1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2023 Collabora ltd. */ 3 4 #include <drm/drm_drv.h> 5 #include <drm/drm_exec.h> 6 #include <drm/drm_gem_shmem_helper.h> 7 #include <drm/drm_managed.h> 8 #include <drm/gpu_scheduler.h> 9 #include <drm/panthor_drm.h> 10 11 #include <linux/build_bug.h> 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/dma-resv.h> 16 #include <linux/firmware.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/iosys-map.h> 21 #include <linux/module.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 25 #include "panthor_devfreq.h" 26 #include "panthor_device.h" 27 #include "panthor_fw.h" 28 #include "panthor_gem.h" 29 #include "panthor_gpu.h" 30 #include "panthor_heap.h" 31 #include "panthor_mmu.h" 32 #include "panthor_regs.h" 33 #include "panthor_sched.h" 34 35 /** 36 * DOC: Scheduler 37 * 38 * Mali CSF hardware adopts a firmware-assisted scheduling model, where 39 * the firmware takes care of scheduling aspects, to some extent. 40 * 41 * The scheduling happens at the scheduling group level, each group 42 * contains 1 to N queues (N is FW/hardware dependent, and exposed 43 * through the firmware interface). Each queue is assigned a command 44 * stream ring buffer, which serves as a way to get jobs submitted to 45 * the GPU, among other things. 46 * 47 * The firmware can schedule a maximum of M groups (M is FW/hardware 48 * dependent, and exposed through the firmware interface). Passed 49 * this maximum number of groups, the kernel must take care of 50 * rotating the groups passed to the firmware so every group gets 51 * a chance to have his queues scheduled for execution. 52 * 53 * The current implementation only supports with kernel-mode queues. 54 * In other terms, userspace doesn't have access to the ring-buffer. 55 * Instead, userspace passes indirect command stream buffers that are 56 * called from the queue ring-buffer by the kernel using a pre-defined 57 * sequence of command stream instructions to ensure the userspace driver 58 * always gets consistent results (cache maintenance, 59 * synchronization, ...). 60 * 61 * We rely on the drm_gpu_scheduler framework to deal with job 62 * dependencies and submission. As any other driver dealing with a 63 * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each 64 * entity has its own job scheduler. When a job is ready to be executed 65 * (all its dependencies are met), it is pushed to the appropriate 66 * queue ring-buffer, and the group is scheduled for execution if it 67 * wasn't already active. 68 * 69 * Kernel-side group scheduling is timeslice-based. When we have less 70 * groups than there are slots, the periodic tick is disabled and we 71 * just let the FW schedule the active groups. When there are more 72 * groups than slots, we let each group a chance to execute stuff for 73 * a given amount of time, and then re-evaluate and pick new groups 74 * to schedule. The group selection algorithm is based on 75 * priority+round-robin. 76 * 77 * Even though user-mode queues is out of the scope right now, the 78 * current design takes them into account by avoiding any guess on the 79 * group/queue state that would be based on information we wouldn't have 80 * if userspace was in charge of the ring-buffer. That's also one of the 81 * reason we don't do 'cooperative' scheduling (encoding FW group slot 82 * reservation as dma_fence that would be returned from the 83 * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as 84 * a queue of waiters, ordered by job submission order). This approach 85 * would work for kernel-mode queues, but would make user-mode queues a 86 * lot more complicated to retrofit. 87 */ 88 89 #define JOB_TIMEOUT_MS 5000 90 91 #define MIN_CS_PER_CSG 8 92 93 #define MIN_CSGS 3 94 #define MAX_CSG_PRIO 0xf 95 96 struct panthor_group; 97 98 /** 99 * struct panthor_csg_slot - Command stream group slot 100 * 101 * This represents a FW slot for a scheduling group. 102 */ 103 struct panthor_csg_slot { 104 /** @group: Scheduling group bound to this slot. */ 105 struct panthor_group *group; 106 107 /** @priority: Group priority. */ 108 u8 priority; 109 110 /** 111 * @idle: True if the group bound to this slot is idle. 112 * 113 * A group is idle when it has nothing waiting for execution on 114 * all its queues, or when queues are blocked waiting for something 115 * to happen (synchronization object). 116 */ 117 bool idle; 118 }; 119 120 /** 121 * enum panthor_csg_priority - Group priority 122 */ 123 enum panthor_csg_priority { 124 /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */ 125 PANTHOR_CSG_PRIORITY_LOW = 0, 126 127 /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */ 128 PANTHOR_CSG_PRIORITY_MEDIUM, 129 130 /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */ 131 PANTHOR_CSG_PRIORITY_HIGH, 132 133 /** 134 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group. 135 * 136 * Real-time priority allows one to preempt scheduling of other 137 * non-real-time groups. When such a group becomes executable, 138 * it will evict the group with the lowest non-rt priority if 139 * there's no free group slot available. 140 * 141 * Currently not exposed to userspace. 142 */ 143 PANTHOR_CSG_PRIORITY_RT, 144 145 /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */ 146 PANTHOR_CSG_PRIORITY_COUNT, 147 }; 148 149 /** 150 * struct panthor_scheduler - Object used to manage the scheduler 151 */ 152 struct panthor_scheduler { 153 /** @ptdev: Device. */ 154 struct panthor_device *ptdev; 155 156 /** 157 * @wq: Workqueue used by our internal scheduler logic and 158 * drm_gpu_scheduler. 159 * 160 * Used for the scheduler tick, group update or other kind of FW 161 * event processing that can't be handled in the threaded interrupt 162 * path. Also passed to the drm_gpu_scheduler instances embedded 163 * in panthor_queue. 164 */ 165 struct workqueue_struct *wq; 166 167 /** 168 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works. 169 * 170 * We have a queue dedicated to heap chunk allocation works to avoid 171 * blocking the rest of the scheduler if the allocation tries to 172 * reclaim memory. 173 */ 174 struct workqueue_struct *heap_alloc_wq; 175 176 /** @tick_work: Work executed on a scheduling tick. */ 177 struct delayed_work tick_work; 178 179 /** 180 * @sync_upd_work: Work used to process synchronization object updates. 181 * 182 * We use this work to unblock queues/groups that were waiting on a 183 * synchronization object. 184 */ 185 struct work_struct sync_upd_work; 186 187 /** 188 * @fw_events_work: Work used to process FW events outside the interrupt path. 189 * 190 * Even if the interrupt is threaded, we need any event processing 191 * that require taking the panthor_scheduler::lock to be processed 192 * outside the interrupt path so we don't block the tick logic when 193 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the 194 * event processing requires taking this lock, we just delegate all 195 * FW event processing to the scheduler workqueue. 196 */ 197 struct work_struct fw_events_work; 198 199 /** 200 * @fw_events: Bitmask encoding pending FW events. 201 */ 202 atomic_t fw_events; 203 204 /** 205 * @resched_target: When the next tick should occur. 206 * 207 * Expressed in jiffies. 208 */ 209 u64 resched_target; 210 211 /** 212 * @last_tick: When the last tick occurred. 213 * 214 * Expressed in jiffies. 215 */ 216 u64 last_tick; 217 218 /** @tick_period: Tick period in jiffies. */ 219 u64 tick_period; 220 221 /** 222 * @lock: Lock protecting access to all the scheduler fields. 223 * 224 * Should be taken in the tick work, the irq handler, and anywhere the @groups 225 * fields are touched. 226 */ 227 struct mutex lock; 228 229 /** @groups: Various lists used to classify groups. */ 230 struct { 231 /** 232 * @runnable: Runnable group lists. 233 * 234 * When a group has queues that want to execute something, 235 * its panthor_group::run_node should be inserted here. 236 * 237 * One list per-priority. 238 */ 239 struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT]; 240 241 /** 242 * @idle: Idle group lists. 243 * 244 * When all queues of a group are idle (either because they 245 * have nothing to execute, or because they are blocked), the 246 * panthor_group::run_node field should be inserted here. 247 * 248 * One list per-priority. 249 */ 250 struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT]; 251 252 /** 253 * @waiting: List of groups whose queues are blocked on a 254 * synchronization object. 255 * 256 * Insert panthor_group::wait_node here when a group is waiting 257 * for synchronization objects to be signaled. 258 * 259 * This list is evaluated in the @sync_upd_work work. 260 */ 261 struct list_head waiting; 262 } groups; 263 264 /** 265 * @csg_slots: FW command stream group slots. 266 */ 267 struct panthor_csg_slot csg_slots[MAX_CSGS]; 268 269 /** @csg_slot_count: Number of command stream group slots exposed by the FW. */ 270 u32 csg_slot_count; 271 272 /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */ 273 u32 cs_slot_count; 274 275 /** @as_slot_count: Number of address space slots supported by the MMU. */ 276 u32 as_slot_count; 277 278 /** @used_csg_slot_count: Number of command stream group slot currently used. */ 279 u32 used_csg_slot_count; 280 281 /** @sb_slot_count: Number of scoreboard slots. */ 282 u32 sb_slot_count; 283 284 /** 285 * @might_have_idle_groups: True if an active group might have become idle. 286 * 287 * This will force a tick, so other runnable groups can be scheduled if one 288 * or more active groups became idle. 289 */ 290 bool might_have_idle_groups; 291 292 /** @pm: Power management related fields. */ 293 struct { 294 /** @has_ref: True if the scheduler owns a runtime PM reference. */ 295 bool has_ref; 296 } pm; 297 298 /** @reset: Reset related fields. */ 299 struct { 300 /** @lock: Lock protecting the other reset fields. */ 301 struct mutex lock; 302 303 /** 304 * @in_progress: True if a reset is in progress. 305 * 306 * Set to true in panthor_sched_pre_reset() and back to false in 307 * panthor_sched_post_reset(). 308 */ 309 atomic_t in_progress; 310 311 /** 312 * @stopped_groups: List containing all groups that were stopped 313 * before a reset. 314 * 315 * Insert panthor_group::run_node in the pre_reset path. 316 */ 317 struct list_head stopped_groups; 318 } reset; 319 }; 320 321 /** 322 * struct panthor_syncobj_32b - 32-bit FW synchronization object 323 */ 324 struct panthor_syncobj_32b { 325 /** @seqno: Sequence number. */ 326 u32 seqno; 327 328 /** 329 * @status: Status. 330 * 331 * Not zero on failure. 332 */ 333 u32 status; 334 }; 335 336 /** 337 * struct panthor_syncobj_64b - 64-bit FW synchronization object 338 */ 339 struct panthor_syncobj_64b { 340 /** @seqno: Sequence number. */ 341 u64 seqno; 342 343 /** 344 * @status: Status. 345 * 346 * Not zero on failure. 347 */ 348 u32 status; 349 350 /** @pad: MBZ. */ 351 u32 pad; 352 }; 353 354 /** 355 * struct panthor_queue - Execution queue 356 */ 357 struct panthor_queue { 358 /** @scheduler: DRM scheduler used for this queue. */ 359 struct drm_gpu_scheduler scheduler; 360 361 /** @entity: DRM scheduling entity used for this queue. */ 362 struct drm_sched_entity entity; 363 364 /** 365 * @remaining_time: Time remaining before the job timeout expires. 366 * 367 * The job timeout is suspended when the queue is not scheduled by the 368 * FW. Every time we suspend the timer, we need to save the remaining 369 * time so we can restore it later on. 370 */ 371 unsigned long remaining_time; 372 373 /** @timeout_suspended: True if the job timeout was suspended. */ 374 bool timeout_suspended; 375 376 /** 377 * @doorbell_id: Doorbell assigned to this queue. 378 * 379 * Right now, all groups share the same doorbell, and the doorbell ID 380 * is assigned to group_slot + 1 when the group is assigned a slot. But 381 * we might decide to provide fine grained doorbell assignment at some 382 * point, so don't have to wake up all queues in a group every time one 383 * of them is updated. 384 */ 385 u8 doorbell_id; 386 387 /** 388 * @priority: Priority of the queue inside the group. 389 * 390 * Must be less than 16 (Only 4 bits available). 391 */ 392 u8 priority; 393 #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0) 394 395 /** @ringbuf: Command stream ring-buffer. */ 396 struct panthor_kernel_bo *ringbuf; 397 398 /** @iface: Firmware interface. */ 399 struct { 400 /** @mem: FW memory allocated for this interface. */ 401 struct panthor_kernel_bo *mem; 402 403 /** @input: Input interface. */ 404 struct panthor_fw_ringbuf_input_iface *input; 405 406 /** @output: Output interface. */ 407 const struct panthor_fw_ringbuf_output_iface *output; 408 409 /** @input_fw_va: FW virtual address of the input interface buffer. */ 410 u32 input_fw_va; 411 412 /** @output_fw_va: FW virtual address of the output interface buffer. */ 413 u32 output_fw_va; 414 } iface; 415 416 /** 417 * @syncwait: Stores information about the synchronization object this 418 * queue is waiting on. 419 */ 420 struct { 421 /** @gpu_va: GPU address of the synchronization object. */ 422 u64 gpu_va; 423 424 /** @ref: Reference value to compare against. */ 425 u64 ref; 426 427 /** @gt: True if this is a greater-than test. */ 428 bool gt; 429 430 /** @sync64: True if this is a 64-bit sync object. */ 431 bool sync64; 432 433 /** @bo: Buffer object holding the synchronization object. */ 434 struct drm_gem_object *obj; 435 436 /** @offset: Offset of the synchronization object inside @bo. */ 437 u64 offset; 438 439 /** 440 * @kmap: Kernel mapping of the buffer object holding the 441 * synchronization object. 442 */ 443 void *kmap; 444 } syncwait; 445 446 /** @fence_ctx: Fence context fields. */ 447 struct { 448 /** @lock: Used to protect access to all fences allocated by this context. */ 449 spinlock_t lock; 450 451 /** 452 * @id: Fence context ID. 453 * 454 * Allocated with dma_fence_context_alloc(). 455 */ 456 u64 id; 457 458 /** @seqno: Sequence number of the last initialized fence. */ 459 atomic64_t seqno; 460 461 /** 462 * @last_fence: Fence of the last submitted job. 463 * 464 * We return this fence when we get an empty command stream. 465 * This way, we are guaranteed that all earlier jobs have completed 466 * when drm_sched_job::s_fence::finished without having to feed 467 * the CS ring buffer with a dummy job that only signals the fence. 468 */ 469 struct dma_fence *last_fence; 470 471 /** 472 * @in_flight_jobs: List containing all in-flight jobs. 473 * 474 * Used to keep track and signal panthor_job::done_fence when the 475 * synchronization object attached to the queue is signaled. 476 */ 477 struct list_head in_flight_jobs; 478 } fence_ctx; 479 }; 480 481 /** 482 * enum panthor_group_state - Scheduling group state. 483 */ 484 enum panthor_group_state { 485 /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */ 486 PANTHOR_CS_GROUP_CREATED, 487 488 /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */ 489 PANTHOR_CS_GROUP_ACTIVE, 490 491 /** 492 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is 493 * inactive/suspended right now. 494 */ 495 PANTHOR_CS_GROUP_SUSPENDED, 496 497 /** 498 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated. 499 * 500 * Can no longer be scheduled. The only allowed action is a destruction. 501 */ 502 PANTHOR_CS_GROUP_TERMINATED, 503 504 /** 505 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state. 506 * 507 * The FW returned an inconsistent state. The group is flagged unusable 508 * and can no longer be scheduled. The only allowed action is a 509 * destruction. 510 * 511 * When that happens, we also schedule a FW reset, to start from a fresh 512 * state. 513 */ 514 PANTHOR_CS_GROUP_UNKNOWN_STATE, 515 }; 516 517 /** 518 * struct panthor_group - Scheduling group object 519 */ 520 struct panthor_group { 521 /** @refcount: Reference count */ 522 struct kref refcount; 523 524 /** @ptdev: Device. */ 525 struct panthor_device *ptdev; 526 527 /** @vm: VM bound to the group. */ 528 struct panthor_vm *vm; 529 530 /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */ 531 u64 compute_core_mask; 532 533 /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */ 534 u64 fragment_core_mask; 535 536 /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */ 537 u64 tiler_core_mask; 538 539 /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */ 540 u8 max_compute_cores; 541 542 /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */ 543 u8 max_fragment_cores; 544 545 /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */ 546 u8 max_tiler_cores; 547 548 /** @priority: Group priority (check panthor_csg_priority). */ 549 u8 priority; 550 551 /** @blocked_queues: Bitmask reflecting the blocked queues. */ 552 u32 blocked_queues; 553 554 /** @idle_queues: Bitmask reflecting the idle queues. */ 555 u32 idle_queues; 556 557 /** @fatal_lock: Lock used to protect access to fatal fields. */ 558 spinlock_t fatal_lock; 559 560 /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */ 561 u32 fatal_queues; 562 563 /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */ 564 atomic_t tiler_oom; 565 566 /** @queue_count: Number of queues in this group. */ 567 u32 queue_count; 568 569 /** @queues: Queues owned by this group. */ 570 struct panthor_queue *queues[MAX_CS_PER_CSG]; 571 572 /** 573 * @csg_id: ID of the FW group slot. 574 * 575 * -1 when the group is not scheduled/active. 576 */ 577 int csg_id; 578 579 /** 580 * @destroyed: True when the group has been destroyed. 581 * 582 * If a group is destroyed it becomes useless: no further jobs can be submitted 583 * to its queues. We simply wait for all references to be dropped so we can 584 * release the group object. 585 */ 586 bool destroyed; 587 588 /** 589 * @timedout: True when a timeout occurred on any of the queues owned by 590 * this group. 591 * 592 * Timeouts can be reported by drm_sched or by the FW. In any case, any 593 * timeout situation is unrecoverable, and the group becomes useless. 594 * We simply wait for all references to be dropped so we can release the 595 * group object. 596 */ 597 bool timedout; 598 599 /** 600 * @syncobjs: Pool of per-queue synchronization objects. 601 * 602 * One sync object per queue. The position of the sync object is 603 * determined by the queue index. 604 */ 605 struct panthor_kernel_bo *syncobjs; 606 607 /** @state: Group state. */ 608 enum panthor_group_state state; 609 610 /** 611 * @suspend_buf: Suspend buffer. 612 * 613 * Stores the state of the group and its queues when a group is suspended. 614 * Used at resume time to restore the group in its previous state. 615 * 616 * The size of the suspend buffer is exposed through the FW interface. 617 */ 618 struct panthor_kernel_bo *suspend_buf; 619 620 /** 621 * @protm_suspend_buf: Protection mode suspend buffer. 622 * 623 * Stores the state of the group and its queues when a group that's in 624 * protection mode is suspended. 625 * 626 * Used at resume time to restore the group in its previous state. 627 * 628 * The size of the protection mode suspend buffer is exposed through the 629 * FW interface. 630 */ 631 struct panthor_kernel_bo *protm_suspend_buf; 632 633 /** @sync_upd_work: Work used to check/signal job fences. */ 634 struct work_struct sync_upd_work; 635 636 /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */ 637 struct work_struct tiler_oom_work; 638 639 /** @term_work: Work used to finish the group termination procedure. */ 640 struct work_struct term_work; 641 642 /** 643 * @release_work: Work used to release group resources. 644 * 645 * We need to postpone the group release to avoid a deadlock when 646 * the last ref is released in the tick work. 647 */ 648 struct work_struct release_work; 649 650 /** 651 * @run_node: Node used to insert the group in the 652 * panthor_group::groups::{runnable,idle} and 653 * panthor_group::reset.stopped_groups lists. 654 */ 655 struct list_head run_node; 656 657 /** 658 * @wait_node: Node used to insert the group in the 659 * panthor_group::groups::waiting list. 660 */ 661 struct list_head wait_node; 662 }; 663 664 /** 665 * group_queue_work() - Queue a group work 666 * @group: Group to queue the work for. 667 * @wname: Work name. 668 * 669 * Grabs a ref and queue a work item to the scheduler workqueue. If 670 * the work was already queued, we release the reference we grabbed. 671 * 672 * Work callbacks must release the reference we grabbed here. 673 */ 674 #define group_queue_work(group, wname) \ 675 do { \ 676 group_get(group); \ 677 if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \ 678 group_put(group); \ 679 } while (0) 680 681 /** 682 * sched_queue_work() - Queue a scheduler work. 683 * @sched: Scheduler object. 684 * @wname: Work name. 685 * 686 * Conditionally queues a scheduler work if no reset is pending/in-progress. 687 */ 688 #define sched_queue_work(sched, wname) \ 689 do { \ 690 if (!atomic_read(&(sched)->reset.in_progress) && \ 691 !panthor_device_reset_is_pending((sched)->ptdev)) \ 692 queue_work((sched)->wq, &(sched)->wname ## _work); \ 693 } while (0) 694 695 /** 696 * sched_queue_delayed_work() - Queue a scheduler delayed work. 697 * @sched: Scheduler object. 698 * @wname: Work name. 699 * @delay: Work delay in jiffies. 700 * 701 * Conditionally queues a scheduler delayed work if no reset is 702 * pending/in-progress. 703 */ 704 #define sched_queue_delayed_work(sched, wname, delay) \ 705 do { \ 706 if (!atomic_read(&sched->reset.in_progress) && \ 707 !panthor_device_reset_is_pending((sched)->ptdev)) \ 708 mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \ 709 } while (0) 710 711 /* 712 * We currently set the maximum of groups per file to an arbitrary low value. 713 * But this can be updated if we need more. 714 */ 715 #define MAX_GROUPS_PER_POOL 128 716 717 /** 718 * struct panthor_group_pool - Group pool 719 * 720 * Each file get assigned a group pool. 721 */ 722 struct panthor_group_pool { 723 /** @xa: Xarray used to manage group handles. */ 724 struct xarray xa; 725 }; 726 727 /** 728 * struct panthor_job - Used to manage GPU job 729 */ 730 struct panthor_job { 731 /** @base: Inherit from drm_sched_job. */ 732 struct drm_sched_job base; 733 734 /** @refcount: Reference count. */ 735 struct kref refcount; 736 737 /** @group: Group of the queue this job will be pushed to. */ 738 struct panthor_group *group; 739 740 /** @queue_idx: Index of the queue inside @group. */ 741 u32 queue_idx; 742 743 /** @call_info: Information about the userspace command stream call. */ 744 struct { 745 /** @start: GPU address of the userspace command stream. */ 746 u64 start; 747 748 /** @size: Size of the userspace command stream. */ 749 u32 size; 750 751 /** 752 * @latest_flush: Flush ID at the time the userspace command 753 * stream was built. 754 * 755 * Needed for the flush reduction mechanism. 756 */ 757 u32 latest_flush; 758 } call_info; 759 760 /** @ringbuf: Position of this job is in the ring buffer. */ 761 struct { 762 /** @start: Start offset. */ 763 u64 start; 764 765 /** @end: End offset. */ 766 u64 end; 767 } ringbuf; 768 769 /** 770 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs 771 * list. 772 */ 773 struct list_head node; 774 775 /** @done_fence: Fence signaled when the job is finished or cancelled. */ 776 struct dma_fence *done_fence; 777 }; 778 779 static void 780 panthor_queue_put_syncwait_obj(struct panthor_queue *queue) 781 { 782 if (queue->syncwait.kmap) { 783 struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap); 784 785 drm_gem_vunmap_unlocked(queue->syncwait.obj, &map); 786 queue->syncwait.kmap = NULL; 787 } 788 789 drm_gem_object_put(queue->syncwait.obj); 790 queue->syncwait.obj = NULL; 791 } 792 793 static void * 794 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue) 795 { 796 struct panthor_device *ptdev = group->ptdev; 797 struct panthor_gem_object *bo; 798 struct iosys_map map; 799 int ret; 800 801 if (queue->syncwait.kmap) 802 return queue->syncwait.kmap + queue->syncwait.offset; 803 804 bo = panthor_vm_get_bo_for_va(group->vm, 805 queue->syncwait.gpu_va, 806 &queue->syncwait.offset); 807 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo))) 808 goto err_put_syncwait_obj; 809 810 queue->syncwait.obj = &bo->base.base; 811 ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map); 812 if (drm_WARN_ON(&ptdev->base, ret)) 813 goto err_put_syncwait_obj; 814 815 queue->syncwait.kmap = map.vaddr; 816 if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap)) 817 goto err_put_syncwait_obj; 818 819 return queue->syncwait.kmap + queue->syncwait.offset; 820 821 err_put_syncwait_obj: 822 panthor_queue_put_syncwait_obj(queue); 823 return NULL; 824 } 825 826 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue) 827 { 828 if (IS_ERR_OR_NULL(queue)) 829 return; 830 831 if (queue->entity.fence_context) 832 drm_sched_entity_destroy(&queue->entity); 833 834 if (queue->scheduler.ops) 835 drm_sched_fini(&queue->scheduler); 836 837 panthor_queue_put_syncwait_obj(queue); 838 839 panthor_kernel_bo_destroy(queue->ringbuf); 840 panthor_kernel_bo_destroy(queue->iface.mem); 841 842 /* Release the last_fence we were holding, if any. */ 843 dma_fence_put(queue->fence_ctx.last_fence); 844 845 kfree(queue); 846 } 847 848 static void group_release_work(struct work_struct *work) 849 { 850 struct panthor_group *group = container_of(work, 851 struct panthor_group, 852 release_work); 853 u32 i; 854 855 for (i = 0; i < group->queue_count; i++) 856 group_free_queue(group, group->queues[i]); 857 858 panthor_kernel_bo_destroy(group->suspend_buf); 859 panthor_kernel_bo_destroy(group->protm_suspend_buf); 860 panthor_kernel_bo_destroy(group->syncobjs); 861 862 panthor_vm_put(group->vm); 863 kfree(group); 864 } 865 866 static void group_release(struct kref *kref) 867 { 868 struct panthor_group *group = container_of(kref, 869 struct panthor_group, 870 refcount); 871 struct panthor_device *ptdev = group->ptdev; 872 873 drm_WARN_ON(&ptdev->base, group->csg_id >= 0); 874 drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node)); 875 drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node)); 876 877 queue_work(panthor_cleanup_wq, &group->release_work); 878 } 879 880 static void group_put(struct panthor_group *group) 881 { 882 if (group) 883 kref_put(&group->refcount, group_release); 884 } 885 886 static struct panthor_group * 887 group_get(struct panthor_group *group) 888 { 889 if (group) 890 kref_get(&group->refcount); 891 892 return group; 893 } 894 895 /** 896 * group_bind_locked() - Bind a group to a group slot 897 * @group: Group. 898 * @csg_id: Slot. 899 * 900 * Return: 0 on success, a negative error code otherwise. 901 */ 902 static int 903 group_bind_locked(struct panthor_group *group, u32 csg_id) 904 { 905 struct panthor_device *ptdev = group->ptdev; 906 struct panthor_csg_slot *csg_slot; 907 int ret; 908 909 lockdep_assert_held(&ptdev->scheduler->lock); 910 911 if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS || 912 ptdev->scheduler->csg_slots[csg_id].group)) 913 return -EINVAL; 914 915 ret = panthor_vm_active(group->vm); 916 if (ret) 917 return ret; 918 919 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 920 group_get(group); 921 group->csg_id = csg_id; 922 923 /* Dummy doorbell allocation: doorbell is assigned to the group and 924 * all queues use the same doorbell. 925 * 926 * TODO: Implement LRU-based doorbell assignment, so the most often 927 * updated queues get their own doorbell, thus avoiding useless checks 928 * on queues belonging to the same group that are rarely updated. 929 */ 930 for (u32 i = 0; i < group->queue_count; i++) 931 group->queues[i]->doorbell_id = csg_id + 1; 932 933 csg_slot->group = group; 934 935 return 0; 936 } 937 938 /** 939 * group_unbind_locked() - Unbind a group from a slot. 940 * @group: Group to unbind. 941 * 942 * Return: 0 on success, a negative error code otherwise. 943 */ 944 static int 945 group_unbind_locked(struct panthor_group *group) 946 { 947 struct panthor_device *ptdev = group->ptdev; 948 struct panthor_csg_slot *slot; 949 950 lockdep_assert_held(&ptdev->scheduler->lock); 951 952 if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS)) 953 return -EINVAL; 954 955 if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE)) 956 return -EINVAL; 957 958 slot = &ptdev->scheduler->csg_slots[group->csg_id]; 959 panthor_vm_idle(group->vm); 960 group->csg_id = -1; 961 962 /* Tiler OOM events will be re-issued next time the group is scheduled. */ 963 atomic_set(&group->tiler_oom, 0); 964 cancel_work(&group->tiler_oom_work); 965 966 for (u32 i = 0; i < group->queue_count; i++) 967 group->queues[i]->doorbell_id = -1; 968 969 slot->group = NULL; 970 971 group_put(group); 972 return 0; 973 } 974 975 /** 976 * cs_slot_prog_locked() - Program a queue slot 977 * @ptdev: Device. 978 * @csg_id: Group slot ID. 979 * @cs_id: Queue slot ID. 980 * 981 * Program a queue slot with the queue information so things can start being 982 * executed on this queue. 983 * 984 * The group slot must have a group bound to it already (group_bind_locked()). 985 */ 986 static void 987 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 988 { 989 struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id]; 990 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 991 992 lockdep_assert_held(&ptdev->scheduler->lock); 993 994 queue->iface.input->extract = queue->iface.output->extract; 995 drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract); 996 997 cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf); 998 cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 999 cs_iface->input->ringbuf_input = queue->iface.input_fw_va; 1000 cs_iface->input->ringbuf_output = queue->iface.output_fw_va; 1001 cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) | 1002 CS_CONFIG_DOORBELL(queue->doorbell_id); 1003 cs_iface->input->ack_irq_mask = ~0; 1004 panthor_fw_update_reqs(cs_iface, req, 1005 CS_IDLE_SYNC_WAIT | 1006 CS_IDLE_EMPTY | 1007 CS_STATE_START | 1008 CS_EXTRACT_EVENT, 1009 CS_IDLE_SYNC_WAIT | 1010 CS_IDLE_EMPTY | 1011 CS_STATE_MASK | 1012 CS_EXTRACT_EVENT); 1013 if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) { 1014 drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time); 1015 queue->timeout_suspended = false; 1016 } 1017 } 1018 1019 /** 1020 * cs_slot_reset_locked() - Reset a queue slot 1021 * @ptdev: Device. 1022 * @csg_id: Group slot. 1023 * @cs_id: Queue slot. 1024 * 1025 * Change the queue slot state to STOP and suspend the queue timeout if 1026 * the queue is not blocked. 1027 * 1028 * The group slot must have a group bound to it (group_bind_locked()). 1029 */ 1030 static int 1031 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1032 { 1033 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1034 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1035 struct panthor_queue *queue = group->queues[cs_id]; 1036 1037 lockdep_assert_held(&ptdev->scheduler->lock); 1038 1039 panthor_fw_update_reqs(cs_iface, req, 1040 CS_STATE_STOP, 1041 CS_STATE_MASK); 1042 1043 /* If the queue is blocked, we want to keep the timeout running, so 1044 * we can detect unbounded waits and kill the group when that happens. 1045 */ 1046 if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) { 1047 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 1048 queue->timeout_suspended = true; 1049 WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS)); 1050 } 1051 1052 return 0; 1053 } 1054 1055 /** 1056 * csg_slot_sync_priority_locked() - Synchronize the group slot priority 1057 * @ptdev: Device. 1058 * @csg_id: Group slot ID. 1059 * 1060 * Group slot priority update happens asynchronously. When we receive a 1061 * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can 1062 * reflect it to our panthor_csg_slot object. 1063 */ 1064 static void 1065 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id) 1066 { 1067 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1068 struct panthor_fw_csg_iface *csg_iface; 1069 1070 lockdep_assert_held(&ptdev->scheduler->lock); 1071 1072 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1073 csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28; 1074 } 1075 1076 /** 1077 * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority 1078 * @ptdev: Device. 1079 * @csg_id: Group slot. 1080 * @cs_id: Queue slot. 1081 * 1082 * Queue state is updated on group suspend or STATUS_UPDATE event. 1083 */ 1084 static void 1085 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1086 { 1087 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1088 struct panthor_queue *queue = group->queues[cs_id]; 1089 struct panthor_fw_cs_iface *cs_iface = 1090 panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id); 1091 1092 u32 status_wait_cond; 1093 1094 switch (cs_iface->output->status_blocked_reason) { 1095 case CS_STATUS_BLOCKED_REASON_UNBLOCKED: 1096 if (queue->iface.input->insert == queue->iface.output->extract && 1097 cs_iface->output->status_scoreboards == 0) 1098 group->idle_queues |= BIT(cs_id); 1099 break; 1100 1101 case CS_STATUS_BLOCKED_REASON_SYNC_WAIT: 1102 if (list_empty(&group->wait_node)) { 1103 list_move_tail(&group->wait_node, 1104 &group->ptdev->scheduler->groups.waiting); 1105 } 1106 group->blocked_queues |= BIT(cs_id); 1107 queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr; 1108 queue->syncwait.ref = cs_iface->output->status_wait_sync_value; 1109 status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK; 1110 queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT; 1111 if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) { 1112 u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi; 1113 1114 queue->syncwait.sync64 = true; 1115 queue->syncwait.ref |= sync_val_hi << 32; 1116 } else { 1117 queue->syncwait.sync64 = false; 1118 } 1119 break; 1120 1121 default: 1122 /* Other reasons are not blocking. Consider the queue as runnable 1123 * in those cases. 1124 */ 1125 break; 1126 } 1127 } 1128 1129 static void 1130 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id) 1131 { 1132 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1133 struct panthor_group *group = csg_slot->group; 1134 u32 i; 1135 1136 lockdep_assert_held(&ptdev->scheduler->lock); 1137 1138 group->idle_queues = 0; 1139 group->blocked_queues = 0; 1140 1141 for (i = 0; i < group->queue_count; i++) { 1142 if (group->queues[i]) 1143 cs_slot_sync_queue_state_locked(ptdev, csg_id, i); 1144 } 1145 } 1146 1147 static void 1148 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id) 1149 { 1150 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1151 struct panthor_fw_csg_iface *csg_iface; 1152 struct panthor_group *group; 1153 enum panthor_group_state new_state, old_state; 1154 u32 csg_state; 1155 1156 lockdep_assert_held(&ptdev->scheduler->lock); 1157 1158 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1159 group = csg_slot->group; 1160 1161 if (!group) 1162 return; 1163 1164 old_state = group->state; 1165 csg_state = csg_iface->output->ack & CSG_STATE_MASK; 1166 switch (csg_state) { 1167 case CSG_STATE_START: 1168 case CSG_STATE_RESUME: 1169 new_state = PANTHOR_CS_GROUP_ACTIVE; 1170 break; 1171 case CSG_STATE_TERMINATE: 1172 new_state = PANTHOR_CS_GROUP_TERMINATED; 1173 break; 1174 case CSG_STATE_SUSPEND: 1175 new_state = PANTHOR_CS_GROUP_SUSPENDED; 1176 break; 1177 default: 1178 /* The unknown state might be caused by a FW state corruption, 1179 * which means the group metadata can't be trusted anymore, and 1180 * the SUSPEND operation might propagate the corruption to the 1181 * suspend buffers. Flag the group state as unknown to make 1182 * sure it's unusable after that point. 1183 */ 1184 drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)", 1185 csg_id, csg_state); 1186 new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE; 1187 break; 1188 } 1189 1190 if (old_state == new_state) 1191 return; 1192 1193 /* The unknown state might be caused by a FW issue, reset the FW to 1194 * take a fresh start. 1195 */ 1196 if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE) 1197 panthor_device_schedule_reset(ptdev); 1198 1199 if (new_state == PANTHOR_CS_GROUP_SUSPENDED) 1200 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1201 1202 if (old_state == PANTHOR_CS_GROUP_ACTIVE) { 1203 u32 i; 1204 1205 /* Reset the queue slots so we start from a clean 1206 * state when starting/resuming a new group on this 1207 * CSG slot. No wait needed here, and no ringbell 1208 * either, since the CS slot will only be re-used 1209 * on the next CSG start operation. 1210 */ 1211 for (i = 0; i < group->queue_count; i++) { 1212 if (group->queues[i]) 1213 cs_slot_reset_locked(ptdev, csg_id, i); 1214 } 1215 } 1216 1217 group->state = new_state; 1218 } 1219 1220 static int 1221 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority) 1222 { 1223 struct panthor_fw_csg_iface *csg_iface; 1224 struct panthor_csg_slot *csg_slot; 1225 struct panthor_group *group; 1226 u32 queue_mask = 0, i; 1227 1228 lockdep_assert_held(&ptdev->scheduler->lock); 1229 1230 if (priority > MAX_CSG_PRIO) 1231 return -EINVAL; 1232 1233 if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS)) 1234 return -EINVAL; 1235 1236 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1237 group = csg_slot->group; 1238 if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE) 1239 return 0; 1240 1241 csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id); 1242 1243 for (i = 0; i < group->queue_count; i++) { 1244 if (group->queues[i]) { 1245 cs_slot_prog_locked(ptdev, csg_id, i); 1246 queue_mask |= BIT(i); 1247 } 1248 } 1249 1250 csg_iface->input->allow_compute = group->compute_core_mask; 1251 csg_iface->input->allow_fragment = group->fragment_core_mask; 1252 csg_iface->input->allow_other = group->tiler_core_mask; 1253 csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) | 1254 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) | 1255 CSG_EP_REQ_TILER(group->max_tiler_cores) | 1256 CSG_EP_REQ_PRIORITY(priority); 1257 csg_iface->input->config = panthor_vm_as(group->vm); 1258 1259 if (group->suspend_buf) 1260 csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf); 1261 else 1262 csg_iface->input->suspend_buf = 0; 1263 1264 if (group->protm_suspend_buf) { 1265 csg_iface->input->protm_suspend_buf = 1266 panthor_kernel_bo_gpuva(group->protm_suspend_buf); 1267 } else { 1268 csg_iface->input->protm_suspend_buf = 0; 1269 } 1270 1271 csg_iface->input->ack_irq_mask = ~0; 1272 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask); 1273 return 0; 1274 } 1275 1276 static void 1277 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev, 1278 u32 csg_id, u32 cs_id) 1279 { 1280 struct panthor_scheduler *sched = ptdev->scheduler; 1281 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1282 struct panthor_group *group = csg_slot->group; 1283 struct panthor_fw_cs_iface *cs_iface; 1284 u32 fatal; 1285 u64 info; 1286 1287 lockdep_assert_held(&sched->lock); 1288 1289 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1290 fatal = cs_iface->output->fatal; 1291 info = cs_iface->output->fatal_info; 1292 1293 if (group) 1294 group->fatal_queues |= BIT(cs_id); 1295 1296 if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) { 1297 /* If this exception is unrecoverable, queue a reset, and make 1298 * sure we stop scheduling groups until the reset has happened. 1299 */ 1300 panthor_device_schedule_reset(ptdev); 1301 cancel_delayed_work(&sched->tick_work); 1302 } else { 1303 sched_queue_delayed_work(sched, tick, 0); 1304 } 1305 1306 drm_warn(&ptdev->base, 1307 "CSG slot %d CS slot: %d\n" 1308 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n" 1309 "CS_FATAL.EXCEPTION_DATA: 0x%x\n" 1310 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n", 1311 csg_id, cs_id, 1312 (unsigned int)CS_EXCEPTION_TYPE(fatal), 1313 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)), 1314 (unsigned int)CS_EXCEPTION_DATA(fatal), 1315 info); 1316 } 1317 1318 static void 1319 cs_slot_process_fault_event_locked(struct panthor_device *ptdev, 1320 u32 csg_id, u32 cs_id) 1321 { 1322 struct panthor_scheduler *sched = ptdev->scheduler; 1323 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1324 struct panthor_group *group = csg_slot->group; 1325 struct panthor_queue *queue = group && cs_id < group->queue_count ? 1326 group->queues[cs_id] : NULL; 1327 struct panthor_fw_cs_iface *cs_iface; 1328 u32 fault; 1329 u64 info; 1330 1331 lockdep_assert_held(&sched->lock); 1332 1333 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1334 fault = cs_iface->output->fault; 1335 info = cs_iface->output->fault_info; 1336 1337 if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) { 1338 u64 cs_extract = queue->iface.output->extract; 1339 struct panthor_job *job; 1340 1341 spin_lock(&queue->fence_ctx.lock); 1342 list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) { 1343 if (cs_extract >= job->ringbuf.end) 1344 continue; 1345 1346 if (cs_extract < job->ringbuf.start) 1347 break; 1348 1349 dma_fence_set_error(job->done_fence, -EINVAL); 1350 } 1351 spin_unlock(&queue->fence_ctx.lock); 1352 } 1353 1354 drm_warn(&ptdev->base, 1355 "CSG slot %d CS slot: %d\n" 1356 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n" 1357 "CS_FAULT.EXCEPTION_DATA: 0x%x\n" 1358 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n", 1359 csg_id, cs_id, 1360 (unsigned int)CS_EXCEPTION_TYPE(fault), 1361 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)), 1362 (unsigned int)CS_EXCEPTION_DATA(fault), 1363 info); 1364 } 1365 1366 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id) 1367 { 1368 struct panthor_device *ptdev = group->ptdev; 1369 struct panthor_scheduler *sched = ptdev->scheduler; 1370 u32 renderpasses_in_flight, pending_frag_count; 1371 struct panthor_heap_pool *heaps = NULL; 1372 u64 heap_address, new_chunk_va = 0; 1373 u32 vt_start, vt_end, frag_end; 1374 int ret, csg_id; 1375 1376 mutex_lock(&sched->lock); 1377 csg_id = group->csg_id; 1378 if (csg_id >= 0) { 1379 struct panthor_fw_cs_iface *cs_iface; 1380 1381 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1382 heaps = panthor_vm_get_heap_pool(group->vm, false); 1383 heap_address = cs_iface->output->heap_address; 1384 vt_start = cs_iface->output->heap_vt_start; 1385 vt_end = cs_iface->output->heap_vt_end; 1386 frag_end = cs_iface->output->heap_frag_end; 1387 renderpasses_in_flight = vt_start - frag_end; 1388 pending_frag_count = vt_end - frag_end; 1389 } 1390 mutex_unlock(&sched->lock); 1391 1392 /* The group got scheduled out, we stop here. We will get a new tiler OOM event 1393 * when it's scheduled again. 1394 */ 1395 if (unlikely(csg_id < 0)) 1396 return 0; 1397 1398 if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) { 1399 ret = -EINVAL; 1400 } else { 1401 /* We do the allocation without holding the scheduler lock to avoid 1402 * blocking the scheduling. 1403 */ 1404 ret = panthor_heap_grow(heaps, heap_address, 1405 renderpasses_in_flight, 1406 pending_frag_count, &new_chunk_va); 1407 } 1408 1409 /* If the heap context doesn't have memory for us, we want to let the 1410 * FW try to reclaim memory by waiting for fragment jobs to land or by 1411 * executing the tiler OOM exception handler, which is supposed to 1412 * implement incremental rendering. 1413 */ 1414 if (ret && ret != -ENOMEM) { 1415 drm_warn(&ptdev->base, "Failed to extend the tiler heap\n"); 1416 group->fatal_queues |= BIT(cs_id); 1417 sched_queue_delayed_work(sched, tick, 0); 1418 goto out_put_heap_pool; 1419 } 1420 1421 mutex_lock(&sched->lock); 1422 csg_id = group->csg_id; 1423 if (csg_id >= 0) { 1424 struct panthor_fw_csg_iface *csg_iface; 1425 struct panthor_fw_cs_iface *cs_iface; 1426 1427 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1428 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1429 1430 cs_iface->input->heap_start = new_chunk_va; 1431 cs_iface->input->heap_end = new_chunk_va; 1432 panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM); 1433 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id)); 1434 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1435 } 1436 mutex_unlock(&sched->lock); 1437 1438 /* We allocated a chunck, but couldn't link it to the heap 1439 * context because the group was scheduled out while we were 1440 * allocating memory. We need to return this chunk to the heap. 1441 */ 1442 if (unlikely(csg_id < 0 && new_chunk_va)) 1443 panthor_heap_return_chunk(heaps, heap_address, new_chunk_va); 1444 1445 ret = 0; 1446 1447 out_put_heap_pool: 1448 panthor_heap_pool_put(heaps); 1449 return ret; 1450 } 1451 1452 static void group_tiler_oom_work(struct work_struct *work) 1453 { 1454 struct panthor_group *group = 1455 container_of(work, struct panthor_group, tiler_oom_work); 1456 u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0); 1457 1458 while (tiler_oom) { 1459 u32 cs_id = ffs(tiler_oom) - 1; 1460 1461 group_process_tiler_oom(group, cs_id); 1462 tiler_oom &= ~BIT(cs_id); 1463 } 1464 1465 group_put(group); 1466 } 1467 1468 static void 1469 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev, 1470 u32 csg_id, u32 cs_id) 1471 { 1472 struct panthor_scheduler *sched = ptdev->scheduler; 1473 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1474 struct panthor_group *group = csg_slot->group; 1475 1476 lockdep_assert_held(&sched->lock); 1477 1478 if (drm_WARN_ON(&ptdev->base, !group)) 1479 return; 1480 1481 atomic_or(BIT(cs_id), &group->tiler_oom); 1482 1483 /* We don't use group_queue_work() here because we want to queue the 1484 * work item to the heap_alloc_wq. 1485 */ 1486 group_get(group); 1487 if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work)) 1488 group_put(group); 1489 } 1490 1491 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev, 1492 u32 csg_id, u32 cs_id) 1493 { 1494 struct panthor_fw_cs_iface *cs_iface; 1495 u32 req, ack, events; 1496 1497 lockdep_assert_held(&ptdev->scheduler->lock); 1498 1499 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1500 req = cs_iface->input->req; 1501 ack = cs_iface->output->ack; 1502 events = (req ^ ack) & CS_EVT_MASK; 1503 1504 if (events & CS_FATAL) 1505 cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id); 1506 1507 if (events & CS_FAULT) 1508 cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id); 1509 1510 if (events & CS_TILER_OOM) 1511 cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id); 1512 1513 /* We don't acknowledge the TILER_OOM event since its handling is 1514 * deferred to a separate work. 1515 */ 1516 panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT); 1517 1518 return (events & (CS_FAULT | CS_TILER_OOM)) != 0; 1519 } 1520 1521 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id) 1522 { 1523 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1524 struct panthor_fw_csg_iface *csg_iface; 1525 1526 lockdep_assert_held(&ptdev->scheduler->lock); 1527 1528 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1529 csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE; 1530 } 1531 1532 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id) 1533 { 1534 struct panthor_scheduler *sched = ptdev->scheduler; 1535 1536 lockdep_assert_held(&sched->lock); 1537 1538 sched->might_have_idle_groups = true; 1539 1540 /* Schedule a tick so we can evict idle groups and schedule non-idle 1541 * ones. This will also update runtime PM and devfreq busy/idle states, 1542 * so the device can lower its frequency or get suspended. 1543 */ 1544 sched_queue_delayed_work(sched, tick, 0); 1545 } 1546 1547 static void csg_slot_sync_update_locked(struct panthor_device *ptdev, 1548 u32 csg_id) 1549 { 1550 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1551 struct panthor_group *group = csg_slot->group; 1552 1553 lockdep_assert_held(&ptdev->scheduler->lock); 1554 1555 if (group) 1556 group_queue_work(group, sync_upd); 1557 1558 sched_queue_work(ptdev->scheduler, sync_upd); 1559 } 1560 1561 static void 1562 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id) 1563 { 1564 struct panthor_scheduler *sched = ptdev->scheduler; 1565 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1566 struct panthor_group *group = csg_slot->group; 1567 1568 lockdep_assert_held(&sched->lock); 1569 1570 drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id); 1571 1572 group = csg_slot->group; 1573 if (!drm_WARN_ON(&ptdev->base, !group)) 1574 group->timedout = true; 1575 1576 sched_queue_delayed_work(sched, tick, 0); 1577 } 1578 1579 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id) 1580 { 1581 u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events; 1582 struct panthor_fw_csg_iface *csg_iface; 1583 u32 ring_cs_db_mask = 0; 1584 1585 lockdep_assert_held(&ptdev->scheduler->lock); 1586 1587 if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1588 return; 1589 1590 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1591 req = READ_ONCE(csg_iface->input->req); 1592 ack = READ_ONCE(csg_iface->output->ack); 1593 cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req); 1594 cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack); 1595 csg_events = (req ^ ack) & CSG_EVT_MASK; 1596 1597 /* There may not be any pending CSG/CS interrupts to process */ 1598 if (req == ack && cs_irq_req == cs_irq_ack) 1599 return; 1600 1601 /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before 1602 * examining the CS_ACK & CS_REQ bits. This would ensure that Host 1603 * doesn't miss an interrupt for the CS in the race scenario where 1604 * whilst Host is servicing an interrupt for the CS, firmware sends 1605 * another interrupt for that CS. 1606 */ 1607 csg_iface->input->cs_irq_ack = cs_irq_req; 1608 1609 panthor_fw_update_reqs(csg_iface, req, ack, 1610 CSG_SYNC_UPDATE | 1611 CSG_IDLE | 1612 CSG_PROGRESS_TIMER_EVENT); 1613 1614 if (csg_events & CSG_IDLE) 1615 csg_slot_process_idle_event_locked(ptdev, csg_id); 1616 1617 if (csg_events & CSG_PROGRESS_TIMER_EVENT) 1618 csg_slot_process_progress_timer_event_locked(ptdev, csg_id); 1619 1620 cs_irqs = cs_irq_req ^ cs_irq_ack; 1621 while (cs_irqs) { 1622 u32 cs_id = ffs(cs_irqs) - 1; 1623 1624 if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id)) 1625 ring_cs_db_mask |= BIT(cs_id); 1626 1627 cs_irqs &= ~BIT(cs_id); 1628 } 1629 1630 if (csg_events & CSG_SYNC_UPDATE) 1631 csg_slot_sync_update_locked(ptdev, csg_id); 1632 1633 if (ring_cs_db_mask) 1634 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask); 1635 1636 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1637 } 1638 1639 static void sched_process_idle_event_locked(struct panthor_device *ptdev) 1640 { 1641 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1642 1643 lockdep_assert_held(&ptdev->scheduler->lock); 1644 1645 /* Acknowledge the idle event and schedule a tick. */ 1646 panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE); 1647 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 1648 } 1649 1650 /** 1651 * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ 1652 * @ptdev: Device. 1653 */ 1654 static void sched_process_global_irq_locked(struct panthor_device *ptdev) 1655 { 1656 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1657 u32 req, ack, evts; 1658 1659 lockdep_assert_held(&ptdev->scheduler->lock); 1660 1661 req = READ_ONCE(glb_iface->input->req); 1662 ack = READ_ONCE(glb_iface->output->ack); 1663 evts = (req ^ ack) & GLB_EVT_MASK; 1664 1665 if (evts & GLB_IDLE) 1666 sched_process_idle_event_locked(ptdev); 1667 } 1668 1669 static void process_fw_events_work(struct work_struct *work) 1670 { 1671 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 1672 fw_events_work); 1673 u32 events = atomic_xchg(&sched->fw_events, 0); 1674 struct panthor_device *ptdev = sched->ptdev; 1675 1676 mutex_lock(&sched->lock); 1677 1678 if (events & JOB_INT_GLOBAL_IF) { 1679 sched_process_global_irq_locked(ptdev); 1680 events &= ~JOB_INT_GLOBAL_IF; 1681 } 1682 1683 while (events) { 1684 u32 csg_id = ffs(events) - 1; 1685 1686 sched_process_csg_irq_locked(ptdev, csg_id); 1687 events &= ~BIT(csg_id); 1688 } 1689 1690 mutex_unlock(&sched->lock); 1691 } 1692 1693 /** 1694 * panthor_sched_report_fw_events() - Report FW events to the scheduler. 1695 */ 1696 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events) 1697 { 1698 if (!ptdev->scheduler) 1699 return; 1700 1701 atomic_or(events, &ptdev->scheduler->fw_events); 1702 sched_queue_work(ptdev->scheduler, fw_events); 1703 } 1704 1705 static const char *fence_get_driver_name(struct dma_fence *fence) 1706 { 1707 return "panthor"; 1708 } 1709 1710 static const char *queue_fence_get_timeline_name(struct dma_fence *fence) 1711 { 1712 return "queue-fence"; 1713 } 1714 1715 static const struct dma_fence_ops panthor_queue_fence_ops = { 1716 .get_driver_name = fence_get_driver_name, 1717 .get_timeline_name = queue_fence_get_timeline_name, 1718 }; 1719 1720 struct panthor_csg_slots_upd_ctx { 1721 u32 update_mask; 1722 u32 timedout_mask; 1723 struct { 1724 u32 value; 1725 u32 mask; 1726 } requests[MAX_CSGS]; 1727 }; 1728 1729 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx) 1730 { 1731 memset(ctx, 0, sizeof(*ctx)); 1732 } 1733 1734 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev, 1735 struct panthor_csg_slots_upd_ctx *ctx, 1736 u32 csg_id, u32 value, u32 mask) 1737 { 1738 if (drm_WARN_ON(&ptdev->base, !mask) || 1739 drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1740 return; 1741 1742 ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask); 1743 ctx->requests[csg_id].mask |= mask; 1744 ctx->update_mask |= BIT(csg_id); 1745 } 1746 1747 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev, 1748 struct panthor_csg_slots_upd_ctx *ctx) 1749 { 1750 struct panthor_scheduler *sched = ptdev->scheduler; 1751 u32 update_slots = ctx->update_mask; 1752 1753 lockdep_assert_held(&sched->lock); 1754 1755 if (!ctx->update_mask) 1756 return 0; 1757 1758 while (update_slots) { 1759 struct panthor_fw_csg_iface *csg_iface; 1760 u32 csg_id = ffs(update_slots) - 1; 1761 1762 update_slots &= ~BIT(csg_id); 1763 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1764 panthor_fw_update_reqs(csg_iface, req, 1765 ctx->requests[csg_id].value, 1766 ctx->requests[csg_id].mask); 1767 } 1768 1769 panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask); 1770 1771 update_slots = ctx->update_mask; 1772 while (update_slots) { 1773 struct panthor_fw_csg_iface *csg_iface; 1774 u32 csg_id = ffs(update_slots) - 1; 1775 u32 req_mask = ctx->requests[csg_id].mask, acked; 1776 int ret; 1777 1778 update_slots &= ~BIT(csg_id); 1779 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1780 1781 ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100); 1782 1783 if (acked & CSG_ENDPOINT_CONFIG) 1784 csg_slot_sync_priority_locked(ptdev, csg_id); 1785 1786 if (acked & CSG_STATE_MASK) 1787 csg_slot_sync_state_locked(ptdev, csg_id); 1788 1789 if (acked & CSG_STATUS_UPDATE) { 1790 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1791 csg_slot_sync_idle_state_locked(ptdev, csg_id); 1792 } 1793 1794 if (ret && acked != req_mask && 1795 ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) { 1796 drm_err(&ptdev->base, "CSG %d update request timedout", csg_id); 1797 ctx->timedout_mask |= BIT(csg_id); 1798 } 1799 } 1800 1801 if (ctx->timedout_mask) 1802 return -ETIMEDOUT; 1803 1804 return 0; 1805 } 1806 1807 struct panthor_sched_tick_ctx { 1808 struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT]; 1809 struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT]; 1810 u32 idle_group_count; 1811 u32 group_count; 1812 enum panthor_csg_priority min_priority; 1813 struct panthor_vm *vms[MAX_CS_PER_CSG]; 1814 u32 as_count; 1815 bool immediate_tick; 1816 u32 csg_upd_failed_mask; 1817 }; 1818 1819 static bool 1820 tick_ctx_is_full(const struct panthor_scheduler *sched, 1821 const struct panthor_sched_tick_ctx *ctx) 1822 { 1823 return ctx->group_count == sched->csg_slot_count; 1824 } 1825 1826 static bool 1827 group_is_idle(struct panthor_group *group) 1828 { 1829 struct panthor_device *ptdev = group->ptdev; 1830 u32 inactive_queues; 1831 1832 if (group->csg_id >= 0) 1833 return ptdev->scheduler->csg_slots[group->csg_id].idle; 1834 1835 inactive_queues = group->idle_queues | group->blocked_queues; 1836 return hweight32(inactive_queues) == group->queue_count; 1837 } 1838 1839 static bool 1840 group_can_run(struct panthor_group *group) 1841 { 1842 return group->state != PANTHOR_CS_GROUP_TERMINATED && 1843 group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE && 1844 !group->destroyed && group->fatal_queues == 0 && 1845 !group->timedout; 1846 } 1847 1848 static void 1849 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched, 1850 struct panthor_sched_tick_ctx *ctx, 1851 struct list_head *queue, 1852 bool skip_idle_groups, 1853 bool owned_by_tick_ctx) 1854 { 1855 struct panthor_group *group, *tmp; 1856 1857 if (tick_ctx_is_full(sched, ctx)) 1858 return; 1859 1860 list_for_each_entry_safe(group, tmp, queue, run_node) { 1861 u32 i; 1862 1863 if (!group_can_run(group)) 1864 continue; 1865 1866 if (skip_idle_groups && group_is_idle(group)) 1867 continue; 1868 1869 for (i = 0; i < ctx->as_count; i++) { 1870 if (ctx->vms[i] == group->vm) 1871 break; 1872 } 1873 1874 if (i == ctx->as_count && ctx->as_count == sched->as_slot_count) 1875 continue; 1876 1877 if (!owned_by_tick_ctx) 1878 group_get(group); 1879 1880 list_move_tail(&group->run_node, &ctx->groups[group->priority]); 1881 ctx->group_count++; 1882 if (group_is_idle(group)) 1883 ctx->idle_group_count++; 1884 1885 if (i == ctx->as_count) 1886 ctx->vms[ctx->as_count++] = group->vm; 1887 1888 if (ctx->min_priority > group->priority) 1889 ctx->min_priority = group->priority; 1890 1891 if (tick_ctx_is_full(sched, ctx)) 1892 return; 1893 } 1894 } 1895 1896 static void 1897 tick_ctx_insert_old_group(struct panthor_scheduler *sched, 1898 struct panthor_sched_tick_ctx *ctx, 1899 struct panthor_group *group, 1900 bool full_tick) 1901 { 1902 struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id]; 1903 struct panthor_group *other_group; 1904 1905 if (!full_tick) { 1906 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1907 return; 1908 } 1909 1910 /* Rotate to make sure groups with lower CSG slot 1911 * priorities have a chance to get a higher CSG slot 1912 * priority next time they get picked. This priority 1913 * has an impact on resource request ordering, so it's 1914 * important to make sure we don't let one group starve 1915 * all other groups with the same group priority. 1916 */ 1917 list_for_each_entry(other_group, 1918 &ctx->old_groups[csg_slot->group->priority], 1919 run_node) { 1920 struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id]; 1921 1922 if (other_csg_slot->priority > csg_slot->priority) { 1923 list_add_tail(&csg_slot->group->run_node, &other_group->run_node); 1924 return; 1925 } 1926 } 1927 1928 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1929 } 1930 1931 static void 1932 tick_ctx_init(struct panthor_scheduler *sched, 1933 struct panthor_sched_tick_ctx *ctx, 1934 bool full_tick) 1935 { 1936 struct panthor_device *ptdev = sched->ptdev; 1937 struct panthor_csg_slots_upd_ctx upd_ctx; 1938 int ret; 1939 u32 i; 1940 1941 memset(ctx, 0, sizeof(*ctx)); 1942 csgs_upd_ctx_init(&upd_ctx); 1943 1944 ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT; 1945 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 1946 INIT_LIST_HEAD(&ctx->groups[i]); 1947 INIT_LIST_HEAD(&ctx->old_groups[i]); 1948 } 1949 1950 for (i = 0; i < sched->csg_slot_count; i++) { 1951 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 1952 struct panthor_group *group = csg_slot->group; 1953 struct panthor_fw_csg_iface *csg_iface; 1954 1955 if (!group) 1956 continue; 1957 1958 csg_iface = panthor_fw_get_csg_iface(ptdev, i); 1959 group_get(group); 1960 1961 /* If there was unhandled faults on the VM, force processing of 1962 * CSG IRQs, so we can flag the faulty queue. 1963 */ 1964 if (panthor_vm_has_unhandled_faults(group->vm)) { 1965 sched_process_csg_irq_locked(ptdev, i); 1966 1967 /* No fatal fault reported, flag all queues as faulty. */ 1968 if (!group->fatal_queues) 1969 group->fatal_queues |= GENMASK(group->queue_count - 1, 0); 1970 } 1971 1972 tick_ctx_insert_old_group(sched, ctx, group, full_tick); 1973 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 1974 csg_iface->output->ack ^ CSG_STATUS_UPDATE, 1975 CSG_STATUS_UPDATE); 1976 } 1977 1978 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 1979 if (ret) { 1980 panthor_device_schedule_reset(ptdev); 1981 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 1982 } 1983 } 1984 1985 #define NUM_INSTRS_PER_SLOT 16 1986 1987 static void 1988 group_term_post_processing(struct panthor_group *group) 1989 { 1990 struct panthor_job *job, *tmp; 1991 LIST_HEAD(faulty_jobs); 1992 bool cookie; 1993 u32 i = 0; 1994 1995 if (drm_WARN_ON(&group->ptdev->base, group_can_run(group))) 1996 return; 1997 1998 cookie = dma_fence_begin_signalling(); 1999 for (i = 0; i < group->queue_count; i++) { 2000 struct panthor_queue *queue = group->queues[i]; 2001 struct panthor_syncobj_64b *syncobj; 2002 int err; 2003 2004 if (group->fatal_queues & BIT(i)) 2005 err = -EINVAL; 2006 else if (group->timedout) 2007 err = -ETIMEDOUT; 2008 else 2009 err = -ECANCELED; 2010 2011 if (!queue) 2012 continue; 2013 2014 spin_lock(&queue->fence_ctx.lock); 2015 list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) { 2016 list_move_tail(&job->node, &faulty_jobs); 2017 dma_fence_set_error(job->done_fence, err); 2018 dma_fence_signal_locked(job->done_fence); 2019 } 2020 spin_unlock(&queue->fence_ctx.lock); 2021 2022 /* Manually update the syncobj seqno to unblock waiters. */ 2023 syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj)); 2024 syncobj->status = ~0; 2025 syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno); 2026 sched_queue_work(group->ptdev->scheduler, sync_upd); 2027 } 2028 dma_fence_end_signalling(cookie); 2029 2030 list_for_each_entry_safe(job, tmp, &faulty_jobs, node) { 2031 list_del_init(&job->node); 2032 panthor_job_put(&job->base); 2033 } 2034 } 2035 2036 static void group_term_work(struct work_struct *work) 2037 { 2038 struct panthor_group *group = 2039 container_of(work, struct panthor_group, term_work); 2040 2041 group_term_post_processing(group); 2042 group_put(group); 2043 } 2044 2045 static void 2046 tick_ctx_cleanup(struct panthor_scheduler *sched, 2047 struct panthor_sched_tick_ctx *ctx) 2048 { 2049 struct panthor_group *group, *tmp; 2050 u32 i; 2051 2052 for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) { 2053 list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) { 2054 /* If everything went fine, we should only have groups 2055 * to be terminated in the old_groups lists. 2056 */ 2057 drm_WARN_ON(&group->ptdev->base, !ctx->csg_upd_failed_mask && 2058 group_can_run(group)); 2059 2060 if (!group_can_run(group)) { 2061 list_del_init(&group->run_node); 2062 list_del_init(&group->wait_node); 2063 group_queue_work(group, term); 2064 } else if (group->csg_id >= 0) { 2065 list_del_init(&group->run_node); 2066 } else { 2067 list_move(&group->run_node, 2068 group_is_idle(group) ? 2069 &sched->groups.idle[group->priority] : 2070 &sched->groups.runnable[group->priority]); 2071 } 2072 group_put(group); 2073 } 2074 } 2075 2076 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 2077 /* If everything went fine, the groups to schedule lists should 2078 * be empty. 2079 */ 2080 drm_WARN_ON(&group->ptdev->base, 2081 !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i])); 2082 2083 list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) { 2084 if (group->csg_id >= 0) { 2085 list_del_init(&group->run_node); 2086 } else { 2087 list_move(&group->run_node, 2088 group_is_idle(group) ? 2089 &sched->groups.idle[group->priority] : 2090 &sched->groups.runnable[group->priority]); 2091 } 2092 group_put(group); 2093 } 2094 } 2095 } 2096 2097 static void 2098 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx) 2099 { 2100 struct panthor_group *group, *tmp; 2101 struct panthor_device *ptdev = sched->ptdev; 2102 struct panthor_csg_slot *csg_slot; 2103 int prio, new_csg_prio = MAX_CSG_PRIO, i; 2104 u32 free_csg_slots = 0; 2105 struct panthor_csg_slots_upd_ctx upd_ctx; 2106 int ret; 2107 2108 csgs_upd_ctx_init(&upd_ctx); 2109 2110 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2111 /* Suspend or terminate evicted groups. */ 2112 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2113 bool term = !group_can_run(group); 2114 int csg_id = group->csg_id; 2115 2116 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2117 continue; 2118 2119 csg_slot = &sched->csg_slots[csg_id]; 2120 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2121 term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND, 2122 CSG_STATE_MASK); 2123 } 2124 2125 /* Update priorities on already running groups. */ 2126 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2127 struct panthor_fw_csg_iface *csg_iface; 2128 int csg_id = group->csg_id; 2129 2130 if (csg_id < 0) { 2131 new_csg_prio--; 2132 continue; 2133 } 2134 2135 csg_slot = &sched->csg_slots[csg_id]; 2136 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2137 if (csg_slot->priority == new_csg_prio) { 2138 new_csg_prio--; 2139 continue; 2140 } 2141 2142 panthor_fw_update_reqs(csg_iface, endpoint_req, 2143 CSG_EP_REQ_PRIORITY(new_csg_prio), 2144 CSG_EP_REQ_PRIORITY_MASK); 2145 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2146 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2147 CSG_ENDPOINT_CONFIG); 2148 new_csg_prio--; 2149 } 2150 } 2151 2152 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2153 if (ret) { 2154 panthor_device_schedule_reset(ptdev); 2155 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2156 return; 2157 } 2158 2159 /* Unbind evicted groups. */ 2160 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2161 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2162 /* This group is gone. Process interrupts to clear 2163 * any pending interrupts before we start the new 2164 * group. 2165 */ 2166 if (group->csg_id >= 0) 2167 sched_process_csg_irq_locked(ptdev, group->csg_id); 2168 2169 group_unbind_locked(group); 2170 } 2171 } 2172 2173 for (i = 0; i < sched->csg_slot_count; i++) { 2174 if (!sched->csg_slots[i].group) 2175 free_csg_slots |= BIT(i); 2176 } 2177 2178 csgs_upd_ctx_init(&upd_ctx); 2179 new_csg_prio = MAX_CSG_PRIO; 2180 2181 /* Start new groups. */ 2182 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2183 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2184 int csg_id = group->csg_id; 2185 struct panthor_fw_csg_iface *csg_iface; 2186 2187 if (csg_id >= 0) { 2188 new_csg_prio--; 2189 continue; 2190 } 2191 2192 csg_id = ffs(free_csg_slots) - 1; 2193 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2194 break; 2195 2196 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2197 csg_slot = &sched->csg_slots[csg_id]; 2198 group_bind_locked(group, csg_id); 2199 csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--); 2200 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2201 group->state == PANTHOR_CS_GROUP_SUSPENDED ? 2202 CSG_STATE_RESUME : CSG_STATE_START, 2203 CSG_STATE_MASK); 2204 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2205 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2206 CSG_ENDPOINT_CONFIG); 2207 free_csg_slots &= ~BIT(csg_id); 2208 } 2209 } 2210 2211 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2212 if (ret) { 2213 panthor_device_schedule_reset(ptdev); 2214 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2215 return; 2216 } 2217 2218 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2219 list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) { 2220 list_del_init(&group->run_node); 2221 2222 /* If the group has been destroyed while we were 2223 * scheduling, ask for an immediate tick to 2224 * re-evaluate as soon as possible and get rid of 2225 * this dangling group. 2226 */ 2227 if (group->destroyed) 2228 ctx->immediate_tick = true; 2229 group_put(group); 2230 } 2231 2232 /* Return evicted groups to the idle or run queues. Groups 2233 * that can no longer be run (because they've been destroyed 2234 * or experienced an unrecoverable error) will be scheduled 2235 * for destruction in tick_ctx_cleanup(). 2236 */ 2237 list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) { 2238 if (!group_can_run(group)) 2239 continue; 2240 2241 if (group_is_idle(group)) 2242 list_move_tail(&group->run_node, &sched->groups.idle[prio]); 2243 else 2244 list_move_tail(&group->run_node, &sched->groups.runnable[prio]); 2245 group_put(group); 2246 } 2247 } 2248 2249 sched->used_csg_slot_count = ctx->group_count; 2250 sched->might_have_idle_groups = ctx->idle_group_count > 0; 2251 } 2252 2253 static u64 2254 tick_ctx_update_resched_target(struct panthor_scheduler *sched, 2255 const struct panthor_sched_tick_ctx *ctx) 2256 { 2257 /* We had space left, no need to reschedule until some external event happens. */ 2258 if (!tick_ctx_is_full(sched, ctx)) 2259 goto no_tick; 2260 2261 /* If idle groups were scheduled, no need to wake up until some external 2262 * event happens (group unblocked, new job submitted, ...). 2263 */ 2264 if (ctx->idle_group_count) 2265 goto no_tick; 2266 2267 if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT)) 2268 goto no_tick; 2269 2270 /* If there are groups of the same priority waiting, we need to 2271 * keep the scheduler ticking, otherwise, we'll just wait for 2272 * new groups with higher priority to be queued. 2273 */ 2274 if (!list_empty(&sched->groups.runnable[ctx->min_priority])) { 2275 u64 resched_target = sched->last_tick + sched->tick_period; 2276 2277 if (time_before64(sched->resched_target, sched->last_tick) || 2278 time_before64(resched_target, sched->resched_target)) 2279 sched->resched_target = resched_target; 2280 2281 return sched->resched_target - sched->last_tick; 2282 } 2283 2284 no_tick: 2285 sched->resched_target = U64_MAX; 2286 return U64_MAX; 2287 } 2288 2289 static void tick_work(struct work_struct *work) 2290 { 2291 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 2292 tick_work.work); 2293 struct panthor_device *ptdev = sched->ptdev; 2294 struct panthor_sched_tick_ctx ctx; 2295 u64 remaining_jiffies = 0, resched_delay; 2296 u64 now = get_jiffies_64(); 2297 int prio, ret, cookie; 2298 2299 if (!drm_dev_enter(&ptdev->base, &cookie)) 2300 return; 2301 2302 ret = pm_runtime_resume_and_get(ptdev->base.dev); 2303 if (drm_WARN_ON(&ptdev->base, ret)) 2304 goto out_dev_exit; 2305 2306 if (time_before64(now, sched->resched_target)) 2307 remaining_jiffies = sched->resched_target - now; 2308 2309 mutex_lock(&sched->lock); 2310 if (panthor_device_reset_is_pending(sched->ptdev)) 2311 goto out_unlock; 2312 2313 tick_ctx_init(sched, &ctx, remaining_jiffies != 0); 2314 if (ctx.csg_upd_failed_mask) 2315 goto out_cleanup_ctx; 2316 2317 if (remaining_jiffies) { 2318 /* Scheduling forced in the middle of a tick. Only RT groups 2319 * can preempt non-RT ones. Currently running RT groups can't be 2320 * preempted. 2321 */ 2322 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2323 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2324 prio--) { 2325 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], 2326 true, true); 2327 if (prio == PANTHOR_CSG_PRIORITY_RT) { 2328 tick_ctx_pick_groups_from_list(sched, &ctx, 2329 &sched->groups.runnable[prio], 2330 true, false); 2331 } 2332 } 2333 } 2334 2335 /* First pick non-idle groups */ 2336 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2337 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2338 prio--) { 2339 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio], 2340 true, false); 2341 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true); 2342 } 2343 2344 /* If we have free CSG slots left, pick idle groups */ 2345 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2346 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2347 prio--) { 2348 /* Check the old_group queue first to avoid reprogramming the slots */ 2349 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true); 2350 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio], 2351 false, false); 2352 } 2353 2354 tick_ctx_apply(sched, &ctx); 2355 if (ctx.csg_upd_failed_mask) 2356 goto out_cleanup_ctx; 2357 2358 if (ctx.idle_group_count == ctx.group_count) { 2359 panthor_devfreq_record_idle(sched->ptdev); 2360 if (sched->pm.has_ref) { 2361 pm_runtime_put_autosuspend(ptdev->base.dev); 2362 sched->pm.has_ref = false; 2363 } 2364 } else { 2365 panthor_devfreq_record_busy(sched->ptdev); 2366 if (!sched->pm.has_ref) { 2367 pm_runtime_get(ptdev->base.dev); 2368 sched->pm.has_ref = true; 2369 } 2370 } 2371 2372 sched->last_tick = now; 2373 resched_delay = tick_ctx_update_resched_target(sched, &ctx); 2374 if (ctx.immediate_tick) 2375 resched_delay = 0; 2376 2377 if (resched_delay != U64_MAX) 2378 sched_queue_delayed_work(sched, tick, resched_delay); 2379 2380 out_cleanup_ctx: 2381 tick_ctx_cleanup(sched, &ctx); 2382 2383 out_unlock: 2384 mutex_unlock(&sched->lock); 2385 pm_runtime_mark_last_busy(ptdev->base.dev); 2386 pm_runtime_put_autosuspend(ptdev->base.dev); 2387 2388 out_dev_exit: 2389 drm_dev_exit(cookie); 2390 } 2391 2392 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx) 2393 { 2394 struct panthor_queue *queue = group->queues[queue_idx]; 2395 union { 2396 struct panthor_syncobj_64b sync64; 2397 struct panthor_syncobj_32b sync32; 2398 } *syncobj; 2399 bool result; 2400 u64 value; 2401 2402 syncobj = panthor_queue_get_syncwait_obj(group, queue); 2403 if (!syncobj) 2404 return -EINVAL; 2405 2406 value = queue->syncwait.sync64 ? 2407 syncobj->sync64.seqno : 2408 syncobj->sync32.seqno; 2409 2410 if (queue->syncwait.gt) 2411 result = value > queue->syncwait.ref; 2412 else 2413 result = value <= queue->syncwait.ref; 2414 2415 if (result) 2416 panthor_queue_put_syncwait_obj(queue); 2417 2418 return result; 2419 } 2420 2421 static void sync_upd_work(struct work_struct *work) 2422 { 2423 struct panthor_scheduler *sched = container_of(work, 2424 struct panthor_scheduler, 2425 sync_upd_work); 2426 struct panthor_group *group, *tmp; 2427 bool immediate_tick = false; 2428 2429 mutex_lock(&sched->lock); 2430 list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) { 2431 u32 tested_queues = group->blocked_queues; 2432 u32 unblocked_queues = 0; 2433 2434 while (tested_queues) { 2435 u32 cs_id = ffs(tested_queues) - 1; 2436 int ret; 2437 2438 ret = panthor_queue_eval_syncwait(group, cs_id); 2439 drm_WARN_ON(&group->ptdev->base, ret < 0); 2440 if (ret) 2441 unblocked_queues |= BIT(cs_id); 2442 2443 tested_queues &= ~BIT(cs_id); 2444 } 2445 2446 if (unblocked_queues) { 2447 group->blocked_queues &= ~unblocked_queues; 2448 2449 if (group->csg_id < 0) { 2450 list_move(&group->run_node, 2451 &sched->groups.runnable[group->priority]); 2452 if (group->priority == PANTHOR_CSG_PRIORITY_RT) 2453 immediate_tick = true; 2454 } 2455 } 2456 2457 if (!group->blocked_queues) 2458 list_del_init(&group->wait_node); 2459 } 2460 mutex_unlock(&sched->lock); 2461 2462 if (immediate_tick) 2463 sched_queue_delayed_work(sched, tick, 0); 2464 } 2465 2466 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask) 2467 { 2468 struct panthor_device *ptdev = group->ptdev; 2469 struct panthor_scheduler *sched = ptdev->scheduler; 2470 struct list_head *queue = &sched->groups.runnable[group->priority]; 2471 u64 delay_jiffies = 0; 2472 bool was_idle; 2473 u64 now; 2474 2475 if (!group_can_run(group)) 2476 return; 2477 2478 /* All updated queues are blocked, no need to wake up the scheduler. */ 2479 if ((queue_mask & group->blocked_queues) == queue_mask) 2480 return; 2481 2482 was_idle = group_is_idle(group); 2483 group->idle_queues &= ~queue_mask; 2484 2485 /* Don't mess up with the lists if we're in a middle of a reset. */ 2486 if (atomic_read(&sched->reset.in_progress)) 2487 return; 2488 2489 if (was_idle && !group_is_idle(group)) 2490 list_move_tail(&group->run_node, queue); 2491 2492 /* RT groups are preemptive. */ 2493 if (group->priority == PANTHOR_CSG_PRIORITY_RT) { 2494 sched_queue_delayed_work(sched, tick, 0); 2495 return; 2496 } 2497 2498 /* Some groups might be idle, force an immediate tick to 2499 * re-evaluate. 2500 */ 2501 if (sched->might_have_idle_groups) { 2502 sched_queue_delayed_work(sched, tick, 0); 2503 return; 2504 } 2505 2506 /* Scheduler is ticking, nothing to do. */ 2507 if (sched->resched_target != U64_MAX) { 2508 /* If there are free slots, force immediating ticking. */ 2509 if (sched->used_csg_slot_count < sched->csg_slot_count) 2510 sched_queue_delayed_work(sched, tick, 0); 2511 2512 return; 2513 } 2514 2515 /* Scheduler tick was off, recalculate the resched_target based on the 2516 * last tick event, and queue the scheduler work. 2517 */ 2518 now = get_jiffies_64(); 2519 sched->resched_target = sched->last_tick + sched->tick_period; 2520 if (sched->used_csg_slot_count == sched->csg_slot_count && 2521 time_before64(now, sched->resched_target)) 2522 delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX); 2523 2524 sched_queue_delayed_work(sched, tick, delay_jiffies); 2525 } 2526 2527 static void queue_stop(struct panthor_queue *queue, 2528 struct panthor_job *bad_job) 2529 { 2530 drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); 2531 } 2532 2533 static void queue_start(struct panthor_queue *queue) 2534 { 2535 struct panthor_job *job; 2536 2537 /* Re-assign the parent fences. */ 2538 list_for_each_entry(job, &queue->scheduler.pending_list, base.list) 2539 job->base.s_fence->parent = dma_fence_get(job->done_fence); 2540 2541 drm_sched_start(&queue->scheduler); 2542 } 2543 2544 static void panthor_group_stop(struct panthor_group *group) 2545 { 2546 struct panthor_scheduler *sched = group->ptdev->scheduler; 2547 2548 lockdep_assert_held(&sched->reset.lock); 2549 2550 for (u32 i = 0; i < group->queue_count; i++) 2551 queue_stop(group->queues[i], NULL); 2552 2553 group_get(group); 2554 list_move_tail(&group->run_node, &sched->reset.stopped_groups); 2555 } 2556 2557 static void panthor_group_start(struct panthor_group *group) 2558 { 2559 struct panthor_scheduler *sched = group->ptdev->scheduler; 2560 2561 lockdep_assert_held(&group->ptdev->scheduler->reset.lock); 2562 2563 for (u32 i = 0; i < group->queue_count; i++) 2564 queue_start(group->queues[i]); 2565 2566 if (group_can_run(group)) { 2567 list_move_tail(&group->run_node, 2568 group_is_idle(group) ? 2569 &sched->groups.idle[group->priority] : 2570 &sched->groups.runnable[group->priority]); 2571 } else { 2572 list_del_init(&group->run_node); 2573 list_del_init(&group->wait_node); 2574 group_queue_work(group, term); 2575 } 2576 2577 group_put(group); 2578 } 2579 2580 static void panthor_sched_immediate_tick(struct panthor_device *ptdev) 2581 { 2582 struct panthor_scheduler *sched = ptdev->scheduler; 2583 2584 sched_queue_delayed_work(sched, tick, 0); 2585 } 2586 2587 /** 2588 * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler. 2589 */ 2590 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev) 2591 { 2592 /* Force a tick to immediately kill faulty groups. */ 2593 if (ptdev->scheduler) 2594 panthor_sched_immediate_tick(ptdev); 2595 } 2596 2597 void panthor_sched_resume(struct panthor_device *ptdev) 2598 { 2599 /* Force a tick to re-evaluate after a resume. */ 2600 panthor_sched_immediate_tick(ptdev); 2601 } 2602 2603 void panthor_sched_suspend(struct panthor_device *ptdev) 2604 { 2605 struct panthor_scheduler *sched = ptdev->scheduler; 2606 struct panthor_csg_slots_upd_ctx upd_ctx; 2607 struct panthor_group *group; 2608 u32 suspended_slots; 2609 u32 i; 2610 2611 mutex_lock(&sched->lock); 2612 csgs_upd_ctx_init(&upd_ctx); 2613 for (i = 0; i < sched->csg_slot_count; i++) { 2614 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2615 2616 if (csg_slot->group) { 2617 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 2618 group_can_run(csg_slot->group) ? 2619 CSG_STATE_SUSPEND : CSG_STATE_TERMINATE, 2620 CSG_STATE_MASK); 2621 } 2622 } 2623 2624 suspended_slots = upd_ctx.update_mask; 2625 2626 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2627 suspended_slots &= ~upd_ctx.timedout_mask; 2628 2629 if (upd_ctx.timedout_mask) { 2630 u32 slot_mask = upd_ctx.timedout_mask; 2631 2632 drm_err(&ptdev->base, "CSG suspend failed, escalating to termination"); 2633 csgs_upd_ctx_init(&upd_ctx); 2634 while (slot_mask) { 2635 u32 csg_id = ffs(slot_mask) - 1; 2636 2637 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2638 CSG_STATE_TERMINATE, 2639 CSG_STATE_MASK); 2640 slot_mask &= ~BIT(csg_id); 2641 } 2642 2643 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2644 2645 slot_mask = upd_ctx.timedout_mask; 2646 while (slot_mask) { 2647 u32 csg_id = ffs(slot_mask) - 1; 2648 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2649 2650 /* Terminate command timedout, but the soft-reset will 2651 * automatically terminate all active groups, so let's 2652 * force the state to halted here. 2653 */ 2654 if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED) 2655 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2656 slot_mask &= ~BIT(csg_id); 2657 } 2658 } 2659 2660 /* Flush L2 and LSC caches to make sure suspend state is up-to-date. 2661 * If the flush fails, flag all queues for termination. 2662 */ 2663 if (suspended_slots) { 2664 bool flush_caches_failed = false; 2665 u32 slot_mask = suspended_slots; 2666 2667 if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0)) 2668 flush_caches_failed = true; 2669 2670 while (slot_mask) { 2671 u32 csg_id = ffs(slot_mask) - 1; 2672 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2673 2674 if (flush_caches_failed) 2675 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2676 else 2677 csg_slot_sync_update_locked(ptdev, csg_id); 2678 2679 slot_mask &= ~BIT(csg_id); 2680 } 2681 } 2682 2683 for (i = 0; i < sched->csg_slot_count; i++) { 2684 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2685 2686 group = csg_slot->group; 2687 if (!group) 2688 continue; 2689 2690 group_get(group); 2691 2692 if (group->csg_id >= 0) 2693 sched_process_csg_irq_locked(ptdev, group->csg_id); 2694 2695 group_unbind_locked(group); 2696 2697 drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node)); 2698 2699 if (group_can_run(group)) { 2700 list_add(&group->run_node, 2701 &sched->groups.idle[group->priority]); 2702 } else { 2703 /* We don't bother stopping the scheduler if the group is 2704 * faulty, the group termination work will finish the job. 2705 */ 2706 list_del_init(&group->wait_node); 2707 group_queue_work(group, term); 2708 } 2709 group_put(group); 2710 } 2711 mutex_unlock(&sched->lock); 2712 } 2713 2714 void panthor_sched_pre_reset(struct panthor_device *ptdev) 2715 { 2716 struct panthor_scheduler *sched = ptdev->scheduler; 2717 struct panthor_group *group, *group_tmp; 2718 u32 i; 2719 2720 mutex_lock(&sched->reset.lock); 2721 atomic_set(&sched->reset.in_progress, true); 2722 2723 /* Cancel all scheduler works. Once this is done, these works can't be 2724 * scheduled again until the reset operation is complete. 2725 */ 2726 cancel_work_sync(&sched->sync_upd_work); 2727 cancel_delayed_work_sync(&sched->tick_work); 2728 2729 panthor_sched_suspend(ptdev); 2730 2731 /* Stop all groups that might still accept jobs, so we don't get passed 2732 * new jobs while we're resetting. 2733 */ 2734 for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) { 2735 /* All groups should be in the idle lists. */ 2736 drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i])); 2737 list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node) 2738 panthor_group_stop(group); 2739 } 2740 2741 for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) { 2742 list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node) 2743 panthor_group_stop(group); 2744 } 2745 2746 mutex_unlock(&sched->reset.lock); 2747 } 2748 2749 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed) 2750 { 2751 struct panthor_scheduler *sched = ptdev->scheduler; 2752 struct panthor_group *group, *group_tmp; 2753 2754 mutex_lock(&sched->reset.lock); 2755 2756 list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) { 2757 /* Consider all previously running group as terminated if the 2758 * reset failed. 2759 */ 2760 if (reset_failed) 2761 group->state = PANTHOR_CS_GROUP_TERMINATED; 2762 2763 panthor_group_start(group); 2764 } 2765 2766 /* We're done resetting the GPU, clear the reset.in_progress bit so we can 2767 * kick the scheduler. 2768 */ 2769 atomic_set(&sched->reset.in_progress, false); 2770 mutex_unlock(&sched->reset.lock); 2771 2772 /* No need to queue a tick and update syncs if the reset failed. */ 2773 if (!reset_failed) { 2774 sched_queue_delayed_work(sched, tick, 0); 2775 sched_queue_work(sched, sync_upd); 2776 } 2777 } 2778 2779 static void group_sync_upd_work(struct work_struct *work) 2780 { 2781 struct panthor_group *group = 2782 container_of(work, struct panthor_group, sync_upd_work); 2783 struct panthor_job *job, *job_tmp; 2784 LIST_HEAD(done_jobs); 2785 u32 queue_idx; 2786 bool cookie; 2787 2788 cookie = dma_fence_begin_signalling(); 2789 for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) { 2790 struct panthor_queue *queue = group->queues[queue_idx]; 2791 struct panthor_syncobj_64b *syncobj; 2792 2793 if (!queue) 2794 continue; 2795 2796 syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj)); 2797 2798 spin_lock(&queue->fence_ctx.lock); 2799 list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) { 2800 if (syncobj->seqno < job->done_fence->seqno) 2801 break; 2802 2803 list_move_tail(&job->node, &done_jobs); 2804 dma_fence_signal_locked(job->done_fence); 2805 } 2806 spin_unlock(&queue->fence_ctx.lock); 2807 } 2808 dma_fence_end_signalling(cookie); 2809 2810 list_for_each_entry_safe(job, job_tmp, &done_jobs, node) { 2811 list_del_init(&job->node); 2812 panthor_job_put(&job->base); 2813 } 2814 2815 group_put(group); 2816 } 2817 2818 static struct dma_fence * 2819 queue_run_job(struct drm_sched_job *sched_job) 2820 { 2821 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 2822 struct panthor_group *group = job->group; 2823 struct panthor_queue *queue = group->queues[job->queue_idx]; 2824 struct panthor_device *ptdev = group->ptdev; 2825 struct panthor_scheduler *sched = ptdev->scheduler; 2826 u32 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 2827 u32 ringbuf_insert = queue->iface.input->insert & (ringbuf_size - 1); 2828 u64 addr_reg = ptdev->csif_info.cs_reg_count - 2829 ptdev->csif_info.unpreserved_cs_reg_count; 2830 u64 val_reg = addr_reg + 2; 2831 u64 sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) + 2832 job->queue_idx * sizeof(struct panthor_syncobj_64b); 2833 u32 waitall_mask = GENMASK(sched->sb_slot_count - 1, 0); 2834 struct dma_fence *done_fence; 2835 int ret; 2836 2837 u64 call_instrs[NUM_INSTRS_PER_SLOT] = { 2838 /* MOV32 rX+2, cs.latest_flush */ 2839 (2ull << 56) | (val_reg << 48) | job->call_info.latest_flush, 2840 2841 /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */ 2842 (36ull << 56) | (0ull << 48) | (val_reg << 40) | (0 << 16) | 0x233, 2843 2844 /* MOV48 rX:rX+1, cs.start */ 2845 (1ull << 56) | (addr_reg << 48) | job->call_info.start, 2846 2847 /* MOV32 rX+2, cs.size */ 2848 (2ull << 56) | (val_reg << 48) | job->call_info.size, 2849 2850 /* WAIT(0) => waits for FLUSH_CACHE2 instruction */ 2851 (3ull << 56) | (1 << 16), 2852 2853 /* CALL rX:rX+1, rX+2 */ 2854 (32ull << 56) | (addr_reg << 40) | (val_reg << 32), 2855 2856 /* MOV48 rX:rX+1, sync_addr */ 2857 (1ull << 56) | (addr_reg << 48) | sync_addr, 2858 2859 /* MOV48 rX+2, #1 */ 2860 (1ull << 56) | (val_reg << 48) | 1, 2861 2862 /* WAIT(all) */ 2863 (3ull << 56) | (waitall_mask << 16), 2864 2865 /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/ 2866 (51ull << 56) | (0ull << 48) | (addr_reg << 40) | (val_reg << 32) | (0 << 16) | 1, 2867 2868 /* ERROR_BARRIER, so we can recover from faults at job 2869 * boundaries. 2870 */ 2871 (47ull << 56), 2872 }; 2873 2874 /* Need to be cacheline aligned to please the prefetcher. */ 2875 static_assert(sizeof(call_instrs) % 64 == 0, 2876 "call_instrs is not aligned on a cacheline"); 2877 2878 /* Stream size is zero, nothing to do except making sure all previously 2879 * submitted jobs are done before we signal the 2880 * drm_sched_job::s_fence::finished fence. 2881 */ 2882 if (!job->call_info.size) { 2883 job->done_fence = dma_fence_get(queue->fence_ctx.last_fence); 2884 return dma_fence_get(job->done_fence); 2885 } 2886 2887 ret = pm_runtime_resume_and_get(ptdev->base.dev); 2888 if (drm_WARN_ON(&ptdev->base, ret)) 2889 return ERR_PTR(ret); 2890 2891 mutex_lock(&sched->lock); 2892 if (!group_can_run(group)) { 2893 done_fence = ERR_PTR(-ECANCELED); 2894 goto out_unlock; 2895 } 2896 2897 dma_fence_init(job->done_fence, 2898 &panthor_queue_fence_ops, 2899 &queue->fence_ctx.lock, 2900 queue->fence_ctx.id, 2901 atomic64_inc_return(&queue->fence_ctx.seqno)); 2902 2903 memcpy(queue->ringbuf->kmap + ringbuf_insert, 2904 call_instrs, sizeof(call_instrs)); 2905 2906 panthor_job_get(&job->base); 2907 spin_lock(&queue->fence_ctx.lock); 2908 list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs); 2909 spin_unlock(&queue->fence_ctx.lock); 2910 2911 job->ringbuf.start = queue->iface.input->insert; 2912 job->ringbuf.end = job->ringbuf.start + sizeof(call_instrs); 2913 2914 /* Make sure the ring buffer is updated before the INSERT 2915 * register. 2916 */ 2917 wmb(); 2918 2919 queue->iface.input->extract = queue->iface.output->extract; 2920 queue->iface.input->insert = job->ringbuf.end; 2921 2922 if (group->csg_id < 0) { 2923 /* If the queue is blocked, we want to keep the timeout running, so we 2924 * can detect unbounded waits and kill the group when that happens. 2925 * Otherwise, we suspend the timeout so the time we spend waiting for 2926 * a CSG slot is not counted. 2927 */ 2928 if (!(group->blocked_queues & BIT(job->queue_idx)) && 2929 !queue->timeout_suspended) { 2930 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 2931 queue->timeout_suspended = true; 2932 } 2933 2934 group_schedule_locked(group, BIT(job->queue_idx)); 2935 } else { 2936 gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1); 2937 if (!sched->pm.has_ref && 2938 !(group->blocked_queues & BIT(job->queue_idx))) { 2939 pm_runtime_get(ptdev->base.dev); 2940 sched->pm.has_ref = true; 2941 } 2942 panthor_devfreq_record_busy(sched->ptdev); 2943 } 2944 2945 /* Update the last fence. */ 2946 dma_fence_put(queue->fence_ctx.last_fence); 2947 queue->fence_ctx.last_fence = dma_fence_get(job->done_fence); 2948 2949 done_fence = dma_fence_get(job->done_fence); 2950 2951 out_unlock: 2952 mutex_unlock(&sched->lock); 2953 pm_runtime_mark_last_busy(ptdev->base.dev); 2954 pm_runtime_put_autosuspend(ptdev->base.dev); 2955 2956 return done_fence; 2957 } 2958 2959 static enum drm_gpu_sched_stat 2960 queue_timedout_job(struct drm_sched_job *sched_job) 2961 { 2962 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 2963 struct panthor_group *group = job->group; 2964 struct panthor_device *ptdev = group->ptdev; 2965 struct panthor_scheduler *sched = ptdev->scheduler; 2966 struct panthor_queue *queue = group->queues[job->queue_idx]; 2967 2968 drm_warn(&ptdev->base, "job timeout\n"); 2969 2970 drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress)); 2971 2972 queue_stop(queue, job); 2973 2974 mutex_lock(&sched->lock); 2975 group->timedout = true; 2976 if (group->csg_id >= 0) { 2977 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 2978 } else { 2979 /* Remove from the run queues, so the scheduler can't 2980 * pick the group on the next tick. 2981 */ 2982 list_del_init(&group->run_node); 2983 list_del_init(&group->wait_node); 2984 2985 group_queue_work(group, term); 2986 } 2987 mutex_unlock(&sched->lock); 2988 2989 queue_start(queue); 2990 2991 return DRM_GPU_SCHED_STAT_NOMINAL; 2992 } 2993 2994 static void queue_free_job(struct drm_sched_job *sched_job) 2995 { 2996 drm_sched_job_cleanup(sched_job); 2997 panthor_job_put(sched_job); 2998 } 2999 3000 static const struct drm_sched_backend_ops panthor_queue_sched_ops = { 3001 .run_job = queue_run_job, 3002 .timedout_job = queue_timedout_job, 3003 .free_job = queue_free_job, 3004 }; 3005 3006 static struct panthor_queue * 3007 group_create_queue(struct panthor_group *group, 3008 const struct drm_panthor_queue_create *args) 3009 { 3010 struct drm_gpu_scheduler *drm_sched; 3011 struct panthor_queue *queue; 3012 int ret; 3013 3014 if (args->pad[0] || args->pad[1] || args->pad[2]) 3015 return ERR_PTR(-EINVAL); 3016 3017 if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K || 3018 !is_power_of_2(args->ringbuf_size)) 3019 return ERR_PTR(-EINVAL); 3020 3021 if (args->priority > CSF_MAX_QUEUE_PRIO) 3022 return ERR_PTR(-EINVAL); 3023 3024 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 3025 if (!queue) 3026 return ERR_PTR(-ENOMEM); 3027 3028 queue->fence_ctx.id = dma_fence_context_alloc(1); 3029 spin_lock_init(&queue->fence_ctx.lock); 3030 INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs); 3031 3032 queue->priority = args->priority; 3033 3034 queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm, 3035 args->ringbuf_size, 3036 DRM_PANTHOR_BO_NO_MMAP, 3037 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3038 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3039 PANTHOR_VM_KERNEL_AUTO_VA); 3040 if (IS_ERR(queue->ringbuf)) { 3041 ret = PTR_ERR(queue->ringbuf); 3042 goto err_free_queue; 3043 } 3044 3045 ret = panthor_kernel_bo_vmap(queue->ringbuf); 3046 if (ret) 3047 goto err_free_queue; 3048 3049 queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev, 3050 &queue->iface.input, 3051 &queue->iface.output, 3052 &queue->iface.input_fw_va, 3053 &queue->iface.output_fw_va); 3054 if (IS_ERR(queue->iface.mem)) { 3055 ret = PTR_ERR(queue->iface.mem); 3056 goto err_free_queue; 3057 } 3058 3059 ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops, 3060 group->ptdev->scheduler->wq, 1, 3061 args->ringbuf_size / (NUM_INSTRS_PER_SLOT * sizeof(u64)), 3062 0, msecs_to_jiffies(JOB_TIMEOUT_MS), 3063 group->ptdev->reset.wq, 3064 NULL, "panthor-queue", group->ptdev->base.dev); 3065 if (ret) 3066 goto err_free_queue; 3067 3068 drm_sched = &queue->scheduler; 3069 ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL); 3070 3071 return queue; 3072 3073 err_free_queue: 3074 group_free_queue(group, queue); 3075 return ERR_PTR(ret); 3076 } 3077 3078 #define MAX_GROUPS_PER_POOL 128 3079 3080 int panthor_group_create(struct panthor_file *pfile, 3081 const struct drm_panthor_group_create *group_args, 3082 const struct drm_panthor_queue_create *queue_args) 3083 { 3084 struct panthor_device *ptdev = pfile->ptdev; 3085 struct panthor_group_pool *gpool = pfile->groups; 3086 struct panthor_scheduler *sched = ptdev->scheduler; 3087 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3088 struct panthor_group *group = NULL; 3089 u32 gid, i, suspend_size; 3090 int ret; 3091 3092 if (group_args->pad) 3093 return -EINVAL; 3094 3095 if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT) 3096 return -EINVAL; 3097 3098 if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) || 3099 (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) || 3100 (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present)) 3101 return -EINVAL; 3102 3103 if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores || 3104 hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores || 3105 hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores) 3106 return -EINVAL; 3107 3108 group = kzalloc(sizeof(*group), GFP_KERNEL); 3109 if (!group) 3110 return -ENOMEM; 3111 3112 spin_lock_init(&group->fatal_lock); 3113 kref_init(&group->refcount); 3114 group->state = PANTHOR_CS_GROUP_CREATED; 3115 group->csg_id = -1; 3116 3117 group->ptdev = ptdev; 3118 group->max_compute_cores = group_args->max_compute_cores; 3119 group->compute_core_mask = group_args->compute_core_mask; 3120 group->max_fragment_cores = group_args->max_fragment_cores; 3121 group->fragment_core_mask = group_args->fragment_core_mask; 3122 group->max_tiler_cores = group_args->max_tiler_cores; 3123 group->tiler_core_mask = group_args->tiler_core_mask; 3124 group->priority = group_args->priority; 3125 3126 INIT_LIST_HEAD(&group->wait_node); 3127 INIT_LIST_HEAD(&group->run_node); 3128 INIT_WORK(&group->term_work, group_term_work); 3129 INIT_WORK(&group->sync_upd_work, group_sync_upd_work); 3130 INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work); 3131 INIT_WORK(&group->release_work, group_release_work); 3132 3133 group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id); 3134 if (!group->vm) { 3135 ret = -EINVAL; 3136 goto err_put_group; 3137 } 3138 3139 suspend_size = csg_iface->control->suspend_size; 3140 group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3141 if (IS_ERR(group->suspend_buf)) { 3142 ret = PTR_ERR(group->suspend_buf); 3143 group->suspend_buf = NULL; 3144 goto err_put_group; 3145 } 3146 3147 suspend_size = csg_iface->control->protm_suspend_size; 3148 group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3149 if (IS_ERR(group->protm_suspend_buf)) { 3150 ret = PTR_ERR(group->protm_suspend_buf); 3151 group->protm_suspend_buf = NULL; 3152 goto err_put_group; 3153 } 3154 3155 group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm, 3156 group_args->queues.count * 3157 sizeof(struct panthor_syncobj_64b), 3158 DRM_PANTHOR_BO_NO_MMAP, 3159 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3160 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3161 PANTHOR_VM_KERNEL_AUTO_VA); 3162 if (IS_ERR(group->syncobjs)) { 3163 ret = PTR_ERR(group->syncobjs); 3164 goto err_put_group; 3165 } 3166 3167 ret = panthor_kernel_bo_vmap(group->syncobjs); 3168 if (ret) 3169 goto err_put_group; 3170 3171 memset(group->syncobjs->kmap, 0, 3172 group_args->queues.count * sizeof(struct panthor_syncobj_64b)); 3173 3174 for (i = 0; i < group_args->queues.count; i++) { 3175 group->queues[i] = group_create_queue(group, &queue_args[i]); 3176 if (IS_ERR(group->queues[i])) { 3177 ret = PTR_ERR(group->queues[i]); 3178 group->queues[i] = NULL; 3179 goto err_put_group; 3180 } 3181 3182 group->queue_count++; 3183 } 3184 3185 group->idle_queues = GENMASK(group->queue_count - 1, 0); 3186 3187 ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL); 3188 if (ret) 3189 goto err_put_group; 3190 3191 mutex_lock(&sched->reset.lock); 3192 if (atomic_read(&sched->reset.in_progress)) { 3193 panthor_group_stop(group); 3194 } else { 3195 mutex_lock(&sched->lock); 3196 list_add_tail(&group->run_node, 3197 &sched->groups.idle[group->priority]); 3198 mutex_unlock(&sched->lock); 3199 } 3200 mutex_unlock(&sched->reset.lock); 3201 3202 return gid; 3203 3204 err_put_group: 3205 group_put(group); 3206 return ret; 3207 } 3208 3209 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle) 3210 { 3211 struct panthor_group_pool *gpool = pfile->groups; 3212 struct panthor_device *ptdev = pfile->ptdev; 3213 struct panthor_scheduler *sched = ptdev->scheduler; 3214 struct panthor_group *group; 3215 3216 group = xa_erase(&gpool->xa, group_handle); 3217 if (!group) 3218 return -EINVAL; 3219 3220 for (u32 i = 0; i < group->queue_count; i++) { 3221 if (group->queues[i]) 3222 drm_sched_entity_destroy(&group->queues[i]->entity); 3223 } 3224 3225 mutex_lock(&sched->reset.lock); 3226 mutex_lock(&sched->lock); 3227 group->destroyed = true; 3228 if (group->csg_id >= 0) { 3229 sched_queue_delayed_work(sched, tick, 0); 3230 } else if (!atomic_read(&sched->reset.in_progress)) { 3231 /* Remove from the run queues, so the scheduler can't 3232 * pick the group on the next tick. 3233 */ 3234 list_del_init(&group->run_node); 3235 list_del_init(&group->wait_node); 3236 group_queue_work(group, term); 3237 } 3238 mutex_unlock(&sched->lock); 3239 mutex_unlock(&sched->reset.lock); 3240 3241 group_put(group); 3242 return 0; 3243 } 3244 3245 int panthor_group_get_state(struct panthor_file *pfile, 3246 struct drm_panthor_group_get_state *get_state) 3247 { 3248 struct panthor_group_pool *gpool = pfile->groups; 3249 struct panthor_device *ptdev = pfile->ptdev; 3250 struct panthor_scheduler *sched = ptdev->scheduler; 3251 struct panthor_group *group; 3252 3253 if (get_state->pad) 3254 return -EINVAL; 3255 3256 group = group_get(xa_load(&gpool->xa, get_state->group_handle)); 3257 if (!group) 3258 return -EINVAL; 3259 3260 memset(get_state, 0, sizeof(*get_state)); 3261 3262 mutex_lock(&sched->lock); 3263 if (group->timedout) 3264 get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT; 3265 if (group->fatal_queues) { 3266 get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT; 3267 get_state->fatal_queues = group->fatal_queues; 3268 } 3269 mutex_unlock(&sched->lock); 3270 3271 group_put(group); 3272 return 0; 3273 } 3274 3275 int panthor_group_pool_create(struct panthor_file *pfile) 3276 { 3277 struct panthor_group_pool *gpool; 3278 3279 gpool = kzalloc(sizeof(*gpool), GFP_KERNEL); 3280 if (!gpool) 3281 return -ENOMEM; 3282 3283 xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1); 3284 pfile->groups = gpool; 3285 return 0; 3286 } 3287 3288 void panthor_group_pool_destroy(struct panthor_file *pfile) 3289 { 3290 struct panthor_group_pool *gpool = pfile->groups; 3291 struct panthor_group *group; 3292 unsigned long i; 3293 3294 if (IS_ERR_OR_NULL(gpool)) 3295 return; 3296 3297 xa_for_each(&gpool->xa, i, group) 3298 panthor_group_destroy(pfile, i); 3299 3300 xa_destroy(&gpool->xa); 3301 kfree(gpool); 3302 pfile->groups = NULL; 3303 } 3304 3305 static void job_release(struct kref *ref) 3306 { 3307 struct panthor_job *job = container_of(ref, struct panthor_job, refcount); 3308 3309 drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node)); 3310 3311 if (job->base.s_fence) 3312 drm_sched_job_cleanup(&job->base); 3313 3314 if (job->done_fence && job->done_fence->ops) 3315 dma_fence_put(job->done_fence); 3316 else 3317 dma_fence_free(job->done_fence); 3318 3319 group_put(job->group); 3320 3321 kfree(job); 3322 } 3323 3324 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job) 3325 { 3326 if (sched_job) { 3327 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3328 3329 kref_get(&job->refcount); 3330 } 3331 3332 return sched_job; 3333 } 3334 3335 void panthor_job_put(struct drm_sched_job *sched_job) 3336 { 3337 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3338 3339 if (sched_job) 3340 kref_put(&job->refcount, job_release); 3341 } 3342 3343 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job) 3344 { 3345 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3346 3347 return job->group->vm; 3348 } 3349 3350 struct drm_sched_job * 3351 panthor_job_create(struct panthor_file *pfile, 3352 u16 group_handle, 3353 const struct drm_panthor_queue_submit *qsubmit) 3354 { 3355 struct panthor_group_pool *gpool = pfile->groups; 3356 struct panthor_job *job; 3357 int ret; 3358 3359 if (qsubmit->pad) 3360 return ERR_PTR(-EINVAL); 3361 3362 /* If stream_addr is zero, so stream_size should be. */ 3363 if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0)) 3364 return ERR_PTR(-EINVAL); 3365 3366 /* Make sure the address is aligned on 64-byte (cacheline) and the size is 3367 * aligned on 8-byte (instruction size). 3368 */ 3369 if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7)) 3370 return ERR_PTR(-EINVAL); 3371 3372 /* bits 24:30 must be zero. */ 3373 if (qsubmit->latest_flush & GENMASK(30, 24)) 3374 return ERR_PTR(-EINVAL); 3375 3376 job = kzalloc(sizeof(*job), GFP_KERNEL); 3377 if (!job) 3378 return ERR_PTR(-ENOMEM); 3379 3380 kref_init(&job->refcount); 3381 job->queue_idx = qsubmit->queue_index; 3382 job->call_info.size = qsubmit->stream_size; 3383 job->call_info.start = qsubmit->stream_addr; 3384 job->call_info.latest_flush = qsubmit->latest_flush; 3385 INIT_LIST_HEAD(&job->node); 3386 3387 job->group = group_get(xa_load(&gpool->xa, group_handle)); 3388 if (!job->group) { 3389 ret = -EINVAL; 3390 goto err_put_job; 3391 } 3392 3393 if (job->queue_idx >= job->group->queue_count || 3394 !job->group->queues[job->queue_idx]) { 3395 ret = -EINVAL; 3396 goto err_put_job; 3397 } 3398 3399 /* Empty command streams don't need a fence, they'll pick the one from 3400 * the previously submitted job. 3401 */ 3402 if (job->call_info.size) { 3403 job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL); 3404 if (!job->done_fence) { 3405 ret = -ENOMEM; 3406 goto err_put_job; 3407 } 3408 } 3409 3410 ret = drm_sched_job_init(&job->base, 3411 &job->group->queues[job->queue_idx]->entity, 3412 1, job->group); 3413 if (ret) 3414 goto err_put_job; 3415 3416 return &job->base; 3417 3418 err_put_job: 3419 panthor_job_put(&job->base); 3420 return ERR_PTR(ret); 3421 } 3422 3423 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job) 3424 { 3425 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3426 3427 /* Still not sure why we want USAGE_WRITE for external objects, since I 3428 * was assuming this would be handled through explicit syncs being imported 3429 * to external BOs with DMA_BUF_IOCTL_IMPORT_SYNC_FILE, but other drivers 3430 * seem to pass DMA_RESV_USAGE_WRITE, so there must be a good reason. 3431 */ 3432 panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished, 3433 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_WRITE); 3434 } 3435 3436 void panthor_sched_unplug(struct panthor_device *ptdev) 3437 { 3438 struct panthor_scheduler *sched = ptdev->scheduler; 3439 3440 cancel_delayed_work_sync(&sched->tick_work); 3441 3442 mutex_lock(&sched->lock); 3443 if (sched->pm.has_ref) { 3444 pm_runtime_put(ptdev->base.dev); 3445 sched->pm.has_ref = false; 3446 } 3447 mutex_unlock(&sched->lock); 3448 } 3449 3450 static void panthor_sched_fini(struct drm_device *ddev, void *res) 3451 { 3452 struct panthor_scheduler *sched = res; 3453 int prio; 3454 3455 if (!sched || !sched->csg_slot_count) 3456 return; 3457 3458 cancel_delayed_work_sync(&sched->tick_work); 3459 3460 if (sched->wq) 3461 destroy_workqueue(sched->wq); 3462 3463 if (sched->heap_alloc_wq) 3464 destroy_workqueue(sched->heap_alloc_wq); 3465 3466 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3467 drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio])); 3468 drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio])); 3469 } 3470 3471 drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting)); 3472 } 3473 3474 int panthor_sched_init(struct panthor_device *ptdev) 3475 { 3476 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 3477 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3478 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0); 3479 struct panthor_scheduler *sched; 3480 u32 gpu_as_count, num_groups; 3481 int prio, ret; 3482 3483 sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL); 3484 if (!sched) 3485 return -ENOMEM; 3486 3487 /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That 3488 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here. 3489 */ 3490 num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num); 3491 3492 /* The FW-side scheduler might deadlock if two groups with the same 3493 * priority try to access a set of resources that overlaps, with part 3494 * of the resources being allocated to one group and the other part to 3495 * the other group, both groups waiting for the remaining resources to 3496 * be allocated. To avoid that, it is recommended to assign each CSG a 3497 * different priority. In theory we could allow several groups to have 3498 * the same CSG priority if they don't request the same resources, but 3499 * that makes the scheduling logic more complicated, so let's clamp 3500 * the number of CSG slots to MAX_CSG_PRIO + 1 for now. 3501 */ 3502 num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups); 3503 3504 /* We need at least one AS for the MCU and one for the GPU contexts. */ 3505 gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1)); 3506 if (!gpu_as_count) { 3507 drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)", 3508 gpu_as_count + 1); 3509 return -EINVAL; 3510 } 3511 3512 sched->ptdev = ptdev; 3513 sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features); 3514 sched->csg_slot_count = num_groups; 3515 sched->cs_slot_count = csg_iface->control->stream_num; 3516 sched->as_slot_count = gpu_as_count; 3517 ptdev->csif_info.csg_slot_count = sched->csg_slot_count; 3518 ptdev->csif_info.cs_slot_count = sched->cs_slot_count; 3519 ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count; 3520 3521 sched->last_tick = 0; 3522 sched->resched_target = U64_MAX; 3523 sched->tick_period = msecs_to_jiffies(10); 3524 INIT_DELAYED_WORK(&sched->tick_work, tick_work); 3525 INIT_WORK(&sched->sync_upd_work, sync_upd_work); 3526 INIT_WORK(&sched->fw_events_work, process_fw_events_work); 3527 3528 ret = drmm_mutex_init(&ptdev->base, &sched->lock); 3529 if (ret) 3530 return ret; 3531 3532 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3533 INIT_LIST_HEAD(&sched->groups.runnable[prio]); 3534 INIT_LIST_HEAD(&sched->groups.idle[prio]); 3535 } 3536 INIT_LIST_HEAD(&sched->groups.waiting); 3537 3538 ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock); 3539 if (ret) 3540 return ret; 3541 3542 INIT_LIST_HEAD(&sched->reset.stopped_groups); 3543 3544 /* sched->heap_alloc_wq will be used for heap chunk allocation on 3545 * tiler OOM events, which means we can't use the same workqueue for 3546 * the scheduler because works queued by the scheduler are in 3547 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to 3548 * work around this limitation. 3549 * 3550 * FIXME: Ultimately, what we need is a failable/non-blocking GEM 3551 * allocation path that we can call when a heap OOM is reported. The 3552 * FW is smart enough to fall back on other methods if the kernel can't 3553 * allocate memory, and fail the tiling job if none of these 3554 * countermeasures worked. 3555 * 3556 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the 3557 * system is running out of memory. 3558 */ 3559 sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0); 3560 sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 3561 if (!sched->wq || !sched->heap_alloc_wq) { 3562 panthor_sched_fini(&ptdev->base, sched); 3563 drm_err(&ptdev->base, "Failed to allocate the workqueues"); 3564 return -ENOMEM; 3565 } 3566 3567 ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched); 3568 if (ret) 3569 return ret; 3570 3571 ptdev->scheduler = sched; 3572 return 0; 3573 } 3574