xref: /linux/drivers/gpu/drm/panthor/panthor_sched.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3 
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/gpu_scheduler.h>
9 #include <drm/panthor_drm.h>
10 
11 #include <linux/build_bug.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dma-resv.h>
16 #include <linux/firmware.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/iosys-map.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 
25 #include "panthor_devfreq.h"
26 #include "panthor_device.h"
27 #include "panthor_fw.h"
28 #include "panthor_gem.h"
29 #include "panthor_gpu.h"
30 #include "panthor_heap.h"
31 #include "panthor_mmu.h"
32 #include "panthor_regs.h"
33 #include "panthor_sched.h"
34 
35 /**
36  * DOC: Scheduler
37  *
38  * Mali CSF hardware adopts a firmware-assisted scheduling model, where
39  * the firmware takes care of scheduling aspects, to some extent.
40  *
41  * The scheduling happens at the scheduling group level, each group
42  * contains 1 to N queues (N is FW/hardware dependent, and exposed
43  * through the firmware interface). Each queue is assigned a command
44  * stream ring buffer, which serves as a way to get jobs submitted to
45  * the GPU, among other things.
46  *
47  * The firmware can schedule a maximum of M groups (M is FW/hardware
48  * dependent, and exposed through the firmware interface). Passed
49  * this maximum number of groups, the kernel must take care of
50  * rotating the groups passed to the firmware so every group gets
51  * a chance to have his queues scheduled for execution.
52  *
53  * The current implementation only supports with kernel-mode queues.
54  * In other terms, userspace doesn't have access to the ring-buffer.
55  * Instead, userspace passes indirect command stream buffers that are
56  * called from the queue ring-buffer by the kernel using a pre-defined
57  * sequence of command stream instructions to ensure the userspace driver
58  * always gets consistent results (cache maintenance,
59  * synchronization, ...).
60  *
61  * We rely on the drm_gpu_scheduler framework to deal with job
62  * dependencies and submission. As any other driver dealing with a
63  * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
64  * entity has its own job scheduler. When a job is ready to be executed
65  * (all its dependencies are met), it is pushed to the appropriate
66  * queue ring-buffer, and the group is scheduled for execution if it
67  * wasn't already active.
68  *
69  * Kernel-side group scheduling is timeslice-based. When we have less
70  * groups than there are slots, the periodic tick is disabled and we
71  * just let the FW schedule the active groups. When there are more
72  * groups than slots, we let each group a chance to execute stuff for
73  * a given amount of time, and then re-evaluate and pick new groups
74  * to schedule. The group selection algorithm is based on
75  * priority+round-robin.
76  *
77  * Even though user-mode queues is out of the scope right now, the
78  * current design takes them into account by avoiding any guess on the
79  * group/queue state that would be based on information we wouldn't have
80  * if userspace was in charge of the ring-buffer. That's also one of the
81  * reason we don't do 'cooperative' scheduling (encoding FW group slot
82  * reservation as dma_fence that would be returned from the
83  * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
84  * a queue of waiters, ordered by job submission order). This approach
85  * would work for kernel-mode queues, but would make user-mode queues a
86  * lot more complicated to retrofit.
87  */
88 
89 #define JOB_TIMEOUT_MS				5000
90 
91 #define MIN_CS_PER_CSG				8
92 
93 #define MIN_CSGS				3
94 #define MAX_CSG_PRIO				0xf
95 
96 struct panthor_group;
97 
98 /**
99  * struct panthor_csg_slot - Command stream group slot
100  *
101  * This represents a FW slot for a scheduling group.
102  */
103 struct panthor_csg_slot {
104 	/** @group: Scheduling group bound to this slot. */
105 	struct panthor_group *group;
106 
107 	/** @priority: Group priority. */
108 	u8 priority;
109 
110 	/**
111 	 * @idle: True if the group bound to this slot is idle.
112 	 *
113 	 * A group is idle when it has nothing waiting for execution on
114 	 * all its queues, or when queues are blocked waiting for something
115 	 * to happen (synchronization object).
116 	 */
117 	bool idle;
118 };
119 
120 /**
121  * enum panthor_csg_priority - Group priority
122  */
123 enum panthor_csg_priority {
124 	/** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
125 	PANTHOR_CSG_PRIORITY_LOW = 0,
126 
127 	/** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
128 	PANTHOR_CSG_PRIORITY_MEDIUM,
129 
130 	/** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
131 	PANTHOR_CSG_PRIORITY_HIGH,
132 
133 	/**
134 	 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
135 	 *
136 	 * Real-time priority allows one to preempt scheduling of other
137 	 * non-real-time groups. When such a group becomes executable,
138 	 * it will evict the group with the lowest non-rt priority if
139 	 * there's no free group slot available.
140 	 *
141 	 * Currently not exposed to userspace.
142 	 */
143 	PANTHOR_CSG_PRIORITY_RT,
144 
145 	/** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
146 	PANTHOR_CSG_PRIORITY_COUNT,
147 };
148 
149 /**
150  * struct panthor_scheduler - Object used to manage the scheduler
151  */
152 struct panthor_scheduler {
153 	/** @ptdev: Device. */
154 	struct panthor_device *ptdev;
155 
156 	/**
157 	 * @wq: Workqueue used by our internal scheduler logic and
158 	 * drm_gpu_scheduler.
159 	 *
160 	 * Used for the scheduler tick, group update or other kind of FW
161 	 * event processing that can't be handled in the threaded interrupt
162 	 * path. Also passed to the drm_gpu_scheduler instances embedded
163 	 * in panthor_queue.
164 	 */
165 	struct workqueue_struct *wq;
166 
167 	/**
168 	 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
169 	 *
170 	 * We have a queue dedicated to heap chunk allocation works to avoid
171 	 * blocking the rest of the scheduler if the allocation tries to
172 	 * reclaim memory.
173 	 */
174 	struct workqueue_struct *heap_alloc_wq;
175 
176 	/** @tick_work: Work executed on a scheduling tick. */
177 	struct delayed_work tick_work;
178 
179 	/**
180 	 * @sync_upd_work: Work used to process synchronization object updates.
181 	 *
182 	 * We use this work to unblock queues/groups that were waiting on a
183 	 * synchronization object.
184 	 */
185 	struct work_struct sync_upd_work;
186 
187 	/**
188 	 * @fw_events_work: Work used to process FW events outside the interrupt path.
189 	 *
190 	 * Even if the interrupt is threaded, we need any event processing
191 	 * that require taking the panthor_scheduler::lock to be processed
192 	 * outside the interrupt path so we don't block the tick logic when
193 	 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
194 	 * event processing requires taking this lock, we just delegate all
195 	 * FW event processing to the scheduler workqueue.
196 	 */
197 	struct work_struct fw_events_work;
198 
199 	/**
200 	 * @fw_events: Bitmask encoding pending FW events.
201 	 */
202 	atomic_t fw_events;
203 
204 	/**
205 	 * @resched_target: When the next tick should occur.
206 	 *
207 	 * Expressed in jiffies.
208 	 */
209 	u64 resched_target;
210 
211 	/**
212 	 * @last_tick: When the last tick occurred.
213 	 *
214 	 * Expressed in jiffies.
215 	 */
216 	u64 last_tick;
217 
218 	/** @tick_period: Tick period in jiffies. */
219 	u64 tick_period;
220 
221 	/**
222 	 * @lock: Lock protecting access to all the scheduler fields.
223 	 *
224 	 * Should be taken in the tick work, the irq handler, and anywhere the @groups
225 	 * fields are touched.
226 	 */
227 	struct mutex lock;
228 
229 	/** @groups: Various lists used to classify groups. */
230 	struct {
231 		/**
232 		 * @runnable: Runnable group lists.
233 		 *
234 		 * When a group has queues that want to execute something,
235 		 * its panthor_group::run_node should be inserted here.
236 		 *
237 		 * One list per-priority.
238 		 */
239 		struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
240 
241 		/**
242 		 * @idle: Idle group lists.
243 		 *
244 		 * When all queues of a group are idle (either because they
245 		 * have nothing to execute, or because they are blocked), the
246 		 * panthor_group::run_node field should be inserted here.
247 		 *
248 		 * One list per-priority.
249 		 */
250 		struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
251 
252 		/**
253 		 * @waiting: List of groups whose queues are blocked on a
254 		 * synchronization object.
255 		 *
256 		 * Insert panthor_group::wait_node here when a group is waiting
257 		 * for synchronization objects to be signaled.
258 		 *
259 		 * This list is evaluated in the @sync_upd_work work.
260 		 */
261 		struct list_head waiting;
262 	} groups;
263 
264 	/**
265 	 * @csg_slots: FW command stream group slots.
266 	 */
267 	struct panthor_csg_slot csg_slots[MAX_CSGS];
268 
269 	/** @csg_slot_count: Number of command stream group slots exposed by the FW. */
270 	u32 csg_slot_count;
271 
272 	/** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
273 	u32 cs_slot_count;
274 
275 	/** @as_slot_count: Number of address space slots supported by the MMU. */
276 	u32 as_slot_count;
277 
278 	/** @used_csg_slot_count: Number of command stream group slot currently used. */
279 	u32 used_csg_slot_count;
280 
281 	/** @sb_slot_count: Number of scoreboard slots. */
282 	u32 sb_slot_count;
283 
284 	/**
285 	 * @might_have_idle_groups: True if an active group might have become idle.
286 	 *
287 	 * This will force a tick, so other runnable groups can be scheduled if one
288 	 * or more active groups became idle.
289 	 */
290 	bool might_have_idle_groups;
291 
292 	/** @pm: Power management related fields. */
293 	struct {
294 		/** @has_ref: True if the scheduler owns a runtime PM reference. */
295 		bool has_ref;
296 	} pm;
297 
298 	/** @reset: Reset related fields. */
299 	struct {
300 		/** @lock: Lock protecting the other reset fields. */
301 		struct mutex lock;
302 
303 		/**
304 		 * @in_progress: True if a reset is in progress.
305 		 *
306 		 * Set to true in panthor_sched_pre_reset() and back to false in
307 		 * panthor_sched_post_reset().
308 		 */
309 		atomic_t in_progress;
310 
311 		/**
312 		 * @stopped_groups: List containing all groups that were stopped
313 		 * before a reset.
314 		 *
315 		 * Insert panthor_group::run_node in the pre_reset path.
316 		 */
317 		struct list_head stopped_groups;
318 	} reset;
319 };
320 
321 /**
322  * struct panthor_syncobj_32b - 32-bit FW synchronization object
323  */
324 struct panthor_syncobj_32b {
325 	/** @seqno: Sequence number. */
326 	u32 seqno;
327 
328 	/**
329 	 * @status: Status.
330 	 *
331 	 * Not zero on failure.
332 	 */
333 	u32 status;
334 };
335 
336 /**
337  * struct panthor_syncobj_64b - 64-bit FW synchronization object
338  */
339 struct panthor_syncobj_64b {
340 	/** @seqno: Sequence number. */
341 	u64 seqno;
342 
343 	/**
344 	 * @status: Status.
345 	 *
346 	 * Not zero on failure.
347 	 */
348 	u32 status;
349 
350 	/** @pad: MBZ. */
351 	u32 pad;
352 };
353 
354 /**
355  * struct panthor_queue - Execution queue
356  */
357 struct panthor_queue {
358 	/** @scheduler: DRM scheduler used for this queue. */
359 	struct drm_gpu_scheduler scheduler;
360 
361 	/** @entity: DRM scheduling entity used for this queue. */
362 	struct drm_sched_entity entity;
363 
364 	/**
365 	 * @remaining_time: Time remaining before the job timeout expires.
366 	 *
367 	 * The job timeout is suspended when the queue is not scheduled by the
368 	 * FW. Every time we suspend the timer, we need to save the remaining
369 	 * time so we can restore it later on.
370 	 */
371 	unsigned long remaining_time;
372 
373 	/** @timeout_suspended: True if the job timeout was suspended. */
374 	bool timeout_suspended;
375 
376 	/**
377 	 * @doorbell_id: Doorbell assigned to this queue.
378 	 *
379 	 * Right now, all groups share the same doorbell, and the doorbell ID
380 	 * is assigned to group_slot + 1 when the group is assigned a slot. But
381 	 * we might decide to provide fine grained doorbell assignment at some
382 	 * point, so don't have to wake up all queues in a group every time one
383 	 * of them is updated.
384 	 */
385 	u8 doorbell_id;
386 
387 	/**
388 	 * @priority: Priority of the queue inside the group.
389 	 *
390 	 * Must be less than 16 (Only 4 bits available).
391 	 */
392 	u8 priority;
393 #define CSF_MAX_QUEUE_PRIO	GENMASK(3, 0)
394 
395 	/** @ringbuf: Command stream ring-buffer. */
396 	struct panthor_kernel_bo *ringbuf;
397 
398 	/** @iface: Firmware interface. */
399 	struct {
400 		/** @mem: FW memory allocated for this interface. */
401 		struct panthor_kernel_bo *mem;
402 
403 		/** @input: Input interface. */
404 		struct panthor_fw_ringbuf_input_iface *input;
405 
406 		/** @output: Output interface. */
407 		const struct panthor_fw_ringbuf_output_iface *output;
408 
409 		/** @input_fw_va: FW virtual address of the input interface buffer. */
410 		u32 input_fw_va;
411 
412 		/** @output_fw_va: FW virtual address of the output interface buffer. */
413 		u32 output_fw_va;
414 	} iface;
415 
416 	/**
417 	 * @syncwait: Stores information about the synchronization object this
418 	 * queue is waiting on.
419 	 */
420 	struct {
421 		/** @gpu_va: GPU address of the synchronization object. */
422 		u64 gpu_va;
423 
424 		/** @ref: Reference value to compare against. */
425 		u64 ref;
426 
427 		/** @gt: True if this is a greater-than test. */
428 		bool gt;
429 
430 		/** @sync64: True if this is a 64-bit sync object. */
431 		bool sync64;
432 
433 		/** @bo: Buffer object holding the synchronization object. */
434 		struct drm_gem_object *obj;
435 
436 		/** @offset: Offset of the synchronization object inside @bo. */
437 		u64 offset;
438 
439 		/**
440 		 * @kmap: Kernel mapping of the buffer object holding the
441 		 * synchronization object.
442 		 */
443 		void *kmap;
444 	} syncwait;
445 
446 	/** @fence_ctx: Fence context fields. */
447 	struct {
448 		/** @lock: Used to protect access to all fences allocated by this context. */
449 		spinlock_t lock;
450 
451 		/**
452 		 * @id: Fence context ID.
453 		 *
454 		 * Allocated with dma_fence_context_alloc().
455 		 */
456 		u64 id;
457 
458 		/** @seqno: Sequence number of the last initialized fence. */
459 		atomic64_t seqno;
460 
461 		/**
462 		 * @in_flight_jobs: List containing all in-flight jobs.
463 		 *
464 		 * Used to keep track and signal panthor_job::done_fence when the
465 		 * synchronization object attached to the queue is signaled.
466 		 */
467 		struct list_head in_flight_jobs;
468 	} fence_ctx;
469 };
470 
471 /**
472  * enum panthor_group_state - Scheduling group state.
473  */
474 enum panthor_group_state {
475 	/** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
476 	PANTHOR_CS_GROUP_CREATED,
477 
478 	/** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
479 	PANTHOR_CS_GROUP_ACTIVE,
480 
481 	/**
482 	 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
483 	 * inactive/suspended right now.
484 	 */
485 	PANTHOR_CS_GROUP_SUSPENDED,
486 
487 	/**
488 	 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
489 	 *
490 	 * Can no longer be scheduled. The only allowed action is a destruction.
491 	 */
492 	PANTHOR_CS_GROUP_TERMINATED,
493 
494 	/**
495 	 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
496 	 *
497 	 * The FW returned an inconsistent state. The group is flagged unusable
498 	 * and can no longer be scheduled. The only allowed action is a
499 	 * destruction.
500 	 *
501 	 * When that happens, we also schedule a FW reset, to start from a fresh
502 	 * state.
503 	 */
504 	PANTHOR_CS_GROUP_UNKNOWN_STATE,
505 };
506 
507 /**
508  * struct panthor_group - Scheduling group object
509  */
510 struct panthor_group {
511 	/** @refcount: Reference count */
512 	struct kref refcount;
513 
514 	/** @ptdev: Device. */
515 	struct panthor_device *ptdev;
516 
517 	/** @vm: VM bound to the group. */
518 	struct panthor_vm *vm;
519 
520 	/** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
521 	u64 compute_core_mask;
522 
523 	/** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
524 	u64 fragment_core_mask;
525 
526 	/** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
527 	u64 tiler_core_mask;
528 
529 	/** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
530 	u8 max_compute_cores;
531 
532 	/** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
533 	u8 max_fragment_cores;
534 
535 	/** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
536 	u8 max_tiler_cores;
537 
538 	/** @priority: Group priority (check panthor_csg_priority). */
539 	u8 priority;
540 
541 	/** @blocked_queues: Bitmask reflecting the blocked queues. */
542 	u32 blocked_queues;
543 
544 	/** @idle_queues: Bitmask reflecting the idle queues. */
545 	u32 idle_queues;
546 
547 	/** @fatal_lock: Lock used to protect access to fatal fields. */
548 	spinlock_t fatal_lock;
549 
550 	/** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
551 	u32 fatal_queues;
552 
553 	/** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
554 	atomic_t tiler_oom;
555 
556 	/** @queue_count: Number of queues in this group. */
557 	u32 queue_count;
558 
559 	/** @queues: Queues owned by this group. */
560 	struct panthor_queue *queues[MAX_CS_PER_CSG];
561 
562 	/**
563 	 * @csg_id: ID of the FW group slot.
564 	 *
565 	 * -1 when the group is not scheduled/active.
566 	 */
567 	int csg_id;
568 
569 	/**
570 	 * @destroyed: True when the group has been destroyed.
571 	 *
572 	 * If a group is destroyed it becomes useless: no further jobs can be submitted
573 	 * to its queues. We simply wait for all references to be dropped so we can
574 	 * release the group object.
575 	 */
576 	bool destroyed;
577 
578 	/**
579 	 * @timedout: True when a timeout occurred on any of the queues owned by
580 	 * this group.
581 	 *
582 	 * Timeouts can be reported by drm_sched or by the FW. In any case, any
583 	 * timeout situation is unrecoverable, and the group becomes useless.
584 	 * We simply wait for all references to be dropped so we can release the
585 	 * group object.
586 	 */
587 	bool timedout;
588 
589 	/**
590 	 * @syncobjs: Pool of per-queue synchronization objects.
591 	 *
592 	 * One sync object per queue. The position of the sync object is
593 	 * determined by the queue index.
594 	 */
595 	struct panthor_kernel_bo *syncobjs;
596 
597 	/** @state: Group state. */
598 	enum panthor_group_state state;
599 
600 	/**
601 	 * @suspend_buf: Suspend buffer.
602 	 *
603 	 * Stores the state of the group and its queues when a group is suspended.
604 	 * Used at resume time to restore the group in its previous state.
605 	 *
606 	 * The size of the suspend buffer is exposed through the FW interface.
607 	 */
608 	struct panthor_kernel_bo *suspend_buf;
609 
610 	/**
611 	 * @protm_suspend_buf: Protection mode suspend buffer.
612 	 *
613 	 * Stores the state of the group and its queues when a group that's in
614 	 * protection mode is suspended.
615 	 *
616 	 * Used at resume time to restore the group in its previous state.
617 	 *
618 	 * The size of the protection mode suspend buffer is exposed through the
619 	 * FW interface.
620 	 */
621 	struct panthor_kernel_bo *protm_suspend_buf;
622 
623 	/** @sync_upd_work: Work used to check/signal job fences. */
624 	struct work_struct sync_upd_work;
625 
626 	/** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
627 	struct work_struct tiler_oom_work;
628 
629 	/** @term_work: Work used to finish the group termination procedure. */
630 	struct work_struct term_work;
631 
632 	/**
633 	 * @release_work: Work used to release group resources.
634 	 *
635 	 * We need to postpone the group release to avoid a deadlock when
636 	 * the last ref is released in the tick work.
637 	 */
638 	struct work_struct release_work;
639 
640 	/**
641 	 * @run_node: Node used to insert the group in the
642 	 * panthor_group::groups::{runnable,idle} and
643 	 * panthor_group::reset.stopped_groups lists.
644 	 */
645 	struct list_head run_node;
646 
647 	/**
648 	 * @wait_node: Node used to insert the group in the
649 	 * panthor_group::groups::waiting list.
650 	 */
651 	struct list_head wait_node;
652 };
653 
654 /**
655  * group_queue_work() - Queue a group work
656  * @group: Group to queue the work for.
657  * @wname: Work name.
658  *
659  * Grabs a ref and queue a work item to the scheduler workqueue. If
660  * the work was already queued, we release the reference we grabbed.
661  *
662  * Work callbacks must release the reference we grabbed here.
663  */
664 #define group_queue_work(group, wname) \
665 	do { \
666 		group_get(group); \
667 		if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
668 			group_put(group); \
669 	} while (0)
670 
671 /**
672  * sched_queue_work() - Queue a scheduler work.
673  * @sched: Scheduler object.
674  * @wname: Work name.
675  *
676  * Conditionally queues a scheduler work if no reset is pending/in-progress.
677  */
678 #define sched_queue_work(sched, wname) \
679 	do { \
680 		if (!atomic_read(&(sched)->reset.in_progress) && \
681 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
682 			queue_work((sched)->wq, &(sched)->wname ## _work); \
683 	} while (0)
684 
685 /**
686  * sched_queue_delayed_work() - Queue a scheduler delayed work.
687  * @sched: Scheduler object.
688  * @wname: Work name.
689  * @delay: Work delay in jiffies.
690  *
691  * Conditionally queues a scheduler delayed work if no reset is
692  * pending/in-progress.
693  */
694 #define sched_queue_delayed_work(sched, wname, delay) \
695 	do { \
696 		if (!atomic_read(&sched->reset.in_progress) && \
697 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
698 			mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
699 	} while (0)
700 
701 /*
702  * We currently set the maximum of groups per file to an arbitrary low value.
703  * But this can be updated if we need more.
704  */
705 #define MAX_GROUPS_PER_POOL 128
706 
707 /**
708  * struct panthor_group_pool - Group pool
709  *
710  * Each file get assigned a group pool.
711  */
712 struct panthor_group_pool {
713 	/** @xa: Xarray used to manage group handles. */
714 	struct xarray xa;
715 };
716 
717 /**
718  * struct panthor_job - Used to manage GPU job
719  */
720 struct panthor_job {
721 	/** @base: Inherit from drm_sched_job. */
722 	struct drm_sched_job base;
723 
724 	/** @refcount: Reference count. */
725 	struct kref refcount;
726 
727 	/** @group: Group of the queue this job will be pushed to. */
728 	struct panthor_group *group;
729 
730 	/** @queue_idx: Index of the queue inside @group. */
731 	u32 queue_idx;
732 
733 	/** @call_info: Information about the userspace command stream call. */
734 	struct {
735 		/** @start: GPU address of the userspace command stream. */
736 		u64 start;
737 
738 		/** @size: Size of the userspace command stream. */
739 		u32 size;
740 
741 		/**
742 		 * @latest_flush: Flush ID at the time the userspace command
743 		 * stream was built.
744 		 *
745 		 * Needed for the flush reduction mechanism.
746 		 */
747 		u32 latest_flush;
748 	} call_info;
749 
750 	/** @ringbuf: Position of this job is in the ring buffer. */
751 	struct {
752 		/** @start: Start offset. */
753 		u64 start;
754 
755 		/** @end: End offset. */
756 		u64 end;
757 	} ringbuf;
758 
759 	/**
760 	 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
761 	 * list.
762 	 */
763 	struct list_head node;
764 
765 	/** @done_fence: Fence signaled when the job is finished or cancelled. */
766 	struct dma_fence *done_fence;
767 };
768 
769 static void
770 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
771 {
772 	if (queue->syncwait.kmap) {
773 		struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
774 
775 		drm_gem_vunmap_unlocked(queue->syncwait.obj, &map);
776 		queue->syncwait.kmap = NULL;
777 	}
778 
779 	drm_gem_object_put(queue->syncwait.obj);
780 	queue->syncwait.obj = NULL;
781 }
782 
783 static void *
784 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
785 {
786 	struct panthor_device *ptdev = group->ptdev;
787 	struct panthor_gem_object *bo;
788 	struct iosys_map map;
789 	int ret;
790 
791 	if (queue->syncwait.kmap)
792 		return queue->syncwait.kmap + queue->syncwait.offset;
793 
794 	bo = panthor_vm_get_bo_for_va(group->vm,
795 				      queue->syncwait.gpu_va,
796 				      &queue->syncwait.offset);
797 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
798 		goto err_put_syncwait_obj;
799 
800 	queue->syncwait.obj = &bo->base.base;
801 	ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map);
802 	if (drm_WARN_ON(&ptdev->base, ret))
803 		goto err_put_syncwait_obj;
804 
805 	queue->syncwait.kmap = map.vaddr;
806 	if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
807 		goto err_put_syncwait_obj;
808 
809 	return queue->syncwait.kmap + queue->syncwait.offset;
810 
811 err_put_syncwait_obj:
812 	panthor_queue_put_syncwait_obj(queue);
813 	return NULL;
814 }
815 
816 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
817 {
818 	if (IS_ERR_OR_NULL(queue))
819 		return;
820 
821 	if (queue->entity.fence_context)
822 		drm_sched_entity_destroy(&queue->entity);
823 
824 	if (queue->scheduler.ops)
825 		drm_sched_fini(&queue->scheduler);
826 
827 	panthor_queue_put_syncwait_obj(queue);
828 
829 	panthor_kernel_bo_destroy(queue->ringbuf);
830 	panthor_kernel_bo_destroy(queue->iface.mem);
831 
832 	kfree(queue);
833 }
834 
835 static void group_release_work(struct work_struct *work)
836 {
837 	struct panthor_group *group = container_of(work,
838 						   struct panthor_group,
839 						   release_work);
840 	u32 i;
841 
842 	for (i = 0; i < group->queue_count; i++)
843 		group_free_queue(group, group->queues[i]);
844 
845 	panthor_kernel_bo_destroy(group->suspend_buf);
846 	panthor_kernel_bo_destroy(group->protm_suspend_buf);
847 	panthor_kernel_bo_destroy(group->syncobjs);
848 
849 	panthor_vm_put(group->vm);
850 	kfree(group);
851 }
852 
853 static void group_release(struct kref *kref)
854 {
855 	struct panthor_group *group = container_of(kref,
856 						   struct panthor_group,
857 						   refcount);
858 	struct panthor_device *ptdev = group->ptdev;
859 
860 	drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
861 	drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
862 	drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
863 
864 	queue_work(panthor_cleanup_wq, &group->release_work);
865 }
866 
867 static void group_put(struct panthor_group *group)
868 {
869 	if (group)
870 		kref_put(&group->refcount, group_release);
871 }
872 
873 static struct panthor_group *
874 group_get(struct panthor_group *group)
875 {
876 	if (group)
877 		kref_get(&group->refcount);
878 
879 	return group;
880 }
881 
882 /**
883  * group_bind_locked() - Bind a group to a group slot
884  * @group: Group.
885  * @csg_id: Slot.
886  *
887  * Return: 0 on success, a negative error code otherwise.
888  */
889 static int
890 group_bind_locked(struct panthor_group *group, u32 csg_id)
891 {
892 	struct panthor_device *ptdev = group->ptdev;
893 	struct panthor_csg_slot *csg_slot;
894 	int ret;
895 
896 	lockdep_assert_held(&ptdev->scheduler->lock);
897 
898 	if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
899 			ptdev->scheduler->csg_slots[csg_id].group))
900 		return -EINVAL;
901 
902 	ret = panthor_vm_active(group->vm);
903 	if (ret)
904 		return ret;
905 
906 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
907 	group_get(group);
908 	group->csg_id = csg_id;
909 
910 	/* Dummy doorbell allocation: doorbell is assigned to the group and
911 	 * all queues use the same doorbell.
912 	 *
913 	 * TODO: Implement LRU-based doorbell assignment, so the most often
914 	 * updated queues get their own doorbell, thus avoiding useless checks
915 	 * on queues belonging to the same group that are rarely updated.
916 	 */
917 	for (u32 i = 0; i < group->queue_count; i++)
918 		group->queues[i]->doorbell_id = csg_id + 1;
919 
920 	csg_slot->group = group;
921 
922 	return 0;
923 }
924 
925 /**
926  * group_unbind_locked() - Unbind a group from a slot.
927  * @group: Group to unbind.
928  *
929  * Return: 0 on success, a negative error code otherwise.
930  */
931 static int
932 group_unbind_locked(struct panthor_group *group)
933 {
934 	struct panthor_device *ptdev = group->ptdev;
935 	struct panthor_csg_slot *slot;
936 
937 	lockdep_assert_held(&ptdev->scheduler->lock);
938 
939 	if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
940 		return -EINVAL;
941 
942 	if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
943 		return -EINVAL;
944 
945 	slot = &ptdev->scheduler->csg_slots[group->csg_id];
946 	panthor_vm_idle(group->vm);
947 	group->csg_id = -1;
948 
949 	/* Tiler OOM events will be re-issued next time the group is scheduled. */
950 	atomic_set(&group->tiler_oom, 0);
951 	cancel_work(&group->tiler_oom_work);
952 
953 	for (u32 i = 0; i < group->queue_count; i++)
954 		group->queues[i]->doorbell_id = -1;
955 
956 	slot->group = NULL;
957 
958 	group_put(group);
959 	return 0;
960 }
961 
962 /**
963  * cs_slot_prog_locked() - Program a queue slot
964  * @ptdev: Device.
965  * @csg_id: Group slot ID.
966  * @cs_id: Queue slot ID.
967  *
968  * Program a queue slot with the queue information so things can start being
969  * executed on this queue.
970  *
971  * The group slot must have a group bound to it already (group_bind_locked()).
972  */
973 static void
974 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
975 {
976 	struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
977 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
978 
979 	lockdep_assert_held(&ptdev->scheduler->lock);
980 
981 	queue->iface.input->extract = queue->iface.output->extract;
982 	drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
983 
984 	cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
985 	cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
986 	cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
987 	cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
988 	cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
989 				  CS_CONFIG_DOORBELL(queue->doorbell_id);
990 	cs_iface->input->ack_irq_mask = ~0;
991 	panthor_fw_update_reqs(cs_iface, req,
992 			       CS_IDLE_SYNC_WAIT |
993 			       CS_IDLE_EMPTY |
994 			       CS_STATE_START |
995 			       CS_EXTRACT_EVENT,
996 			       CS_IDLE_SYNC_WAIT |
997 			       CS_IDLE_EMPTY |
998 			       CS_STATE_MASK |
999 			       CS_EXTRACT_EVENT);
1000 	if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) {
1001 		drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time);
1002 		queue->timeout_suspended = false;
1003 	}
1004 }
1005 
1006 /**
1007  * cs_slot_reset_locked() - Reset a queue slot
1008  * @ptdev: Device.
1009  * @csg_id: Group slot.
1010  * @cs_id: Queue slot.
1011  *
1012  * Change the queue slot state to STOP and suspend the queue timeout if
1013  * the queue is not blocked.
1014  *
1015  * The group slot must have a group bound to it (group_bind_locked()).
1016  */
1017 static int
1018 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1019 {
1020 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1021 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1022 	struct panthor_queue *queue = group->queues[cs_id];
1023 
1024 	lockdep_assert_held(&ptdev->scheduler->lock);
1025 
1026 	panthor_fw_update_reqs(cs_iface, req,
1027 			       CS_STATE_STOP,
1028 			       CS_STATE_MASK);
1029 
1030 	/* If the queue is blocked, we want to keep the timeout running, so
1031 	 * we can detect unbounded waits and kill the group when that happens.
1032 	 */
1033 	if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) {
1034 		queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
1035 		queue->timeout_suspended = true;
1036 		WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS));
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 /**
1043  * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1044  * @ptdev: Device.
1045  * @csg_id: Group slot ID.
1046  *
1047  * Group slot priority update happens asynchronously. When we receive a
1048  * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1049  * reflect it to our panthor_csg_slot object.
1050  */
1051 static void
1052 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1053 {
1054 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1055 	struct panthor_fw_csg_iface *csg_iface;
1056 
1057 	lockdep_assert_held(&ptdev->scheduler->lock);
1058 
1059 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1060 	csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28;
1061 }
1062 
1063 /**
1064  * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1065  * @ptdev: Device.
1066  * @csg_id: Group slot.
1067  * @cs_id: Queue slot.
1068  *
1069  * Queue state is updated on group suspend or STATUS_UPDATE event.
1070  */
1071 static void
1072 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1073 {
1074 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1075 	struct panthor_queue *queue = group->queues[cs_id];
1076 	struct panthor_fw_cs_iface *cs_iface =
1077 		panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1078 
1079 	u32 status_wait_cond;
1080 
1081 	switch (cs_iface->output->status_blocked_reason) {
1082 	case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1083 		if (queue->iface.input->insert == queue->iface.output->extract &&
1084 		    cs_iface->output->status_scoreboards == 0)
1085 			group->idle_queues |= BIT(cs_id);
1086 		break;
1087 
1088 	case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1089 		if (list_empty(&group->wait_node)) {
1090 			list_move_tail(&group->wait_node,
1091 				       &group->ptdev->scheduler->groups.waiting);
1092 		}
1093 		group->blocked_queues |= BIT(cs_id);
1094 		queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1095 		queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1096 		status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1097 		queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1098 		if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1099 			u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1100 
1101 			queue->syncwait.sync64 = true;
1102 			queue->syncwait.ref |= sync_val_hi << 32;
1103 		} else {
1104 			queue->syncwait.sync64 = false;
1105 		}
1106 		break;
1107 
1108 	default:
1109 		/* Other reasons are not blocking. Consider the queue as runnable
1110 		 * in those cases.
1111 		 */
1112 		break;
1113 	}
1114 }
1115 
1116 static void
1117 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1118 {
1119 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1120 	struct panthor_group *group = csg_slot->group;
1121 	u32 i;
1122 
1123 	lockdep_assert_held(&ptdev->scheduler->lock);
1124 
1125 	group->idle_queues = 0;
1126 	group->blocked_queues = 0;
1127 
1128 	for (i = 0; i < group->queue_count; i++) {
1129 		if (group->queues[i])
1130 			cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1131 	}
1132 }
1133 
1134 static void
1135 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1136 {
1137 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1138 	struct panthor_fw_csg_iface *csg_iface;
1139 	struct panthor_group *group;
1140 	enum panthor_group_state new_state, old_state;
1141 	u32 csg_state;
1142 
1143 	lockdep_assert_held(&ptdev->scheduler->lock);
1144 
1145 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1146 	group = csg_slot->group;
1147 
1148 	if (!group)
1149 		return;
1150 
1151 	old_state = group->state;
1152 	csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1153 	switch (csg_state) {
1154 	case CSG_STATE_START:
1155 	case CSG_STATE_RESUME:
1156 		new_state = PANTHOR_CS_GROUP_ACTIVE;
1157 		break;
1158 	case CSG_STATE_TERMINATE:
1159 		new_state = PANTHOR_CS_GROUP_TERMINATED;
1160 		break;
1161 	case CSG_STATE_SUSPEND:
1162 		new_state = PANTHOR_CS_GROUP_SUSPENDED;
1163 		break;
1164 	default:
1165 		/* The unknown state might be caused by a FW state corruption,
1166 		 * which means the group metadata can't be trusted anymore, and
1167 		 * the SUSPEND operation might propagate the corruption to the
1168 		 * suspend buffers. Flag the group state as unknown to make
1169 		 * sure it's unusable after that point.
1170 		 */
1171 		drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1172 			csg_id, csg_state);
1173 		new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1174 		break;
1175 	}
1176 
1177 	if (old_state == new_state)
1178 		return;
1179 
1180 	/* The unknown state might be caused by a FW issue, reset the FW to
1181 	 * take a fresh start.
1182 	 */
1183 	if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1184 		panthor_device_schedule_reset(ptdev);
1185 
1186 	if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1187 		csg_slot_sync_queues_state_locked(ptdev, csg_id);
1188 
1189 	if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1190 		u32 i;
1191 
1192 		/* Reset the queue slots so we start from a clean
1193 		 * state when starting/resuming a new group on this
1194 		 * CSG slot. No wait needed here, and no ringbell
1195 		 * either, since the CS slot will only be re-used
1196 		 * on the next CSG start operation.
1197 		 */
1198 		for (i = 0; i < group->queue_count; i++) {
1199 			if (group->queues[i])
1200 				cs_slot_reset_locked(ptdev, csg_id, i);
1201 		}
1202 	}
1203 
1204 	group->state = new_state;
1205 }
1206 
1207 static int
1208 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1209 {
1210 	struct panthor_fw_csg_iface *csg_iface;
1211 	struct panthor_csg_slot *csg_slot;
1212 	struct panthor_group *group;
1213 	u32 queue_mask = 0, i;
1214 
1215 	lockdep_assert_held(&ptdev->scheduler->lock);
1216 
1217 	if (priority > MAX_CSG_PRIO)
1218 		return -EINVAL;
1219 
1220 	if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1221 		return -EINVAL;
1222 
1223 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1224 	group = csg_slot->group;
1225 	if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1226 		return 0;
1227 
1228 	csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1229 
1230 	for (i = 0; i < group->queue_count; i++) {
1231 		if (group->queues[i]) {
1232 			cs_slot_prog_locked(ptdev, csg_id, i);
1233 			queue_mask |= BIT(i);
1234 		}
1235 	}
1236 
1237 	csg_iface->input->allow_compute = group->compute_core_mask;
1238 	csg_iface->input->allow_fragment = group->fragment_core_mask;
1239 	csg_iface->input->allow_other = group->tiler_core_mask;
1240 	csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1241 					 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1242 					 CSG_EP_REQ_TILER(group->max_tiler_cores) |
1243 					 CSG_EP_REQ_PRIORITY(priority);
1244 	csg_iface->input->config = panthor_vm_as(group->vm);
1245 
1246 	if (group->suspend_buf)
1247 		csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1248 	else
1249 		csg_iface->input->suspend_buf = 0;
1250 
1251 	if (group->protm_suspend_buf) {
1252 		csg_iface->input->protm_suspend_buf =
1253 			panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1254 	} else {
1255 		csg_iface->input->protm_suspend_buf = 0;
1256 	}
1257 
1258 	csg_iface->input->ack_irq_mask = ~0;
1259 	panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1260 	return 0;
1261 }
1262 
1263 static void
1264 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1265 				   u32 csg_id, u32 cs_id)
1266 {
1267 	struct panthor_scheduler *sched = ptdev->scheduler;
1268 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1269 	struct panthor_group *group = csg_slot->group;
1270 	struct panthor_fw_cs_iface *cs_iface;
1271 	u32 fatal;
1272 	u64 info;
1273 
1274 	lockdep_assert_held(&sched->lock);
1275 
1276 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1277 	fatal = cs_iface->output->fatal;
1278 	info = cs_iface->output->fatal_info;
1279 
1280 	if (group)
1281 		group->fatal_queues |= BIT(cs_id);
1282 
1283 	if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1284 		/* If this exception is unrecoverable, queue a reset, and make
1285 		 * sure we stop scheduling groups until the reset has happened.
1286 		 */
1287 		panthor_device_schedule_reset(ptdev);
1288 		cancel_delayed_work(&sched->tick_work);
1289 	} else {
1290 		sched_queue_delayed_work(sched, tick, 0);
1291 	}
1292 
1293 	drm_warn(&ptdev->base,
1294 		 "CSG slot %d CS slot: %d\n"
1295 		 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1296 		 "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1297 		 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1298 		 csg_id, cs_id,
1299 		 (unsigned int)CS_EXCEPTION_TYPE(fatal),
1300 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1301 		 (unsigned int)CS_EXCEPTION_DATA(fatal),
1302 		 info);
1303 }
1304 
1305 static void
1306 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1307 				   u32 csg_id, u32 cs_id)
1308 {
1309 	struct panthor_scheduler *sched = ptdev->scheduler;
1310 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1311 	struct panthor_group *group = csg_slot->group;
1312 	struct panthor_queue *queue = group && cs_id < group->queue_count ?
1313 				      group->queues[cs_id] : NULL;
1314 	struct panthor_fw_cs_iface *cs_iface;
1315 	u32 fault;
1316 	u64 info;
1317 
1318 	lockdep_assert_held(&sched->lock);
1319 
1320 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1321 	fault = cs_iface->output->fault;
1322 	info = cs_iface->output->fault_info;
1323 
1324 	if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) {
1325 		u64 cs_extract = queue->iface.output->extract;
1326 		struct panthor_job *job;
1327 
1328 		spin_lock(&queue->fence_ctx.lock);
1329 		list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1330 			if (cs_extract >= job->ringbuf.end)
1331 				continue;
1332 
1333 			if (cs_extract < job->ringbuf.start)
1334 				break;
1335 
1336 			dma_fence_set_error(job->done_fence, -EINVAL);
1337 		}
1338 		spin_unlock(&queue->fence_ctx.lock);
1339 	}
1340 
1341 	drm_warn(&ptdev->base,
1342 		 "CSG slot %d CS slot: %d\n"
1343 		 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1344 		 "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1345 		 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1346 		 csg_id, cs_id,
1347 		 (unsigned int)CS_EXCEPTION_TYPE(fault),
1348 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1349 		 (unsigned int)CS_EXCEPTION_DATA(fault),
1350 		 info);
1351 }
1352 
1353 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1354 {
1355 	struct panthor_device *ptdev = group->ptdev;
1356 	struct panthor_scheduler *sched = ptdev->scheduler;
1357 	u32 renderpasses_in_flight, pending_frag_count;
1358 	struct panthor_heap_pool *heaps = NULL;
1359 	u64 heap_address, new_chunk_va = 0;
1360 	u32 vt_start, vt_end, frag_end;
1361 	int ret, csg_id;
1362 
1363 	mutex_lock(&sched->lock);
1364 	csg_id = group->csg_id;
1365 	if (csg_id >= 0) {
1366 		struct panthor_fw_cs_iface *cs_iface;
1367 
1368 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1369 		heaps = panthor_vm_get_heap_pool(group->vm, false);
1370 		heap_address = cs_iface->output->heap_address;
1371 		vt_start = cs_iface->output->heap_vt_start;
1372 		vt_end = cs_iface->output->heap_vt_end;
1373 		frag_end = cs_iface->output->heap_frag_end;
1374 		renderpasses_in_flight = vt_start - frag_end;
1375 		pending_frag_count = vt_end - frag_end;
1376 	}
1377 	mutex_unlock(&sched->lock);
1378 
1379 	/* The group got scheduled out, we stop here. We will get a new tiler OOM event
1380 	 * when it's scheduled again.
1381 	 */
1382 	if (unlikely(csg_id < 0))
1383 		return 0;
1384 
1385 	if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1386 		ret = -EINVAL;
1387 	} else {
1388 		/* We do the allocation without holding the scheduler lock to avoid
1389 		 * blocking the scheduling.
1390 		 */
1391 		ret = panthor_heap_grow(heaps, heap_address,
1392 					renderpasses_in_flight,
1393 					pending_frag_count, &new_chunk_va);
1394 	}
1395 
1396 	/* If the heap context doesn't have memory for us, we want to let the
1397 	 * FW try to reclaim memory by waiting for fragment jobs to land or by
1398 	 * executing the tiler OOM exception handler, which is supposed to
1399 	 * implement incremental rendering.
1400 	 */
1401 	if (ret && ret != -ENOMEM) {
1402 		drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1403 		group->fatal_queues |= BIT(cs_id);
1404 		sched_queue_delayed_work(sched, tick, 0);
1405 		goto out_put_heap_pool;
1406 	}
1407 
1408 	mutex_lock(&sched->lock);
1409 	csg_id = group->csg_id;
1410 	if (csg_id >= 0) {
1411 		struct panthor_fw_csg_iface *csg_iface;
1412 		struct panthor_fw_cs_iface *cs_iface;
1413 
1414 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1415 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1416 
1417 		cs_iface->input->heap_start = new_chunk_va;
1418 		cs_iface->input->heap_end = new_chunk_va;
1419 		panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1420 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1421 		panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1422 	}
1423 	mutex_unlock(&sched->lock);
1424 
1425 	/* We allocated a chunck, but couldn't link it to the heap
1426 	 * context because the group was scheduled out while we were
1427 	 * allocating memory. We need to return this chunk to the heap.
1428 	 */
1429 	if (unlikely(csg_id < 0 && new_chunk_va))
1430 		panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1431 
1432 	ret = 0;
1433 
1434 out_put_heap_pool:
1435 	panthor_heap_pool_put(heaps);
1436 	return ret;
1437 }
1438 
1439 static void group_tiler_oom_work(struct work_struct *work)
1440 {
1441 	struct panthor_group *group =
1442 		container_of(work, struct panthor_group, tiler_oom_work);
1443 	u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1444 
1445 	while (tiler_oom) {
1446 		u32 cs_id = ffs(tiler_oom) - 1;
1447 
1448 		group_process_tiler_oom(group, cs_id);
1449 		tiler_oom &= ~BIT(cs_id);
1450 	}
1451 
1452 	group_put(group);
1453 }
1454 
1455 static void
1456 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1457 				       u32 csg_id, u32 cs_id)
1458 {
1459 	struct panthor_scheduler *sched = ptdev->scheduler;
1460 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1461 	struct panthor_group *group = csg_slot->group;
1462 
1463 	lockdep_assert_held(&sched->lock);
1464 
1465 	if (drm_WARN_ON(&ptdev->base, !group))
1466 		return;
1467 
1468 	atomic_or(BIT(cs_id), &group->tiler_oom);
1469 
1470 	/* We don't use group_queue_work() here because we want to queue the
1471 	 * work item to the heap_alloc_wq.
1472 	 */
1473 	group_get(group);
1474 	if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1475 		group_put(group);
1476 }
1477 
1478 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1479 				       u32 csg_id, u32 cs_id)
1480 {
1481 	struct panthor_fw_cs_iface *cs_iface;
1482 	u32 req, ack, events;
1483 
1484 	lockdep_assert_held(&ptdev->scheduler->lock);
1485 
1486 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1487 	req = cs_iface->input->req;
1488 	ack = cs_iface->output->ack;
1489 	events = (req ^ ack) & CS_EVT_MASK;
1490 
1491 	if (events & CS_FATAL)
1492 		cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1493 
1494 	if (events & CS_FAULT)
1495 		cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1496 
1497 	if (events & CS_TILER_OOM)
1498 		cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1499 
1500 	/* We don't acknowledge the TILER_OOM event since its handling is
1501 	 * deferred to a separate work.
1502 	 */
1503 	panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1504 
1505 	return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1506 }
1507 
1508 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
1509 {
1510 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1511 	struct panthor_fw_csg_iface *csg_iface;
1512 
1513 	lockdep_assert_held(&ptdev->scheduler->lock);
1514 
1515 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1516 	csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
1517 }
1518 
1519 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1520 {
1521 	struct panthor_scheduler *sched = ptdev->scheduler;
1522 
1523 	lockdep_assert_held(&sched->lock);
1524 
1525 	sched->might_have_idle_groups = true;
1526 
1527 	/* Schedule a tick so we can evict idle groups and schedule non-idle
1528 	 * ones. This will also update runtime PM and devfreq busy/idle states,
1529 	 * so the device can lower its frequency or get suspended.
1530 	 */
1531 	sched_queue_delayed_work(sched, tick, 0);
1532 }
1533 
1534 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1535 					u32 csg_id)
1536 {
1537 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1538 	struct panthor_group *group = csg_slot->group;
1539 
1540 	lockdep_assert_held(&ptdev->scheduler->lock);
1541 
1542 	if (group)
1543 		group_queue_work(group, sync_upd);
1544 
1545 	sched_queue_work(ptdev->scheduler, sync_upd);
1546 }
1547 
1548 static void
1549 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1550 {
1551 	struct panthor_scheduler *sched = ptdev->scheduler;
1552 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1553 	struct panthor_group *group = csg_slot->group;
1554 
1555 	lockdep_assert_held(&sched->lock);
1556 
1557 	drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1558 
1559 	group = csg_slot->group;
1560 	if (!drm_WARN_ON(&ptdev->base, !group))
1561 		group->timedout = true;
1562 
1563 	sched_queue_delayed_work(sched, tick, 0);
1564 }
1565 
1566 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1567 {
1568 	u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1569 	struct panthor_fw_csg_iface *csg_iface;
1570 	u32 ring_cs_db_mask = 0;
1571 
1572 	lockdep_assert_held(&ptdev->scheduler->lock);
1573 
1574 	if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1575 		return;
1576 
1577 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1578 	req = READ_ONCE(csg_iface->input->req);
1579 	ack = READ_ONCE(csg_iface->output->ack);
1580 	cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1581 	cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1582 	csg_events = (req ^ ack) & CSG_EVT_MASK;
1583 
1584 	/* There may not be any pending CSG/CS interrupts to process */
1585 	if (req == ack && cs_irq_req == cs_irq_ack)
1586 		return;
1587 
1588 	/* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1589 	 * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1590 	 * doesn't miss an interrupt for the CS in the race scenario where
1591 	 * whilst Host is servicing an interrupt for the CS, firmware sends
1592 	 * another interrupt for that CS.
1593 	 */
1594 	csg_iface->input->cs_irq_ack = cs_irq_req;
1595 
1596 	panthor_fw_update_reqs(csg_iface, req, ack,
1597 			       CSG_SYNC_UPDATE |
1598 			       CSG_IDLE |
1599 			       CSG_PROGRESS_TIMER_EVENT);
1600 
1601 	if (csg_events & CSG_IDLE)
1602 		csg_slot_process_idle_event_locked(ptdev, csg_id);
1603 
1604 	if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1605 		csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1606 
1607 	cs_irqs = cs_irq_req ^ cs_irq_ack;
1608 	while (cs_irqs) {
1609 		u32 cs_id = ffs(cs_irqs) - 1;
1610 
1611 		if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1612 			ring_cs_db_mask |= BIT(cs_id);
1613 
1614 		cs_irqs &= ~BIT(cs_id);
1615 	}
1616 
1617 	if (csg_events & CSG_SYNC_UPDATE)
1618 		csg_slot_sync_update_locked(ptdev, csg_id);
1619 
1620 	if (ring_cs_db_mask)
1621 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1622 
1623 	panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1624 }
1625 
1626 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1627 {
1628 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1629 
1630 	lockdep_assert_held(&ptdev->scheduler->lock);
1631 
1632 	/* Acknowledge the idle event and schedule a tick. */
1633 	panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1634 	sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1635 }
1636 
1637 /**
1638  * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1639  * @ptdev: Device.
1640  */
1641 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1642 {
1643 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1644 	u32 req, ack, evts;
1645 
1646 	lockdep_assert_held(&ptdev->scheduler->lock);
1647 
1648 	req = READ_ONCE(glb_iface->input->req);
1649 	ack = READ_ONCE(glb_iface->output->ack);
1650 	evts = (req ^ ack) & GLB_EVT_MASK;
1651 
1652 	if (evts & GLB_IDLE)
1653 		sched_process_idle_event_locked(ptdev);
1654 }
1655 
1656 static void process_fw_events_work(struct work_struct *work)
1657 {
1658 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1659 						      fw_events_work);
1660 	u32 events = atomic_xchg(&sched->fw_events, 0);
1661 	struct panthor_device *ptdev = sched->ptdev;
1662 
1663 	mutex_lock(&sched->lock);
1664 
1665 	if (events & JOB_INT_GLOBAL_IF) {
1666 		sched_process_global_irq_locked(ptdev);
1667 		events &= ~JOB_INT_GLOBAL_IF;
1668 	}
1669 
1670 	while (events) {
1671 		u32 csg_id = ffs(events) - 1;
1672 
1673 		sched_process_csg_irq_locked(ptdev, csg_id);
1674 		events &= ~BIT(csg_id);
1675 	}
1676 
1677 	mutex_unlock(&sched->lock);
1678 }
1679 
1680 /**
1681  * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1682  */
1683 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1684 {
1685 	if (!ptdev->scheduler)
1686 		return;
1687 
1688 	atomic_or(events, &ptdev->scheduler->fw_events);
1689 	sched_queue_work(ptdev->scheduler, fw_events);
1690 }
1691 
1692 static const char *fence_get_driver_name(struct dma_fence *fence)
1693 {
1694 	return "panthor";
1695 }
1696 
1697 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1698 {
1699 	return "queue-fence";
1700 }
1701 
1702 static const struct dma_fence_ops panthor_queue_fence_ops = {
1703 	.get_driver_name = fence_get_driver_name,
1704 	.get_timeline_name = queue_fence_get_timeline_name,
1705 };
1706 
1707 struct panthor_csg_slots_upd_ctx {
1708 	u32 update_mask;
1709 	u32 timedout_mask;
1710 	struct {
1711 		u32 value;
1712 		u32 mask;
1713 	} requests[MAX_CSGS];
1714 };
1715 
1716 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1717 {
1718 	memset(ctx, 0, sizeof(*ctx));
1719 }
1720 
1721 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1722 				    struct panthor_csg_slots_upd_ctx *ctx,
1723 				    u32 csg_id, u32 value, u32 mask)
1724 {
1725 	if (drm_WARN_ON(&ptdev->base, !mask) ||
1726 	    drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1727 		return;
1728 
1729 	ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1730 	ctx->requests[csg_id].mask |= mask;
1731 	ctx->update_mask |= BIT(csg_id);
1732 }
1733 
1734 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1735 				     struct panthor_csg_slots_upd_ctx *ctx)
1736 {
1737 	struct panthor_scheduler *sched = ptdev->scheduler;
1738 	u32 update_slots = ctx->update_mask;
1739 
1740 	lockdep_assert_held(&sched->lock);
1741 
1742 	if (!ctx->update_mask)
1743 		return 0;
1744 
1745 	while (update_slots) {
1746 		struct panthor_fw_csg_iface *csg_iface;
1747 		u32 csg_id = ffs(update_slots) - 1;
1748 
1749 		update_slots &= ~BIT(csg_id);
1750 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1751 		panthor_fw_update_reqs(csg_iface, req,
1752 				       ctx->requests[csg_id].value,
1753 				       ctx->requests[csg_id].mask);
1754 	}
1755 
1756 	panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1757 
1758 	update_slots = ctx->update_mask;
1759 	while (update_slots) {
1760 		struct panthor_fw_csg_iface *csg_iface;
1761 		u32 csg_id = ffs(update_slots) - 1;
1762 		u32 req_mask = ctx->requests[csg_id].mask, acked;
1763 		int ret;
1764 
1765 		update_slots &= ~BIT(csg_id);
1766 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1767 
1768 		ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1769 
1770 		if (acked & CSG_ENDPOINT_CONFIG)
1771 			csg_slot_sync_priority_locked(ptdev, csg_id);
1772 
1773 		if (acked & CSG_STATE_MASK)
1774 			csg_slot_sync_state_locked(ptdev, csg_id);
1775 
1776 		if (acked & CSG_STATUS_UPDATE) {
1777 			csg_slot_sync_queues_state_locked(ptdev, csg_id);
1778 			csg_slot_sync_idle_state_locked(ptdev, csg_id);
1779 		}
1780 
1781 		if (ret && acked != req_mask &&
1782 		    ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
1783 			drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
1784 			ctx->timedout_mask |= BIT(csg_id);
1785 		}
1786 	}
1787 
1788 	if (ctx->timedout_mask)
1789 		return -ETIMEDOUT;
1790 
1791 	return 0;
1792 }
1793 
1794 struct panthor_sched_tick_ctx {
1795 	struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
1796 	struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
1797 	u32 idle_group_count;
1798 	u32 group_count;
1799 	enum panthor_csg_priority min_priority;
1800 	struct panthor_vm *vms[MAX_CS_PER_CSG];
1801 	u32 as_count;
1802 	bool immediate_tick;
1803 	u32 csg_upd_failed_mask;
1804 };
1805 
1806 static bool
1807 tick_ctx_is_full(const struct panthor_scheduler *sched,
1808 		 const struct panthor_sched_tick_ctx *ctx)
1809 {
1810 	return ctx->group_count == sched->csg_slot_count;
1811 }
1812 
1813 static bool
1814 group_is_idle(struct panthor_group *group)
1815 {
1816 	struct panthor_device *ptdev = group->ptdev;
1817 	u32 inactive_queues;
1818 
1819 	if (group->csg_id >= 0)
1820 		return ptdev->scheduler->csg_slots[group->csg_id].idle;
1821 
1822 	inactive_queues = group->idle_queues | group->blocked_queues;
1823 	return hweight32(inactive_queues) == group->queue_count;
1824 }
1825 
1826 static bool
1827 group_can_run(struct panthor_group *group)
1828 {
1829 	return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1830 	       group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1831 	       !group->destroyed && group->fatal_queues == 0 &&
1832 	       !group->timedout;
1833 }
1834 
1835 static void
1836 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
1837 			       struct panthor_sched_tick_ctx *ctx,
1838 			       struct list_head *queue,
1839 			       bool skip_idle_groups,
1840 			       bool owned_by_tick_ctx)
1841 {
1842 	struct panthor_group *group, *tmp;
1843 
1844 	if (tick_ctx_is_full(sched, ctx))
1845 		return;
1846 
1847 	list_for_each_entry_safe(group, tmp, queue, run_node) {
1848 		u32 i;
1849 
1850 		if (!group_can_run(group))
1851 			continue;
1852 
1853 		if (skip_idle_groups && group_is_idle(group))
1854 			continue;
1855 
1856 		for (i = 0; i < ctx->as_count; i++) {
1857 			if (ctx->vms[i] == group->vm)
1858 				break;
1859 		}
1860 
1861 		if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
1862 			continue;
1863 
1864 		if (!owned_by_tick_ctx)
1865 			group_get(group);
1866 
1867 		list_move_tail(&group->run_node, &ctx->groups[group->priority]);
1868 		ctx->group_count++;
1869 		if (group_is_idle(group))
1870 			ctx->idle_group_count++;
1871 
1872 		if (i == ctx->as_count)
1873 			ctx->vms[ctx->as_count++] = group->vm;
1874 
1875 		if (ctx->min_priority > group->priority)
1876 			ctx->min_priority = group->priority;
1877 
1878 		if (tick_ctx_is_full(sched, ctx))
1879 			return;
1880 	}
1881 }
1882 
1883 static void
1884 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
1885 			  struct panthor_sched_tick_ctx *ctx,
1886 			  struct panthor_group *group,
1887 			  bool full_tick)
1888 {
1889 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
1890 	struct panthor_group *other_group;
1891 
1892 	if (!full_tick) {
1893 		list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1894 		return;
1895 	}
1896 
1897 	/* Rotate to make sure groups with lower CSG slot
1898 	 * priorities have a chance to get a higher CSG slot
1899 	 * priority next time they get picked. This priority
1900 	 * has an impact on resource request ordering, so it's
1901 	 * important to make sure we don't let one group starve
1902 	 * all other groups with the same group priority.
1903 	 */
1904 	list_for_each_entry(other_group,
1905 			    &ctx->old_groups[csg_slot->group->priority],
1906 			    run_node) {
1907 		struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
1908 
1909 		if (other_csg_slot->priority > csg_slot->priority) {
1910 			list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
1911 			return;
1912 		}
1913 	}
1914 
1915 	list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1916 }
1917 
1918 static void
1919 tick_ctx_init(struct panthor_scheduler *sched,
1920 	      struct panthor_sched_tick_ctx *ctx,
1921 	      bool full_tick)
1922 {
1923 	struct panthor_device *ptdev = sched->ptdev;
1924 	struct panthor_csg_slots_upd_ctx upd_ctx;
1925 	int ret;
1926 	u32 i;
1927 
1928 	memset(ctx, 0, sizeof(*ctx));
1929 	csgs_upd_ctx_init(&upd_ctx);
1930 
1931 	ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
1932 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
1933 		INIT_LIST_HEAD(&ctx->groups[i]);
1934 		INIT_LIST_HEAD(&ctx->old_groups[i]);
1935 	}
1936 
1937 	for (i = 0; i < sched->csg_slot_count; i++) {
1938 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
1939 		struct panthor_group *group = csg_slot->group;
1940 		struct panthor_fw_csg_iface *csg_iface;
1941 
1942 		if (!group)
1943 			continue;
1944 
1945 		csg_iface = panthor_fw_get_csg_iface(ptdev, i);
1946 		group_get(group);
1947 
1948 		/* If there was unhandled faults on the VM, force processing of
1949 		 * CSG IRQs, so we can flag the faulty queue.
1950 		 */
1951 		if (panthor_vm_has_unhandled_faults(group->vm)) {
1952 			sched_process_csg_irq_locked(ptdev, i);
1953 
1954 			/* No fatal fault reported, flag all queues as faulty. */
1955 			if (!group->fatal_queues)
1956 				group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
1957 		}
1958 
1959 		tick_ctx_insert_old_group(sched, ctx, group, full_tick);
1960 		csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
1961 					csg_iface->output->ack ^ CSG_STATUS_UPDATE,
1962 					CSG_STATUS_UPDATE);
1963 	}
1964 
1965 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
1966 	if (ret) {
1967 		panthor_device_schedule_reset(ptdev);
1968 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
1969 	}
1970 }
1971 
1972 #define NUM_INSTRS_PER_SLOT		16
1973 
1974 static void
1975 group_term_post_processing(struct panthor_group *group)
1976 {
1977 	struct panthor_job *job, *tmp;
1978 	LIST_HEAD(faulty_jobs);
1979 	bool cookie;
1980 	u32 i = 0;
1981 
1982 	if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
1983 		return;
1984 
1985 	cookie = dma_fence_begin_signalling();
1986 	for (i = 0; i < group->queue_count; i++) {
1987 		struct panthor_queue *queue = group->queues[i];
1988 		struct panthor_syncobj_64b *syncobj;
1989 		int err;
1990 
1991 		if (group->fatal_queues & BIT(i))
1992 			err = -EINVAL;
1993 		else if (group->timedout)
1994 			err = -ETIMEDOUT;
1995 		else
1996 			err = -ECANCELED;
1997 
1998 		if (!queue)
1999 			continue;
2000 
2001 		spin_lock(&queue->fence_ctx.lock);
2002 		list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2003 			list_move_tail(&job->node, &faulty_jobs);
2004 			dma_fence_set_error(job->done_fence, err);
2005 			dma_fence_signal_locked(job->done_fence);
2006 		}
2007 		spin_unlock(&queue->fence_ctx.lock);
2008 
2009 		/* Manually update the syncobj seqno to unblock waiters. */
2010 		syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2011 		syncobj->status = ~0;
2012 		syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2013 		sched_queue_work(group->ptdev->scheduler, sync_upd);
2014 	}
2015 	dma_fence_end_signalling(cookie);
2016 
2017 	list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2018 		list_del_init(&job->node);
2019 		panthor_job_put(&job->base);
2020 	}
2021 }
2022 
2023 static void group_term_work(struct work_struct *work)
2024 {
2025 	struct panthor_group *group =
2026 		container_of(work, struct panthor_group, term_work);
2027 
2028 	group_term_post_processing(group);
2029 	group_put(group);
2030 }
2031 
2032 static void
2033 tick_ctx_cleanup(struct panthor_scheduler *sched,
2034 		 struct panthor_sched_tick_ctx *ctx)
2035 {
2036 	struct panthor_group *group, *tmp;
2037 	u32 i;
2038 
2039 	for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2040 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2041 			/* If everything went fine, we should only have groups
2042 			 * to be terminated in the old_groups lists.
2043 			 */
2044 			drm_WARN_ON(&group->ptdev->base, !ctx->csg_upd_failed_mask &&
2045 				    group_can_run(group));
2046 
2047 			if (!group_can_run(group)) {
2048 				list_del_init(&group->run_node);
2049 				list_del_init(&group->wait_node);
2050 				group_queue_work(group, term);
2051 			} else if (group->csg_id >= 0) {
2052 				list_del_init(&group->run_node);
2053 			} else {
2054 				list_move(&group->run_node,
2055 					  group_is_idle(group) ?
2056 					  &sched->groups.idle[group->priority] :
2057 					  &sched->groups.runnable[group->priority]);
2058 			}
2059 			group_put(group);
2060 		}
2061 	}
2062 
2063 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2064 		/* If everything went fine, the groups to schedule lists should
2065 		 * be empty.
2066 		 */
2067 		drm_WARN_ON(&group->ptdev->base,
2068 			    !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2069 
2070 		list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2071 			if (group->csg_id >= 0) {
2072 				list_del_init(&group->run_node);
2073 			} else {
2074 				list_move(&group->run_node,
2075 					  group_is_idle(group) ?
2076 					  &sched->groups.idle[group->priority] :
2077 					  &sched->groups.runnable[group->priority]);
2078 			}
2079 			group_put(group);
2080 		}
2081 	}
2082 }
2083 
2084 static void
2085 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2086 {
2087 	struct panthor_group *group, *tmp;
2088 	struct panthor_device *ptdev = sched->ptdev;
2089 	struct panthor_csg_slot *csg_slot;
2090 	int prio, new_csg_prio = MAX_CSG_PRIO, i;
2091 	u32 free_csg_slots = 0;
2092 	struct panthor_csg_slots_upd_ctx upd_ctx;
2093 	int ret;
2094 
2095 	csgs_upd_ctx_init(&upd_ctx);
2096 
2097 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2098 		/* Suspend or terminate evicted groups. */
2099 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2100 			bool term = !group_can_run(group);
2101 			int csg_id = group->csg_id;
2102 
2103 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2104 				continue;
2105 
2106 			csg_slot = &sched->csg_slots[csg_id];
2107 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2108 						term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2109 						CSG_STATE_MASK);
2110 		}
2111 
2112 		/* Update priorities on already running groups. */
2113 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2114 			struct panthor_fw_csg_iface *csg_iface;
2115 			int csg_id = group->csg_id;
2116 
2117 			if (csg_id < 0) {
2118 				new_csg_prio--;
2119 				continue;
2120 			}
2121 
2122 			csg_slot = &sched->csg_slots[csg_id];
2123 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2124 			if (csg_slot->priority == new_csg_prio) {
2125 				new_csg_prio--;
2126 				continue;
2127 			}
2128 
2129 			panthor_fw_update_reqs(csg_iface, endpoint_req,
2130 					       CSG_EP_REQ_PRIORITY(new_csg_prio),
2131 					       CSG_EP_REQ_PRIORITY_MASK);
2132 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2133 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2134 						CSG_ENDPOINT_CONFIG);
2135 			new_csg_prio--;
2136 		}
2137 	}
2138 
2139 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2140 	if (ret) {
2141 		panthor_device_schedule_reset(ptdev);
2142 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2143 		return;
2144 	}
2145 
2146 	/* Unbind evicted groups. */
2147 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2148 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2149 			/* This group is gone. Process interrupts to clear
2150 			 * any pending interrupts before we start the new
2151 			 * group.
2152 			 */
2153 			if (group->csg_id >= 0)
2154 				sched_process_csg_irq_locked(ptdev, group->csg_id);
2155 
2156 			group_unbind_locked(group);
2157 		}
2158 	}
2159 
2160 	for (i = 0; i < sched->csg_slot_count; i++) {
2161 		if (!sched->csg_slots[i].group)
2162 			free_csg_slots |= BIT(i);
2163 	}
2164 
2165 	csgs_upd_ctx_init(&upd_ctx);
2166 	new_csg_prio = MAX_CSG_PRIO;
2167 
2168 	/* Start new groups. */
2169 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2170 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2171 			int csg_id = group->csg_id;
2172 			struct panthor_fw_csg_iface *csg_iface;
2173 
2174 			if (csg_id >= 0) {
2175 				new_csg_prio--;
2176 				continue;
2177 			}
2178 
2179 			csg_id = ffs(free_csg_slots) - 1;
2180 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2181 				break;
2182 
2183 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2184 			csg_slot = &sched->csg_slots[csg_id];
2185 			group_bind_locked(group, csg_id);
2186 			csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2187 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2188 						group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2189 						CSG_STATE_RESUME : CSG_STATE_START,
2190 						CSG_STATE_MASK);
2191 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2192 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2193 						CSG_ENDPOINT_CONFIG);
2194 			free_csg_slots &= ~BIT(csg_id);
2195 		}
2196 	}
2197 
2198 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2199 	if (ret) {
2200 		panthor_device_schedule_reset(ptdev);
2201 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2202 		return;
2203 	}
2204 
2205 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2206 		list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2207 			list_del_init(&group->run_node);
2208 
2209 			/* If the group has been destroyed while we were
2210 			 * scheduling, ask for an immediate tick to
2211 			 * re-evaluate as soon as possible and get rid of
2212 			 * this dangling group.
2213 			 */
2214 			if (group->destroyed)
2215 				ctx->immediate_tick = true;
2216 			group_put(group);
2217 		}
2218 
2219 		/* Return evicted groups to the idle or run queues. Groups
2220 		 * that can no longer be run (because they've been destroyed
2221 		 * or experienced an unrecoverable error) will be scheduled
2222 		 * for destruction in tick_ctx_cleanup().
2223 		 */
2224 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2225 			if (!group_can_run(group))
2226 				continue;
2227 
2228 			if (group_is_idle(group))
2229 				list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2230 			else
2231 				list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2232 			group_put(group);
2233 		}
2234 	}
2235 
2236 	sched->used_csg_slot_count = ctx->group_count;
2237 	sched->might_have_idle_groups = ctx->idle_group_count > 0;
2238 }
2239 
2240 static u64
2241 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2242 			       const struct panthor_sched_tick_ctx *ctx)
2243 {
2244 	/* We had space left, no need to reschedule until some external event happens. */
2245 	if (!tick_ctx_is_full(sched, ctx))
2246 		goto no_tick;
2247 
2248 	/* If idle groups were scheduled, no need to wake up until some external
2249 	 * event happens (group unblocked, new job submitted, ...).
2250 	 */
2251 	if (ctx->idle_group_count)
2252 		goto no_tick;
2253 
2254 	if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
2255 		goto no_tick;
2256 
2257 	/* If there are groups of the same priority waiting, we need to
2258 	 * keep the scheduler ticking, otherwise, we'll just wait for
2259 	 * new groups with higher priority to be queued.
2260 	 */
2261 	if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
2262 		u64 resched_target = sched->last_tick + sched->tick_period;
2263 
2264 		if (time_before64(sched->resched_target, sched->last_tick) ||
2265 		    time_before64(resched_target, sched->resched_target))
2266 			sched->resched_target = resched_target;
2267 
2268 		return sched->resched_target - sched->last_tick;
2269 	}
2270 
2271 no_tick:
2272 	sched->resched_target = U64_MAX;
2273 	return U64_MAX;
2274 }
2275 
2276 static void tick_work(struct work_struct *work)
2277 {
2278 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2279 						      tick_work.work);
2280 	struct panthor_device *ptdev = sched->ptdev;
2281 	struct panthor_sched_tick_ctx ctx;
2282 	u64 remaining_jiffies = 0, resched_delay;
2283 	u64 now = get_jiffies_64();
2284 	int prio, ret, cookie;
2285 
2286 	if (!drm_dev_enter(&ptdev->base, &cookie))
2287 		return;
2288 
2289 	ret = pm_runtime_resume_and_get(ptdev->base.dev);
2290 	if (drm_WARN_ON(&ptdev->base, ret))
2291 		goto out_dev_exit;
2292 
2293 	if (time_before64(now, sched->resched_target))
2294 		remaining_jiffies = sched->resched_target - now;
2295 
2296 	mutex_lock(&sched->lock);
2297 	if (panthor_device_reset_is_pending(sched->ptdev))
2298 		goto out_unlock;
2299 
2300 	tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
2301 	if (ctx.csg_upd_failed_mask)
2302 		goto out_cleanup_ctx;
2303 
2304 	if (remaining_jiffies) {
2305 		/* Scheduling forced in the middle of a tick. Only RT groups
2306 		 * can preempt non-RT ones. Currently running RT groups can't be
2307 		 * preempted.
2308 		 */
2309 		for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2310 		     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2311 		     prio--) {
2312 			tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2313 						       true, true);
2314 			if (prio == PANTHOR_CSG_PRIORITY_RT) {
2315 				tick_ctx_pick_groups_from_list(sched, &ctx,
2316 							       &sched->groups.runnable[prio],
2317 							       true, false);
2318 			}
2319 		}
2320 	}
2321 
2322 	/* First pick non-idle groups */
2323 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2324 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2325 	     prio--) {
2326 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2327 					       true, false);
2328 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2329 	}
2330 
2331 	/* If we have free CSG slots left, pick idle groups */
2332 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2333 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2334 	     prio--) {
2335 		/* Check the old_group queue first to avoid reprogramming the slots */
2336 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2337 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2338 					       false, false);
2339 	}
2340 
2341 	tick_ctx_apply(sched, &ctx);
2342 	if (ctx.csg_upd_failed_mask)
2343 		goto out_cleanup_ctx;
2344 
2345 	if (ctx.idle_group_count == ctx.group_count) {
2346 		panthor_devfreq_record_idle(sched->ptdev);
2347 		if (sched->pm.has_ref) {
2348 			pm_runtime_put_autosuspend(ptdev->base.dev);
2349 			sched->pm.has_ref = false;
2350 		}
2351 	} else {
2352 		panthor_devfreq_record_busy(sched->ptdev);
2353 		if (!sched->pm.has_ref) {
2354 			pm_runtime_get(ptdev->base.dev);
2355 			sched->pm.has_ref = true;
2356 		}
2357 	}
2358 
2359 	sched->last_tick = now;
2360 	resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2361 	if (ctx.immediate_tick)
2362 		resched_delay = 0;
2363 
2364 	if (resched_delay != U64_MAX)
2365 		sched_queue_delayed_work(sched, tick, resched_delay);
2366 
2367 out_cleanup_ctx:
2368 	tick_ctx_cleanup(sched, &ctx);
2369 
2370 out_unlock:
2371 	mutex_unlock(&sched->lock);
2372 	pm_runtime_mark_last_busy(ptdev->base.dev);
2373 	pm_runtime_put_autosuspend(ptdev->base.dev);
2374 
2375 out_dev_exit:
2376 	drm_dev_exit(cookie);
2377 }
2378 
2379 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2380 {
2381 	struct panthor_queue *queue = group->queues[queue_idx];
2382 	union {
2383 		struct panthor_syncobj_64b sync64;
2384 		struct panthor_syncobj_32b sync32;
2385 	} *syncobj;
2386 	bool result;
2387 	u64 value;
2388 
2389 	syncobj = panthor_queue_get_syncwait_obj(group, queue);
2390 	if (!syncobj)
2391 		return -EINVAL;
2392 
2393 	value = queue->syncwait.sync64 ?
2394 		syncobj->sync64.seqno :
2395 		syncobj->sync32.seqno;
2396 
2397 	if (queue->syncwait.gt)
2398 		result = value > queue->syncwait.ref;
2399 	else
2400 		result = value <= queue->syncwait.ref;
2401 
2402 	if (result)
2403 		panthor_queue_put_syncwait_obj(queue);
2404 
2405 	return result;
2406 }
2407 
2408 static void sync_upd_work(struct work_struct *work)
2409 {
2410 	struct panthor_scheduler *sched = container_of(work,
2411 						      struct panthor_scheduler,
2412 						      sync_upd_work);
2413 	struct panthor_group *group, *tmp;
2414 	bool immediate_tick = false;
2415 
2416 	mutex_lock(&sched->lock);
2417 	list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2418 		u32 tested_queues = group->blocked_queues;
2419 		u32 unblocked_queues = 0;
2420 
2421 		while (tested_queues) {
2422 			u32 cs_id = ffs(tested_queues) - 1;
2423 			int ret;
2424 
2425 			ret = panthor_queue_eval_syncwait(group, cs_id);
2426 			drm_WARN_ON(&group->ptdev->base, ret < 0);
2427 			if (ret)
2428 				unblocked_queues |= BIT(cs_id);
2429 
2430 			tested_queues &= ~BIT(cs_id);
2431 		}
2432 
2433 		if (unblocked_queues) {
2434 			group->blocked_queues &= ~unblocked_queues;
2435 
2436 			if (group->csg_id < 0) {
2437 				list_move(&group->run_node,
2438 					  &sched->groups.runnable[group->priority]);
2439 				if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2440 					immediate_tick = true;
2441 			}
2442 		}
2443 
2444 		if (!group->blocked_queues)
2445 			list_del_init(&group->wait_node);
2446 	}
2447 	mutex_unlock(&sched->lock);
2448 
2449 	if (immediate_tick)
2450 		sched_queue_delayed_work(sched, tick, 0);
2451 }
2452 
2453 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2454 {
2455 	struct panthor_device *ptdev = group->ptdev;
2456 	struct panthor_scheduler *sched = ptdev->scheduler;
2457 	struct list_head *queue = &sched->groups.runnable[group->priority];
2458 	u64 delay_jiffies = 0;
2459 	bool was_idle;
2460 	u64 now;
2461 
2462 	if (!group_can_run(group))
2463 		return;
2464 
2465 	/* All updated queues are blocked, no need to wake up the scheduler. */
2466 	if ((queue_mask & group->blocked_queues) == queue_mask)
2467 		return;
2468 
2469 	was_idle = group_is_idle(group);
2470 	group->idle_queues &= ~queue_mask;
2471 
2472 	/* Don't mess up with the lists if we're in a middle of a reset. */
2473 	if (atomic_read(&sched->reset.in_progress))
2474 		return;
2475 
2476 	if (was_idle && !group_is_idle(group))
2477 		list_move_tail(&group->run_node, queue);
2478 
2479 	/* RT groups are preemptive. */
2480 	if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2481 		sched_queue_delayed_work(sched, tick, 0);
2482 		return;
2483 	}
2484 
2485 	/* Some groups might be idle, force an immediate tick to
2486 	 * re-evaluate.
2487 	 */
2488 	if (sched->might_have_idle_groups) {
2489 		sched_queue_delayed_work(sched, tick, 0);
2490 		return;
2491 	}
2492 
2493 	/* Scheduler is ticking, nothing to do. */
2494 	if (sched->resched_target != U64_MAX) {
2495 		/* If there are free slots, force immediating ticking. */
2496 		if (sched->used_csg_slot_count < sched->csg_slot_count)
2497 			sched_queue_delayed_work(sched, tick, 0);
2498 
2499 		return;
2500 	}
2501 
2502 	/* Scheduler tick was off, recalculate the resched_target based on the
2503 	 * last tick event, and queue the scheduler work.
2504 	 */
2505 	now = get_jiffies_64();
2506 	sched->resched_target = sched->last_tick + sched->tick_period;
2507 	if (sched->used_csg_slot_count == sched->csg_slot_count &&
2508 	    time_before64(now, sched->resched_target))
2509 		delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2510 
2511 	sched_queue_delayed_work(sched, tick, delay_jiffies);
2512 }
2513 
2514 static void queue_stop(struct panthor_queue *queue,
2515 		       struct panthor_job *bad_job)
2516 {
2517 	drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2518 }
2519 
2520 static void queue_start(struct panthor_queue *queue)
2521 {
2522 	struct panthor_job *job;
2523 
2524 	/* Re-assign the parent fences. */
2525 	list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2526 		job->base.s_fence->parent = dma_fence_get(job->done_fence);
2527 
2528 	drm_sched_start(&queue->scheduler, true);
2529 }
2530 
2531 static void panthor_group_stop(struct panthor_group *group)
2532 {
2533 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2534 
2535 	lockdep_assert_held(&sched->reset.lock);
2536 
2537 	for (u32 i = 0; i < group->queue_count; i++)
2538 		queue_stop(group->queues[i], NULL);
2539 
2540 	group_get(group);
2541 	list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2542 }
2543 
2544 static void panthor_group_start(struct panthor_group *group)
2545 {
2546 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2547 
2548 	lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2549 
2550 	for (u32 i = 0; i < group->queue_count; i++)
2551 		queue_start(group->queues[i]);
2552 
2553 	if (group_can_run(group)) {
2554 		list_move_tail(&group->run_node,
2555 			       group_is_idle(group) ?
2556 			       &sched->groups.idle[group->priority] :
2557 			       &sched->groups.runnable[group->priority]);
2558 	} else {
2559 		list_del_init(&group->run_node);
2560 		list_del_init(&group->wait_node);
2561 		group_queue_work(group, term);
2562 	}
2563 
2564 	group_put(group);
2565 }
2566 
2567 static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
2568 {
2569 	struct panthor_scheduler *sched = ptdev->scheduler;
2570 
2571 	sched_queue_delayed_work(sched, tick, 0);
2572 }
2573 
2574 /**
2575  * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2576  */
2577 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2578 {
2579 	/* Force a tick to immediately kill faulty groups. */
2580 	if (ptdev->scheduler)
2581 		panthor_sched_immediate_tick(ptdev);
2582 }
2583 
2584 void panthor_sched_resume(struct panthor_device *ptdev)
2585 {
2586 	/* Force a tick to re-evaluate after a resume. */
2587 	panthor_sched_immediate_tick(ptdev);
2588 }
2589 
2590 void panthor_sched_suspend(struct panthor_device *ptdev)
2591 {
2592 	struct panthor_scheduler *sched = ptdev->scheduler;
2593 	struct panthor_csg_slots_upd_ctx upd_ctx;
2594 	struct panthor_group *group;
2595 	u32 suspended_slots;
2596 	u32 i;
2597 
2598 	mutex_lock(&sched->lock);
2599 	csgs_upd_ctx_init(&upd_ctx);
2600 	for (i = 0; i < sched->csg_slot_count; i++) {
2601 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2602 
2603 		if (csg_slot->group) {
2604 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2605 						group_can_run(csg_slot->group) ?
2606 						CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2607 						CSG_STATE_MASK);
2608 		}
2609 	}
2610 
2611 	suspended_slots = upd_ctx.update_mask;
2612 
2613 	csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2614 	suspended_slots &= ~upd_ctx.timedout_mask;
2615 
2616 	if (upd_ctx.timedout_mask) {
2617 		u32 slot_mask = upd_ctx.timedout_mask;
2618 
2619 		drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2620 		csgs_upd_ctx_init(&upd_ctx);
2621 		while (slot_mask) {
2622 			u32 csg_id = ffs(slot_mask) - 1;
2623 
2624 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2625 						CSG_STATE_TERMINATE,
2626 						CSG_STATE_MASK);
2627 			slot_mask &= ~BIT(csg_id);
2628 		}
2629 
2630 		csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2631 
2632 		slot_mask = upd_ctx.timedout_mask;
2633 		while (slot_mask) {
2634 			u32 csg_id = ffs(slot_mask) - 1;
2635 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2636 
2637 			/* Terminate command timedout, but the soft-reset will
2638 			 * automatically terminate all active groups, so let's
2639 			 * force the state to halted here.
2640 			 */
2641 			if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED)
2642 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2643 			slot_mask &= ~BIT(csg_id);
2644 		}
2645 	}
2646 
2647 	/* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2648 	 * If the flush fails, flag all queues for termination.
2649 	 */
2650 	if (suspended_slots) {
2651 		bool flush_caches_failed = false;
2652 		u32 slot_mask = suspended_slots;
2653 
2654 		if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2655 			flush_caches_failed = true;
2656 
2657 		while (slot_mask) {
2658 			u32 csg_id = ffs(slot_mask) - 1;
2659 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2660 
2661 			if (flush_caches_failed)
2662 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2663 			else
2664 				csg_slot_sync_update_locked(ptdev, csg_id);
2665 
2666 			slot_mask &= ~BIT(csg_id);
2667 		}
2668 	}
2669 
2670 	for (i = 0; i < sched->csg_slot_count; i++) {
2671 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2672 
2673 		group = csg_slot->group;
2674 		if (!group)
2675 			continue;
2676 
2677 		group_get(group);
2678 
2679 		if (group->csg_id >= 0)
2680 			sched_process_csg_irq_locked(ptdev, group->csg_id);
2681 
2682 		group_unbind_locked(group);
2683 
2684 		drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2685 
2686 		if (group_can_run(group)) {
2687 			list_add(&group->run_node,
2688 				 &sched->groups.idle[group->priority]);
2689 		} else {
2690 			/* We don't bother stopping the scheduler if the group is
2691 			 * faulty, the group termination work will finish the job.
2692 			 */
2693 			list_del_init(&group->wait_node);
2694 			group_queue_work(group, term);
2695 		}
2696 		group_put(group);
2697 	}
2698 	mutex_unlock(&sched->lock);
2699 }
2700 
2701 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2702 {
2703 	struct panthor_scheduler *sched = ptdev->scheduler;
2704 	struct panthor_group *group, *group_tmp;
2705 	u32 i;
2706 
2707 	mutex_lock(&sched->reset.lock);
2708 	atomic_set(&sched->reset.in_progress, true);
2709 
2710 	/* Cancel all scheduler works. Once this is done, these works can't be
2711 	 * scheduled again until the reset operation is complete.
2712 	 */
2713 	cancel_work_sync(&sched->sync_upd_work);
2714 	cancel_delayed_work_sync(&sched->tick_work);
2715 
2716 	panthor_sched_suspend(ptdev);
2717 
2718 	/* Stop all groups that might still accept jobs, so we don't get passed
2719 	 * new jobs while we're resetting.
2720 	 */
2721 	for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2722 		/* All groups should be in the idle lists. */
2723 		drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
2724 		list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2725 			panthor_group_stop(group);
2726 	}
2727 
2728 	for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2729 		list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2730 			panthor_group_stop(group);
2731 	}
2732 
2733 	mutex_unlock(&sched->reset.lock);
2734 }
2735 
2736 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2737 {
2738 	struct panthor_scheduler *sched = ptdev->scheduler;
2739 	struct panthor_group *group, *group_tmp;
2740 
2741 	mutex_lock(&sched->reset.lock);
2742 
2743 	list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2744 		/* Consider all previously running group as terminated if the
2745 		 * reset failed.
2746 		 */
2747 		if (reset_failed)
2748 			group->state = PANTHOR_CS_GROUP_TERMINATED;
2749 
2750 		panthor_group_start(group);
2751 	}
2752 
2753 	/* We're done resetting the GPU, clear the reset.in_progress bit so we can
2754 	 * kick the scheduler.
2755 	 */
2756 	atomic_set(&sched->reset.in_progress, false);
2757 	mutex_unlock(&sched->reset.lock);
2758 
2759 	/* No need to queue a tick and update syncs if the reset failed. */
2760 	if (!reset_failed) {
2761 		sched_queue_delayed_work(sched, tick, 0);
2762 		sched_queue_work(sched, sync_upd);
2763 	}
2764 }
2765 
2766 static void group_sync_upd_work(struct work_struct *work)
2767 {
2768 	struct panthor_group *group =
2769 		container_of(work, struct panthor_group, sync_upd_work);
2770 	struct panthor_job *job, *job_tmp;
2771 	LIST_HEAD(done_jobs);
2772 	u32 queue_idx;
2773 	bool cookie;
2774 
2775 	cookie = dma_fence_begin_signalling();
2776 	for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
2777 		struct panthor_queue *queue = group->queues[queue_idx];
2778 		struct panthor_syncobj_64b *syncobj;
2779 
2780 		if (!queue)
2781 			continue;
2782 
2783 		syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj));
2784 
2785 		spin_lock(&queue->fence_ctx.lock);
2786 		list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
2787 			if (!job->call_info.size)
2788 				continue;
2789 
2790 			if (syncobj->seqno < job->done_fence->seqno)
2791 				break;
2792 
2793 			list_move_tail(&job->node, &done_jobs);
2794 			dma_fence_signal_locked(job->done_fence);
2795 		}
2796 		spin_unlock(&queue->fence_ctx.lock);
2797 	}
2798 	dma_fence_end_signalling(cookie);
2799 
2800 	list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
2801 		list_del_init(&job->node);
2802 		panthor_job_put(&job->base);
2803 	}
2804 
2805 	group_put(group);
2806 }
2807 
2808 static struct dma_fence *
2809 queue_run_job(struct drm_sched_job *sched_job)
2810 {
2811 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
2812 	struct panthor_group *group = job->group;
2813 	struct panthor_queue *queue = group->queues[job->queue_idx];
2814 	struct panthor_device *ptdev = group->ptdev;
2815 	struct panthor_scheduler *sched = ptdev->scheduler;
2816 	u32 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
2817 	u32 ringbuf_insert = queue->iface.input->insert & (ringbuf_size - 1);
2818 	u64 addr_reg = ptdev->csif_info.cs_reg_count -
2819 		       ptdev->csif_info.unpreserved_cs_reg_count;
2820 	u64 val_reg = addr_reg + 2;
2821 	u64 sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
2822 			job->queue_idx * sizeof(struct panthor_syncobj_64b);
2823 	u32 waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
2824 	struct dma_fence *done_fence;
2825 	int ret;
2826 
2827 	u64 call_instrs[NUM_INSTRS_PER_SLOT] = {
2828 		/* MOV32 rX+2, cs.latest_flush */
2829 		(2ull << 56) | (val_reg << 48) | job->call_info.latest_flush,
2830 
2831 		/* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
2832 		(36ull << 56) | (0ull << 48) | (val_reg << 40) | (0 << 16) | 0x233,
2833 
2834 		/* MOV48 rX:rX+1, cs.start */
2835 		(1ull << 56) | (addr_reg << 48) | job->call_info.start,
2836 
2837 		/* MOV32 rX+2, cs.size */
2838 		(2ull << 56) | (val_reg << 48) | job->call_info.size,
2839 
2840 		/* WAIT(0) => waits for FLUSH_CACHE2 instruction */
2841 		(3ull << 56) | (1 << 16),
2842 
2843 		/* CALL rX:rX+1, rX+2 */
2844 		(32ull << 56) | (addr_reg << 40) | (val_reg << 32),
2845 
2846 		/* MOV48 rX:rX+1, sync_addr */
2847 		(1ull << 56) | (addr_reg << 48) | sync_addr,
2848 
2849 		/* MOV48 rX+2, #1 */
2850 		(1ull << 56) | (val_reg << 48) | 1,
2851 
2852 		/* WAIT(all) */
2853 		(3ull << 56) | (waitall_mask << 16),
2854 
2855 		/* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
2856 		(51ull << 56) | (0ull << 48) | (addr_reg << 40) | (val_reg << 32) | (0 << 16) | 1,
2857 
2858 		/* ERROR_BARRIER, so we can recover from faults at job
2859 		 * boundaries.
2860 		 */
2861 		(47ull << 56),
2862 	};
2863 
2864 	/* Need to be cacheline aligned to please the prefetcher. */
2865 	static_assert(sizeof(call_instrs) % 64 == 0,
2866 		      "call_instrs is not aligned on a cacheline");
2867 
2868 	/* Stream size is zero, nothing to do => return a NULL fence and let
2869 	 * drm_sched signal the parent.
2870 	 */
2871 	if (!job->call_info.size)
2872 		return NULL;
2873 
2874 	ret = pm_runtime_resume_and_get(ptdev->base.dev);
2875 	if (drm_WARN_ON(&ptdev->base, ret))
2876 		return ERR_PTR(ret);
2877 
2878 	mutex_lock(&sched->lock);
2879 	if (!group_can_run(group)) {
2880 		done_fence = ERR_PTR(-ECANCELED);
2881 		goto out_unlock;
2882 	}
2883 
2884 	dma_fence_init(job->done_fence,
2885 		       &panthor_queue_fence_ops,
2886 		       &queue->fence_ctx.lock,
2887 		       queue->fence_ctx.id,
2888 		       atomic64_inc_return(&queue->fence_ctx.seqno));
2889 
2890 	memcpy(queue->ringbuf->kmap + ringbuf_insert,
2891 	       call_instrs, sizeof(call_instrs));
2892 
2893 	panthor_job_get(&job->base);
2894 	spin_lock(&queue->fence_ctx.lock);
2895 	list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
2896 	spin_unlock(&queue->fence_ctx.lock);
2897 
2898 	job->ringbuf.start = queue->iface.input->insert;
2899 	job->ringbuf.end = job->ringbuf.start + sizeof(call_instrs);
2900 
2901 	/* Make sure the ring buffer is updated before the INSERT
2902 	 * register.
2903 	 */
2904 	wmb();
2905 
2906 	queue->iface.input->extract = queue->iface.output->extract;
2907 	queue->iface.input->insert = job->ringbuf.end;
2908 
2909 	if (group->csg_id < 0) {
2910 		/* If the queue is blocked, we want to keep the timeout running, so we
2911 		 * can detect unbounded waits and kill the group when that happens.
2912 		 * Otherwise, we suspend the timeout so the time we spend waiting for
2913 		 * a CSG slot is not counted.
2914 		 */
2915 		if (!(group->blocked_queues & BIT(job->queue_idx)) &&
2916 		    !queue->timeout_suspended) {
2917 			queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
2918 			queue->timeout_suspended = true;
2919 		}
2920 
2921 		group_schedule_locked(group, BIT(job->queue_idx));
2922 	} else {
2923 		gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
2924 		if (!sched->pm.has_ref &&
2925 		    !(group->blocked_queues & BIT(job->queue_idx))) {
2926 			pm_runtime_get(ptdev->base.dev);
2927 			sched->pm.has_ref = true;
2928 		}
2929 	}
2930 
2931 	done_fence = dma_fence_get(job->done_fence);
2932 
2933 out_unlock:
2934 	mutex_unlock(&sched->lock);
2935 	pm_runtime_mark_last_busy(ptdev->base.dev);
2936 	pm_runtime_put_autosuspend(ptdev->base.dev);
2937 
2938 	return done_fence;
2939 }
2940 
2941 static enum drm_gpu_sched_stat
2942 queue_timedout_job(struct drm_sched_job *sched_job)
2943 {
2944 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
2945 	struct panthor_group *group = job->group;
2946 	struct panthor_device *ptdev = group->ptdev;
2947 	struct panthor_scheduler *sched = ptdev->scheduler;
2948 	struct panthor_queue *queue = group->queues[job->queue_idx];
2949 
2950 	drm_warn(&ptdev->base, "job timeout\n");
2951 
2952 	drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
2953 
2954 	queue_stop(queue, job);
2955 
2956 	mutex_lock(&sched->lock);
2957 	group->timedout = true;
2958 	if (group->csg_id >= 0) {
2959 		sched_queue_delayed_work(ptdev->scheduler, tick, 0);
2960 	} else {
2961 		/* Remove from the run queues, so the scheduler can't
2962 		 * pick the group on the next tick.
2963 		 */
2964 		list_del_init(&group->run_node);
2965 		list_del_init(&group->wait_node);
2966 
2967 		group_queue_work(group, term);
2968 	}
2969 	mutex_unlock(&sched->lock);
2970 
2971 	queue_start(queue);
2972 
2973 	return DRM_GPU_SCHED_STAT_NOMINAL;
2974 }
2975 
2976 static void queue_free_job(struct drm_sched_job *sched_job)
2977 {
2978 	drm_sched_job_cleanup(sched_job);
2979 	panthor_job_put(sched_job);
2980 }
2981 
2982 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
2983 	.run_job = queue_run_job,
2984 	.timedout_job = queue_timedout_job,
2985 	.free_job = queue_free_job,
2986 };
2987 
2988 static struct panthor_queue *
2989 group_create_queue(struct panthor_group *group,
2990 		   const struct drm_panthor_queue_create *args)
2991 {
2992 	struct drm_gpu_scheduler *drm_sched;
2993 	struct panthor_queue *queue;
2994 	int ret;
2995 
2996 	if (args->pad[0] || args->pad[1] || args->pad[2])
2997 		return ERR_PTR(-EINVAL);
2998 
2999 	if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3000 	    !is_power_of_2(args->ringbuf_size))
3001 		return ERR_PTR(-EINVAL);
3002 
3003 	if (args->priority > CSF_MAX_QUEUE_PRIO)
3004 		return ERR_PTR(-EINVAL);
3005 
3006 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3007 	if (!queue)
3008 		return ERR_PTR(-ENOMEM);
3009 
3010 	queue->fence_ctx.id = dma_fence_context_alloc(1);
3011 	spin_lock_init(&queue->fence_ctx.lock);
3012 	INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3013 
3014 	queue->priority = args->priority;
3015 
3016 	queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3017 						  args->ringbuf_size,
3018 						  DRM_PANTHOR_BO_NO_MMAP,
3019 						  DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3020 						  DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3021 						  PANTHOR_VM_KERNEL_AUTO_VA);
3022 	if (IS_ERR(queue->ringbuf)) {
3023 		ret = PTR_ERR(queue->ringbuf);
3024 		goto err_free_queue;
3025 	}
3026 
3027 	ret = panthor_kernel_bo_vmap(queue->ringbuf);
3028 	if (ret)
3029 		goto err_free_queue;
3030 
3031 	queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3032 							    &queue->iface.input,
3033 							    &queue->iface.output,
3034 							    &queue->iface.input_fw_va,
3035 							    &queue->iface.output_fw_va);
3036 	if (IS_ERR(queue->iface.mem)) {
3037 		ret = PTR_ERR(queue->iface.mem);
3038 		goto err_free_queue;
3039 	}
3040 
3041 	ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops,
3042 			     group->ptdev->scheduler->wq, 1,
3043 			     args->ringbuf_size / (NUM_INSTRS_PER_SLOT * sizeof(u64)),
3044 			     0, msecs_to_jiffies(JOB_TIMEOUT_MS),
3045 			     group->ptdev->reset.wq,
3046 			     NULL, "panthor-queue", group->ptdev->base.dev);
3047 	if (ret)
3048 		goto err_free_queue;
3049 
3050 	drm_sched = &queue->scheduler;
3051 	ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3052 
3053 	return queue;
3054 
3055 err_free_queue:
3056 	group_free_queue(group, queue);
3057 	return ERR_PTR(ret);
3058 }
3059 
3060 #define MAX_GROUPS_PER_POOL		128
3061 
3062 int panthor_group_create(struct panthor_file *pfile,
3063 			 const struct drm_panthor_group_create *group_args,
3064 			 const struct drm_panthor_queue_create *queue_args)
3065 {
3066 	struct panthor_device *ptdev = pfile->ptdev;
3067 	struct panthor_group_pool *gpool = pfile->groups;
3068 	struct panthor_scheduler *sched = ptdev->scheduler;
3069 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3070 	struct panthor_group *group = NULL;
3071 	u32 gid, i, suspend_size;
3072 	int ret;
3073 
3074 	if (group_args->pad)
3075 		return -EINVAL;
3076 
3077 	if (group_args->priority > PANTHOR_CSG_PRIORITY_HIGH)
3078 		return -EINVAL;
3079 
3080 	if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3081 	    (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3082 	    (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3083 		return -EINVAL;
3084 
3085 	if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3086 	    hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3087 	    hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3088 		return -EINVAL;
3089 
3090 	group = kzalloc(sizeof(*group), GFP_KERNEL);
3091 	if (!group)
3092 		return -ENOMEM;
3093 
3094 	spin_lock_init(&group->fatal_lock);
3095 	kref_init(&group->refcount);
3096 	group->state = PANTHOR_CS_GROUP_CREATED;
3097 	group->csg_id = -1;
3098 
3099 	group->ptdev = ptdev;
3100 	group->max_compute_cores = group_args->max_compute_cores;
3101 	group->compute_core_mask = group_args->compute_core_mask;
3102 	group->max_fragment_cores = group_args->max_fragment_cores;
3103 	group->fragment_core_mask = group_args->fragment_core_mask;
3104 	group->max_tiler_cores = group_args->max_tiler_cores;
3105 	group->tiler_core_mask = group_args->tiler_core_mask;
3106 	group->priority = group_args->priority;
3107 
3108 	INIT_LIST_HEAD(&group->wait_node);
3109 	INIT_LIST_HEAD(&group->run_node);
3110 	INIT_WORK(&group->term_work, group_term_work);
3111 	INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3112 	INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3113 	INIT_WORK(&group->release_work, group_release_work);
3114 
3115 	group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3116 	if (!group->vm) {
3117 		ret = -EINVAL;
3118 		goto err_put_group;
3119 	}
3120 
3121 	suspend_size = csg_iface->control->suspend_size;
3122 	group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3123 	if (IS_ERR(group->suspend_buf)) {
3124 		ret = PTR_ERR(group->suspend_buf);
3125 		group->suspend_buf = NULL;
3126 		goto err_put_group;
3127 	}
3128 
3129 	suspend_size = csg_iface->control->protm_suspend_size;
3130 	group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3131 	if (IS_ERR(group->protm_suspend_buf)) {
3132 		ret = PTR_ERR(group->protm_suspend_buf);
3133 		group->protm_suspend_buf = NULL;
3134 		goto err_put_group;
3135 	}
3136 
3137 	group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3138 						   group_args->queues.count *
3139 						   sizeof(struct panthor_syncobj_64b),
3140 						   DRM_PANTHOR_BO_NO_MMAP,
3141 						   DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3142 						   DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3143 						   PANTHOR_VM_KERNEL_AUTO_VA);
3144 	if (IS_ERR(group->syncobjs)) {
3145 		ret = PTR_ERR(group->syncobjs);
3146 		goto err_put_group;
3147 	}
3148 
3149 	ret = panthor_kernel_bo_vmap(group->syncobjs);
3150 	if (ret)
3151 		goto err_put_group;
3152 
3153 	memset(group->syncobjs->kmap, 0,
3154 	       group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3155 
3156 	for (i = 0; i < group_args->queues.count; i++) {
3157 		group->queues[i] = group_create_queue(group, &queue_args[i]);
3158 		if (IS_ERR(group->queues[i])) {
3159 			ret = PTR_ERR(group->queues[i]);
3160 			group->queues[i] = NULL;
3161 			goto err_put_group;
3162 		}
3163 
3164 		group->queue_count++;
3165 	}
3166 
3167 	group->idle_queues = GENMASK(group->queue_count - 1, 0);
3168 
3169 	ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3170 	if (ret)
3171 		goto err_put_group;
3172 
3173 	mutex_lock(&sched->reset.lock);
3174 	if (atomic_read(&sched->reset.in_progress)) {
3175 		panthor_group_stop(group);
3176 	} else {
3177 		mutex_lock(&sched->lock);
3178 		list_add_tail(&group->run_node,
3179 			      &sched->groups.idle[group->priority]);
3180 		mutex_unlock(&sched->lock);
3181 	}
3182 	mutex_unlock(&sched->reset.lock);
3183 
3184 	return gid;
3185 
3186 err_put_group:
3187 	group_put(group);
3188 	return ret;
3189 }
3190 
3191 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3192 {
3193 	struct panthor_group_pool *gpool = pfile->groups;
3194 	struct panthor_device *ptdev = pfile->ptdev;
3195 	struct panthor_scheduler *sched = ptdev->scheduler;
3196 	struct panthor_group *group;
3197 
3198 	group = xa_erase(&gpool->xa, group_handle);
3199 	if (!group)
3200 		return -EINVAL;
3201 
3202 	for (u32 i = 0; i < group->queue_count; i++) {
3203 		if (group->queues[i])
3204 			drm_sched_entity_destroy(&group->queues[i]->entity);
3205 	}
3206 
3207 	mutex_lock(&sched->reset.lock);
3208 	mutex_lock(&sched->lock);
3209 	group->destroyed = true;
3210 	if (group->csg_id >= 0) {
3211 		sched_queue_delayed_work(sched, tick, 0);
3212 	} else if (!atomic_read(&sched->reset.in_progress)) {
3213 		/* Remove from the run queues, so the scheduler can't
3214 		 * pick the group on the next tick.
3215 		 */
3216 		list_del_init(&group->run_node);
3217 		list_del_init(&group->wait_node);
3218 		group_queue_work(group, term);
3219 	}
3220 	mutex_unlock(&sched->lock);
3221 	mutex_unlock(&sched->reset.lock);
3222 
3223 	group_put(group);
3224 	return 0;
3225 }
3226 
3227 int panthor_group_get_state(struct panthor_file *pfile,
3228 			    struct drm_panthor_group_get_state *get_state)
3229 {
3230 	struct panthor_group_pool *gpool = pfile->groups;
3231 	struct panthor_device *ptdev = pfile->ptdev;
3232 	struct panthor_scheduler *sched = ptdev->scheduler;
3233 	struct panthor_group *group;
3234 
3235 	if (get_state->pad)
3236 		return -EINVAL;
3237 
3238 	group = group_get(xa_load(&gpool->xa, get_state->group_handle));
3239 	if (!group)
3240 		return -EINVAL;
3241 
3242 	memset(get_state, 0, sizeof(*get_state));
3243 
3244 	mutex_lock(&sched->lock);
3245 	if (group->timedout)
3246 		get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3247 	if (group->fatal_queues) {
3248 		get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3249 		get_state->fatal_queues = group->fatal_queues;
3250 	}
3251 	mutex_unlock(&sched->lock);
3252 
3253 	group_put(group);
3254 	return 0;
3255 }
3256 
3257 int panthor_group_pool_create(struct panthor_file *pfile)
3258 {
3259 	struct panthor_group_pool *gpool;
3260 
3261 	gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3262 	if (!gpool)
3263 		return -ENOMEM;
3264 
3265 	xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3266 	pfile->groups = gpool;
3267 	return 0;
3268 }
3269 
3270 void panthor_group_pool_destroy(struct panthor_file *pfile)
3271 {
3272 	struct panthor_group_pool *gpool = pfile->groups;
3273 	struct panthor_group *group;
3274 	unsigned long i;
3275 
3276 	if (IS_ERR_OR_NULL(gpool))
3277 		return;
3278 
3279 	xa_for_each(&gpool->xa, i, group)
3280 		panthor_group_destroy(pfile, i);
3281 
3282 	xa_destroy(&gpool->xa);
3283 	kfree(gpool);
3284 	pfile->groups = NULL;
3285 }
3286 
3287 static void job_release(struct kref *ref)
3288 {
3289 	struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3290 
3291 	drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3292 
3293 	if (job->base.s_fence)
3294 		drm_sched_job_cleanup(&job->base);
3295 
3296 	if (job->done_fence && job->done_fence->ops)
3297 		dma_fence_put(job->done_fence);
3298 	else
3299 		dma_fence_free(job->done_fence);
3300 
3301 	group_put(job->group);
3302 
3303 	kfree(job);
3304 }
3305 
3306 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3307 {
3308 	if (sched_job) {
3309 		struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3310 
3311 		kref_get(&job->refcount);
3312 	}
3313 
3314 	return sched_job;
3315 }
3316 
3317 void panthor_job_put(struct drm_sched_job *sched_job)
3318 {
3319 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3320 
3321 	if (sched_job)
3322 		kref_put(&job->refcount, job_release);
3323 }
3324 
3325 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3326 {
3327 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3328 
3329 	return job->group->vm;
3330 }
3331 
3332 struct drm_sched_job *
3333 panthor_job_create(struct panthor_file *pfile,
3334 		   u16 group_handle,
3335 		   const struct drm_panthor_queue_submit *qsubmit)
3336 {
3337 	struct panthor_group_pool *gpool = pfile->groups;
3338 	struct panthor_job *job;
3339 	int ret;
3340 
3341 	if (qsubmit->pad)
3342 		return ERR_PTR(-EINVAL);
3343 
3344 	/* If stream_addr is zero, so stream_size should be. */
3345 	if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3346 		return ERR_PTR(-EINVAL);
3347 
3348 	/* Make sure the address is aligned on 64-byte (cacheline) and the size is
3349 	 * aligned on 8-byte (instruction size).
3350 	 */
3351 	if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3352 		return ERR_PTR(-EINVAL);
3353 
3354 	/* bits 24:30 must be zero. */
3355 	if (qsubmit->latest_flush & GENMASK(30, 24))
3356 		return ERR_PTR(-EINVAL);
3357 
3358 	job = kzalloc(sizeof(*job), GFP_KERNEL);
3359 	if (!job)
3360 		return ERR_PTR(-ENOMEM);
3361 
3362 	kref_init(&job->refcount);
3363 	job->queue_idx = qsubmit->queue_index;
3364 	job->call_info.size = qsubmit->stream_size;
3365 	job->call_info.start = qsubmit->stream_addr;
3366 	job->call_info.latest_flush = qsubmit->latest_flush;
3367 	INIT_LIST_HEAD(&job->node);
3368 
3369 	job->group = group_get(xa_load(&gpool->xa, group_handle));
3370 	if (!job->group) {
3371 		ret = -EINVAL;
3372 		goto err_put_job;
3373 	}
3374 
3375 	if (job->queue_idx >= job->group->queue_count ||
3376 	    !job->group->queues[job->queue_idx]) {
3377 		ret = -EINVAL;
3378 		goto err_put_job;
3379 	}
3380 
3381 	job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
3382 	if (!job->done_fence) {
3383 		ret = -ENOMEM;
3384 		goto err_put_job;
3385 	}
3386 
3387 	ret = drm_sched_job_init(&job->base,
3388 				 &job->group->queues[job->queue_idx]->entity,
3389 				 1, job->group);
3390 	if (ret)
3391 		goto err_put_job;
3392 
3393 	return &job->base;
3394 
3395 err_put_job:
3396 	panthor_job_put(&job->base);
3397 	return ERR_PTR(ret);
3398 }
3399 
3400 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
3401 {
3402 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3403 
3404 	/* Still not sure why we want USAGE_WRITE for external objects, since I
3405 	 * was assuming this would be handled through explicit syncs being imported
3406 	 * to external BOs with DMA_BUF_IOCTL_IMPORT_SYNC_FILE, but other drivers
3407 	 * seem to pass DMA_RESV_USAGE_WRITE, so there must be a good reason.
3408 	 */
3409 	panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
3410 				DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_WRITE);
3411 }
3412 
3413 void panthor_sched_unplug(struct panthor_device *ptdev)
3414 {
3415 	struct panthor_scheduler *sched = ptdev->scheduler;
3416 
3417 	cancel_delayed_work_sync(&sched->tick_work);
3418 
3419 	mutex_lock(&sched->lock);
3420 	if (sched->pm.has_ref) {
3421 		pm_runtime_put(ptdev->base.dev);
3422 		sched->pm.has_ref = false;
3423 	}
3424 	mutex_unlock(&sched->lock);
3425 }
3426 
3427 static void panthor_sched_fini(struct drm_device *ddev, void *res)
3428 {
3429 	struct panthor_scheduler *sched = res;
3430 	int prio;
3431 
3432 	if (!sched || !sched->csg_slot_count)
3433 		return;
3434 
3435 	cancel_delayed_work_sync(&sched->tick_work);
3436 
3437 	if (sched->wq)
3438 		destroy_workqueue(sched->wq);
3439 
3440 	if (sched->heap_alloc_wq)
3441 		destroy_workqueue(sched->heap_alloc_wq);
3442 
3443 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3444 		drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
3445 		drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
3446 	}
3447 
3448 	drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
3449 }
3450 
3451 int panthor_sched_init(struct panthor_device *ptdev)
3452 {
3453 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
3454 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3455 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
3456 	struct panthor_scheduler *sched;
3457 	u32 gpu_as_count, num_groups;
3458 	int prio, ret;
3459 
3460 	sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
3461 	if (!sched)
3462 		return -ENOMEM;
3463 
3464 	/* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
3465 	 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
3466 	 */
3467 	num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
3468 
3469 	/* The FW-side scheduler might deadlock if two groups with the same
3470 	 * priority try to access a set of resources that overlaps, with part
3471 	 * of the resources being allocated to one group and the other part to
3472 	 * the other group, both groups waiting for the remaining resources to
3473 	 * be allocated. To avoid that, it is recommended to assign each CSG a
3474 	 * different priority. In theory we could allow several groups to have
3475 	 * the same CSG priority if they don't request the same resources, but
3476 	 * that makes the scheduling logic more complicated, so let's clamp
3477 	 * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
3478 	 */
3479 	num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
3480 
3481 	/* We need at least one AS for the MCU and one for the GPU contexts. */
3482 	gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
3483 	if (!gpu_as_count) {
3484 		drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
3485 			gpu_as_count + 1);
3486 		return -EINVAL;
3487 	}
3488 
3489 	sched->ptdev = ptdev;
3490 	sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
3491 	sched->csg_slot_count = num_groups;
3492 	sched->cs_slot_count = csg_iface->control->stream_num;
3493 	sched->as_slot_count = gpu_as_count;
3494 	ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
3495 	ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
3496 	ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
3497 
3498 	sched->last_tick = 0;
3499 	sched->resched_target = U64_MAX;
3500 	sched->tick_period = msecs_to_jiffies(10);
3501 	INIT_DELAYED_WORK(&sched->tick_work, tick_work);
3502 	INIT_WORK(&sched->sync_upd_work, sync_upd_work);
3503 	INIT_WORK(&sched->fw_events_work, process_fw_events_work);
3504 
3505 	ret = drmm_mutex_init(&ptdev->base, &sched->lock);
3506 	if (ret)
3507 		return ret;
3508 
3509 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3510 		INIT_LIST_HEAD(&sched->groups.runnable[prio]);
3511 		INIT_LIST_HEAD(&sched->groups.idle[prio]);
3512 	}
3513 	INIT_LIST_HEAD(&sched->groups.waiting);
3514 
3515 	ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
3516 	if (ret)
3517 		return ret;
3518 
3519 	INIT_LIST_HEAD(&sched->reset.stopped_groups);
3520 
3521 	/* sched->heap_alloc_wq will be used for heap chunk allocation on
3522 	 * tiler OOM events, which means we can't use the same workqueue for
3523 	 * the scheduler because works queued by the scheduler are in
3524 	 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
3525 	 * work around this limitation.
3526 	 *
3527 	 * FIXME: Ultimately, what we need is a failable/non-blocking GEM
3528 	 * allocation path that we can call when a heap OOM is reported. The
3529 	 * FW is smart enough to fall back on other methods if the kernel can't
3530 	 * allocate memory, and fail the tiling job if none of these
3531 	 * countermeasures worked.
3532 	 *
3533 	 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
3534 	 * system is running out of memory.
3535 	 */
3536 	sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
3537 	sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
3538 	if (!sched->wq || !sched->heap_alloc_wq) {
3539 		panthor_sched_fini(&ptdev->base, sched);
3540 		drm_err(&ptdev->base, "Failed to allocate the workqueues");
3541 		return -ENOMEM;
3542 	}
3543 
3544 	ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
3545 	if (ret)
3546 		return ret;
3547 
3548 	ptdev->scheduler = sched;
3549 	return 0;
3550 }
3551