1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2023 Collabora ltd. */ 3 4 #include <drm/drm_drv.h> 5 #include <drm/drm_exec.h> 6 #include <drm/drm_gem_shmem_helper.h> 7 #include <drm/drm_managed.h> 8 #include <drm/gpu_scheduler.h> 9 #include <drm/panthor_drm.h> 10 11 #include <linux/build_bug.h> 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/dma-resv.h> 16 #include <linux/firmware.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/iosys-map.h> 21 #include <linux/module.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 25 #include "panthor_devfreq.h" 26 #include "panthor_device.h" 27 #include "panthor_fw.h" 28 #include "panthor_gem.h" 29 #include "panthor_gpu.h" 30 #include "panthor_heap.h" 31 #include "panthor_mmu.h" 32 #include "panthor_regs.h" 33 #include "panthor_sched.h" 34 35 /** 36 * DOC: Scheduler 37 * 38 * Mali CSF hardware adopts a firmware-assisted scheduling model, where 39 * the firmware takes care of scheduling aspects, to some extent. 40 * 41 * The scheduling happens at the scheduling group level, each group 42 * contains 1 to N queues (N is FW/hardware dependent, and exposed 43 * through the firmware interface). Each queue is assigned a command 44 * stream ring buffer, which serves as a way to get jobs submitted to 45 * the GPU, among other things. 46 * 47 * The firmware can schedule a maximum of M groups (M is FW/hardware 48 * dependent, and exposed through the firmware interface). Passed 49 * this maximum number of groups, the kernel must take care of 50 * rotating the groups passed to the firmware so every group gets 51 * a chance to have his queues scheduled for execution. 52 * 53 * The current implementation only supports with kernel-mode queues. 54 * In other terms, userspace doesn't have access to the ring-buffer. 55 * Instead, userspace passes indirect command stream buffers that are 56 * called from the queue ring-buffer by the kernel using a pre-defined 57 * sequence of command stream instructions to ensure the userspace driver 58 * always gets consistent results (cache maintenance, 59 * synchronization, ...). 60 * 61 * We rely on the drm_gpu_scheduler framework to deal with job 62 * dependencies and submission. As any other driver dealing with a 63 * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each 64 * entity has its own job scheduler. When a job is ready to be executed 65 * (all its dependencies are met), it is pushed to the appropriate 66 * queue ring-buffer, and the group is scheduled for execution if it 67 * wasn't already active. 68 * 69 * Kernel-side group scheduling is timeslice-based. When we have less 70 * groups than there are slots, the periodic tick is disabled and we 71 * just let the FW schedule the active groups. When there are more 72 * groups than slots, we let each group a chance to execute stuff for 73 * a given amount of time, and then re-evaluate and pick new groups 74 * to schedule. The group selection algorithm is based on 75 * priority+round-robin. 76 * 77 * Even though user-mode queues is out of the scope right now, the 78 * current design takes them into account by avoiding any guess on the 79 * group/queue state that would be based on information we wouldn't have 80 * if userspace was in charge of the ring-buffer. That's also one of the 81 * reason we don't do 'cooperative' scheduling (encoding FW group slot 82 * reservation as dma_fence that would be returned from the 83 * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as 84 * a queue of waiters, ordered by job submission order). This approach 85 * would work for kernel-mode queues, but would make user-mode queues a 86 * lot more complicated to retrofit. 87 */ 88 89 #define JOB_TIMEOUT_MS 5000 90 91 #define MIN_CS_PER_CSG 8 92 93 #define MIN_CSGS 3 94 #define MAX_CSG_PRIO 0xf 95 96 #define NUM_INSTRS_PER_CACHE_LINE (64 / sizeof(u64)) 97 #define MAX_INSTRS_PER_JOB 24 98 99 struct panthor_group; 100 101 /** 102 * struct panthor_csg_slot - Command stream group slot 103 * 104 * This represents a FW slot for a scheduling group. 105 */ 106 struct panthor_csg_slot { 107 /** @group: Scheduling group bound to this slot. */ 108 struct panthor_group *group; 109 110 /** @priority: Group priority. */ 111 u8 priority; 112 113 /** 114 * @idle: True if the group bound to this slot is idle. 115 * 116 * A group is idle when it has nothing waiting for execution on 117 * all its queues, or when queues are blocked waiting for something 118 * to happen (synchronization object). 119 */ 120 bool idle; 121 }; 122 123 /** 124 * enum panthor_csg_priority - Group priority 125 */ 126 enum panthor_csg_priority { 127 /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */ 128 PANTHOR_CSG_PRIORITY_LOW = 0, 129 130 /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */ 131 PANTHOR_CSG_PRIORITY_MEDIUM, 132 133 /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */ 134 PANTHOR_CSG_PRIORITY_HIGH, 135 136 /** 137 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group. 138 * 139 * Real-time priority allows one to preempt scheduling of other 140 * non-real-time groups. When such a group becomes executable, 141 * it will evict the group with the lowest non-rt priority if 142 * there's no free group slot available. 143 */ 144 PANTHOR_CSG_PRIORITY_RT, 145 146 /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */ 147 PANTHOR_CSG_PRIORITY_COUNT, 148 }; 149 150 /** 151 * struct panthor_scheduler - Object used to manage the scheduler 152 */ 153 struct panthor_scheduler { 154 /** @ptdev: Device. */ 155 struct panthor_device *ptdev; 156 157 /** 158 * @wq: Workqueue used by our internal scheduler logic and 159 * drm_gpu_scheduler. 160 * 161 * Used for the scheduler tick, group update or other kind of FW 162 * event processing that can't be handled in the threaded interrupt 163 * path. Also passed to the drm_gpu_scheduler instances embedded 164 * in panthor_queue. 165 */ 166 struct workqueue_struct *wq; 167 168 /** 169 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works. 170 * 171 * We have a queue dedicated to heap chunk allocation works to avoid 172 * blocking the rest of the scheduler if the allocation tries to 173 * reclaim memory. 174 */ 175 struct workqueue_struct *heap_alloc_wq; 176 177 /** @tick_work: Work executed on a scheduling tick. */ 178 struct delayed_work tick_work; 179 180 /** 181 * @sync_upd_work: Work used to process synchronization object updates. 182 * 183 * We use this work to unblock queues/groups that were waiting on a 184 * synchronization object. 185 */ 186 struct work_struct sync_upd_work; 187 188 /** 189 * @fw_events_work: Work used to process FW events outside the interrupt path. 190 * 191 * Even if the interrupt is threaded, we need any event processing 192 * that require taking the panthor_scheduler::lock to be processed 193 * outside the interrupt path so we don't block the tick logic when 194 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the 195 * event processing requires taking this lock, we just delegate all 196 * FW event processing to the scheduler workqueue. 197 */ 198 struct work_struct fw_events_work; 199 200 /** 201 * @fw_events: Bitmask encoding pending FW events. 202 */ 203 atomic_t fw_events; 204 205 /** 206 * @resched_target: When the next tick should occur. 207 * 208 * Expressed in jiffies. 209 */ 210 u64 resched_target; 211 212 /** 213 * @last_tick: When the last tick occurred. 214 * 215 * Expressed in jiffies. 216 */ 217 u64 last_tick; 218 219 /** @tick_period: Tick period in jiffies. */ 220 u64 tick_period; 221 222 /** 223 * @lock: Lock protecting access to all the scheduler fields. 224 * 225 * Should be taken in the tick work, the irq handler, and anywhere the @groups 226 * fields are touched. 227 */ 228 struct mutex lock; 229 230 /** @groups: Various lists used to classify groups. */ 231 struct { 232 /** 233 * @runnable: Runnable group lists. 234 * 235 * When a group has queues that want to execute something, 236 * its panthor_group::run_node should be inserted here. 237 * 238 * One list per-priority. 239 */ 240 struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT]; 241 242 /** 243 * @idle: Idle group lists. 244 * 245 * When all queues of a group are idle (either because they 246 * have nothing to execute, or because they are blocked), the 247 * panthor_group::run_node field should be inserted here. 248 * 249 * One list per-priority. 250 */ 251 struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT]; 252 253 /** 254 * @waiting: List of groups whose queues are blocked on a 255 * synchronization object. 256 * 257 * Insert panthor_group::wait_node here when a group is waiting 258 * for synchronization objects to be signaled. 259 * 260 * This list is evaluated in the @sync_upd_work work. 261 */ 262 struct list_head waiting; 263 } groups; 264 265 /** 266 * @csg_slots: FW command stream group slots. 267 */ 268 struct panthor_csg_slot csg_slots[MAX_CSGS]; 269 270 /** @csg_slot_count: Number of command stream group slots exposed by the FW. */ 271 u32 csg_slot_count; 272 273 /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */ 274 u32 cs_slot_count; 275 276 /** @as_slot_count: Number of address space slots supported by the MMU. */ 277 u32 as_slot_count; 278 279 /** @used_csg_slot_count: Number of command stream group slot currently used. */ 280 u32 used_csg_slot_count; 281 282 /** @sb_slot_count: Number of scoreboard slots. */ 283 u32 sb_slot_count; 284 285 /** 286 * @might_have_idle_groups: True if an active group might have become idle. 287 * 288 * This will force a tick, so other runnable groups can be scheduled if one 289 * or more active groups became idle. 290 */ 291 bool might_have_idle_groups; 292 293 /** @pm: Power management related fields. */ 294 struct { 295 /** @has_ref: True if the scheduler owns a runtime PM reference. */ 296 bool has_ref; 297 } pm; 298 299 /** @reset: Reset related fields. */ 300 struct { 301 /** @lock: Lock protecting the other reset fields. */ 302 struct mutex lock; 303 304 /** 305 * @in_progress: True if a reset is in progress. 306 * 307 * Set to true in panthor_sched_pre_reset() and back to false in 308 * panthor_sched_post_reset(). 309 */ 310 atomic_t in_progress; 311 312 /** 313 * @stopped_groups: List containing all groups that were stopped 314 * before a reset. 315 * 316 * Insert panthor_group::run_node in the pre_reset path. 317 */ 318 struct list_head stopped_groups; 319 } reset; 320 }; 321 322 /** 323 * struct panthor_syncobj_32b - 32-bit FW synchronization object 324 */ 325 struct panthor_syncobj_32b { 326 /** @seqno: Sequence number. */ 327 u32 seqno; 328 329 /** 330 * @status: Status. 331 * 332 * Not zero on failure. 333 */ 334 u32 status; 335 }; 336 337 /** 338 * struct panthor_syncobj_64b - 64-bit FW synchronization object 339 */ 340 struct panthor_syncobj_64b { 341 /** @seqno: Sequence number. */ 342 u64 seqno; 343 344 /** 345 * @status: Status. 346 * 347 * Not zero on failure. 348 */ 349 u32 status; 350 351 /** @pad: MBZ. */ 352 u32 pad; 353 }; 354 355 /** 356 * struct panthor_queue - Execution queue 357 */ 358 struct panthor_queue { 359 /** @scheduler: DRM scheduler used for this queue. */ 360 struct drm_gpu_scheduler scheduler; 361 362 /** @entity: DRM scheduling entity used for this queue. */ 363 struct drm_sched_entity entity; 364 365 /** 366 * @remaining_time: Time remaining before the job timeout expires. 367 * 368 * The job timeout is suspended when the queue is not scheduled by the 369 * FW. Every time we suspend the timer, we need to save the remaining 370 * time so we can restore it later on. 371 */ 372 unsigned long remaining_time; 373 374 /** @timeout_suspended: True if the job timeout was suspended. */ 375 bool timeout_suspended; 376 377 /** 378 * @doorbell_id: Doorbell assigned to this queue. 379 * 380 * Right now, all groups share the same doorbell, and the doorbell ID 381 * is assigned to group_slot + 1 when the group is assigned a slot. But 382 * we might decide to provide fine grained doorbell assignment at some 383 * point, so don't have to wake up all queues in a group every time one 384 * of them is updated. 385 */ 386 u8 doorbell_id; 387 388 /** 389 * @priority: Priority of the queue inside the group. 390 * 391 * Must be less than 16 (Only 4 bits available). 392 */ 393 u8 priority; 394 #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0) 395 396 /** @ringbuf: Command stream ring-buffer. */ 397 struct panthor_kernel_bo *ringbuf; 398 399 /** @iface: Firmware interface. */ 400 struct { 401 /** @mem: FW memory allocated for this interface. */ 402 struct panthor_kernel_bo *mem; 403 404 /** @input: Input interface. */ 405 struct panthor_fw_ringbuf_input_iface *input; 406 407 /** @output: Output interface. */ 408 const struct panthor_fw_ringbuf_output_iface *output; 409 410 /** @input_fw_va: FW virtual address of the input interface buffer. */ 411 u32 input_fw_va; 412 413 /** @output_fw_va: FW virtual address of the output interface buffer. */ 414 u32 output_fw_va; 415 } iface; 416 417 /** 418 * @syncwait: Stores information about the synchronization object this 419 * queue is waiting on. 420 */ 421 struct { 422 /** @gpu_va: GPU address of the synchronization object. */ 423 u64 gpu_va; 424 425 /** @ref: Reference value to compare against. */ 426 u64 ref; 427 428 /** @gt: True if this is a greater-than test. */ 429 bool gt; 430 431 /** @sync64: True if this is a 64-bit sync object. */ 432 bool sync64; 433 434 /** @bo: Buffer object holding the synchronization object. */ 435 struct drm_gem_object *obj; 436 437 /** @offset: Offset of the synchronization object inside @bo. */ 438 u64 offset; 439 440 /** 441 * @kmap: Kernel mapping of the buffer object holding the 442 * synchronization object. 443 */ 444 void *kmap; 445 } syncwait; 446 447 /** @fence_ctx: Fence context fields. */ 448 struct { 449 /** @lock: Used to protect access to all fences allocated by this context. */ 450 spinlock_t lock; 451 452 /** 453 * @id: Fence context ID. 454 * 455 * Allocated with dma_fence_context_alloc(). 456 */ 457 u64 id; 458 459 /** @seqno: Sequence number of the last initialized fence. */ 460 atomic64_t seqno; 461 462 /** 463 * @last_fence: Fence of the last submitted job. 464 * 465 * We return this fence when we get an empty command stream. 466 * This way, we are guaranteed that all earlier jobs have completed 467 * when drm_sched_job::s_fence::finished without having to feed 468 * the CS ring buffer with a dummy job that only signals the fence. 469 */ 470 struct dma_fence *last_fence; 471 472 /** 473 * @in_flight_jobs: List containing all in-flight jobs. 474 * 475 * Used to keep track and signal panthor_job::done_fence when the 476 * synchronization object attached to the queue is signaled. 477 */ 478 struct list_head in_flight_jobs; 479 } fence_ctx; 480 481 /** @profiling: Job profiling data slots and access information. */ 482 struct { 483 /** @slots: Kernel BO holding the slots. */ 484 struct panthor_kernel_bo *slots; 485 486 /** @slot_count: Number of jobs ringbuffer can hold at once. */ 487 u32 slot_count; 488 489 /** @seqno: Index of the next available profiling information slot. */ 490 u32 seqno; 491 } profiling; 492 }; 493 494 /** 495 * enum panthor_group_state - Scheduling group state. 496 */ 497 enum panthor_group_state { 498 /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */ 499 PANTHOR_CS_GROUP_CREATED, 500 501 /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */ 502 PANTHOR_CS_GROUP_ACTIVE, 503 504 /** 505 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is 506 * inactive/suspended right now. 507 */ 508 PANTHOR_CS_GROUP_SUSPENDED, 509 510 /** 511 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated. 512 * 513 * Can no longer be scheduled. The only allowed action is a destruction. 514 */ 515 PANTHOR_CS_GROUP_TERMINATED, 516 517 /** 518 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state. 519 * 520 * The FW returned an inconsistent state. The group is flagged unusable 521 * and can no longer be scheduled. The only allowed action is a 522 * destruction. 523 * 524 * When that happens, we also schedule a FW reset, to start from a fresh 525 * state. 526 */ 527 PANTHOR_CS_GROUP_UNKNOWN_STATE, 528 }; 529 530 /** 531 * struct panthor_group - Scheduling group object 532 */ 533 struct panthor_group { 534 /** @refcount: Reference count */ 535 struct kref refcount; 536 537 /** @ptdev: Device. */ 538 struct panthor_device *ptdev; 539 540 /** @vm: VM bound to the group. */ 541 struct panthor_vm *vm; 542 543 /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */ 544 u64 compute_core_mask; 545 546 /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */ 547 u64 fragment_core_mask; 548 549 /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */ 550 u64 tiler_core_mask; 551 552 /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */ 553 u8 max_compute_cores; 554 555 /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */ 556 u8 max_fragment_cores; 557 558 /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */ 559 u8 max_tiler_cores; 560 561 /** @priority: Group priority (check panthor_csg_priority). */ 562 u8 priority; 563 564 /** @blocked_queues: Bitmask reflecting the blocked queues. */ 565 u32 blocked_queues; 566 567 /** @idle_queues: Bitmask reflecting the idle queues. */ 568 u32 idle_queues; 569 570 /** @fatal_lock: Lock used to protect access to fatal fields. */ 571 spinlock_t fatal_lock; 572 573 /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */ 574 u32 fatal_queues; 575 576 /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */ 577 atomic_t tiler_oom; 578 579 /** @queue_count: Number of queues in this group. */ 580 u32 queue_count; 581 582 /** @queues: Queues owned by this group. */ 583 struct panthor_queue *queues[MAX_CS_PER_CSG]; 584 585 /** 586 * @csg_id: ID of the FW group slot. 587 * 588 * -1 when the group is not scheduled/active. 589 */ 590 int csg_id; 591 592 /** 593 * @destroyed: True when the group has been destroyed. 594 * 595 * If a group is destroyed it becomes useless: no further jobs can be submitted 596 * to its queues. We simply wait for all references to be dropped so we can 597 * release the group object. 598 */ 599 bool destroyed; 600 601 /** 602 * @timedout: True when a timeout occurred on any of the queues owned by 603 * this group. 604 * 605 * Timeouts can be reported by drm_sched or by the FW. If a reset is required, 606 * and the group can't be suspended, this also leads to a timeout. In any case, 607 * any timeout situation is unrecoverable, and the group becomes useless. We 608 * simply wait for all references to be dropped so we can release the group 609 * object. 610 */ 611 bool timedout; 612 613 /** 614 * @syncobjs: Pool of per-queue synchronization objects. 615 * 616 * One sync object per queue. The position of the sync object is 617 * determined by the queue index. 618 */ 619 struct panthor_kernel_bo *syncobjs; 620 621 /** @fdinfo: Per-file total cycle and timestamp values reference. */ 622 struct { 623 /** @data: Total sampled values for jobs in queues from this group. */ 624 struct panthor_gpu_usage data; 625 626 /** 627 * @lock: Mutex to govern concurrent access from drm file's fdinfo callback 628 * and job post-completion processing function 629 */ 630 struct mutex lock; 631 } fdinfo; 632 633 /** @state: Group state. */ 634 enum panthor_group_state state; 635 636 /** 637 * @suspend_buf: Suspend buffer. 638 * 639 * Stores the state of the group and its queues when a group is suspended. 640 * Used at resume time to restore the group in its previous state. 641 * 642 * The size of the suspend buffer is exposed through the FW interface. 643 */ 644 struct panthor_kernel_bo *suspend_buf; 645 646 /** 647 * @protm_suspend_buf: Protection mode suspend buffer. 648 * 649 * Stores the state of the group and its queues when a group that's in 650 * protection mode is suspended. 651 * 652 * Used at resume time to restore the group in its previous state. 653 * 654 * The size of the protection mode suspend buffer is exposed through the 655 * FW interface. 656 */ 657 struct panthor_kernel_bo *protm_suspend_buf; 658 659 /** @sync_upd_work: Work used to check/signal job fences. */ 660 struct work_struct sync_upd_work; 661 662 /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */ 663 struct work_struct tiler_oom_work; 664 665 /** @term_work: Work used to finish the group termination procedure. */ 666 struct work_struct term_work; 667 668 /** 669 * @release_work: Work used to release group resources. 670 * 671 * We need to postpone the group release to avoid a deadlock when 672 * the last ref is released in the tick work. 673 */ 674 struct work_struct release_work; 675 676 /** 677 * @run_node: Node used to insert the group in the 678 * panthor_group::groups::{runnable,idle} and 679 * panthor_group::reset.stopped_groups lists. 680 */ 681 struct list_head run_node; 682 683 /** 684 * @wait_node: Node used to insert the group in the 685 * panthor_group::groups::waiting list. 686 */ 687 struct list_head wait_node; 688 }; 689 690 struct panthor_job_profiling_data { 691 struct { 692 u64 before; 693 u64 after; 694 } cycles; 695 696 struct { 697 u64 before; 698 u64 after; 699 } time; 700 }; 701 702 /** 703 * group_queue_work() - Queue a group work 704 * @group: Group to queue the work for. 705 * @wname: Work name. 706 * 707 * Grabs a ref and queue a work item to the scheduler workqueue. If 708 * the work was already queued, we release the reference we grabbed. 709 * 710 * Work callbacks must release the reference we grabbed here. 711 */ 712 #define group_queue_work(group, wname) \ 713 do { \ 714 group_get(group); \ 715 if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \ 716 group_put(group); \ 717 } while (0) 718 719 /** 720 * sched_queue_work() - Queue a scheduler work. 721 * @sched: Scheduler object. 722 * @wname: Work name. 723 * 724 * Conditionally queues a scheduler work if no reset is pending/in-progress. 725 */ 726 #define sched_queue_work(sched, wname) \ 727 do { \ 728 if (!atomic_read(&(sched)->reset.in_progress) && \ 729 !panthor_device_reset_is_pending((sched)->ptdev)) \ 730 queue_work((sched)->wq, &(sched)->wname ## _work); \ 731 } while (0) 732 733 /** 734 * sched_queue_delayed_work() - Queue a scheduler delayed work. 735 * @sched: Scheduler object. 736 * @wname: Work name. 737 * @delay: Work delay in jiffies. 738 * 739 * Conditionally queues a scheduler delayed work if no reset is 740 * pending/in-progress. 741 */ 742 #define sched_queue_delayed_work(sched, wname, delay) \ 743 do { \ 744 if (!atomic_read(&sched->reset.in_progress) && \ 745 !panthor_device_reset_is_pending((sched)->ptdev)) \ 746 mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \ 747 } while (0) 748 749 /* 750 * We currently set the maximum of groups per file to an arbitrary low value. 751 * But this can be updated if we need more. 752 */ 753 #define MAX_GROUPS_PER_POOL 128 754 755 /** 756 * struct panthor_group_pool - Group pool 757 * 758 * Each file get assigned a group pool. 759 */ 760 struct panthor_group_pool { 761 /** @xa: Xarray used to manage group handles. */ 762 struct xarray xa; 763 }; 764 765 /** 766 * struct panthor_job - Used to manage GPU job 767 */ 768 struct panthor_job { 769 /** @base: Inherit from drm_sched_job. */ 770 struct drm_sched_job base; 771 772 /** @refcount: Reference count. */ 773 struct kref refcount; 774 775 /** @group: Group of the queue this job will be pushed to. */ 776 struct panthor_group *group; 777 778 /** @queue_idx: Index of the queue inside @group. */ 779 u32 queue_idx; 780 781 /** @call_info: Information about the userspace command stream call. */ 782 struct { 783 /** @start: GPU address of the userspace command stream. */ 784 u64 start; 785 786 /** @size: Size of the userspace command stream. */ 787 u32 size; 788 789 /** 790 * @latest_flush: Flush ID at the time the userspace command 791 * stream was built. 792 * 793 * Needed for the flush reduction mechanism. 794 */ 795 u32 latest_flush; 796 } call_info; 797 798 /** @ringbuf: Position of this job is in the ring buffer. */ 799 struct { 800 /** @start: Start offset. */ 801 u64 start; 802 803 /** @end: End offset. */ 804 u64 end; 805 } ringbuf; 806 807 /** 808 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs 809 * list. 810 */ 811 struct list_head node; 812 813 /** @done_fence: Fence signaled when the job is finished or cancelled. */ 814 struct dma_fence *done_fence; 815 816 /** @profiling: Job profiling information. */ 817 struct { 818 /** @mask: Current device job profiling enablement bitmask. */ 819 u32 mask; 820 821 /** @slot: Job index in the profiling slots BO. */ 822 u32 slot; 823 } profiling; 824 }; 825 826 static void 827 panthor_queue_put_syncwait_obj(struct panthor_queue *queue) 828 { 829 if (queue->syncwait.kmap) { 830 struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap); 831 832 drm_gem_vunmap_unlocked(queue->syncwait.obj, &map); 833 queue->syncwait.kmap = NULL; 834 } 835 836 drm_gem_object_put(queue->syncwait.obj); 837 queue->syncwait.obj = NULL; 838 } 839 840 static void * 841 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue) 842 { 843 struct panthor_device *ptdev = group->ptdev; 844 struct panthor_gem_object *bo; 845 struct iosys_map map; 846 int ret; 847 848 if (queue->syncwait.kmap) 849 return queue->syncwait.kmap + queue->syncwait.offset; 850 851 bo = panthor_vm_get_bo_for_va(group->vm, 852 queue->syncwait.gpu_va, 853 &queue->syncwait.offset); 854 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo))) 855 goto err_put_syncwait_obj; 856 857 queue->syncwait.obj = &bo->base.base; 858 ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map); 859 if (drm_WARN_ON(&ptdev->base, ret)) 860 goto err_put_syncwait_obj; 861 862 queue->syncwait.kmap = map.vaddr; 863 if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap)) 864 goto err_put_syncwait_obj; 865 866 return queue->syncwait.kmap + queue->syncwait.offset; 867 868 err_put_syncwait_obj: 869 panthor_queue_put_syncwait_obj(queue); 870 return NULL; 871 } 872 873 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue) 874 { 875 if (IS_ERR_OR_NULL(queue)) 876 return; 877 878 if (queue->entity.fence_context) 879 drm_sched_entity_destroy(&queue->entity); 880 881 if (queue->scheduler.ops) 882 drm_sched_fini(&queue->scheduler); 883 884 panthor_queue_put_syncwait_obj(queue); 885 886 panthor_kernel_bo_destroy(queue->ringbuf); 887 panthor_kernel_bo_destroy(queue->iface.mem); 888 panthor_kernel_bo_destroy(queue->profiling.slots); 889 890 /* Release the last_fence we were holding, if any. */ 891 dma_fence_put(queue->fence_ctx.last_fence); 892 893 kfree(queue); 894 } 895 896 static void group_release_work(struct work_struct *work) 897 { 898 struct panthor_group *group = container_of(work, 899 struct panthor_group, 900 release_work); 901 u32 i; 902 903 mutex_destroy(&group->fdinfo.lock); 904 905 for (i = 0; i < group->queue_count; i++) 906 group_free_queue(group, group->queues[i]); 907 908 panthor_kernel_bo_destroy(group->suspend_buf); 909 panthor_kernel_bo_destroy(group->protm_suspend_buf); 910 panthor_kernel_bo_destroy(group->syncobjs); 911 912 panthor_vm_put(group->vm); 913 kfree(group); 914 } 915 916 static void group_release(struct kref *kref) 917 { 918 struct panthor_group *group = container_of(kref, 919 struct panthor_group, 920 refcount); 921 struct panthor_device *ptdev = group->ptdev; 922 923 drm_WARN_ON(&ptdev->base, group->csg_id >= 0); 924 drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node)); 925 drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node)); 926 927 queue_work(panthor_cleanup_wq, &group->release_work); 928 } 929 930 static void group_put(struct panthor_group *group) 931 { 932 if (group) 933 kref_put(&group->refcount, group_release); 934 } 935 936 static struct panthor_group * 937 group_get(struct panthor_group *group) 938 { 939 if (group) 940 kref_get(&group->refcount); 941 942 return group; 943 } 944 945 /** 946 * group_bind_locked() - Bind a group to a group slot 947 * @group: Group. 948 * @csg_id: Slot. 949 * 950 * Return: 0 on success, a negative error code otherwise. 951 */ 952 static int 953 group_bind_locked(struct panthor_group *group, u32 csg_id) 954 { 955 struct panthor_device *ptdev = group->ptdev; 956 struct panthor_csg_slot *csg_slot; 957 int ret; 958 959 lockdep_assert_held(&ptdev->scheduler->lock); 960 961 if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS || 962 ptdev->scheduler->csg_slots[csg_id].group)) 963 return -EINVAL; 964 965 ret = panthor_vm_active(group->vm); 966 if (ret) 967 return ret; 968 969 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 970 group_get(group); 971 group->csg_id = csg_id; 972 973 /* Dummy doorbell allocation: doorbell is assigned to the group and 974 * all queues use the same doorbell. 975 * 976 * TODO: Implement LRU-based doorbell assignment, so the most often 977 * updated queues get their own doorbell, thus avoiding useless checks 978 * on queues belonging to the same group that are rarely updated. 979 */ 980 for (u32 i = 0; i < group->queue_count; i++) 981 group->queues[i]->doorbell_id = csg_id + 1; 982 983 csg_slot->group = group; 984 985 return 0; 986 } 987 988 /** 989 * group_unbind_locked() - Unbind a group from a slot. 990 * @group: Group to unbind. 991 * 992 * Return: 0 on success, a negative error code otherwise. 993 */ 994 static int 995 group_unbind_locked(struct panthor_group *group) 996 { 997 struct panthor_device *ptdev = group->ptdev; 998 struct panthor_csg_slot *slot; 999 1000 lockdep_assert_held(&ptdev->scheduler->lock); 1001 1002 if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS)) 1003 return -EINVAL; 1004 1005 if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE)) 1006 return -EINVAL; 1007 1008 slot = &ptdev->scheduler->csg_slots[group->csg_id]; 1009 panthor_vm_idle(group->vm); 1010 group->csg_id = -1; 1011 1012 /* Tiler OOM events will be re-issued next time the group is scheduled. */ 1013 atomic_set(&group->tiler_oom, 0); 1014 cancel_work(&group->tiler_oom_work); 1015 1016 for (u32 i = 0; i < group->queue_count; i++) 1017 group->queues[i]->doorbell_id = -1; 1018 1019 slot->group = NULL; 1020 1021 group_put(group); 1022 return 0; 1023 } 1024 1025 /** 1026 * cs_slot_prog_locked() - Program a queue slot 1027 * @ptdev: Device. 1028 * @csg_id: Group slot ID. 1029 * @cs_id: Queue slot ID. 1030 * 1031 * Program a queue slot with the queue information so things can start being 1032 * executed on this queue. 1033 * 1034 * The group slot must have a group bound to it already (group_bind_locked()). 1035 */ 1036 static void 1037 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1038 { 1039 struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id]; 1040 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1041 1042 lockdep_assert_held(&ptdev->scheduler->lock); 1043 1044 queue->iface.input->extract = queue->iface.output->extract; 1045 drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract); 1046 1047 cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf); 1048 cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 1049 cs_iface->input->ringbuf_input = queue->iface.input_fw_va; 1050 cs_iface->input->ringbuf_output = queue->iface.output_fw_va; 1051 cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) | 1052 CS_CONFIG_DOORBELL(queue->doorbell_id); 1053 cs_iface->input->ack_irq_mask = ~0; 1054 panthor_fw_update_reqs(cs_iface, req, 1055 CS_IDLE_SYNC_WAIT | 1056 CS_IDLE_EMPTY | 1057 CS_STATE_START | 1058 CS_EXTRACT_EVENT, 1059 CS_IDLE_SYNC_WAIT | 1060 CS_IDLE_EMPTY | 1061 CS_STATE_MASK | 1062 CS_EXTRACT_EVENT); 1063 if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) { 1064 drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time); 1065 queue->timeout_suspended = false; 1066 } 1067 } 1068 1069 /** 1070 * cs_slot_reset_locked() - Reset a queue slot 1071 * @ptdev: Device. 1072 * @csg_id: Group slot. 1073 * @cs_id: Queue slot. 1074 * 1075 * Change the queue slot state to STOP and suspend the queue timeout if 1076 * the queue is not blocked. 1077 * 1078 * The group slot must have a group bound to it (group_bind_locked()). 1079 */ 1080 static int 1081 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1082 { 1083 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1084 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1085 struct panthor_queue *queue = group->queues[cs_id]; 1086 1087 lockdep_assert_held(&ptdev->scheduler->lock); 1088 1089 panthor_fw_update_reqs(cs_iface, req, 1090 CS_STATE_STOP, 1091 CS_STATE_MASK); 1092 1093 /* If the queue is blocked, we want to keep the timeout running, so 1094 * we can detect unbounded waits and kill the group when that happens. 1095 */ 1096 if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) { 1097 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 1098 queue->timeout_suspended = true; 1099 WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS)); 1100 } 1101 1102 return 0; 1103 } 1104 1105 /** 1106 * csg_slot_sync_priority_locked() - Synchronize the group slot priority 1107 * @ptdev: Device. 1108 * @csg_id: Group slot ID. 1109 * 1110 * Group slot priority update happens asynchronously. When we receive a 1111 * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can 1112 * reflect it to our panthor_csg_slot object. 1113 */ 1114 static void 1115 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id) 1116 { 1117 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1118 struct panthor_fw_csg_iface *csg_iface; 1119 1120 lockdep_assert_held(&ptdev->scheduler->lock); 1121 1122 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1123 csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28; 1124 } 1125 1126 /** 1127 * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority 1128 * @ptdev: Device. 1129 * @csg_id: Group slot. 1130 * @cs_id: Queue slot. 1131 * 1132 * Queue state is updated on group suspend or STATUS_UPDATE event. 1133 */ 1134 static void 1135 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1136 { 1137 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1138 struct panthor_queue *queue = group->queues[cs_id]; 1139 struct panthor_fw_cs_iface *cs_iface = 1140 panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id); 1141 1142 u32 status_wait_cond; 1143 1144 switch (cs_iface->output->status_blocked_reason) { 1145 case CS_STATUS_BLOCKED_REASON_UNBLOCKED: 1146 if (queue->iface.input->insert == queue->iface.output->extract && 1147 cs_iface->output->status_scoreboards == 0) 1148 group->idle_queues |= BIT(cs_id); 1149 break; 1150 1151 case CS_STATUS_BLOCKED_REASON_SYNC_WAIT: 1152 if (list_empty(&group->wait_node)) { 1153 list_move_tail(&group->wait_node, 1154 &group->ptdev->scheduler->groups.waiting); 1155 } 1156 1157 /* The queue is only blocked if there's no deferred operation 1158 * pending, which can be checked through the scoreboard status. 1159 */ 1160 if (!cs_iface->output->status_scoreboards) 1161 group->blocked_queues |= BIT(cs_id); 1162 1163 queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr; 1164 queue->syncwait.ref = cs_iface->output->status_wait_sync_value; 1165 status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK; 1166 queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT; 1167 if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) { 1168 u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi; 1169 1170 queue->syncwait.sync64 = true; 1171 queue->syncwait.ref |= sync_val_hi << 32; 1172 } else { 1173 queue->syncwait.sync64 = false; 1174 } 1175 break; 1176 1177 default: 1178 /* Other reasons are not blocking. Consider the queue as runnable 1179 * in those cases. 1180 */ 1181 break; 1182 } 1183 } 1184 1185 static void 1186 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id) 1187 { 1188 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1189 struct panthor_group *group = csg_slot->group; 1190 u32 i; 1191 1192 lockdep_assert_held(&ptdev->scheduler->lock); 1193 1194 group->idle_queues = 0; 1195 group->blocked_queues = 0; 1196 1197 for (i = 0; i < group->queue_count; i++) { 1198 if (group->queues[i]) 1199 cs_slot_sync_queue_state_locked(ptdev, csg_id, i); 1200 } 1201 } 1202 1203 static void 1204 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id) 1205 { 1206 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1207 struct panthor_fw_csg_iface *csg_iface; 1208 struct panthor_group *group; 1209 enum panthor_group_state new_state, old_state; 1210 u32 csg_state; 1211 1212 lockdep_assert_held(&ptdev->scheduler->lock); 1213 1214 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1215 group = csg_slot->group; 1216 1217 if (!group) 1218 return; 1219 1220 old_state = group->state; 1221 csg_state = csg_iface->output->ack & CSG_STATE_MASK; 1222 switch (csg_state) { 1223 case CSG_STATE_START: 1224 case CSG_STATE_RESUME: 1225 new_state = PANTHOR_CS_GROUP_ACTIVE; 1226 break; 1227 case CSG_STATE_TERMINATE: 1228 new_state = PANTHOR_CS_GROUP_TERMINATED; 1229 break; 1230 case CSG_STATE_SUSPEND: 1231 new_state = PANTHOR_CS_GROUP_SUSPENDED; 1232 break; 1233 default: 1234 /* The unknown state might be caused by a FW state corruption, 1235 * which means the group metadata can't be trusted anymore, and 1236 * the SUSPEND operation might propagate the corruption to the 1237 * suspend buffers. Flag the group state as unknown to make 1238 * sure it's unusable after that point. 1239 */ 1240 drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)", 1241 csg_id, csg_state); 1242 new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE; 1243 break; 1244 } 1245 1246 if (old_state == new_state) 1247 return; 1248 1249 /* The unknown state might be caused by a FW issue, reset the FW to 1250 * take a fresh start. 1251 */ 1252 if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE) 1253 panthor_device_schedule_reset(ptdev); 1254 1255 if (new_state == PANTHOR_CS_GROUP_SUSPENDED) 1256 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1257 1258 if (old_state == PANTHOR_CS_GROUP_ACTIVE) { 1259 u32 i; 1260 1261 /* Reset the queue slots so we start from a clean 1262 * state when starting/resuming a new group on this 1263 * CSG slot. No wait needed here, and no ringbell 1264 * either, since the CS slot will only be re-used 1265 * on the next CSG start operation. 1266 */ 1267 for (i = 0; i < group->queue_count; i++) { 1268 if (group->queues[i]) 1269 cs_slot_reset_locked(ptdev, csg_id, i); 1270 } 1271 } 1272 1273 group->state = new_state; 1274 } 1275 1276 static int 1277 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority) 1278 { 1279 struct panthor_fw_csg_iface *csg_iface; 1280 struct panthor_csg_slot *csg_slot; 1281 struct panthor_group *group; 1282 u32 queue_mask = 0, i; 1283 1284 lockdep_assert_held(&ptdev->scheduler->lock); 1285 1286 if (priority > MAX_CSG_PRIO) 1287 return -EINVAL; 1288 1289 if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS)) 1290 return -EINVAL; 1291 1292 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1293 group = csg_slot->group; 1294 if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE) 1295 return 0; 1296 1297 csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id); 1298 1299 for (i = 0; i < group->queue_count; i++) { 1300 if (group->queues[i]) { 1301 cs_slot_prog_locked(ptdev, csg_id, i); 1302 queue_mask |= BIT(i); 1303 } 1304 } 1305 1306 csg_iface->input->allow_compute = group->compute_core_mask; 1307 csg_iface->input->allow_fragment = group->fragment_core_mask; 1308 csg_iface->input->allow_other = group->tiler_core_mask; 1309 csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) | 1310 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) | 1311 CSG_EP_REQ_TILER(group->max_tiler_cores) | 1312 CSG_EP_REQ_PRIORITY(priority); 1313 csg_iface->input->config = panthor_vm_as(group->vm); 1314 1315 if (group->suspend_buf) 1316 csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf); 1317 else 1318 csg_iface->input->suspend_buf = 0; 1319 1320 if (group->protm_suspend_buf) { 1321 csg_iface->input->protm_suspend_buf = 1322 panthor_kernel_bo_gpuva(group->protm_suspend_buf); 1323 } else { 1324 csg_iface->input->protm_suspend_buf = 0; 1325 } 1326 1327 csg_iface->input->ack_irq_mask = ~0; 1328 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask); 1329 return 0; 1330 } 1331 1332 static void 1333 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev, 1334 u32 csg_id, u32 cs_id) 1335 { 1336 struct panthor_scheduler *sched = ptdev->scheduler; 1337 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1338 struct panthor_group *group = csg_slot->group; 1339 struct panthor_fw_cs_iface *cs_iface; 1340 u32 fatal; 1341 u64 info; 1342 1343 lockdep_assert_held(&sched->lock); 1344 1345 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1346 fatal = cs_iface->output->fatal; 1347 info = cs_iface->output->fatal_info; 1348 1349 if (group) 1350 group->fatal_queues |= BIT(cs_id); 1351 1352 if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) { 1353 /* If this exception is unrecoverable, queue a reset, and make 1354 * sure we stop scheduling groups until the reset has happened. 1355 */ 1356 panthor_device_schedule_reset(ptdev); 1357 cancel_delayed_work(&sched->tick_work); 1358 } else { 1359 sched_queue_delayed_work(sched, tick, 0); 1360 } 1361 1362 drm_warn(&ptdev->base, 1363 "CSG slot %d CS slot: %d\n" 1364 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n" 1365 "CS_FATAL.EXCEPTION_DATA: 0x%x\n" 1366 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n", 1367 csg_id, cs_id, 1368 (unsigned int)CS_EXCEPTION_TYPE(fatal), 1369 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)), 1370 (unsigned int)CS_EXCEPTION_DATA(fatal), 1371 info); 1372 } 1373 1374 static void 1375 cs_slot_process_fault_event_locked(struct panthor_device *ptdev, 1376 u32 csg_id, u32 cs_id) 1377 { 1378 struct panthor_scheduler *sched = ptdev->scheduler; 1379 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1380 struct panthor_group *group = csg_slot->group; 1381 struct panthor_queue *queue = group && cs_id < group->queue_count ? 1382 group->queues[cs_id] : NULL; 1383 struct panthor_fw_cs_iface *cs_iface; 1384 u32 fault; 1385 u64 info; 1386 1387 lockdep_assert_held(&sched->lock); 1388 1389 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1390 fault = cs_iface->output->fault; 1391 info = cs_iface->output->fault_info; 1392 1393 if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) { 1394 u64 cs_extract = queue->iface.output->extract; 1395 struct panthor_job *job; 1396 1397 spin_lock(&queue->fence_ctx.lock); 1398 list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) { 1399 if (cs_extract >= job->ringbuf.end) 1400 continue; 1401 1402 if (cs_extract < job->ringbuf.start) 1403 break; 1404 1405 dma_fence_set_error(job->done_fence, -EINVAL); 1406 } 1407 spin_unlock(&queue->fence_ctx.lock); 1408 } 1409 1410 drm_warn(&ptdev->base, 1411 "CSG slot %d CS slot: %d\n" 1412 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n" 1413 "CS_FAULT.EXCEPTION_DATA: 0x%x\n" 1414 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n", 1415 csg_id, cs_id, 1416 (unsigned int)CS_EXCEPTION_TYPE(fault), 1417 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)), 1418 (unsigned int)CS_EXCEPTION_DATA(fault), 1419 info); 1420 } 1421 1422 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id) 1423 { 1424 struct panthor_device *ptdev = group->ptdev; 1425 struct panthor_scheduler *sched = ptdev->scheduler; 1426 u32 renderpasses_in_flight, pending_frag_count; 1427 struct panthor_heap_pool *heaps = NULL; 1428 u64 heap_address, new_chunk_va = 0; 1429 u32 vt_start, vt_end, frag_end; 1430 int ret, csg_id; 1431 1432 mutex_lock(&sched->lock); 1433 csg_id = group->csg_id; 1434 if (csg_id >= 0) { 1435 struct panthor_fw_cs_iface *cs_iface; 1436 1437 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1438 heaps = panthor_vm_get_heap_pool(group->vm, false); 1439 heap_address = cs_iface->output->heap_address; 1440 vt_start = cs_iface->output->heap_vt_start; 1441 vt_end = cs_iface->output->heap_vt_end; 1442 frag_end = cs_iface->output->heap_frag_end; 1443 renderpasses_in_flight = vt_start - frag_end; 1444 pending_frag_count = vt_end - frag_end; 1445 } 1446 mutex_unlock(&sched->lock); 1447 1448 /* The group got scheduled out, we stop here. We will get a new tiler OOM event 1449 * when it's scheduled again. 1450 */ 1451 if (unlikely(csg_id < 0)) 1452 return 0; 1453 1454 if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) { 1455 ret = -EINVAL; 1456 } else { 1457 /* We do the allocation without holding the scheduler lock to avoid 1458 * blocking the scheduling. 1459 */ 1460 ret = panthor_heap_grow(heaps, heap_address, 1461 renderpasses_in_flight, 1462 pending_frag_count, &new_chunk_va); 1463 } 1464 1465 /* If the heap context doesn't have memory for us, we want to let the 1466 * FW try to reclaim memory by waiting for fragment jobs to land or by 1467 * executing the tiler OOM exception handler, which is supposed to 1468 * implement incremental rendering. 1469 */ 1470 if (ret && ret != -ENOMEM) { 1471 drm_warn(&ptdev->base, "Failed to extend the tiler heap\n"); 1472 group->fatal_queues |= BIT(cs_id); 1473 sched_queue_delayed_work(sched, tick, 0); 1474 goto out_put_heap_pool; 1475 } 1476 1477 mutex_lock(&sched->lock); 1478 csg_id = group->csg_id; 1479 if (csg_id >= 0) { 1480 struct panthor_fw_csg_iface *csg_iface; 1481 struct panthor_fw_cs_iface *cs_iface; 1482 1483 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1484 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1485 1486 cs_iface->input->heap_start = new_chunk_va; 1487 cs_iface->input->heap_end = new_chunk_va; 1488 panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM); 1489 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id)); 1490 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1491 } 1492 mutex_unlock(&sched->lock); 1493 1494 /* We allocated a chunck, but couldn't link it to the heap 1495 * context because the group was scheduled out while we were 1496 * allocating memory. We need to return this chunk to the heap. 1497 */ 1498 if (unlikely(csg_id < 0 && new_chunk_va)) 1499 panthor_heap_return_chunk(heaps, heap_address, new_chunk_va); 1500 1501 ret = 0; 1502 1503 out_put_heap_pool: 1504 panthor_heap_pool_put(heaps); 1505 return ret; 1506 } 1507 1508 static void group_tiler_oom_work(struct work_struct *work) 1509 { 1510 struct panthor_group *group = 1511 container_of(work, struct panthor_group, tiler_oom_work); 1512 u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0); 1513 1514 while (tiler_oom) { 1515 u32 cs_id = ffs(tiler_oom) - 1; 1516 1517 group_process_tiler_oom(group, cs_id); 1518 tiler_oom &= ~BIT(cs_id); 1519 } 1520 1521 group_put(group); 1522 } 1523 1524 static void 1525 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev, 1526 u32 csg_id, u32 cs_id) 1527 { 1528 struct panthor_scheduler *sched = ptdev->scheduler; 1529 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1530 struct panthor_group *group = csg_slot->group; 1531 1532 lockdep_assert_held(&sched->lock); 1533 1534 if (drm_WARN_ON(&ptdev->base, !group)) 1535 return; 1536 1537 atomic_or(BIT(cs_id), &group->tiler_oom); 1538 1539 /* We don't use group_queue_work() here because we want to queue the 1540 * work item to the heap_alloc_wq. 1541 */ 1542 group_get(group); 1543 if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work)) 1544 group_put(group); 1545 } 1546 1547 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev, 1548 u32 csg_id, u32 cs_id) 1549 { 1550 struct panthor_fw_cs_iface *cs_iface; 1551 u32 req, ack, events; 1552 1553 lockdep_assert_held(&ptdev->scheduler->lock); 1554 1555 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1556 req = cs_iface->input->req; 1557 ack = cs_iface->output->ack; 1558 events = (req ^ ack) & CS_EVT_MASK; 1559 1560 if (events & CS_FATAL) 1561 cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id); 1562 1563 if (events & CS_FAULT) 1564 cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id); 1565 1566 if (events & CS_TILER_OOM) 1567 cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id); 1568 1569 /* We don't acknowledge the TILER_OOM event since its handling is 1570 * deferred to a separate work. 1571 */ 1572 panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT); 1573 1574 return (events & (CS_FAULT | CS_TILER_OOM)) != 0; 1575 } 1576 1577 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id) 1578 { 1579 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1580 struct panthor_fw_csg_iface *csg_iface; 1581 1582 lockdep_assert_held(&ptdev->scheduler->lock); 1583 1584 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1585 csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE; 1586 } 1587 1588 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id) 1589 { 1590 struct panthor_scheduler *sched = ptdev->scheduler; 1591 1592 lockdep_assert_held(&sched->lock); 1593 1594 sched->might_have_idle_groups = true; 1595 1596 /* Schedule a tick so we can evict idle groups and schedule non-idle 1597 * ones. This will also update runtime PM and devfreq busy/idle states, 1598 * so the device can lower its frequency or get suspended. 1599 */ 1600 sched_queue_delayed_work(sched, tick, 0); 1601 } 1602 1603 static void csg_slot_sync_update_locked(struct panthor_device *ptdev, 1604 u32 csg_id) 1605 { 1606 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1607 struct panthor_group *group = csg_slot->group; 1608 1609 lockdep_assert_held(&ptdev->scheduler->lock); 1610 1611 if (group) 1612 group_queue_work(group, sync_upd); 1613 1614 sched_queue_work(ptdev->scheduler, sync_upd); 1615 } 1616 1617 static void 1618 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id) 1619 { 1620 struct panthor_scheduler *sched = ptdev->scheduler; 1621 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1622 struct panthor_group *group = csg_slot->group; 1623 1624 lockdep_assert_held(&sched->lock); 1625 1626 drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id); 1627 1628 group = csg_slot->group; 1629 if (!drm_WARN_ON(&ptdev->base, !group)) 1630 group->timedout = true; 1631 1632 sched_queue_delayed_work(sched, tick, 0); 1633 } 1634 1635 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id) 1636 { 1637 u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events; 1638 struct panthor_fw_csg_iface *csg_iface; 1639 u32 ring_cs_db_mask = 0; 1640 1641 lockdep_assert_held(&ptdev->scheduler->lock); 1642 1643 if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1644 return; 1645 1646 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1647 req = READ_ONCE(csg_iface->input->req); 1648 ack = READ_ONCE(csg_iface->output->ack); 1649 cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req); 1650 cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack); 1651 csg_events = (req ^ ack) & CSG_EVT_MASK; 1652 1653 /* There may not be any pending CSG/CS interrupts to process */ 1654 if (req == ack && cs_irq_req == cs_irq_ack) 1655 return; 1656 1657 /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before 1658 * examining the CS_ACK & CS_REQ bits. This would ensure that Host 1659 * doesn't miss an interrupt for the CS in the race scenario where 1660 * whilst Host is servicing an interrupt for the CS, firmware sends 1661 * another interrupt for that CS. 1662 */ 1663 csg_iface->input->cs_irq_ack = cs_irq_req; 1664 1665 panthor_fw_update_reqs(csg_iface, req, ack, 1666 CSG_SYNC_UPDATE | 1667 CSG_IDLE | 1668 CSG_PROGRESS_TIMER_EVENT); 1669 1670 if (csg_events & CSG_IDLE) 1671 csg_slot_process_idle_event_locked(ptdev, csg_id); 1672 1673 if (csg_events & CSG_PROGRESS_TIMER_EVENT) 1674 csg_slot_process_progress_timer_event_locked(ptdev, csg_id); 1675 1676 cs_irqs = cs_irq_req ^ cs_irq_ack; 1677 while (cs_irqs) { 1678 u32 cs_id = ffs(cs_irqs) - 1; 1679 1680 if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id)) 1681 ring_cs_db_mask |= BIT(cs_id); 1682 1683 cs_irqs &= ~BIT(cs_id); 1684 } 1685 1686 if (csg_events & CSG_SYNC_UPDATE) 1687 csg_slot_sync_update_locked(ptdev, csg_id); 1688 1689 if (ring_cs_db_mask) 1690 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask); 1691 1692 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1693 } 1694 1695 static void sched_process_idle_event_locked(struct panthor_device *ptdev) 1696 { 1697 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1698 1699 lockdep_assert_held(&ptdev->scheduler->lock); 1700 1701 /* Acknowledge the idle event and schedule a tick. */ 1702 panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE); 1703 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 1704 } 1705 1706 /** 1707 * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ 1708 * @ptdev: Device. 1709 */ 1710 static void sched_process_global_irq_locked(struct panthor_device *ptdev) 1711 { 1712 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1713 u32 req, ack, evts; 1714 1715 lockdep_assert_held(&ptdev->scheduler->lock); 1716 1717 req = READ_ONCE(glb_iface->input->req); 1718 ack = READ_ONCE(glb_iface->output->ack); 1719 evts = (req ^ ack) & GLB_EVT_MASK; 1720 1721 if (evts & GLB_IDLE) 1722 sched_process_idle_event_locked(ptdev); 1723 } 1724 1725 static void process_fw_events_work(struct work_struct *work) 1726 { 1727 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 1728 fw_events_work); 1729 u32 events = atomic_xchg(&sched->fw_events, 0); 1730 struct panthor_device *ptdev = sched->ptdev; 1731 1732 mutex_lock(&sched->lock); 1733 1734 if (events & JOB_INT_GLOBAL_IF) { 1735 sched_process_global_irq_locked(ptdev); 1736 events &= ~JOB_INT_GLOBAL_IF; 1737 } 1738 1739 while (events) { 1740 u32 csg_id = ffs(events) - 1; 1741 1742 sched_process_csg_irq_locked(ptdev, csg_id); 1743 events &= ~BIT(csg_id); 1744 } 1745 1746 mutex_unlock(&sched->lock); 1747 } 1748 1749 /** 1750 * panthor_sched_report_fw_events() - Report FW events to the scheduler. 1751 */ 1752 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events) 1753 { 1754 if (!ptdev->scheduler) 1755 return; 1756 1757 atomic_or(events, &ptdev->scheduler->fw_events); 1758 sched_queue_work(ptdev->scheduler, fw_events); 1759 } 1760 1761 static const char *fence_get_driver_name(struct dma_fence *fence) 1762 { 1763 return "panthor"; 1764 } 1765 1766 static const char *queue_fence_get_timeline_name(struct dma_fence *fence) 1767 { 1768 return "queue-fence"; 1769 } 1770 1771 static const struct dma_fence_ops panthor_queue_fence_ops = { 1772 .get_driver_name = fence_get_driver_name, 1773 .get_timeline_name = queue_fence_get_timeline_name, 1774 }; 1775 1776 struct panthor_csg_slots_upd_ctx { 1777 u32 update_mask; 1778 u32 timedout_mask; 1779 struct { 1780 u32 value; 1781 u32 mask; 1782 } requests[MAX_CSGS]; 1783 }; 1784 1785 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx) 1786 { 1787 memset(ctx, 0, sizeof(*ctx)); 1788 } 1789 1790 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev, 1791 struct panthor_csg_slots_upd_ctx *ctx, 1792 u32 csg_id, u32 value, u32 mask) 1793 { 1794 if (drm_WARN_ON(&ptdev->base, !mask) || 1795 drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1796 return; 1797 1798 ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask); 1799 ctx->requests[csg_id].mask |= mask; 1800 ctx->update_mask |= BIT(csg_id); 1801 } 1802 1803 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev, 1804 struct panthor_csg_slots_upd_ctx *ctx) 1805 { 1806 struct panthor_scheduler *sched = ptdev->scheduler; 1807 u32 update_slots = ctx->update_mask; 1808 1809 lockdep_assert_held(&sched->lock); 1810 1811 if (!ctx->update_mask) 1812 return 0; 1813 1814 while (update_slots) { 1815 struct panthor_fw_csg_iface *csg_iface; 1816 u32 csg_id = ffs(update_slots) - 1; 1817 1818 update_slots &= ~BIT(csg_id); 1819 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1820 panthor_fw_update_reqs(csg_iface, req, 1821 ctx->requests[csg_id].value, 1822 ctx->requests[csg_id].mask); 1823 } 1824 1825 panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask); 1826 1827 update_slots = ctx->update_mask; 1828 while (update_slots) { 1829 struct panthor_fw_csg_iface *csg_iface; 1830 u32 csg_id = ffs(update_slots) - 1; 1831 u32 req_mask = ctx->requests[csg_id].mask, acked; 1832 int ret; 1833 1834 update_slots &= ~BIT(csg_id); 1835 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1836 1837 ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100); 1838 1839 if (acked & CSG_ENDPOINT_CONFIG) 1840 csg_slot_sync_priority_locked(ptdev, csg_id); 1841 1842 if (acked & CSG_STATE_MASK) 1843 csg_slot_sync_state_locked(ptdev, csg_id); 1844 1845 if (acked & CSG_STATUS_UPDATE) { 1846 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1847 csg_slot_sync_idle_state_locked(ptdev, csg_id); 1848 } 1849 1850 if (ret && acked != req_mask && 1851 ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) { 1852 drm_err(&ptdev->base, "CSG %d update request timedout", csg_id); 1853 ctx->timedout_mask |= BIT(csg_id); 1854 } 1855 } 1856 1857 if (ctx->timedout_mask) 1858 return -ETIMEDOUT; 1859 1860 return 0; 1861 } 1862 1863 struct panthor_sched_tick_ctx { 1864 struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT]; 1865 struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT]; 1866 u32 idle_group_count; 1867 u32 group_count; 1868 enum panthor_csg_priority min_priority; 1869 struct panthor_vm *vms[MAX_CS_PER_CSG]; 1870 u32 as_count; 1871 bool immediate_tick; 1872 u32 csg_upd_failed_mask; 1873 }; 1874 1875 static bool 1876 tick_ctx_is_full(const struct panthor_scheduler *sched, 1877 const struct panthor_sched_tick_ctx *ctx) 1878 { 1879 return ctx->group_count == sched->csg_slot_count; 1880 } 1881 1882 static bool 1883 group_is_idle(struct panthor_group *group) 1884 { 1885 struct panthor_device *ptdev = group->ptdev; 1886 u32 inactive_queues; 1887 1888 if (group->csg_id >= 0) 1889 return ptdev->scheduler->csg_slots[group->csg_id].idle; 1890 1891 inactive_queues = group->idle_queues | group->blocked_queues; 1892 return hweight32(inactive_queues) == group->queue_count; 1893 } 1894 1895 static bool 1896 group_can_run(struct panthor_group *group) 1897 { 1898 return group->state != PANTHOR_CS_GROUP_TERMINATED && 1899 group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE && 1900 !group->destroyed && group->fatal_queues == 0 && 1901 !group->timedout; 1902 } 1903 1904 static void 1905 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched, 1906 struct panthor_sched_tick_ctx *ctx, 1907 struct list_head *queue, 1908 bool skip_idle_groups, 1909 bool owned_by_tick_ctx) 1910 { 1911 struct panthor_group *group, *tmp; 1912 1913 if (tick_ctx_is_full(sched, ctx)) 1914 return; 1915 1916 list_for_each_entry_safe(group, tmp, queue, run_node) { 1917 u32 i; 1918 1919 if (!group_can_run(group)) 1920 continue; 1921 1922 if (skip_idle_groups && group_is_idle(group)) 1923 continue; 1924 1925 for (i = 0; i < ctx->as_count; i++) { 1926 if (ctx->vms[i] == group->vm) 1927 break; 1928 } 1929 1930 if (i == ctx->as_count && ctx->as_count == sched->as_slot_count) 1931 continue; 1932 1933 if (!owned_by_tick_ctx) 1934 group_get(group); 1935 1936 list_move_tail(&group->run_node, &ctx->groups[group->priority]); 1937 ctx->group_count++; 1938 if (group_is_idle(group)) 1939 ctx->idle_group_count++; 1940 1941 if (i == ctx->as_count) 1942 ctx->vms[ctx->as_count++] = group->vm; 1943 1944 if (ctx->min_priority > group->priority) 1945 ctx->min_priority = group->priority; 1946 1947 if (tick_ctx_is_full(sched, ctx)) 1948 return; 1949 } 1950 } 1951 1952 static void 1953 tick_ctx_insert_old_group(struct panthor_scheduler *sched, 1954 struct panthor_sched_tick_ctx *ctx, 1955 struct panthor_group *group, 1956 bool full_tick) 1957 { 1958 struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id]; 1959 struct panthor_group *other_group; 1960 1961 if (!full_tick) { 1962 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1963 return; 1964 } 1965 1966 /* Rotate to make sure groups with lower CSG slot 1967 * priorities have a chance to get a higher CSG slot 1968 * priority next time they get picked. This priority 1969 * has an impact on resource request ordering, so it's 1970 * important to make sure we don't let one group starve 1971 * all other groups with the same group priority. 1972 */ 1973 list_for_each_entry(other_group, 1974 &ctx->old_groups[csg_slot->group->priority], 1975 run_node) { 1976 struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id]; 1977 1978 if (other_csg_slot->priority > csg_slot->priority) { 1979 list_add_tail(&csg_slot->group->run_node, &other_group->run_node); 1980 return; 1981 } 1982 } 1983 1984 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1985 } 1986 1987 static void 1988 tick_ctx_init(struct panthor_scheduler *sched, 1989 struct panthor_sched_tick_ctx *ctx, 1990 bool full_tick) 1991 { 1992 struct panthor_device *ptdev = sched->ptdev; 1993 struct panthor_csg_slots_upd_ctx upd_ctx; 1994 int ret; 1995 u32 i; 1996 1997 memset(ctx, 0, sizeof(*ctx)); 1998 csgs_upd_ctx_init(&upd_ctx); 1999 2000 ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT; 2001 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 2002 INIT_LIST_HEAD(&ctx->groups[i]); 2003 INIT_LIST_HEAD(&ctx->old_groups[i]); 2004 } 2005 2006 for (i = 0; i < sched->csg_slot_count; i++) { 2007 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2008 struct panthor_group *group = csg_slot->group; 2009 struct panthor_fw_csg_iface *csg_iface; 2010 2011 if (!group) 2012 continue; 2013 2014 csg_iface = panthor_fw_get_csg_iface(ptdev, i); 2015 group_get(group); 2016 2017 /* If there was unhandled faults on the VM, force processing of 2018 * CSG IRQs, so we can flag the faulty queue. 2019 */ 2020 if (panthor_vm_has_unhandled_faults(group->vm)) { 2021 sched_process_csg_irq_locked(ptdev, i); 2022 2023 /* No fatal fault reported, flag all queues as faulty. */ 2024 if (!group->fatal_queues) 2025 group->fatal_queues |= GENMASK(group->queue_count - 1, 0); 2026 } 2027 2028 tick_ctx_insert_old_group(sched, ctx, group, full_tick); 2029 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 2030 csg_iface->output->ack ^ CSG_STATUS_UPDATE, 2031 CSG_STATUS_UPDATE); 2032 } 2033 2034 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2035 if (ret) { 2036 panthor_device_schedule_reset(ptdev); 2037 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2038 } 2039 } 2040 2041 static void 2042 group_term_post_processing(struct panthor_group *group) 2043 { 2044 struct panthor_job *job, *tmp; 2045 LIST_HEAD(faulty_jobs); 2046 bool cookie; 2047 u32 i = 0; 2048 2049 if (drm_WARN_ON(&group->ptdev->base, group_can_run(group))) 2050 return; 2051 2052 cookie = dma_fence_begin_signalling(); 2053 for (i = 0; i < group->queue_count; i++) { 2054 struct panthor_queue *queue = group->queues[i]; 2055 struct panthor_syncobj_64b *syncobj; 2056 int err; 2057 2058 if (group->fatal_queues & BIT(i)) 2059 err = -EINVAL; 2060 else if (group->timedout) 2061 err = -ETIMEDOUT; 2062 else 2063 err = -ECANCELED; 2064 2065 if (!queue) 2066 continue; 2067 2068 spin_lock(&queue->fence_ctx.lock); 2069 list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) { 2070 list_move_tail(&job->node, &faulty_jobs); 2071 dma_fence_set_error(job->done_fence, err); 2072 dma_fence_signal_locked(job->done_fence); 2073 } 2074 spin_unlock(&queue->fence_ctx.lock); 2075 2076 /* Manually update the syncobj seqno to unblock waiters. */ 2077 syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj)); 2078 syncobj->status = ~0; 2079 syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno); 2080 sched_queue_work(group->ptdev->scheduler, sync_upd); 2081 } 2082 dma_fence_end_signalling(cookie); 2083 2084 list_for_each_entry_safe(job, tmp, &faulty_jobs, node) { 2085 list_del_init(&job->node); 2086 panthor_job_put(&job->base); 2087 } 2088 } 2089 2090 static void group_term_work(struct work_struct *work) 2091 { 2092 struct panthor_group *group = 2093 container_of(work, struct panthor_group, term_work); 2094 2095 group_term_post_processing(group); 2096 group_put(group); 2097 } 2098 2099 static void 2100 tick_ctx_cleanup(struct panthor_scheduler *sched, 2101 struct panthor_sched_tick_ctx *ctx) 2102 { 2103 struct panthor_device *ptdev = sched->ptdev; 2104 struct panthor_group *group, *tmp; 2105 u32 i; 2106 2107 for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) { 2108 list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) { 2109 /* If everything went fine, we should only have groups 2110 * to be terminated in the old_groups lists. 2111 */ 2112 drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask && 2113 group_can_run(group)); 2114 2115 if (!group_can_run(group)) { 2116 list_del_init(&group->run_node); 2117 list_del_init(&group->wait_node); 2118 group_queue_work(group, term); 2119 } else if (group->csg_id >= 0) { 2120 list_del_init(&group->run_node); 2121 } else { 2122 list_move(&group->run_node, 2123 group_is_idle(group) ? 2124 &sched->groups.idle[group->priority] : 2125 &sched->groups.runnable[group->priority]); 2126 } 2127 group_put(group); 2128 } 2129 } 2130 2131 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 2132 /* If everything went fine, the groups to schedule lists should 2133 * be empty. 2134 */ 2135 drm_WARN_ON(&ptdev->base, 2136 !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i])); 2137 2138 list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) { 2139 if (group->csg_id >= 0) { 2140 list_del_init(&group->run_node); 2141 } else { 2142 list_move(&group->run_node, 2143 group_is_idle(group) ? 2144 &sched->groups.idle[group->priority] : 2145 &sched->groups.runnable[group->priority]); 2146 } 2147 group_put(group); 2148 } 2149 } 2150 } 2151 2152 static void 2153 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx) 2154 { 2155 struct panthor_group *group, *tmp; 2156 struct panthor_device *ptdev = sched->ptdev; 2157 struct panthor_csg_slot *csg_slot; 2158 int prio, new_csg_prio = MAX_CSG_PRIO, i; 2159 u32 free_csg_slots = 0; 2160 struct panthor_csg_slots_upd_ctx upd_ctx; 2161 int ret; 2162 2163 csgs_upd_ctx_init(&upd_ctx); 2164 2165 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2166 /* Suspend or terminate evicted groups. */ 2167 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2168 bool term = !group_can_run(group); 2169 int csg_id = group->csg_id; 2170 2171 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2172 continue; 2173 2174 csg_slot = &sched->csg_slots[csg_id]; 2175 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2176 term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND, 2177 CSG_STATE_MASK); 2178 } 2179 2180 /* Update priorities on already running groups. */ 2181 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2182 struct panthor_fw_csg_iface *csg_iface; 2183 int csg_id = group->csg_id; 2184 2185 if (csg_id < 0) { 2186 new_csg_prio--; 2187 continue; 2188 } 2189 2190 csg_slot = &sched->csg_slots[csg_id]; 2191 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2192 if (csg_slot->priority == new_csg_prio) { 2193 new_csg_prio--; 2194 continue; 2195 } 2196 2197 panthor_fw_update_reqs(csg_iface, endpoint_req, 2198 CSG_EP_REQ_PRIORITY(new_csg_prio), 2199 CSG_EP_REQ_PRIORITY_MASK); 2200 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2201 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2202 CSG_ENDPOINT_CONFIG); 2203 new_csg_prio--; 2204 } 2205 } 2206 2207 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2208 if (ret) { 2209 panthor_device_schedule_reset(ptdev); 2210 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2211 return; 2212 } 2213 2214 /* Unbind evicted groups. */ 2215 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2216 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2217 /* This group is gone. Process interrupts to clear 2218 * any pending interrupts before we start the new 2219 * group. 2220 */ 2221 if (group->csg_id >= 0) 2222 sched_process_csg_irq_locked(ptdev, group->csg_id); 2223 2224 group_unbind_locked(group); 2225 } 2226 } 2227 2228 for (i = 0; i < sched->csg_slot_count; i++) { 2229 if (!sched->csg_slots[i].group) 2230 free_csg_slots |= BIT(i); 2231 } 2232 2233 csgs_upd_ctx_init(&upd_ctx); 2234 new_csg_prio = MAX_CSG_PRIO; 2235 2236 /* Start new groups. */ 2237 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2238 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2239 int csg_id = group->csg_id; 2240 struct panthor_fw_csg_iface *csg_iface; 2241 2242 if (csg_id >= 0) { 2243 new_csg_prio--; 2244 continue; 2245 } 2246 2247 csg_id = ffs(free_csg_slots) - 1; 2248 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2249 break; 2250 2251 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2252 csg_slot = &sched->csg_slots[csg_id]; 2253 group_bind_locked(group, csg_id); 2254 csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--); 2255 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2256 group->state == PANTHOR_CS_GROUP_SUSPENDED ? 2257 CSG_STATE_RESUME : CSG_STATE_START, 2258 CSG_STATE_MASK); 2259 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2260 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2261 CSG_ENDPOINT_CONFIG); 2262 free_csg_slots &= ~BIT(csg_id); 2263 } 2264 } 2265 2266 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2267 if (ret) { 2268 panthor_device_schedule_reset(ptdev); 2269 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2270 return; 2271 } 2272 2273 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2274 list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) { 2275 list_del_init(&group->run_node); 2276 2277 /* If the group has been destroyed while we were 2278 * scheduling, ask for an immediate tick to 2279 * re-evaluate as soon as possible and get rid of 2280 * this dangling group. 2281 */ 2282 if (group->destroyed) 2283 ctx->immediate_tick = true; 2284 group_put(group); 2285 } 2286 2287 /* Return evicted groups to the idle or run queues. Groups 2288 * that can no longer be run (because they've been destroyed 2289 * or experienced an unrecoverable error) will be scheduled 2290 * for destruction in tick_ctx_cleanup(). 2291 */ 2292 list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) { 2293 if (!group_can_run(group)) 2294 continue; 2295 2296 if (group_is_idle(group)) 2297 list_move_tail(&group->run_node, &sched->groups.idle[prio]); 2298 else 2299 list_move_tail(&group->run_node, &sched->groups.runnable[prio]); 2300 group_put(group); 2301 } 2302 } 2303 2304 sched->used_csg_slot_count = ctx->group_count; 2305 sched->might_have_idle_groups = ctx->idle_group_count > 0; 2306 } 2307 2308 static u64 2309 tick_ctx_update_resched_target(struct panthor_scheduler *sched, 2310 const struct panthor_sched_tick_ctx *ctx) 2311 { 2312 /* We had space left, no need to reschedule until some external event happens. */ 2313 if (!tick_ctx_is_full(sched, ctx)) 2314 goto no_tick; 2315 2316 /* If idle groups were scheduled, no need to wake up until some external 2317 * event happens (group unblocked, new job submitted, ...). 2318 */ 2319 if (ctx->idle_group_count) 2320 goto no_tick; 2321 2322 if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT)) 2323 goto no_tick; 2324 2325 /* If there are groups of the same priority waiting, we need to 2326 * keep the scheduler ticking, otherwise, we'll just wait for 2327 * new groups with higher priority to be queued. 2328 */ 2329 if (!list_empty(&sched->groups.runnable[ctx->min_priority])) { 2330 u64 resched_target = sched->last_tick + sched->tick_period; 2331 2332 if (time_before64(sched->resched_target, sched->last_tick) || 2333 time_before64(resched_target, sched->resched_target)) 2334 sched->resched_target = resched_target; 2335 2336 return sched->resched_target - sched->last_tick; 2337 } 2338 2339 no_tick: 2340 sched->resched_target = U64_MAX; 2341 return U64_MAX; 2342 } 2343 2344 static void tick_work(struct work_struct *work) 2345 { 2346 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 2347 tick_work.work); 2348 struct panthor_device *ptdev = sched->ptdev; 2349 struct panthor_sched_tick_ctx ctx; 2350 u64 remaining_jiffies = 0, resched_delay; 2351 u64 now = get_jiffies_64(); 2352 int prio, ret, cookie; 2353 2354 if (!drm_dev_enter(&ptdev->base, &cookie)) 2355 return; 2356 2357 ret = pm_runtime_resume_and_get(ptdev->base.dev); 2358 if (drm_WARN_ON(&ptdev->base, ret)) 2359 goto out_dev_exit; 2360 2361 if (time_before64(now, sched->resched_target)) 2362 remaining_jiffies = sched->resched_target - now; 2363 2364 mutex_lock(&sched->lock); 2365 if (panthor_device_reset_is_pending(sched->ptdev)) 2366 goto out_unlock; 2367 2368 tick_ctx_init(sched, &ctx, remaining_jiffies != 0); 2369 if (ctx.csg_upd_failed_mask) 2370 goto out_cleanup_ctx; 2371 2372 if (remaining_jiffies) { 2373 /* Scheduling forced in the middle of a tick. Only RT groups 2374 * can preempt non-RT ones. Currently running RT groups can't be 2375 * preempted. 2376 */ 2377 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2378 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2379 prio--) { 2380 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], 2381 true, true); 2382 if (prio == PANTHOR_CSG_PRIORITY_RT) { 2383 tick_ctx_pick_groups_from_list(sched, &ctx, 2384 &sched->groups.runnable[prio], 2385 true, false); 2386 } 2387 } 2388 } 2389 2390 /* First pick non-idle groups */ 2391 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2392 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2393 prio--) { 2394 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio], 2395 true, false); 2396 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true); 2397 } 2398 2399 /* If we have free CSG slots left, pick idle groups */ 2400 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2401 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2402 prio--) { 2403 /* Check the old_group queue first to avoid reprogramming the slots */ 2404 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true); 2405 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio], 2406 false, false); 2407 } 2408 2409 tick_ctx_apply(sched, &ctx); 2410 if (ctx.csg_upd_failed_mask) 2411 goto out_cleanup_ctx; 2412 2413 if (ctx.idle_group_count == ctx.group_count) { 2414 panthor_devfreq_record_idle(sched->ptdev); 2415 if (sched->pm.has_ref) { 2416 pm_runtime_put_autosuspend(ptdev->base.dev); 2417 sched->pm.has_ref = false; 2418 } 2419 } else { 2420 panthor_devfreq_record_busy(sched->ptdev); 2421 if (!sched->pm.has_ref) { 2422 pm_runtime_get(ptdev->base.dev); 2423 sched->pm.has_ref = true; 2424 } 2425 } 2426 2427 sched->last_tick = now; 2428 resched_delay = tick_ctx_update_resched_target(sched, &ctx); 2429 if (ctx.immediate_tick) 2430 resched_delay = 0; 2431 2432 if (resched_delay != U64_MAX) 2433 sched_queue_delayed_work(sched, tick, resched_delay); 2434 2435 out_cleanup_ctx: 2436 tick_ctx_cleanup(sched, &ctx); 2437 2438 out_unlock: 2439 mutex_unlock(&sched->lock); 2440 pm_runtime_mark_last_busy(ptdev->base.dev); 2441 pm_runtime_put_autosuspend(ptdev->base.dev); 2442 2443 out_dev_exit: 2444 drm_dev_exit(cookie); 2445 } 2446 2447 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx) 2448 { 2449 struct panthor_queue *queue = group->queues[queue_idx]; 2450 union { 2451 struct panthor_syncobj_64b sync64; 2452 struct panthor_syncobj_32b sync32; 2453 } *syncobj; 2454 bool result; 2455 u64 value; 2456 2457 syncobj = panthor_queue_get_syncwait_obj(group, queue); 2458 if (!syncobj) 2459 return -EINVAL; 2460 2461 value = queue->syncwait.sync64 ? 2462 syncobj->sync64.seqno : 2463 syncobj->sync32.seqno; 2464 2465 if (queue->syncwait.gt) 2466 result = value > queue->syncwait.ref; 2467 else 2468 result = value <= queue->syncwait.ref; 2469 2470 if (result) 2471 panthor_queue_put_syncwait_obj(queue); 2472 2473 return result; 2474 } 2475 2476 static void sync_upd_work(struct work_struct *work) 2477 { 2478 struct panthor_scheduler *sched = container_of(work, 2479 struct panthor_scheduler, 2480 sync_upd_work); 2481 struct panthor_group *group, *tmp; 2482 bool immediate_tick = false; 2483 2484 mutex_lock(&sched->lock); 2485 list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) { 2486 u32 tested_queues = group->blocked_queues; 2487 u32 unblocked_queues = 0; 2488 2489 while (tested_queues) { 2490 u32 cs_id = ffs(tested_queues) - 1; 2491 int ret; 2492 2493 ret = panthor_queue_eval_syncwait(group, cs_id); 2494 drm_WARN_ON(&group->ptdev->base, ret < 0); 2495 if (ret) 2496 unblocked_queues |= BIT(cs_id); 2497 2498 tested_queues &= ~BIT(cs_id); 2499 } 2500 2501 if (unblocked_queues) { 2502 group->blocked_queues &= ~unblocked_queues; 2503 2504 if (group->csg_id < 0) { 2505 list_move(&group->run_node, 2506 &sched->groups.runnable[group->priority]); 2507 if (group->priority == PANTHOR_CSG_PRIORITY_RT) 2508 immediate_tick = true; 2509 } 2510 } 2511 2512 if (!group->blocked_queues) 2513 list_del_init(&group->wait_node); 2514 } 2515 mutex_unlock(&sched->lock); 2516 2517 if (immediate_tick) 2518 sched_queue_delayed_work(sched, tick, 0); 2519 } 2520 2521 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask) 2522 { 2523 struct panthor_device *ptdev = group->ptdev; 2524 struct panthor_scheduler *sched = ptdev->scheduler; 2525 struct list_head *queue = &sched->groups.runnable[group->priority]; 2526 u64 delay_jiffies = 0; 2527 bool was_idle; 2528 u64 now; 2529 2530 if (!group_can_run(group)) 2531 return; 2532 2533 /* All updated queues are blocked, no need to wake up the scheduler. */ 2534 if ((queue_mask & group->blocked_queues) == queue_mask) 2535 return; 2536 2537 was_idle = group_is_idle(group); 2538 group->idle_queues &= ~queue_mask; 2539 2540 /* Don't mess up with the lists if we're in a middle of a reset. */ 2541 if (atomic_read(&sched->reset.in_progress)) 2542 return; 2543 2544 if (was_idle && !group_is_idle(group)) 2545 list_move_tail(&group->run_node, queue); 2546 2547 /* RT groups are preemptive. */ 2548 if (group->priority == PANTHOR_CSG_PRIORITY_RT) { 2549 sched_queue_delayed_work(sched, tick, 0); 2550 return; 2551 } 2552 2553 /* Some groups might be idle, force an immediate tick to 2554 * re-evaluate. 2555 */ 2556 if (sched->might_have_idle_groups) { 2557 sched_queue_delayed_work(sched, tick, 0); 2558 return; 2559 } 2560 2561 /* Scheduler is ticking, nothing to do. */ 2562 if (sched->resched_target != U64_MAX) { 2563 /* If there are free slots, force immediating ticking. */ 2564 if (sched->used_csg_slot_count < sched->csg_slot_count) 2565 sched_queue_delayed_work(sched, tick, 0); 2566 2567 return; 2568 } 2569 2570 /* Scheduler tick was off, recalculate the resched_target based on the 2571 * last tick event, and queue the scheduler work. 2572 */ 2573 now = get_jiffies_64(); 2574 sched->resched_target = sched->last_tick + sched->tick_period; 2575 if (sched->used_csg_slot_count == sched->csg_slot_count && 2576 time_before64(now, sched->resched_target)) 2577 delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX); 2578 2579 sched_queue_delayed_work(sched, tick, delay_jiffies); 2580 } 2581 2582 static void queue_stop(struct panthor_queue *queue, 2583 struct panthor_job *bad_job) 2584 { 2585 drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); 2586 } 2587 2588 static void queue_start(struct panthor_queue *queue) 2589 { 2590 struct panthor_job *job; 2591 2592 /* Re-assign the parent fences. */ 2593 list_for_each_entry(job, &queue->scheduler.pending_list, base.list) 2594 job->base.s_fence->parent = dma_fence_get(job->done_fence); 2595 2596 drm_sched_start(&queue->scheduler, 0); 2597 } 2598 2599 static void panthor_group_stop(struct panthor_group *group) 2600 { 2601 struct panthor_scheduler *sched = group->ptdev->scheduler; 2602 2603 lockdep_assert_held(&sched->reset.lock); 2604 2605 for (u32 i = 0; i < group->queue_count; i++) 2606 queue_stop(group->queues[i], NULL); 2607 2608 group_get(group); 2609 list_move_tail(&group->run_node, &sched->reset.stopped_groups); 2610 } 2611 2612 static void panthor_group_start(struct panthor_group *group) 2613 { 2614 struct panthor_scheduler *sched = group->ptdev->scheduler; 2615 2616 lockdep_assert_held(&group->ptdev->scheduler->reset.lock); 2617 2618 for (u32 i = 0; i < group->queue_count; i++) 2619 queue_start(group->queues[i]); 2620 2621 if (group_can_run(group)) { 2622 list_move_tail(&group->run_node, 2623 group_is_idle(group) ? 2624 &sched->groups.idle[group->priority] : 2625 &sched->groups.runnable[group->priority]); 2626 } else { 2627 list_del_init(&group->run_node); 2628 list_del_init(&group->wait_node); 2629 group_queue_work(group, term); 2630 } 2631 2632 group_put(group); 2633 } 2634 2635 static void panthor_sched_immediate_tick(struct panthor_device *ptdev) 2636 { 2637 struct panthor_scheduler *sched = ptdev->scheduler; 2638 2639 sched_queue_delayed_work(sched, tick, 0); 2640 } 2641 2642 /** 2643 * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler. 2644 */ 2645 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev) 2646 { 2647 /* Force a tick to immediately kill faulty groups. */ 2648 if (ptdev->scheduler) 2649 panthor_sched_immediate_tick(ptdev); 2650 } 2651 2652 void panthor_sched_resume(struct panthor_device *ptdev) 2653 { 2654 /* Force a tick to re-evaluate after a resume. */ 2655 panthor_sched_immediate_tick(ptdev); 2656 } 2657 2658 void panthor_sched_suspend(struct panthor_device *ptdev) 2659 { 2660 struct panthor_scheduler *sched = ptdev->scheduler; 2661 struct panthor_csg_slots_upd_ctx upd_ctx; 2662 struct panthor_group *group; 2663 u32 suspended_slots; 2664 u32 i; 2665 2666 mutex_lock(&sched->lock); 2667 csgs_upd_ctx_init(&upd_ctx); 2668 for (i = 0; i < sched->csg_slot_count; i++) { 2669 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2670 2671 if (csg_slot->group) { 2672 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 2673 group_can_run(csg_slot->group) ? 2674 CSG_STATE_SUSPEND : CSG_STATE_TERMINATE, 2675 CSG_STATE_MASK); 2676 } 2677 } 2678 2679 suspended_slots = upd_ctx.update_mask; 2680 2681 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2682 suspended_slots &= ~upd_ctx.timedout_mask; 2683 2684 if (upd_ctx.timedout_mask) { 2685 u32 slot_mask = upd_ctx.timedout_mask; 2686 2687 drm_err(&ptdev->base, "CSG suspend failed, escalating to termination"); 2688 csgs_upd_ctx_init(&upd_ctx); 2689 while (slot_mask) { 2690 u32 csg_id = ffs(slot_mask) - 1; 2691 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2692 2693 /* We consider group suspension failures as fatal and flag the 2694 * group as unusable by setting timedout=true. 2695 */ 2696 csg_slot->group->timedout = true; 2697 2698 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2699 CSG_STATE_TERMINATE, 2700 CSG_STATE_MASK); 2701 slot_mask &= ~BIT(csg_id); 2702 } 2703 2704 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2705 2706 slot_mask = upd_ctx.timedout_mask; 2707 while (slot_mask) { 2708 u32 csg_id = ffs(slot_mask) - 1; 2709 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2710 2711 /* Terminate command timedout, but the soft-reset will 2712 * automatically terminate all active groups, so let's 2713 * force the state to halted here. 2714 */ 2715 if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED) 2716 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2717 slot_mask &= ~BIT(csg_id); 2718 } 2719 } 2720 2721 /* Flush L2 and LSC caches to make sure suspend state is up-to-date. 2722 * If the flush fails, flag all queues for termination. 2723 */ 2724 if (suspended_slots) { 2725 bool flush_caches_failed = false; 2726 u32 slot_mask = suspended_slots; 2727 2728 if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0)) 2729 flush_caches_failed = true; 2730 2731 while (slot_mask) { 2732 u32 csg_id = ffs(slot_mask) - 1; 2733 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2734 2735 if (flush_caches_failed) 2736 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2737 else 2738 csg_slot_sync_update_locked(ptdev, csg_id); 2739 2740 slot_mask &= ~BIT(csg_id); 2741 } 2742 } 2743 2744 for (i = 0; i < sched->csg_slot_count; i++) { 2745 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2746 2747 group = csg_slot->group; 2748 if (!group) 2749 continue; 2750 2751 group_get(group); 2752 2753 if (group->csg_id >= 0) 2754 sched_process_csg_irq_locked(ptdev, group->csg_id); 2755 2756 group_unbind_locked(group); 2757 2758 drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node)); 2759 2760 if (group_can_run(group)) { 2761 list_add(&group->run_node, 2762 &sched->groups.idle[group->priority]); 2763 } else { 2764 /* We don't bother stopping the scheduler if the group is 2765 * faulty, the group termination work will finish the job. 2766 */ 2767 list_del_init(&group->wait_node); 2768 group_queue_work(group, term); 2769 } 2770 group_put(group); 2771 } 2772 mutex_unlock(&sched->lock); 2773 } 2774 2775 void panthor_sched_pre_reset(struct panthor_device *ptdev) 2776 { 2777 struct panthor_scheduler *sched = ptdev->scheduler; 2778 struct panthor_group *group, *group_tmp; 2779 u32 i; 2780 2781 mutex_lock(&sched->reset.lock); 2782 atomic_set(&sched->reset.in_progress, true); 2783 2784 /* Cancel all scheduler works. Once this is done, these works can't be 2785 * scheduled again until the reset operation is complete. 2786 */ 2787 cancel_work_sync(&sched->sync_upd_work); 2788 cancel_delayed_work_sync(&sched->tick_work); 2789 2790 panthor_sched_suspend(ptdev); 2791 2792 /* Stop all groups that might still accept jobs, so we don't get passed 2793 * new jobs while we're resetting. 2794 */ 2795 for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) { 2796 /* All groups should be in the idle lists. */ 2797 drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i])); 2798 list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node) 2799 panthor_group_stop(group); 2800 } 2801 2802 for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) { 2803 list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node) 2804 panthor_group_stop(group); 2805 } 2806 2807 mutex_unlock(&sched->reset.lock); 2808 } 2809 2810 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed) 2811 { 2812 struct panthor_scheduler *sched = ptdev->scheduler; 2813 struct panthor_group *group, *group_tmp; 2814 2815 mutex_lock(&sched->reset.lock); 2816 2817 list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) { 2818 /* Consider all previously running group as terminated if the 2819 * reset failed. 2820 */ 2821 if (reset_failed) 2822 group->state = PANTHOR_CS_GROUP_TERMINATED; 2823 2824 panthor_group_start(group); 2825 } 2826 2827 /* We're done resetting the GPU, clear the reset.in_progress bit so we can 2828 * kick the scheduler. 2829 */ 2830 atomic_set(&sched->reset.in_progress, false); 2831 mutex_unlock(&sched->reset.lock); 2832 2833 /* No need to queue a tick and update syncs if the reset failed. */ 2834 if (!reset_failed) { 2835 sched_queue_delayed_work(sched, tick, 0); 2836 sched_queue_work(sched, sync_upd); 2837 } 2838 } 2839 2840 static void update_fdinfo_stats(struct panthor_job *job) 2841 { 2842 struct panthor_group *group = job->group; 2843 struct panthor_queue *queue = group->queues[job->queue_idx]; 2844 struct panthor_gpu_usage *fdinfo = &group->fdinfo.data; 2845 struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap; 2846 struct panthor_job_profiling_data *data = &slots[job->profiling.slot]; 2847 2848 mutex_lock(&group->fdinfo.lock); 2849 if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES) 2850 fdinfo->cycles += data->cycles.after - data->cycles.before; 2851 if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP) 2852 fdinfo->time += data->time.after - data->time.before; 2853 mutex_unlock(&group->fdinfo.lock); 2854 } 2855 2856 void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile) 2857 { 2858 struct panthor_group_pool *gpool = pfile->groups; 2859 struct panthor_group *group; 2860 unsigned long i; 2861 2862 if (IS_ERR_OR_NULL(gpool)) 2863 return; 2864 2865 xa_for_each(&gpool->xa, i, group) { 2866 mutex_lock(&group->fdinfo.lock); 2867 pfile->stats.cycles += group->fdinfo.data.cycles; 2868 pfile->stats.time += group->fdinfo.data.time; 2869 group->fdinfo.data.cycles = 0; 2870 group->fdinfo.data.time = 0; 2871 mutex_unlock(&group->fdinfo.lock); 2872 } 2873 } 2874 2875 static void group_sync_upd_work(struct work_struct *work) 2876 { 2877 struct panthor_group *group = 2878 container_of(work, struct panthor_group, sync_upd_work); 2879 struct panthor_job *job, *job_tmp; 2880 LIST_HEAD(done_jobs); 2881 u32 queue_idx; 2882 bool cookie; 2883 2884 cookie = dma_fence_begin_signalling(); 2885 for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) { 2886 struct panthor_queue *queue = group->queues[queue_idx]; 2887 struct panthor_syncobj_64b *syncobj; 2888 2889 if (!queue) 2890 continue; 2891 2892 syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj)); 2893 2894 spin_lock(&queue->fence_ctx.lock); 2895 list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) { 2896 if (syncobj->seqno < job->done_fence->seqno) 2897 break; 2898 2899 list_move_tail(&job->node, &done_jobs); 2900 dma_fence_signal_locked(job->done_fence); 2901 } 2902 spin_unlock(&queue->fence_ctx.lock); 2903 } 2904 dma_fence_end_signalling(cookie); 2905 2906 list_for_each_entry_safe(job, job_tmp, &done_jobs, node) { 2907 if (job->profiling.mask) 2908 update_fdinfo_stats(job); 2909 list_del_init(&job->node); 2910 panthor_job_put(&job->base); 2911 } 2912 2913 group_put(group); 2914 } 2915 2916 struct panthor_job_ringbuf_instrs { 2917 u64 buffer[MAX_INSTRS_PER_JOB]; 2918 u32 count; 2919 }; 2920 2921 struct panthor_job_instr { 2922 u32 profile_mask; 2923 u64 instr; 2924 }; 2925 2926 #define JOB_INSTR(__prof, __instr) \ 2927 { \ 2928 .profile_mask = __prof, \ 2929 .instr = __instr, \ 2930 } 2931 2932 static void 2933 copy_instrs_to_ringbuf(struct panthor_queue *queue, 2934 struct panthor_job *job, 2935 struct panthor_job_ringbuf_instrs *instrs) 2936 { 2937 u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 2938 u64 start = job->ringbuf.start & (ringbuf_size - 1); 2939 u64 size, written; 2940 2941 /* 2942 * We need to write a whole slot, including any trailing zeroes 2943 * that may come at the end of it. Also, because instrs.buffer has 2944 * been zero-initialised, there's no need to pad it with 0's 2945 */ 2946 instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE); 2947 size = instrs->count * sizeof(u64); 2948 WARN_ON(size > ringbuf_size); 2949 written = min(ringbuf_size - start, size); 2950 2951 memcpy(queue->ringbuf->kmap + start, instrs->buffer, written); 2952 2953 if (written < size) 2954 memcpy(queue->ringbuf->kmap, 2955 &instrs->buffer[written / sizeof(u64)], 2956 size - written); 2957 } 2958 2959 struct panthor_job_cs_params { 2960 u32 profile_mask; 2961 u64 addr_reg; u64 val_reg; 2962 u64 cycle_reg; u64 time_reg; 2963 u64 sync_addr; u64 times_addr; 2964 u64 cs_start; u64 cs_size; 2965 u32 last_flush; u32 waitall_mask; 2966 }; 2967 2968 static void 2969 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params) 2970 { 2971 struct panthor_group *group = job->group; 2972 struct panthor_queue *queue = group->queues[job->queue_idx]; 2973 struct panthor_device *ptdev = group->ptdev; 2974 struct panthor_scheduler *sched = ptdev->scheduler; 2975 2976 params->addr_reg = ptdev->csif_info.cs_reg_count - 2977 ptdev->csif_info.unpreserved_cs_reg_count; 2978 params->val_reg = params->addr_reg + 2; 2979 params->cycle_reg = params->addr_reg; 2980 params->time_reg = params->val_reg; 2981 2982 params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) + 2983 job->queue_idx * sizeof(struct panthor_syncobj_64b); 2984 params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) + 2985 (job->profiling.slot * sizeof(struct panthor_job_profiling_data)); 2986 params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0); 2987 2988 params->cs_start = job->call_info.start; 2989 params->cs_size = job->call_info.size; 2990 params->last_flush = job->call_info.latest_flush; 2991 2992 params->profile_mask = job->profiling.mask; 2993 } 2994 2995 #define JOB_INSTR_ALWAYS(instr) \ 2996 JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr)) 2997 #define JOB_INSTR_TIMESTAMP(instr) \ 2998 JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr)) 2999 #define JOB_INSTR_CYCLES(instr) \ 3000 JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr)) 3001 3002 static void 3003 prepare_job_instrs(const struct panthor_job_cs_params *params, 3004 struct panthor_job_ringbuf_instrs *instrs) 3005 { 3006 const struct panthor_job_instr instr_seq[] = { 3007 /* MOV32 rX+2, cs.latest_flush */ 3008 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush), 3009 /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */ 3010 JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) | 3011 (0 << 16) | 0x233), 3012 /* MOV48 rX:rX+1, cycles_offset */ 3013 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) | 3014 (params->times_addr + 3015 offsetof(struct panthor_job_profiling_data, cycles.before))), 3016 /* STORE_STATE cycles */ 3017 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)), 3018 /* MOV48 rX:rX+1, time_offset */ 3019 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) | 3020 (params->times_addr + 3021 offsetof(struct panthor_job_profiling_data, time.before))), 3022 /* STORE_STATE timer */ 3023 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)), 3024 /* MOV48 rX:rX+1, cs.start */ 3025 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start), 3026 /* MOV32 rX+2, cs.size */ 3027 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size), 3028 /* WAIT(0) => waits for FLUSH_CACHE2 instruction */ 3029 JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)), 3030 /* CALL rX:rX+1, rX+2 */ 3031 JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) | 3032 (params->val_reg << 32)), 3033 /* MOV48 rX:rX+1, cycles_offset */ 3034 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) | 3035 (params->times_addr + 3036 offsetof(struct panthor_job_profiling_data, cycles.after))), 3037 /* STORE_STATE cycles */ 3038 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)), 3039 /* MOV48 rX:rX+1, time_offset */ 3040 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) | 3041 (params->times_addr + 3042 offsetof(struct panthor_job_profiling_data, time.after))), 3043 /* STORE_STATE timer */ 3044 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)), 3045 /* MOV48 rX:rX+1, sync_addr */ 3046 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr), 3047 /* MOV48 rX+2, #1 */ 3048 JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1), 3049 /* WAIT(all) */ 3050 JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)), 3051 /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/ 3052 JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) | 3053 (params->val_reg << 32) | (0 << 16) | 1), 3054 /* ERROR_BARRIER, so we can recover from faults at job boundaries. */ 3055 JOB_INSTR_ALWAYS((47ull << 56)), 3056 }; 3057 u32 pad; 3058 3059 instrs->count = 0; 3060 3061 /* NEED to be cacheline aligned to please the prefetcher. */ 3062 static_assert(sizeof(instrs->buffer) % 64 == 0, 3063 "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline"); 3064 3065 /* Make sure we have enough storage to store the whole sequence. */ 3066 static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) == 3067 ARRAY_SIZE(instrs->buffer), 3068 "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch"); 3069 3070 for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) { 3071 /* If the profile mask of this instruction is not enabled, skip it. */ 3072 if (instr_seq[i].profile_mask && 3073 !(instr_seq[i].profile_mask & params->profile_mask)) 3074 continue; 3075 3076 instrs->buffer[instrs->count++] = instr_seq[i].instr; 3077 } 3078 3079 pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE); 3080 memset(&instrs->buffer[instrs->count], 0, 3081 (pad - instrs->count) * sizeof(instrs->buffer[0])); 3082 instrs->count = pad; 3083 } 3084 3085 static u32 calc_job_credits(u32 profile_mask) 3086 { 3087 struct panthor_job_ringbuf_instrs instrs; 3088 struct panthor_job_cs_params params = { 3089 .profile_mask = profile_mask, 3090 }; 3091 3092 prepare_job_instrs(¶ms, &instrs); 3093 return instrs.count; 3094 } 3095 3096 static struct dma_fence * 3097 queue_run_job(struct drm_sched_job *sched_job) 3098 { 3099 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3100 struct panthor_group *group = job->group; 3101 struct panthor_queue *queue = group->queues[job->queue_idx]; 3102 struct panthor_device *ptdev = group->ptdev; 3103 struct panthor_scheduler *sched = ptdev->scheduler; 3104 struct panthor_job_ringbuf_instrs instrs; 3105 struct panthor_job_cs_params cs_params; 3106 struct dma_fence *done_fence; 3107 int ret; 3108 3109 /* Stream size is zero, nothing to do except making sure all previously 3110 * submitted jobs are done before we signal the 3111 * drm_sched_job::s_fence::finished fence. 3112 */ 3113 if (!job->call_info.size) { 3114 job->done_fence = dma_fence_get(queue->fence_ctx.last_fence); 3115 return dma_fence_get(job->done_fence); 3116 } 3117 3118 ret = pm_runtime_resume_and_get(ptdev->base.dev); 3119 if (drm_WARN_ON(&ptdev->base, ret)) 3120 return ERR_PTR(ret); 3121 3122 mutex_lock(&sched->lock); 3123 if (!group_can_run(group)) { 3124 done_fence = ERR_PTR(-ECANCELED); 3125 goto out_unlock; 3126 } 3127 3128 dma_fence_init(job->done_fence, 3129 &panthor_queue_fence_ops, 3130 &queue->fence_ctx.lock, 3131 queue->fence_ctx.id, 3132 atomic64_inc_return(&queue->fence_ctx.seqno)); 3133 3134 job->profiling.slot = queue->profiling.seqno++; 3135 if (queue->profiling.seqno == queue->profiling.slot_count) 3136 queue->profiling.seqno = 0; 3137 3138 job->ringbuf.start = queue->iface.input->insert; 3139 3140 get_job_cs_params(job, &cs_params); 3141 prepare_job_instrs(&cs_params, &instrs); 3142 copy_instrs_to_ringbuf(queue, job, &instrs); 3143 3144 job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64)); 3145 3146 panthor_job_get(&job->base); 3147 spin_lock(&queue->fence_ctx.lock); 3148 list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs); 3149 spin_unlock(&queue->fence_ctx.lock); 3150 3151 /* Make sure the ring buffer is updated before the INSERT 3152 * register. 3153 */ 3154 wmb(); 3155 3156 queue->iface.input->extract = queue->iface.output->extract; 3157 queue->iface.input->insert = job->ringbuf.end; 3158 3159 if (group->csg_id < 0) { 3160 /* If the queue is blocked, we want to keep the timeout running, so we 3161 * can detect unbounded waits and kill the group when that happens. 3162 * Otherwise, we suspend the timeout so the time we spend waiting for 3163 * a CSG slot is not counted. 3164 */ 3165 if (!(group->blocked_queues & BIT(job->queue_idx)) && 3166 !queue->timeout_suspended) { 3167 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 3168 queue->timeout_suspended = true; 3169 } 3170 3171 group_schedule_locked(group, BIT(job->queue_idx)); 3172 } else { 3173 gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1); 3174 if (!sched->pm.has_ref && 3175 !(group->blocked_queues & BIT(job->queue_idx))) { 3176 pm_runtime_get(ptdev->base.dev); 3177 sched->pm.has_ref = true; 3178 } 3179 panthor_devfreq_record_busy(sched->ptdev); 3180 } 3181 3182 /* Update the last fence. */ 3183 dma_fence_put(queue->fence_ctx.last_fence); 3184 queue->fence_ctx.last_fence = dma_fence_get(job->done_fence); 3185 3186 done_fence = dma_fence_get(job->done_fence); 3187 3188 out_unlock: 3189 mutex_unlock(&sched->lock); 3190 pm_runtime_mark_last_busy(ptdev->base.dev); 3191 pm_runtime_put_autosuspend(ptdev->base.dev); 3192 3193 return done_fence; 3194 } 3195 3196 static enum drm_gpu_sched_stat 3197 queue_timedout_job(struct drm_sched_job *sched_job) 3198 { 3199 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3200 struct panthor_group *group = job->group; 3201 struct panthor_device *ptdev = group->ptdev; 3202 struct panthor_scheduler *sched = ptdev->scheduler; 3203 struct panthor_queue *queue = group->queues[job->queue_idx]; 3204 3205 drm_warn(&ptdev->base, "job timeout\n"); 3206 3207 drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress)); 3208 3209 queue_stop(queue, job); 3210 3211 mutex_lock(&sched->lock); 3212 group->timedout = true; 3213 if (group->csg_id >= 0) { 3214 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 3215 } else { 3216 /* Remove from the run queues, so the scheduler can't 3217 * pick the group on the next tick. 3218 */ 3219 list_del_init(&group->run_node); 3220 list_del_init(&group->wait_node); 3221 3222 group_queue_work(group, term); 3223 } 3224 mutex_unlock(&sched->lock); 3225 3226 queue_start(queue); 3227 3228 return DRM_GPU_SCHED_STAT_NOMINAL; 3229 } 3230 3231 static void queue_free_job(struct drm_sched_job *sched_job) 3232 { 3233 drm_sched_job_cleanup(sched_job); 3234 panthor_job_put(sched_job); 3235 } 3236 3237 static const struct drm_sched_backend_ops panthor_queue_sched_ops = { 3238 .run_job = queue_run_job, 3239 .timedout_job = queue_timedout_job, 3240 .free_job = queue_free_job, 3241 }; 3242 3243 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev, 3244 u32 cs_ringbuf_size) 3245 { 3246 u32 min_profiled_job_instrs = U32_MAX; 3247 u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL); 3248 3249 /* 3250 * We want to calculate the minimum size of a profiled job's CS, 3251 * because since they need additional instructions for the sampling 3252 * of performance metrics, they might take up further slots in 3253 * the queue's ringbuffer. This means we might not need as many job 3254 * slots for keeping track of their profiling information. What we 3255 * need is the maximum number of slots we should allocate to this end, 3256 * which matches the maximum number of profiled jobs we can place 3257 * simultaneously in the queue's ring buffer. 3258 * That has to be calculated separately for every single job profiling 3259 * flag, but not in the case job profiling is disabled, since unprofiled 3260 * jobs don't need to keep track of this at all. 3261 */ 3262 for (u32 i = 0; i < last_flag; i++) { 3263 min_profiled_job_instrs = 3264 min(min_profiled_job_instrs, calc_job_credits(BIT(i))); 3265 } 3266 3267 return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64)); 3268 } 3269 3270 static struct panthor_queue * 3271 group_create_queue(struct panthor_group *group, 3272 const struct drm_panthor_queue_create *args) 3273 { 3274 struct drm_gpu_scheduler *drm_sched; 3275 struct panthor_queue *queue; 3276 int ret; 3277 3278 if (args->pad[0] || args->pad[1] || args->pad[2]) 3279 return ERR_PTR(-EINVAL); 3280 3281 if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K || 3282 !is_power_of_2(args->ringbuf_size)) 3283 return ERR_PTR(-EINVAL); 3284 3285 if (args->priority > CSF_MAX_QUEUE_PRIO) 3286 return ERR_PTR(-EINVAL); 3287 3288 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 3289 if (!queue) 3290 return ERR_PTR(-ENOMEM); 3291 3292 queue->fence_ctx.id = dma_fence_context_alloc(1); 3293 spin_lock_init(&queue->fence_ctx.lock); 3294 INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs); 3295 3296 queue->priority = args->priority; 3297 3298 queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm, 3299 args->ringbuf_size, 3300 DRM_PANTHOR_BO_NO_MMAP, 3301 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3302 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3303 PANTHOR_VM_KERNEL_AUTO_VA); 3304 if (IS_ERR(queue->ringbuf)) { 3305 ret = PTR_ERR(queue->ringbuf); 3306 goto err_free_queue; 3307 } 3308 3309 ret = panthor_kernel_bo_vmap(queue->ringbuf); 3310 if (ret) 3311 goto err_free_queue; 3312 3313 queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev, 3314 &queue->iface.input, 3315 &queue->iface.output, 3316 &queue->iface.input_fw_va, 3317 &queue->iface.output_fw_va); 3318 if (IS_ERR(queue->iface.mem)) { 3319 ret = PTR_ERR(queue->iface.mem); 3320 goto err_free_queue; 3321 } 3322 3323 queue->profiling.slot_count = 3324 calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size); 3325 3326 queue->profiling.slots = 3327 panthor_kernel_bo_create(group->ptdev, group->vm, 3328 queue->profiling.slot_count * 3329 sizeof(struct panthor_job_profiling_data), 3330 DRM_PANTHOR_BO_NO_MMAP, 3331 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3332 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3333 PANTHOR_VM_KERNEL_AUTO_VA); 3334 3335 if (IS_ERR(queue->profiling.slots)) { 3336 ret = PTR_ERR(queue->profiling.slots); 3337 goto err_free_queue; 3338 } 3339 3340 ret = panthor_kernel_bo_vmap(queue->profiling.slots); 3341 if (ret) 3342 goto err_free_queue; 3343 3344 /* 3345 * Credit limit argument tells us the total number of instructions 3346 * across all CS slots in the ringbuffer, with some jobs requiring 3347 * twice as many as others, depending on their profiling status. 3348 */ 3349 ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops, 3350 group->ptdev->scheduler->wq, 1, 3351 args->ringbuf_size / sizeof(u64), 3352 0, msecs_to_jiffies(JOB_TIMEOUT_MS), 3353 group->ptdev->reset.wq, 3354 NULL, "panthor-queue", group->ptdev->base.dev); 3355 if (ret) 3356 goto err_free_queue; 3357 3358 drm_sched = &queue->scheduler; 3359 ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL); 3360 3361 return queue; 3362 3363 err_free_queue: 3364 group_free_queue(group, queue); 3365 return ERR_PTR(ret); 3366 } 3367 3368 #define MAX_GROUPS_PER_POOL 128 3369 3370 int panthor_group_create(struct panthor_file *pfile, 3371 const struct drm_panthor_group_create *group_args, 3372 const struct drm_panthor_queue_create *queue_args) 3373 { 3374 struct panthor_device *ptdev = pfile->ptdev; 3375 struct panthor_group_pool *gpool = pfile->groups; 3376 struct panthor_scheduler *sched = ptdev->scheduler; 3377 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3378 struct panthor_group *group = NULL; 3379 u32 gid, i, suspend_size; 3380 int ret; 3381 3382 if (group_args->pad) 3383 return -EINVAL; 3384 3385 if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT) 3386 return -EINVAL; 3387 3388 if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) || 3389 (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) || 3390 (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present)) 3391 return -EINVAL; 3392 3393 if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores || 3394 hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores || 3395 hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores) 3396 return -EINVAL; 3397 3398 group = kzalloc(sizeof(*group), GFP_KERNEL); 3399 if (!group) 3400 return -ENOMEM; 3401 3402 spin_lock_init(&group->fatal_lock); 3403 kref_init(&group->refcount); 3404 group->state = PANTHOR_CS_GROUP_CREATED; 3405 group->csg_id = -1; 3406 3407 group->ptdev = ptdev; 3408 group->max_compute_cores = group_args->max_compute_cores; 3409 group->compute_core_mask = group_args->compute_core_mask; 3410 group->max_fragment_cores = group_args->max_fragment_cores; 3411 group->fragment_core_mask = group_args->fragment_core_mask; 3412 group->max_tiler_cores = group_args->max_tiler_cores; 3413 group->tiler_core_mask = group_args->tiler_core_mask; 3414 group->priority = group_args->priority; 3415 3416 INIT_LIST_HEAD(&group->wait_node); 3417 INIT_LIST_HEAD(&group->run_node); 3418 INIT_WORK(&group->term_work, group_term_work); 3419 INIT_WORK(&group->sync_upd_work, group_sync_upd_work); 3420 INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work); 3421 INIT_WORK(&group->release_work, group_release_work); 3422 3423 group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id); 3424 if (!group->vm) { 3425 ret = -EINVAL; 3426 goto err_put_group; 3427 } 3428 3429 suspend_size = csg_iface->control->suspend_size; 3430 group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3431 if (IS_ERR(group->suspend_buf)) { 3432 ret = PTR_ERR(group->suspend_buf); 3433 group->suspend_buf = NULL; 3434 goto err_put_group; 3435 } 3436 3437 suspend_size = csg_iface->control->protm_suspend_size; 3438 group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3439 if (IS_ERR(group->protm_suspend_buf)) { 3440 ret = PTR_ERR(group->protm_suspend_buf); 3441 group->protm_suspend_buf = NULL; 3442 goto err_put_group; 3443 } 3444 3445 group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm, 3446 group_args->queues.count * 3447 sizeof(struct panthor_syncobj_64b), 3448 DRM_PANTHOR_BO_NO_MMAP, 3449 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3450 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3451 PANTHOR_VM_KERNEL_AUTO_VA); 3452 if (IS_ERR(group->syncobjs)) { 3453 ret = PTR_ERR(group->syncobjs); 3454 goto err_put_group; 3455 } 3456 3457 ret = panthor_kernel_bo_vmap(group->syncobjs); 3458 if (ret) 3459 goto err_put_group; 3460 3461 memset(group->syncobjs->kmap, 0, 3462 group_args->queues.count * sizeof(struct panthor_syncobj_64b)); 3463 3464 for (i = 0; i < group_args->queues.count; i++) { 3465 group->queues[i] = group_create_queue(group, &queue_args[i]); 3466 if (IS_ERR(group->queues[i])) { 3467 ret = PTR_ERR(group->queues[i]); 3468 group->queues[i] = NULL; 3469 goto err_put_group; 3470 } 3471 3472 group->queue_count++; 3473 } 3474 3475 group->idle_queues = GENMASK(group->queue_count - 1, 0); 3476 3477 ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL); 3478 if (ret) 3479 goto err_put_group; 3480 3481 mutex_lock(&sched->reset.lock); 3482 if (atomic_read(&sched->reset.in_progress)) { 3483 panthor_group_stop(group); 3484 } else { 3485 mutex_lock(&sched->lock); 3486 list_add_tail(&group->run_node, 3487 &sched->groups.idle[group->priority]); 3488 mutex_unlock(&sched->lock); 3489 } 3490 mutex_unlock(&sched->reset.lock); 3491 3492 mutex_init(&group->fdinfo.lock); 3493 3494 return gid; 3495 3496 err_put_group: 3497 group_put(group); 3498 return ret; 3499 } 3500 3501 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle) 3502 { 3503 struct panthor_group_pool *gpool = pfile->groups; 3504 struct panthor_device *ptdev = pfile->ptdev; 3505 struct panthor_scheduler *sched = ptdev->scheduler; 3506 struct panthor_group *group; 3507 3508 group = xa_erase(&gpool->xa, group_handle); 3509 if (!group) 3510 return -EINVAL; 3511 3512 for (u32 i = 0; i < group->queue_count; i++) { 3513 if (group->queues[i]) 3514 drm_sched_entity_destroy(&group->queues[i]->entity); 3515 } 3516 3517 mutex_lock(&sched->reset.lock); 3518 mutex_lock(&sched->lock); 3519 group->destroyed = true; 3520 if (group->csg_id >= 0) { 3521 sched_queue_delayed_work(sched, tick, 0); 3522 } else if (!atomic_read(&sched->reset.in_progress)) { 3523 /* Remove from the run queues, so the scheduler can't 3524 * pick the group on the next tick. 3525 */ 3526 list_del_init(&group->run_node); 3527 list_del_init(&group->wait_node); 3528 group_queue_work(group, term); 3529 } 3530 mutex_unlock(&sched->lock); 3531 mutex_unlock(&sched->reset.lock); 3532 3533 group_put(group); 3534 return 0; 3535 } 3536 3537 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool, 3538 u32 group_handle) 3539 { 3540 struct panthor_group *group; 3541 3542 xa_lock(&pool->xa); 3543 group = group_get(xa_load(&pool->xa, group_handle)); 3544 xa_unlock(&pool->xa); 3545 3546 return group; 3547 } 3548 3549 int panthor_group_get_state(struct panthor_file *pfile, 3550 struct drm_panthor_group_get_state *get_state) 3551 { 3552 struct panthor_group_pool *gpool = pfile->groups; 3553 struct panthor_device *ptdev = pfile->ptdev; 3554 struct panthor_scheduler *sched = ptdev->scheduler; 3555 struct panthor_group *group; 3556 3557 if (get_state->pad) 3558 return -EINVAL; 3559 3560 group = group_from_handle(gpool, get_state->group_handle); 3561 if (!group) 3562 return -EINVAL; 3563 3564 memset(get_state, 0, sizeof(*get_state)); 3565 3566 mutex_lock(&sched->lock); 3567 if (group->timedout) 3568 get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT; 3569 if (group->fatal_queues) { 3570 get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT; 3571 get_state->fatal_queues = group->fatal_queues; 3572 } 3573 mutex_unlock(&sched->lock); 3574 3575 group_put(group); 3576 return 0; 3577 } 3578 3579 int panthor_group_pool_create(struct panthor_file *pfile) 3580 { 3581 struct panthor_group_pool *gpool; 3582 3583 gpool = kzalloc(sizeof(*gpool), GFP_KERNEL); 3584 if (!gpool) 3585 return -ENOMEM; 3586 3587 xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1); 3588 pfile->groups = gpool; 3589 return 0; 3590 } 3591 3592 void panthor_group_pool_destroy(struct panthor_file *pfile) 3593 { 3594 struct panthor_group_pool *gpool = pfile->groups; 3595 struct panthor_group *group; 3596 unsigned long i; 3597 3598 if (IS_ERR_OR_NULL(gpool)) 3599 return; 3600 3601 xa_for_each(&gpool->xa, i, group) 3602 panthor_group_destroy(pfile, i); 3603 3604 xa_destroy(&gpool->xa); 3605 kfree(gpool); 3606 pfile->groups = NULL; 3607 } 3608 3609 static void job_release(struct kref *ref) 3610 { 3611 struct panthor_job *job = container_of(ref, struct panthor_job, refcount); 3612 3613 drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node)); 3614 3615 if (job->base.s_fence) 3616 drm_sched_job_cleanup(&job->base); 3617 3618 if (job->done_fence && job->done_fence->ops) 3619 dma_fence_put(job->done_fence); 3620 else 3621 dma_fence_free(job->done_fence); 3622 3623 group_put(job->group); 3624 3625 kfree(job); 3626 } 3627 3628 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job) 3629 { 3630 if (sched_job) { 3631 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3632 3633 kref_get(&job->refcount); 3634 } 3635 3636 return sched_job; 3637 } 3638 3639 void panthor_job_put(struct drm_sched_job *sched_job) 3640 { 3641 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3642 3643 if (sched_job) 3644 kref_put(&job->refcount, job_release); 3645 } 3646 3647 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job) 3648 { 3649 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3650 3651 return job->group->vm; 3652 } 3653 3654 struct drm_sched_job * 3655 panthor_job_create(struct panthor_file *pfile, 3656 u16 group_handle, 3657 const struct drm_panthor_queue_submit *qsubmit) 3658 { 3659 struct panthor_group_pool *gpool = pfile->groups; 3660 struct panthor_job *job; 3661 u32 credits; 3662 int ret; 3663 3664 if (qsubmit->pad) 3665 return ERR_PTR(-EINVAL); 3666 3667 /* If stream_addr is zero, so stream_size should be. */ 3668 if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0)) 3669 return ERR_PTR(-EINVAL); 3670 3671 /* Make sure the address is aligned on 64-byte (cacheline) and the size is 3672 * aligned on 8-byte (instruction size). 3673 */ 3674 if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7)) 3675 return ERR_PTR(-EINVAL); 3676 3677 /* bits 24:30 must be zero. */ 3678 if (qsubmit->latest_flush & GENMASK(30, 24)) 3679 return ERR_PTR(-EINVAL); 3680 3681 job = kzalloc(sizeof(*job), GFP_KERNEL); 3682 if (!job) 3683 return ERR_PTR(-ENOMEM); 3684 3685 kref_init(&job->refcount); 3686 job->queue_idx = qsubmit->queue_index; 3687 job->call_info.size = qsubmit->stream_size; 3688 job->call_info.start = qsubmit->stream_addr; 3689 job->call_info.latest_flush = qsubmit->latest_flush; 3690 INIT_LIST_HEAD(&job->node); 3691 3692 job->group = group_from_handle(gpool, group_handle); 3693 if (!job->group) { 3694 ret = -EINVAL; 3695 goto err_put_job; 3696 } 3697 3698 if (!group_can_run(job->group)) { 3699 ret = -EINVAL; 3700 goto err_put_job; 3701 } 3702 3703 if (job->queue_idx >= job->group->queue_count || 3704 !job->group->queues[job->queue_idx]) { 3705 ret = -EINVAL; 3706 goto err_put_job; 3707 } 3708 3709 /* Empty command streams don't need a fence, they'll pick the one from 3710 * the previously submitted job. 3711 */ 3712 if (job->call_info.size) { 3713 job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL); 3714 if (!job->done_fence) { 3715 ret = -ENOMEM; 3716 goto err_put_job; 3717 } 3718 } 3719 3720 job->profiling.mask = pfile->ptdev->profile_mask; 3721 credits = calc_job_credits(job->profiling.mask); 3722 if (credits == 0) { 3723 ret = -EINVAL; 3724 goto err_put_job; 3725 } 3726 3727 ret = drm_sched_job_init(&job->base, 3728 &job->group->queues[job->queue_idx]->entity, 3729 credits, job->group); 3730 if (ret) 3731 goto err_put_job; 3732 3733 return &job->base; 3734 3735 err_put_job: 3736 panthor_job_put(&job->base); 3737 return ERR_PTR(ret); 3738 } 3739 3740 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job) 3741 { 3742 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3743 3744 panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished, 3745 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP); 3746 } 3747 3748 void panthor_sched_unplug(struct panthor_device *ptdev) 3749 { 3750 struct panthor_scheduler *sched = ptdev->scheduler; 3751 3752 cancel_delayed_work_sync(&sched->tick_work); 3753 3754 mutex_lock(&sched->lock); 3755 if (sched->pm.has_ref) { 3756 pm_runtime_put(ptdev->base.dev); 3757 sched->pm.has_ref = false; 3758 } 3759 mutex_unlock(&sched->lock); 3760 } 3761 3762 static void panthor_sched_fini(struct drm_device *ddev, void *res) 3763 { 3764 struct panthor_scheduler *sched = res; 3765 int prio; 3766 3767 if (!sched || !sched->csg_slot_count) 3768 return; 3769 3770 cancel_delayed_work_sync(&sched->tick_work); 3771 3772 if (sched->wq) 3773 destroy_workqueue(sched->wq); 3774 3775 if (sched->heap_alloc_wq) 3776 destroy_workqueue(sched->heap_alloc_wq); 3777 3778 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3779 drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio])); 3780 drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio])); 3781 } 3782 3783 drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting)); 3784 } 3785 3786 int panthor_sched_init(struct panthor_device *ptdev) 3787 { 3788 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 3789 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3790 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0); 3791 struct panthor_scheduler *sched; 3792 u32 gpu_as_count, num_groups; 3793 int prio, ret; 3794 3795 sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL); 3796 if (!sched) 3797 return -ENOMEM; 3798 3799 /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That 3800 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here. 3801 */ 3802 num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num); 3803 3804 /* The FW-side scheduler might deadlock if two groups with the same 3805 * priority try to access a set of resources that overlaps, with part 3806 * of the resources being allocated to one group and the other part to 3807 * the other group, both groups waiting for the remaining resources to 3808 * be allocated. To avoid that, it is recommended to assign each CSG a 3809 * different priority. In theory we could allow several groups to have 3810 * the same CSG priority if they don't request the same resources, but 3811 * that makes the scheduling logic more complicated, so let's clamp 3812 * the number of CSG slots to MAX_CSG_PRIO + 1 for now. 3813 */ 3814 num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups); 3815 3816 /* We need at least one AS for the MCU and one for the GPU contexts. */ 3817 gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1)); 3818 if (!gpu_as_count) { 3819 drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)", 3820 gpu_as_count + 1); 3821 return -EINVAL; 3822 } 3823 3824 sched->ptdev = ptdev; 3825 sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features); 3826 sched->csg_slot_count = num_groups; 3827 sched->cs_slot_count = csg_iface->control->stream_num; 3828 sched->as_slot_count = gpu_as_count; 3829 ptdev->csif_info.csg_slot_count = sched->csg_slot_count; 3830 ptdev->csif_info.cs_slot_count = sched->cs_slot_count; 3831 ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count; 3832 3833 sched->last_tick = 0; 3834 sched->resched_target = U64_MAX; 3835 sched->tick_period = msecs_to_jiffies(10); 3836 INIT_DELAYED_WORK(&sched->tick_work, tick_work); 3837 INIT_WORK(&sched->sync_upd_work, sync_upd_work); 3838 INIT_WORK(&sched->fw_events_work, process_fw_events_work); 3839 3840 ret = drmm_mutex_init(&ptdev->base, &sched->lock); 3841 if (ret) 3842 return ret; 3843 3844 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3845 INIT_LIST_HEAD(&sched->groups.runnable[prio]); 3846 INIT_LIST_HEAD(&sched->groups.idle[prio]); 3847 } 3848 INIT_LIST_HEAD(&sched->groups.waiting); 3849 3850 ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock); 3851 if (ret) 3852 return ret; 3853 3854 INIT_LIST_HEAD(&sched->reset.stopped_groups); 3855 3856 /* sched->heap_alloc_wq will be used for heap chunk allocation on 3857 * tiler OOM events, which means we can't use the same workqueue for 3858 * the scheduler because works queued by the scheduler are in 3859 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to 3860 * work around this limitation. 3861 * 3862 * FIXME: Ultimately, what we need is a failable/non-blocking GEM 3863 * allocation path that we can call when a heap OOM is reported. The 3864 * FW is smart enough to fall back on other methods if the kernel can't 3865 * allocate memory, and fail the tiling job if none of these 3866 * countermeasures worked. 3867 * 3868 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the 3869 * system is running out of memory. 3870 */ 3871 sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0); 3872 sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 3873 if (!sched->wq || !sched->heap_alloc_wq) { 3874 panthor_sched_fini(&ptdev->base, sched); 3875 drm_err(&ptdev->base, "Failed to allocate the workqueues"); 3876 return -ENOMEM; 3877 } 3878 3879 ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched); 3880 if (ret) 3881 return ret; 3882 3883 ptdev->scheduler = sched; 3884 return 0; 3885 } 3886