor_sched_immediate_tick(struct panthor_device *ptdev) 2589 { 2590 struct panthor_scheduler *sched = ptdev->scheduler; 2591 2592 sched_queue_delayed_work(sched, tick, 0); 2593 } 2594 2595 /** 2596 * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler. 2597 */ 2598 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev) 2599 { 2600 /* Force a tick to immediately kill faulty groups. */ 2601 if (ptdev->scheduler) 2602 panthor_sched_immediate_tick(ptdev); 2603 } 2604 2605 void panthor_sched_resume(struct panthor_device *ptdev) 2606 { 2607 /* Force a tick to re-evaluate after a resume. */ 2608 panthor_sched_immediate_tick(ptdev); 2609 } 2610 2611 void panthor_sched_suspend(struct panthor_device *ptdev) 2612 { 2613 struct panthor_scheduler *sched = ptdev->scheduler; 2614 struct panthor_csg_slots_upd_ctx upd_ctx; 2615 struct panthor_group *group; 2616 u32 suspended_slots; 2617 u32 i; 2618 2619 mutex_lock(&sched->lock); 2620 csgs_upd_ctx_init(&upd_ctx); 2621 for (i = 0; i < sched->csg_slot_count; i++) { 2622 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2623 2624 if (csg_slot->group) { 2625 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 2626 group_can_run(csg_slot->group) ? 2627 CSG_STATE_SUSPEND : CSG_STATE_TERMINATE, 2628 CSG_STATE_MASK); 2629 } 2630 } 2631 2632 suspended_slots = upd_ctx.update_mask; 2633 2634 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2635 suspended_slots &= ~upd_ctx.timedout_mask; 2636 2637 if (upd_ctx.timedout_mask) { 2638 u32 slot_mask = upd_ctx.timedout_mask; 2639 2640 drm_err(&ptdev->base, "CSG suspend failed, escalating to termination"); 2641 csgs_upd_ctx_init(&upd_ctx); 2642 while (slot_mask) { 2643 u32 csg_id = ffs(slot_mask) - 1; 2644 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2645 2646 /* We consider group suspension failures as fatal and flag the 2647 * group as unusable by setting timedout=true. 2648 */ 2649 csg_slot->group->timedout = true; 2650 2651 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2652 CSG_STATE_TERMINATE, 2653 CSG_STATE_MASK); 2654 slot_mask &= ~BIT(csg_id); 2655 } 2656 2657 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2658 2659 slot_mask = upd_ctx.timedout_mask; 2660 while (slot_mask) { 2661 u32 csg_id = ffs(slot_mask) - 1; 2662 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2663 2664 /* Terminate command timedout, but the soft-reset will 2665 * automatically terminate all active groups, so let's 2666 * force the state to halted here. 2667 */ 2668 if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED) 2669 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2670 slot_mask &= ~BIT(csg_id); 2671 } 2672 } 2673 2674 /* Flush L2 and LSC caches to make sure suspend state is up-to-date. 2675 * If the flush fails, flag all queues for termination. 2676 */ 2677 if (suspended_slots) { 2678 bool flush_caches_failed = false; 2679 u32 slot_mask = suspended_slots; 2680 2681 if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0)) 2682 flush_caches_failed = true; 2683 2684 while (slot_mask) { 2685 u32 csg_id = ffs(slot_mask) - 1; 2686 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2687 2688 if (flush_caches_failed) 2689 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2690 else 2691 csg_slot_sync_update_locked(ptdev, csg_id); 2692 2693 slot_mask &= ~BIT(csg_id); 2694 } 2695 } 2696 2697 for (i = 0; i < sched->csg_slot_count; i++) { 2698 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2699 2700 group = csg_slot->group; 2701 if (!group) 2702 continue; 2703 2704 group_get(group); 2705 2706 if (group->csg_id >= 0) 2707 sched_process_csg_irq_locked(ptdev, group->csg_id); 2708 2709 group_unbind_locked(group); 2710 2711 drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node)); 2712 2713 if (group_can_run(group)) { 2714 list_add(&group->run_node, 2715 &sched->groups.idle[group->priority]); 2716 } else { 2717 /* We don't bother stopping the scheduler if the group is 2718 * faulty, the group termination work will finish the job. 2719 */ 2720 list_del_init(&group->wait_node); 2721 group_queue_work(group, term); 2722 } 2723 group_put(group); 2724 } 2725 mutex_unlock(&sched->lock); 2726 } 2727 2728 void panthor_sched_pre_reset(struct panthor_device *ptdev) 2729 { 2730 struct panthor_scheduler *sched = ptdev->scheduler; 2731 struct panthor_group *group, *group_tmp; 2732 u32 i; 2733 2734 mutex_lock(&sched->reset.lock); 2735 atomic_set(&sched->reset.in_progress, true); 2736 2737 /* Cancel all scheduler works. Once this is done, these works can't be 2738 * scheduled again until the reset operation is complete. 2739 */ 2740 cancel_work_sync(&sched->sync_upd_work); 2741 cancel_delayed_work_sync(&sched->tick_work); 2742 2743 panthor_sched_suspend(ptdev); 2744 2745 /* Stop all groups that might still accept jobs, so we don't get passed 2746 * new jobs while we're resetting. 2747 */ 2748 for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) { 2749 /* All groups should be in the idle lists. */ 2750 drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i])); 2751 list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node) 2752 panthor_group_stop(group); 2753 } 2754 2755 for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) { 2756 list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node) 2757 panthor_group_stop(group); 2758 } 2759 2760 mutex_unlock(&sched->reset.lock); 2761 } 2762 2763 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed) 2764 { 2765 struct panthor_scheduler *sched = ptdev->scheduler; 2766 struct panthor_group *group, *group_tmp; 2767 2768 mutex_lock(&sched->reset.lock); 2769 2770 list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) { 2771 /* Consider all previously running group as terminated if the 2772 * reset failed. 2773 */ 2774 if (reset_failed) 2775 group->state = PANTHOR_CS_GROUP_TERMINATED; 2776 2777 panthor_group_start(group); 2778 } 2779 2780 /* We're done resetting the GPU, clear the reset.in_progress bit so we can 2781 * kick the scheduler. 2782 */ 2783 atomic_set(&sched->reset.in_progress, false); 2784 mutex_unlock(&sched->reset.lock); 2785 2786 /* No need to queue a tick and update syncs if the reset failed. */ 2787 if (!reset_failed) { 2788 sched_queue_delayed_work(sched, tick, 0); 2789 sched_queue_work(sched, sync_upd); 2790 } 2791 } 2792 2793 static void group_sync_upd_work(struct work_struct *work) 2794 { 2795 struct panthor_group *group = 2796 container_of(work, struct panthor_group, sync_upd_work); 2797 struct panthor_job *job, *job_tmp; 2798 LIST_HEAD(done_jobs); 2799 u32 queue_idx; 2800 bool cookie; 2801 2802 cookie = dma_fence_begin_signalling(); 2803 for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) { 2804 struct panthor_queue *queue = group->queues[queue_idx]; 2805 struct panthor_syncobj_64b *syncobj; 2806 2807 if (!queue) 2808 continue; 2809 2810 syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj)); 2811 2812 spin_lock(&queue->fence_ctx.lock); 2813 list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) { 2814 if (syncobj->seqno < job->done_fence->seqno) 2815 break; 2816 2817 list_move_tail(&job->node, &done_jobs); 2818 dma_fence_signal_locked(job->done_fence); 2819 } 2820 spin_unlock(&queue->fence_ctx.lock); 2821 } 2822 dma_fence_end_signalling(cookie); 2823 2824 list_for_each_entry_safe(job, job_tmp, &done_jobs, node) { 2825 list_del_init(&job->node); 2826 panthor_job_put(&job->base); 2827 } 2828 2829 group_put(group); 2830 } 2831 2832 static struct dma_fence * 2833 queue_run_job(struct drm_sched_job *sched_job) 2834 { 2835 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 2836 struct panthor_group *group = job->group; 2837 struct panthor_queue *queue = group->queues[job->queue_idx]; 2838 struct panthor_device *ptdev = group->ptdev; 2839 struct panthor_scheduler *sched = ptdev->scheduler; 2840 u32 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 2841 u32 ringbuf_insert = queue->iface.input->insert & (ringbuf_size - 1); 2842 u64 addr_reg = ptdev->csif_info.cs_reg_count - 2843 ptdev->csif_info.unpreserved_cs_reg_count; 2844 u64 val_reg = addr_reg + 2; 2845 u64 sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) + 2846 job->queue_idx * sizeof(struct panthor_syncobj_64b); 2847 u32 waitall_mask = GENMASK(sched->sb_slot_count - 1, 0); 2848 struct dma_fence *done_fence; 2849 int ret; 2850 2851 u64 call_instrs[NUM_INSTRS_PER_SLOT] = { 2852 /* MOV32 rX+2, cs.latest_flush */ 2853 (2ull << 56) | (val_reg << 48) | job->call_info.latest_flush, 2854 2855 /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */ 2856 (36ull << 56) | (0ull << 48) | (val_reg << 40) | (0 << 16) | 0x233, 2857 2858 /* MOV48 rX:rX+1, cs.start */ 2859 (1ull << 56) | (addr_reg << 48) | job->call_info.start, 2860 2861 /* MOV32 rX+2, cs.size */ 2862 (2ull << 56) | (val_reg << 48) | job->call_info.size, 2863 2864 /* WAIT(0) => waits for FLUSH_CACHE2 instruction */ 2865 (3ull << 56) | (1 << 16), 2866 2867 /* CALL rX:rX+1, rX+2 */ 2868 (32ull << 56) | (addr_reg << 40) | (val_reg << 32), 2869 2870 /* MOV48 rX:rX+1, sync_addr */ 2871 (1ull << 56) | (addr_reg << 48) | sync_addr, 2872 2873 /* MOV48 rX+2, #1 */ 2874 (1ull << 56) | (val_reg << 48) | 1, 2875 2876 /* WAIT(all) */ 2877 (3ull << 56) | (waitall_mask << 16), 2878 2879 /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/ 2880 (51ull << 56) | (0ull << 48) | (addr_reg << 40) | (val_reg << 32) | (0 << 16) | 1, 2881 2882 /* ERROR_BARRIER, so we can recover from faults at job 2883 * boundaries. 2884 */ 2885 (47ull << 56), 2886 }; 2887 2888 /* Need to be cacheline aligned to please the prefetcher. */ 2889 static_assert(sizeof(call_instrs) % 64 == 0, 2890 "call_instrs is not aligned on a cacheline"); 2891 2892 /* Stream size is zero, nothing to do except making sure all previously 2893 * submitted jobs are done before we signal the 2894 * drm_sched_job::s_fence::finished fence. 2895 */ 2896 if (!job->call_info.size) { 2897 job->done_fence = dma_fence_get(queue->fence_ctx.last_fence); 2898 return dma_fence_get(job->done_fence); 2899 } 2900 2901 ret = pm_runtime_resume_and_get(ptdev->base.dev); 2902 if (drm_WARN_ON(&ptdev->base, ret)) 2903 return ERR_PTR(ret); 2904 2905 mutex_lock(&sched->lock); 2906 if (!group_can_run(group)) { 2907 done_fence = ERR_PTR(-ECANCELED); 2908 goto out_unlock; 2909 } 2910 2911 dma_fence_init(job->done_fence, 2912 &panthor_queue_fence_ops, 2913 &queue->fence_ctx.lock, 2914 queue->fence_ctx.id, 2915 atomic64_inc_return(&queue->fence_ctx.seqno)); 2916 2917 memcpy(queue->ringbuf->kmap + ringbuf_insert, 2918 call_instrs, sizeof(call_instrs)); 2919 2920 panthor_job_get(&job->base); 2921 spin_lock(&queue->fence_ctx.lock); 2922 list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs); 2923 spin_unlock(&queue->fence_ctx.lock); 2924 2925 job->ringbuf.start = queue->iface.input->insert; 2926 job->ringbuf.end = job->ringbuf.start + sizeof(call_instrs); 2927 2928 /* Make sure the ring buffer is updated before the INSERT 2929 * register. 2930 */ 2931 wmb(); 2932 2933 queue->iface.input->extract = queue->iface.output->extract; 2934 queue->iface.input->insert = job->ringbuf.end; 2935 2936 if (group->csg_id < 0) { 2937 /* If the queue is blocked, we want to keep the timeout running, so we 2938 * can detect unbounded waits and kill the group when that happens. 2939 * Otherwise, we suspend the timeout so the time we spend waiting for 2940 * a CSG slot is not counted. 2941 */ 2942 if (!(group->blocked_queues & BIT(job->queue_idx)) && 2943 !queue->timeout_suspended) { 2944 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 2945 queue->timeout_suspended = true; 2946 } 2947 2948 group_schedule_locked(group, BIT(job->queue_idx)); 2949 } else { 2950 gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1); 2951 if (!sched->pm.has_ref && 2952 !(group->blocked_queues & BIT(job->queue_idx))) { 2953 pm_runtime_get(ptdev->base.dev); 2954 sched->pm.has_ref = true; 2955 } 2956 panthor_devfreq_record_busy(sched->ptdev); 2957 } 2958 2959 /* Update the last fence. */ 2960 dma_fence_put(queue->fence_ctx.last_fence); 2961 queue->fence_ctx.last_fence = dma_fence_get(job->done_fence); 2962 2963 done_fence = dma_fence_get(job->done_fence); 2964 2965 out_unlock: 2966 mutex_unlock(&sched->lock); 2967 pm_runtime_mark_last_busy(ptdev->base.dev); 2968 pm_runtime_put_autosuspend(ptdev->base.dev); 2969 2970 return done_fence; 2971 } 2972 2973 static enum drm_gpu_sched_stat 2974 queue_timedout_job(struct drm_sched_job *sched_job) 2975 { 2976 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 2977 struct panthor_group *group = job->group; 2978 struct panthor_device *ptdev = group->ptdev; 2979 struct panthor_scheduler *sched = ptdev->scheduler; 2980 struct panthor_queue *queue = group->queues[job->queue_idx]; 2981 2982 drm_warn(&ptdev->base, "job timeout\n"); 2983 2984 drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress)); 2985 2986 queue_stop(queue, job); 2987 2988 mutex_lock(&sched->lock); 2989 group->timedout = true; 2990 if (group->csg_id >= 0) { 2991 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 2992 } else { 2993 /* Remove from the run queues, so the scheduler can't 2994 * pick the group on the next tick. 2995 */ 2996 list_del_init(&group->run_node); 2997 list_del_init(&group->wait_node); 2998 2999 group_queue_work(group, term); 3000 } 3001 mutex_unlock(&sched->lock); 3002 3003 queue_start(queue); 3004 3005 return DRM_GPU_SCHED_STAT_NOMINAL; 3006 } 3007 3008 static void queue_free_job(struct drm_sched_job *sched_job) 3009 { 3010 drm_sched_job_cleanup(sched_job); 3011 panthor_job_put(sched_job); 3012 } 3013 3014 static const struct drm_sched_backend_ops panthor_queue_sched_ops = { 3015 .run_job = queue_run_job, 3016 .timedout_job = queue_timedout_job, 3017 .free_job = queue_free_job, 3018 }; 3019 3020 static struct panthor_queue * 3021 group_create_queue(struct panthor_group *group, 3022 const struct drm_panthor_queue_create *args) 3023 { 3024 struct drm_gpu_scheduler *drm_sched; 3025 struct panthor_queue *queue; 3026 int ret; 3027 3028 if (args->pad[0] || args->pad[1] || args->pad[2]) 3029 return ERR_PTR(-EINVAL); 3030 3031 if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K || 3032 !is_power_of_2(args->ringbuf_size)) 3033 return ERR_PTR(-EINVAL); 3034 3035 if (args->priority > CSF_MAX_QUEUE_PRIO) 3036 return ERR_PTR(-EINVAL); 3037 3038 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 3039 if (!queue) 3040 return ERR_PTR(-ENOMEM); 3041 3042 queue->fence_ctx.id = dma_fence_context_alloc(1); 3043 spin_lock_init(&queue->fence_ctx.lock); 3044 INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs); 3045 3046 queue->priority = args->priority; 3047 3048 queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm, 3049 args->ringbuf_size, 3050 DRM_PANTHOR_BO_NO_MMAP, 3051 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3052 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3053 PANTHOR_VM_KERNEL_AUTO_VA); 3054 if (IS_ERR(queue->ringbuf)) { 3055 ret = PTR_ERR(queue->ringbuf); 3056 goto err_free_queue; 3057 } 3058 3059 ret = panthor_kernel_bo_vmap(queue->ringbuf); 3060 if (ret) 3061 goto err_free_queue; 3062 3063 queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev, 3064 &queue->iface.input, 3065 &queue->iface.output, 3066 &queue->iface.input_fw_va, 3067 &queue->iface.output_fw_va); 3068 if (IS_ERR(queue->iface.mem)) { 3069 ret = PTR_ERR(queue->iface.mem); 3070 goto err_free_queue; 3071 } 3072 3073 ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops, 3074 group->ptdev->scheduler->wq, 1, 3075 args->ringbuf_size / (NUM_INSTRS_PER_SLOT * sizeof(u64)), 3076 0, msecs_to_jiffies(JOB_TIMEOUT_MS), 3077 group->ptdev->reset.wq, 3078 NULL, "panthor-queue", group->ptdev->base.dev); 3079 if (ret) 3080 goto err_free_queue; 3081 3082 drm_sched = &queue->scheduler; 3083 ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL); 3084 3085 return queue; 3086 3087 err_free_queue: 3088 group_free_queue(group, queue); 3089 return ERR_PTR(ret); 3090 } 3091 3092 #define MAX_GROUPS_PER_POOL 128 3093 3094 int panthor_group_create(struct panthor_file *pfile, 3095 const struct drm_panthor_group_create *group_args, 3096 const struct drm_panthor_queue_create *queue_args) 3097 { 3098 struct panthor_device *ptdev = pfile->ptdev; 3099 struct panthor_group_pool *gpool = pfile->groups; 3100 struct panthor_scheduler *sched = ptdev->scheduler; 3101 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3102 struct panthor_group *group = NULL; 3103 u32 gid, i, suspend_size; 3104 int ret; 3105 3106 if (group_args->pad) 3107 return -EINVAL; 3108 3109 if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT) 3110 return -EINVAL; 3111 3112 if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) || 3113 (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) || 3114 (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present)) 3115 return -EINVAL; 3116 3117 if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores || 3118 hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores || 3119 hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores) 3120 return -EINVAL; 3121 3122 group = kzalloc(sizeof(*group), GFP_KERNEL); 3123 if (!group) 3124 return -ENOMEM; 3125 3126 spin_lock_init(&group->fatal_lock); 3127 kref_init(&group->refcount); 3128 group->state = PANTHOR_CS_GROUP_CREATED; 3129 group->csg_id = -1; 3130 3131 group->ptdev = ptdev; 3132 group->max_compute_cores = group_args->max_compute_cores; 3133 group->compute_core_mask = group_args->compute_core_mask; 3134 group->max_fragment_cores = group_args->max_fragment_cores; 3135 group->fragment_core_mask = group_args->fragment_core_mask; 3136 group->max_tiler_cores = group_args->max_tiler_cores; 3137 group->tiler_core_mask = group_args->tiler_core_mask; 3138 group->priority = group_args->priority; 3139 3140 INIT_LIST_HEAD(&group->wait_node); 3141 INIT_LIST_HEAD(&group->run_node); 3142 INIT_WORK(&group->term_work, group_term_work); 3143 INIT_WORK(&group->sync_upd_work, group_sync_upd_work); 3144 INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work); 3145 INIT_WORK(&group->release_work, group_release_work); 3146 3147 group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id); 3148 if (!group->vm) { 3149 ret = -EINVAL; 3150 goto err_put_group; 3151 } 3152 3153 suspend_size = csg_iface->control->suspend_size; 3154 group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3155 if (IS_ERR(group->suspend_buf)) { 3156 ret = PTR_ERR(group->suspend_buf); 3157 group->suspend_buf = NULL; 3158 goto err_put_group; 3159 } 3160 3161 suspend_size = csg_iface->control->protm_suspend_size; 3162 group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3163 if (IS_ERR(group->protm_suspend_buf)) { 3164 ret = PTR_ERR(group->protm_suspend_buf); 3165 group->protm_suspend_buf = NULL; 3166 goto err_put_group; 3167 } 3168 3169 group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm, 3170 group_args->queues.count * 3171 sizeof(struct panthor_syncobj_64b), 3172 DRM_PANTHOR_BO_NO_MMAP, 3173 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3174 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3175 PANTHOR_VM_KERNEL_AUTO_VA); 3176 if (IS_ERR(group->syncobjs)) { 3177 ret = PTR_ERR(group->syncobjs); 3178 goto err_put_group; 3179 } 3180 3181 ret = panthor_kernel_bo_vmap(group->syncobjs); 3182 if (ret) 3183 goto err_put_group; 3184 3185 memset(group->syncobjs->kmap, 0, 3186 group_args->queues.count * sizeof(struct panthor_syncobj_64b)); 3187 3188 for (i = 0; i < group_args->queues.count; i++) { 3189 group->queues[i] = group_create_queue(group, &queue_args[i]); 3190 if (IS_ERR(group->queues[i])) { 3191 ret = PTR_ERR(group->queues[i]); 3192 group->queues[i] = NULL; 3193 goto err_put_group; 3194 } 3195 3196 group->queue_count++; 3197 } 3198 3199 group->idle_queues = GENMASK(group->queue_count - 1, 0); 3200 3201 ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL); 3202 if (ret) 3203 goto err_put_group; 3204 3205 mutex_lock(&sched->reset.lock); 3206 if (atomic_read(&sched->reset.in_progress)) { 3207 panthor_group_stop(group); 3208 } else { 3209 mutex_lock(&sched->lock); 3210 list_add_tail(&group->run_node, 3211 &sched->groups.idle[group->priority]); 3212 mutex_unlock(&sched->lock); 3213 } 3214 mutex_unlock(&sched->reset.lock); 3215 3216 return gid; 3217 3218 err_put_group: 3219 group_put(group); 3220 return ret; 3221 } 3222 3223 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle) 3224 { 3225 struct panthor_group_pool *gpool = pfile->groups; 3226 struct panthor_device *ptdev = pfile->ptdev; 3227 struct panthor_scheduler *sched = ptdev->scheduler; 3228 struct panthor_group *group; 3229 3230 group = xa_erase(&gpool->xa, group_handle); 3231 if (!group) 3232 return -EINVAL; 3233 3234 for (u32 i = 0; i < group->queue_count; i++) { 3235 if (group->queues[i]) 3236 drm_sched_entity_destroy(&group->queues[i]->entity); 3237 } 3238 3239 mutex_lock(&sched->reset.lock); 3240 mutex_lock(&sched->lock); 3241 group->destroyed = true; 3242 if (group->csg_id >= 0) { 3243 sched_queue_delayed_work(sched, tick, 0); 3244 } else if (!atomic_read(&sched->reset.in_progress)) { 3245 /* Remove from the run queues, so the scheduler can't 3246 * pick the group on the next tick. 3247 */ 3248 list_del_init(&group->run_node); 3249 list_del_init(&group->wait_node); 3250 group_queue_work(group, term); 3251 } 3252 mutex_unlock(&sched->lock); 3253 mutex_unlock(&sched->reset.lock); 3254 3255 group_put(group); 3256 return 0; 3257 } 3258 3259 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool, 3260 u32 group_handle) 3261 { 3262 struct panthor_group *group; 3263 3264 xa_lock(&pool->xa); 3265 group = group_get(xa_load(&pool->xa, group_handle)); 3266 xa_unlock(&pool->xa); 3267 3268 return group; 3269 } 3270 3271 int panthor_group_get_state(struct panthor_file *pfile, 3272 struct drm_panthor_group_get_state *get_state) 3273 { 3274 struct panthor_group_pool *gpool = pfile->groups; 3275 struct panthor_device *ptdev = pfile->ptdev; 3276 struct panthor_scheduler *sched = ptdev->scheduler; 3277 struct panthor_group *group; 3278 3279 if (get_state->pad) 3280 return -EINVAL; 3281 3282 group = group_from_handle(gpool, get_state->group_handle); 3283 if (!group) 3284 return -EINVAL; 3285 3286 memset(get_state, 0, sizeof(*get_state)); 3287 3288 mutex_lock(&sched->lock); 3289 if (group->timedout) 3290 get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT; 3291 if (group->fatal_queues) { 3292 get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT; 3293 get_state->fatal_queues = group->fatal_queues; 3294 } 3295 mutex_unlock(&sched->lock); 3296 3297 group_put(group); 3298 return 0; 3299 } 3300 3301 int panthor_group_pool_create(struct panthor_file *pfile) 3302 { 3303 struct panthor_group_pool *gpool; 3304 3305 gpool = kzalloc(sizeof(*gpool), GFP_KERNEL); 3306 if (!gpool) 3307 return -ENOMEM; 3308 3309 xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1); 3310 pfile->groups = gpool; 3311 return 0; 3312 } 3313 3314 void panthor_group_pool_destroy(struct panthor_file *pfile) 3315 { 3316 struct panthor_group_pool *gpool = pfile->groups; 3317 struct panthor_group *group; 3318 unsigned long i; 3319 3320 if (IS_ERR_OR_NULL(gpool)) 3321 return; 3322 3323 xa_for_each(&gpool->xa, i, group) 3324 panthor_group_destroy(pfile, i); 3325 3326 xa_destroy(&gpool->xa); 3327 kfree(gpool); 3328 pfile->groups = NULL; 3329 } 3330 3331 static void job_release(struct kref *ref) 3332 { 3333 struct panthor_job *job = container_of(ref, struct panthor_job, refcount); 3334 3335 drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node)); 3336 3337 if (job->base.s_fence) 3338 drm_sched_job_cleanup(&job->base); 3339 3340 if (job->done_fence && job->done_fence->ops) 3341 dma_fence_put(job->done_fence); 3342 else 3343 dma_fence_free(job->done_fence); 3344 3345 group_put(job->group); 3346 3347 kfree(job); 3348 } 3349 3350 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job) 3351 { 3352 if (sched_job) { 3353 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3354 3355 kref_get(&job->refcount); 3356 } 3357 3358 return sched_job; 3359 } 3360 3361 void panthor_job_put(struct drm_sched_job *sched_job) 3362 { 3363 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3364 3365 if (sched_job) 3366 kref_put(&job->refcount, job_release); 3367 } 3368 3369 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job) 3370 { 3371 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3372 3373 return job->group->vm; 3374 } 3375 3376 struct drm_sched_job * 3377 panthor_job_create(struct panthor_file *pfile, 3378 u16 group_handle, 3379 const struct drm_panthor_queue_submit *qsubmit) 3380 { 3381 struct panthor_group_pool *gpool = pfile->groups; 3382 struct panthor_job *job; 3383 int ret; 3384 3385 if (qsubmit->pad) 3386 return ERR_PTR(-EINVAL); 3387 3388 /* If stream_addr is zero, so stream_size should be. */ 3389 if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0)) 3390 return ERR_PTR(-EINVAL); 3391 3392 /* Make sure the address is aligned on 64-byte (cacheline) and the size is 3393 * aligned on 8-byte (instruction size). 3394 */ 3395 if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7)) 3396 return ERR_PTR(-EINVAL); 3397 3398 /* bits 24:30 must be zero. */ 3399 if (qsubmit->latest_flush & GENMASK(30, 24)) 3400 return ERR_PTR(-EINVAL); 3401 3402 job = kzalloc(sizeof(*job), GFP_KERNEL); 3403 if (!job) 3404 return ERR_PTR(-ENOMEM); 3405 3406 kref_init(&job->refcount); 3407 job->queue_idx = qsubmit->queue_index; 3408 job->call_info.size = qsubmit->stream_size; 3409 job->call_info.start = qsubmit->stream_addr; 3410 job->call_info.latest_flush = qsubmit->latest_flush; 3411 INIT_LIST_HEAD(&job->node); 3412 3413 job->group = group_from_handle(gpool, group_handle); 3414 if (!job->group) { 3415 ret = -EINVAL; 3416 goto err_put_job; 3417 } 3418 3419 if (!group_can_run(job->group)) { 3420 ret = -EINVAL; 3421 goto err_put_job; 3422 } 3423 3424 if (job->queue_idx >= job->group->queue_count || 3425 !job->group->queues[job->queue_idx]) { 3426 ret = -EINVAL; 3427 goto err_put_job; 3428 } 3429 3430 /* Empty command streams don't need a fence, they'll pick the one from 3431 * the previously submitted job. 3432 */ 3433 if (job->call_info.size) { 3434 job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL); 3435 if (!job->done_fence) { 3436 ret = -ENOMEM; 3437 goto err_put_job; 3438 } 3439 } 3440 3441 ret = drm_sched_job_init(&job->base, 3442 &job->group->queues[job->queue_idx]->entity, 3443 1, job->group); 3444 if (ret) 3445 goto err_put_job; 3446 3447 return &job->base; 3448 3449 err_put_job: 3450 panthor_job_put(&job->base); 3451 return ERR_PTR(ret); 3452 } 3453 3454 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job) 3455 { 3456 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3457 3458 panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished, 3459 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP); 3460 } 3461 3462 void panthor_sched_unplug(struct panthor_device *ptdev) 3463 { 3464 struct panthor_scheduler *sched = ptdev->scheduler; 3465 3466 cancel_delayed_work_sync(&sched->tick_work); 3467 3468 mutex_lock(&sched->lock); 3469 if (sched->pm.has_ref) { 3470 pm_runtime_put(ptdev->base.dev); 3471 sched->pm.has_ref = false; 3472 } 3473 mutex_unlock(&sched->lock); 3474 } 3475 3476 static void panthor_sched_fini(struct drm_device *ddev, void *res) 3477 { 3478 struct panthor_scheduler *sched = res; 3479 int prio; 3480 3481 if (!sched || !sched->csg_slot_count) 3482 return; 3483 3484 cancel_delayed_work_sync(&sched->tick_work); 3485 3486 if (sched->wq) 3487 destroy_workqueue(sched->wq); 3488 3489 if (sched->heap_alloc_wq) 3490 destroy_workqueue(sched->heap_alloc_wq); 3491 3492 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3493 drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio])); 3494 drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio])); 3495 } 3496 3497 drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting)); 3498 } 3499 3500 int panthor_sched_init(struct panthor_device *ptdev) 3501 { 3502 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 3503 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3504 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0); 3505 struct panthor_scheduler *sched; 3506 u32 gpu_as_count, num_groups; 3507 int prio, ret; 3508 3509 sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL); 3510 if (!sched) 3511 return -ENOMEM; 3512 3513 /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That 3514 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here. 3515 */ 3516 num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num); 3517 3518 /* The FW-side scheduler might deadlock if two groups with the same 3519 * priority try to access a set of resources that overlaps, with part 3520 * of the resources being allocated to one group and the other part to 3521 * the other group, both groups waiting for the remaining resources to 3522 * be allocated. To avoid that, it is recommended to assign each CSG a 3523 * different priority. In theory we could allow several groups to have 3524 * the same CSG priority if they don't request the same resources, but 3525 * that makes the scheduling logic more complicated, so let's clamp 3526 * the number of CSG slots to MAX_CSG_PRIO + 1 for now. 3527 */ 3528 num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups); 3529 3530 /* We need at least one AS for the MCU and one for the GPU contexts. */ 3531 gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1)); 3532 if (!gpu_as_count) { 3533 drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)", 3534 gpu_as_count + 1); 3535 return -EINVAL; 3536 } 3537 3538 sched->ptdev = ptdev; 3539 sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features); 3540 sched->csg_slot_count = num_groups; 3541 sched->cs_slot_count = csg_iface->control->stream_num; 3542 sched->as_slot_count = gpu_as_count; 3543 ptdev->csif_info.csg_slot_count = sched->csg_slot_count; 3544 ptdev->csif_info.cs_slot_count = sched->cs_slot_count; 3545 ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count; 3546 3547 sched->last_tick = 0; 3548 sched->resched_target = U64_MAX; 3549 sched->tick_period = msecs_to_jiffies(10); 3550 INIT_DELAYED_WORK(&sched->tick_work, tick_work); 3551 INIT_WORK(&sched->sync_upd_work, sync_upd_work); 3552 INIT_WORK(&sched->fw_events_work, process_fw_events_work); 3553 3554 ret = drmm_mutex_init(&ptdev->base, &sched->lock); 3555 if (ret) 3556 return ret; 3557 3558 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3559 INIT_LIST_HEAD(&sched->groups.runnable[prio]); 3560 INIT_LIST_HEAD(&sched->groups.idle[prio]); 3561 } 3562 INIT_LIST_HEAD(&sched->groups.waiting); 3563 3564 ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock); 3565 if (ret) 3566 return ret; 3567 3568 INIT_LIST_HEAD(&sched->reset.stopped_groups); 3569 3570 /* sched->heap_alloc_wq will be used for heap chunk allocation on 3571 * tiler OOM events, which means we can't use the same workqueue for 3572 * the scheduler because works queued by the scheduler are in 3573 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to 3574 * work around this limitation. 3575 * 3576 * FIXME: Ultimately, what we need is a failable/non-blocking GEM 3577 * allocation path that we can call when a heap OOM is reported. The 3578 * FW is smart enough to fall back on other methods if the kernel can't 3579 * allocate memory, and fail the tiling job if none of these 3580 * countermeasures worked. 3581 * 3582 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the 3583 * system is running out of memory. 3584 */ 3585 sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0); 3586 sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 3587 if (!sched->wq || !sched->heap_alloc_wq) { 3588 panthor_sched_fini(&ptdev->base, sched); 3589 drm_err(&ptdev->base, "Failed to allocate the workqueues"); 3590 return -ENOMEM; 3591 } 3592 3593 ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched); 3594 if (ret) 3595 return ret; 3596 3597 ptdev->scheduler = sched; 3598 return 0; 3599 } 3600