1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2023 Collabora ltd. */ 3 4 #include <drm/drm_drv.h> 5 #include <drm/drm_exec.h> 6 #include <drm/drm_gem_shmem_helper.h> 7 #include <drm/drm_managed.h> 8 #include <drm/gpu_scheduler.h> 9 #include <drm/panthor_drm.h> 10 11 #include <linux/build_bug.h> 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/dma-resv.h> 16 #include <linux/firmware.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/iosys-map.h> 21 #include <linux/module.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 25 #include "panthor_devfreq.h" 26 #include "panthor_device.h" 27 #include "panthor_fw.h" 28 #include "panthor_gem.h" 29 #include "panthor_gpu.h" 30 #include "panthor_heap.h" 31 #include "panthor_mmu.h" 32 #include "panthor_regs.h" 33 #include "panthor_sched.h" 34 35 /** 36 * DOC: Scheduler 37 * 38 * Mali CSF hardware adopts a firmware-assisted scheduling model, where 39 * the firmware takes care of scheduling aspects, to some extent. 40 * 41 * The scheduling happens at the scheduling group level, each group 42 * contains 1 to N queues (N is FW/hardware dependent, and exposed 43 * through the firmware interface). Each queue is assigned a command 44 * stream ring buffer, which serves as a way to get jobs submitted to 45 * the GPU, among other things. 46 * 47 * The firmware can schedule a maximum of M groups (M is FW/hardware 48 * dependent, and exposed through the firmware interface). Passed 49 * this maximum number of groups, the kernel must take care of 50 * rotating the groups passed to the firmware so every group gets 51 * a chance to have his queues scheduled for execution. 52 * 53 * The current implementation only supports with kernel-mode queues. 54 * In other terms, userspace doesn't have access to the ring-buffer. 55 * Instead, userspace passes indirect command stream buffers that are 56 * called from the queue ring-buffer by the kernel using a pre-defined 57 * sequence of command stream instructions to ensure the userspace driver 58 * always gets consistent results (cache maintenance, 59 * synchronization, ...). 60 * 61 * We rely on the drm_gpu_scheduler framework to deal with job 62 * dependencies and submission. As any other driver dealing with a 63 * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each 64 * entity has its own job scheduler. When a job is ready to be executed 65 * (all its dependencies are met), it is pushed to the appropriate 66 * queue ring-buffer, and the group is scheduled for execution if it 67 * wasn't already active. 68 * 69 * Kernel-side group scheduling is timeslice-based. When we have less 70 * groups than there are slots, the periodic tick is disabled and we 71 * just let the FW schedule the active groups. When there are more 72 * groups than slots, we let each group a chance to execute stuff for 73 * a given amount of time, and then re-evaluate and pick new groups 74 * to schedule. The group selection algorithm is based on 75 * priority+round-robin. 76 * 77 * Even though user-mode queues is out of the scope right now, the 78 * current design takes them into account by avoiding any guess on the 79 * group/queue state that would be based on information we wouldn't have 80 * if userspace was in charge of the ring-buffer. That's also one of the 81 * reason we don't do 'cooperative' scheduling (encoding FW group slot 82 * reservation as dma_fence that would be returned from the 83 * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as 84 * a queue of waiters, ordered by job submission order). This approach 85 * would work for kernel-mode queues, but would make user-mode queues a 86 * lot more complicated to retrofit. 87 */ 88 89 #define JOB_TIMEOUT_MS 5000 90 91 #define MIN_CS_PER_CSG 8 92 93 #define MIN_CSGS 3 94 #define MAX_CSG_PRIO 0xf 95 96 struct panthor_group; 97 98 /** 99 * struct panthor_csg_slot - Command stream group slot 100 * 101 * This represents a FW slot for a scheduling group. 102 */ 103 struct panthor_csg_slot { 104 /** @group: Scheduling group bound to this slot. */ 105 struct panthor_group *group; 106 107 /** @priority: Group priority. */ 108 u8 priority; 109 110 /** 111 * @idle: True if the group bound to this slot is idle. 112 * 113 * A group is idle when it has nothing waiting for execution on 114 * all its queues, or when queues are blocked waiting for something 115 * to happen (synchronization object). 116 */ 117 bool idle; 118 }; 119 120 /** 121 * enum panthor_csg_priority - Group priority 122 */ 123 enum panthor_csg_priority { 124 /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */ 125 PANTHOR_CSG_PRIORITY_LOW = 0, 126 127 /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */ 128 PANTHOR_CSG_PRIORITY_MEDIUM, 129 130 /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */ 131 PANTHOR_CSG_PRIORITY_HIGH, 132 133 /** 134 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group. 135 * 136 * Real-time priority allows one to preempt scheduling of other 137 * non-real-time groups. When such a group becomes executable, 138 * it will evict the group with the lowest non-rt priority if 139 * there's no free group slot available. 140 * 141 * Currently not exposed to userspace. 142 */ 143 PANTHOR_CSG_PRIORITY_RT, 144 145 /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */ 146 PANTHOR_CSG_PRIORITY_COUNT, 147 }; 148 149 /** 150 * struct panthor_scheduler - Object used to manage the scheduler 151 */ 152 struct panthor_scheduler { 153 /** @ptdev: Device. */ 154 struct panthor_device *ptdev; 155 156 /** 157 * @wq: Workqueue used by our internal scheduler logic and 158 * drm_gpu_scheduler. 159 * 160 * Used for the scheduler tick, group update or other kind of FW 161 * event processing that can't be handled in the threaded interrupt 162 * path. Also passed to the drm_gpu_scheduler instances embedded 163 * in panthor_queue. 164 */ 165 struct workqueue_struct *wq; 166 167 /** 168 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works. 169 * 170 * We have a queue dedicated to heap chunk allocation works to avoid 171 * blocking the rest of the scheduler if the allocation tries to 172 * reclaim memory. 173 */ 174 struct workqueue_struct *heap_alloc_wq; 175 176 /** @tick_work: Work executed on a scheduling tick. */ 177 struct delayed_work tick_work; 178 179 /** 180 * @sync_upd_work: Work used to process synchronization object updates. 181 * 182 * We use this work to unblock queues/groups that were waiting on a 183 * synchronization object. 184 */ 185 struct work_struct sync_upd_work; 186 187 /** 188 * @fw_events_work: Work used to process FW events outside the interrupt path. 189 * 190 * Even if the interrupt is threaded, we need any event processing 191 * that require taking the panthor_scheduler::lock to be processed 192 * outside the interrupt path so we don't block the tick logic when 193 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the 194 * event processing requires taking this lock, we just delegate all 195 * FW event processing to the scheduler workqueue. 196 */ 197 struct work_struct fw_events_work; 198 199 /** 200 * @fw_events: Bitmask encoding pending FW events. 201 */ 202 atomic_t fw_events; 203 204 /** 205 * @resched_target: When the next tick should occur. 206 * 207 * Expressed in jiffies. 208 */ 209 u64 resched_target; 210 211 /** 212 * @last_tick: When the last tick occurred. 213 * 214 * Expressed in jiffies. 215 */ 216 u64 last_tick; 217 218 /** @tick_period: Tick period in jiffies. */ 219 u64 tick_period; 220 221 /** 222 * @lock: Lock protecting access to all the scheduler fields. 223 * 224 * Should be taken in the tick work, the irq handler, and anywhere the @groups 225 * fields are touched. 226 */ 227 struct mutex lock; 228 229 /** @groups: Various lists used to classify groups. */ 230 struct { 231 /** 232 * @runnable: Runnable group lists. 233 * 234 * When a group has queues that want to execute something, 235 * its panthor_group::run_node should be inserted here. 236 * 237 * One list per-priority. 238 */ 239 struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT]; 240 241 /** 242 * @idle: Idle group lists. 243 * 244 * When all queues of a group are idle (either because they 245 * have nothing to execute, or because they are blocked), the 246 * panthor_group::run_node field should be inserted here. 247 * 248 * One list per-priority. 249 */ 250 struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT]; 251 252 /** 253 * @waiting: List of groups whose queues are blocked on a 254 * synchronization object. 255 * 256 * Insert panthor_group::wait_node here when a group is waiting 257 * for synchronization objects to be signaled. 258 * 259 * This list is evaluated in the @sync_upd_work work. 260 */ 261 struct list_head waiting; 262 } groups; 263 264 /** 265 * @csg_slots: FW command stream group slots. 266 */ 267 struct panthor_csg_slot csg_slots[MAX_CSGS]; 268 269 /** @csg_slot_count: Number of command stream group slots exposed by the FW. */ 270 u32 csg_slot_count; 271 272 /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */ 273 u32 cs_slot_count; 274 275 /** @as_slot_count: Number of address space slots supported by the MMU. */ 276 u32 as_slot_count; 277 278 /** @used_csg_slot_count: Number of command stream group slot currently used. */ 279 u32 used_csg_slot_count; 280 281 /** @sb_slot_count: Number of scoreboard slots. */ 282 u32 sb_slot_count; 283 284 /** 285 * @might_have_idle_groups: True if an active group might have become idle. 286 * 287 * This will force a tick, so other runnable groups can be scheduled if one 288 * or more active groups became idle. 289 */ 290 bool might_have_idle_groups; 291 292 /** @pm: Power management related fields. */ 293 struct { 294 /** @has_ref: True if the scheduler owns a runtime PM reference. */ 295 bool has_ref; 296 } pm; 297 298 /** @reset: Reset related fields. */ 299 struct { 300 /** @lock: Lock protecting the other reset fields. */ 301 struct mutex lock; 302 303 /** 304 * @in_progress: True if a reset is in progress. 305 * 306 * Set to true in panthor_sched_pre_reset() and back to false in 307 * panthor_sched_post_reset(). 308 */ 309 atomic_t in_progress; 310 311 /** 312 * @stopped_groups: List containing all groups that were stopped 313 * before a reset. 314 * 315 * Insert panthor_group::run_node in the pre_reset path. 316 */ 317 struct list_head stopped_groups; 318 } reset; 319 }; 320 321 /** 322 * struct panthor_syncobj_32b - 32-bit FW synchronization object 323 */ 324 struct panthor_syncobj_32b { 325 /** @seqno: Sequence number. */ 326 u32 seqno; 327 328 /** 329 * @status: Status. 330 * 331 * Not zero on failure. 332 */ 333 u32 status; 334 }; 335 336 /** 337 * struct panthor_syncobj_64b - 64-bit FW synchronization object 338 */ 339 struct panthor_syncobj_64b { 340 /** @seqno: Sequence number. */ 341 u64 seqno; 342 343 /** 344 * @status: Status. 345 * 346 * Not zero on failure. 347 */ 348 u32 status; 349 350 /** @pad: MBZ. */ 351 u32 pad; 352 }; 353 354 /** 355 * struct panthor_queue - Execution queue 356 */ 357 struct panthor_queue { 358 /** @scheduler: DRM scheduler used for this queue. */ 359 struct drm_gpu_scheduler scheduler; 360 361 /** @entity: DRM scheduling entity used for this queue. */ 362 struct drm_sched_entity entity; 363 364 /** 365 * @remaining_time: Time remaining before the job timeout expires. 366 * 367 * The job timeout is suspended when the queue is not scheduled by the 368 * FW. Every time we suspend the timer, we need to save the remaining 369 * time so we can restore it later on. 370 */ 371 unsigned long remaining_time; 372 373 /** @timeout_suspended: True if the job timeout was suspended. */ 374 bool timeout_suspended; 375 376 /** 377 * @doorbell_id: Doorbell assigned to this queue. 378 * 379 * Right now, all groups share the same doorbell, and the doorbell ID 380 * is assigned to group_slot + 1 when the group is assigned a slot. But 381 * we might decide to provide fine grained doorbell assignment at some 382 * point, so don't have to wake up all queues in a group every time one 383 * of them is updated. 384 */ 385 u8 doorbell_id; 386 387 /** 388 * @priority: Priority of the queue inside the group. 389 * 390 * Must be less than 16 (Only 4 bits available). 391 */ 392 u8 priority; 393 #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0) 394 395 /** @ringbuf: Command stream ring-buffer. */ 396 struct panthor_kernel_bo *ringbuf; 397 398 /** @iface: Firmware interface. */ 399 struct { 400 /** @mem: FW memory allocated for this interface. */ 401 struct panthor_kernel_bo *mem; 402 403 /** @input: Input interface. */ 404 struct panthor_fw_ringbuf_input_iface *input; 405 406 /** @output: Output interface. */ 407 const struct panthor_fw_ringbuf_output_iface *output; 408 409 /** @input_fw_va: FW virtual address of the input interface buffer. */ 410 u32 input_fw_va; 411 412 /** @output_fw_va: FW virtual address of the output interface buffer. */ 413 u32 output_fw_va; 414 } iface; 415 416 /** 417 * @syncwait: Stores information about the synchronization object this 418 * queue is waiting on. 419 */ 420 struct { 421 /** @gpu_va: GPU address of the synchronization object. */ 422 u64 gpu_va; 423 424 /** @ref: Reference value to compare against. */ 425 u64 ref; 426 427 /** @gt: True if this is a greater-than test. */ 428 bool gt; 429 430 /** @sync64: True if this is a 64-bit sync object. */ 431 bool sync64; 432 433 /** @bo: Buffer object holding the synchronization object. */ 434 struct drm_gem_object *obj; 435 436 /** @offset: Offset of the synchronization object inside @bo. */ 437 u64 offset; 438 439 /** 440 * @kmap: Kernel mapping of the buffer object holding the 441 * synchronization object. 442 */ 443 void *kmap; 444 } syncwait; 445 446 /** @fence_ctx: Fence context fields. */ 447 struct { 448 /** @lock: Used to protect access to all fences allocated by this context. */ 449 spinlock_t lock; 450 451 /** 452 * @id: Fence context ID. 453 * 454 * Allocated with dma_fence_context_alloc(). 455 */ 456 u64 id; 457 458 /** @seqno: Sequence number of the last initialized fence. */ 459 atomic64_t seqno; 460 461 /** 462 * @in_flight_jobs: List containing all in-flight jobs. 463 * 464 * Used to keep track and signal panthor_job::done_fence when the 465 * synchronization object attached to the queue is signaled. 466 */ 467 struct list_head in_flight_jobs; 468 } fence_ctx; 469 }; 470 471 /** 472 * enum panthor_group_state - Scheduling group state. 473 */ 474 enum panthor_group_state { 475 /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */ 476 PANTHOR_CS_GROUP_CREATED, 477 478 /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */ 479 PANTHOR_CS_GROUP_ACTIVE, 480 481 /** 482 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is 483 * inactive/suspended right now. 484 */ 485 PANTHOR_CS_GROUP_SUSPENDED, 486 487 /** 488 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated. 489 * 490 * Can no longer be scheduled. The only allowed action is a destruction. 491 */ 492 PANTHOR_CS_GROUP_TERMINATED, 493 494 /** 495 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state. 496 * 497 * The FW returned an inconsistent state. The group is flagged unusable 498 * and can no longer be scheduled. The only allowed action is a 499 * destruction. 500 * 501 * When that happens, we also schedule a FW reset, to start from a fresh 502 * state. 503 */ 504 PANTHOR_CS_GROUP_UNKNOWN_STATE, 505 }; 506 507 /** 508 * struct panthor_group - Scheduling group object 509 */ 510 struct panthor_group { 511 /** @refcount: Reference count */ 512 struct kref refcount; 513 514 /** @ptdev: Device. */ 515 struct panthor_device *ptdev; 516 517 /** @vm: VM bound to the group. */ 518 struct panthor_vm *vm; 519 520 /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */ 521 u64 compute_core_mask; 522 523 /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */ 524 u64 fragment_core_mask; 525 526 /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */ 527 u64 tiler_core_mask; 528 529 /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */ 530 u8 max_compute_cores; 531 532 /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */ 533 u8 max_fragment_cores; 534 535 /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */ 536 u8 max_tiler_cores; 537 538 /** @priority: Group priority (check panthor_csg_priority). */ 539 u8 priority; 540 541 /** @blocked_queues: Bitmask reflecting the blocked queues. */ 542 u32 blocked_queues; 543 544 /** @idle_queues: Bitmask reflecting the idle queues. */ 545 u32 idle_queues; 546 547 /** @fatal_lock: Lock used to protect access to fatal fields. */ 548 spinlock_t fatal_lock; 549 550 /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */ 551 u32 fatal_queues; 552 553 /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */ 554 atomic_t tiler_oom; 555 556 /** @queue_count: Number of queues in this group. */ 557 u32 queue_count; 558 559 /** @queues: Queues owned by this group. */ 560 struct panthor_queue *queues[MAX_CS_PER_CSG]; 561 562 /** 563 * @csg_id: ID of the FW group slot. 564 * 565 * -1 when the group is not scheduled/active. 566 */ 567 int csg_id; 568 569 /** 570 * @destroyed: True when the group has been destroyed. 571 * 572 * If a group is destroyed it becomes useless: no further jobs can be submitted 573 * to its queues. We simply wait for all references to be dropped so we can 574 * release the group object. 575 */ 576 bool destroyed; 577 578 /** 579 * @timedout: True when a timeout occurred on any of the queues owned by 580 * this group. 581 * 582 * Timeouts can be reported by drm_sched or by the FW. In any case, any 583 * timeout situation is unrecoverable, and the group becomes useless. 584 * We simply wait for all references to be dropped so we can release the 585 * group object. 586 */ 587 bool timedout; 588 589 /** 590 * @syncobjs: Pool of per-queue synchronization objects. 591 * 592 * One sync object per queue. The position of the sync object is 593 * determined by the queue index. 594 */ 595 struct panthor_kernel_bo *syncobjs; 596 597 /** @state: Group state. */ 598 enum panthor_group_state state; 599 600 /** 601 * @suspend_buf: Suspend buffer. 602 * 603 * Stores the state of the group and its queues when a group is suspended. 604 * Used at resume time to restore the group in its previous state. 605 * 606 * The size of the suspend buffer is exposed through the FW interface. 607 */ 608 struct panthor_kernel_bo *suspend_buf; 609 610 /** 611 * @protm_suspend_buf: Protection mode suspend buffer. 612 * 613 * Stores the state of the group and its queues when a group that's in 614 * protection mode is suspended. 615 * 616 * Used at resume time to restore the group in its previous state. 617 * 618 * The size of the protection mode suspend buffer is exposed through the 619 * FW interface. 620 */ 621 struct panthor_kernel_bo *protm_suspend_buf; 622 623 /** @sync_upd_work: Work used to check/signal job fences. */ 624 struct work_struct sync_upd_work; 625 626 /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */ 627 struct work_struct tiler_oom_work; 628 629 /** @term_work: Work used to finish the group termination procedure. */ 630 struct work_struct term_work; 631 632 /** 633 * @release_work: Work used to release group resources. 634 * 635 * We need to postpone the group release to avoid a deadlock when 636 * the last ref is released in the tick work. 637 */ 638 struct work_struct release_work; 639 640 /** 641 * @run_node: Node used to insert the group in the 642 * panthor_group::groups::{runnable,idle} and 643 * panthor_group::reset.stopped_groups lists. 644 */ 645 struct list_head run_node; 646 647 /** 648 * @wait_node: Node used to insert the group in the 649 * panthor_group::groups::waiting list. 650 */ 651 struct list_head wait_node; 652 }; 653 654 /** 655 * group_queue_work() - Queue a group work 656 * @group: Group to queue the work for. 657 * @wname: Work name. 658 * 659 * Grabs a ref and queue a work item to the scheduler workqueue. If 660 * the work was already queued, we release the reference we grabbed. 661 * 662 * Work callbacks must release the reference we grabbed here. 663 */ 664 #define group_queue_work(group, wname) \ 665 do { \ 666 group_get(group); \ 667 if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \ 668 group_put(group); \ 669 } while (0) 670 671 /** 672 * sched_queue_work() - Queue a scheduler work. 673 * @sched: Scheduler object. 674 * @wname: Work name. 675 * 676 * Conditionally queues a scheduler work if no reset is pending/in-progress. 677 */ 678 #define sched_queue_work(sched, wname) \ 679 do { \ 680 if (!atomic_read(&(sched)->reset.in_progress) && \ 681 !panthor_device_reset_is_pending((sched)->ptdev)) \ 682 queue_work((sched)->wq, &(sched)->wname ## _work); \ 683 } while (0) 684 685 /** 686 * sched_queue_delayed_work() - Queue a scheduler delayed work. 687 * @sched: Scheduler object. 688 * @wname: Work name. 689 * @delay: Work delay in jiffies. 690 * 691 * Conditionally queues a scheduler delayed work if no reset is 692 * pending/in-progress. 693 */ 694 #define sched_queue_delayed_work(sched, wname, delay) \ 695 do { \ 696 if (!atomic_read(&sched->reset.in_progress) && \ 697 !panthor_device_reset_is_pending((sched)->ptdev)) \ 698 mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \ 699 } while (0) 700 701 /* 702 * We currently set the maximum of groups per file to an arbitrary low value. 703 * But this can be updated if we need more. 704 */ 705 #define MAX_GROUPS_PER_POOL 128 706 707 /** 708 * struct panthor_group_pool - Group pool 709 * 710 * Each file get assigned a group pool. 711 */ 712 struct panthor_group_pool { 713 /** @xa: Xarray used to manage group handles. */ 714 struct xarray xa; 715 }; 716 717 /** 718 * struct panthor_job - Used to manage GPU job 719 */ 720 struct panthor_job { 721 /** @base: Inherit from drm_sched_job. */ 722 struct drm_sched_job base; 723 724 /** @refcount: Reference count. */ 725 struct kref refcount; 726 727 /** @group: Group of the queue this job will be pushed to. */ 728 struct panthor_group *group; 729 730 /** @queue_idx: Index of the queue inside @group. */ 731 u32 queue_idx; 732 733 /** @call_info: Information about the userspace command stream call. */ 734 struct { 735 /** @start: GPU address of the userspace command stream. */ 736 u64 start; 737 738 /** @size: Size of the userspace command stream. */ 739 u32 size; 740 741 /** 742 * @latest_flush: Flush ID at the time the userspace command 743 * stream was built. 744 * 745 * Needed for the flush reduction mechanism. 746 */ 747 u32 latest_flush; 748 } call_info; 749 750 /** @ringbuf: Position of this job is in the ring buffer. */ 751 struct { 752 /** @start: Start offset. */ 753 u64 start; 754 755 /** @end: End offset. */ 756 u64 end; 757 } ringbuf; 758 759 /** 760 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs 761 * list. 762 */ 763 struct list_head node; 764 765 /** @done_fence: Fence signaled when the job is finished or cancelled. */ 766 struct dma_fence *done_fence; 767 }; 768 769 static void 770 panthor_queue_put_syncwait_obj(struct panthor_queue *queue) 771 { 772 if (queue->syncwait.kmap) { 773 struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap); 774 775 drm_gem_vunmap_unlocked(queue->syncwait.obj, &map); 776 queue->syncwait.kmap = NULL; 777 } 778 779 drm_gem_object_put(queue->syncwait.obj); 780 queue->syncwait.obj = NULL; 781 } 782 783 static void * 784 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue) 785 { 786 struct panthor_device *ptdev = group->ptdev; 787 struct panthor_gem_object *bo; 788 struct iosys_map map; 789 int ret; 790 791 if (queue->syncwait.kmap) 792 return queue->syncwait.kmap + queue->syncwait.offset; 793 794 bo = panthor_vm_get_bo_for_va(group->vm, 795 queue->syncwait.gpu_va, 796 &queue->syncwait.offset); 797 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo))) 798 goto err_put_syncwait_obj; 799 800 queue->syncwait.obj = &bo->base.base; 801 ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map); 802 if (drm_WARN_ON(&ptdev->base, ret)) 803 goto err_put_syncwait_obj; 804 805 queue->syncwait.kmap = map.vaddr; 806 if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap)) 807 goto err_put_syncwait_obj; 808 809 return queue->syncwait.kmap + queue->syncwait.offset; 810 811 err_put_syncwait_obj: 812 panthor_queue_put_syncwait_obj(queue); 813 return NULL; 814 } 815 816 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue) 817 { 818 if (IS_ERR_OR_NULL(queue)) 819 return; 820 821 if (queue->entity.fence_context) 822 drm_sched_entity_destroy(&queue->entity); 823 824 if (queue->scheduler.ops) 825 drm_sched_fini(&queue->scheduler); 826 827 panthor_queue_put_syncwait_obj(queue); 828 829 panthor_kernel_bo_destroy(queue->ringbuf); 830 panthor_kernel_bo_destroy(queue->iface.mem); 831 832 kfree(queue); 833 } 834 835 static void group_release_work(struct work_struct *work) 836 { 837 struct panthor_group *group = container_of(work, 838 struct panthor_group, 839 release_work); 840 u32 i; 841 842 for (i = 0; i < group->queue_count; i++) 843 group_free_queue(group, group->queues[i]); 844 845 panthor_kernel_bo_destroy(group->suspend_buf); 846 panthor_kernel_bo_destroy(group->protm_suspend_buf); 847 panthor_kernel_bo_destroy(group->syncobjs); 848 849 panthor_vm_put(group->vm); 850 kfree(group); 851 } 852 853 static void group_release(struct kref *kref) 854 { 855 struct panthor_group *group = container_of(kref, 856 struct panthor_group, 857 refcount); 858 struct panthor_device *ptdev = group->ptdev; 859 860 drm_WARN_ON(&ptdev->base, group->csg_id >= 0); 861 drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node)); 862 drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node)); 863 864 queue_work(panthor_cleanup_wq, &group->release_work); 865 } 866 867 static void group_put(struct panthor_group *group) 868 { 869 if (group) 870 kref_put(&group->refcount, group_release); 871 } 872 873 static struct panthor_group * 874 group_get(struct panthor_group *group) 875 { 876 if (group) 877 kref_get(&group->refcount); 878 879 return group; 880 } 881 882 /** 883 * group_bind_locked() - Bind a group to a group slot 884 * @group: Group. 885 * @csg_id: Slot. 886 * 887 * Return: 0 on success, a negative error code otherwise. 888 */ 889 static int 890 group_bind_locked(struct panthor_group *group, u32 csg_id) 891 { 892 struct panthor_device *ptdev = group->ptdev; 893 struct panthor_csg_slot *csg_slot; 894 int ret; 895 896 lockdep_assert_held(&ptdev->scheduler->lock); 897 898 if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS || 899 ptdev->scheduler->csg_slots[csg_id].group)) 900 return -EINVAL; 901 902 ret = panthor_vm_active(group->vm); 903 if (ret) 904 return ret; 905 906 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 907 group_get(group); 908 group->csg_id = csg_id; 909 910 /* Dummy doorbell allocation: doorbell is assigned to the group and 911 * all queues use the same doorbell. 912 * 913 * TODO: Implement LRU-based doorbell assignment, so the most often 914 * updated queues get their own doorbell, thus avoiding useless checks 915 * on queues belonging to the same group that are rarely updated. 916 */ 917 for (u32 i = 0; i < group->queue_count; i++) 918 group->queues[i]->doorbell_id = csg_id + 1; 919 920 csg_slot->group = group; 921 922 return 0; 923 } 924 925 /** 926 * group_unbind_locked() - Unbind a group from a slot. 927 * @group: Group to unbind. 928 * 929 * Return: 0 on success, a negative error code otherwise. 930 */ 931 static int 932 group_unbind_locked(struct panthor_group *group) 933 { 934 struct panthor_device *ptdev = group->ptdev; 935 struct panthor_csg_slot *slot; 936 937 lockdep_assert_held(&ptdev->scheduler->lock); 938 939 if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS)) 940 return -EINVAL; 941 942 if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE)) 943 return -EINVAL; 944 945 slot = &ptdev->scheduler->csg_slots[group->csg_id]; 946 panthor_vm_idle(group->vm); 947 group->csg_id = -1; 948 949 /* Tiler OOM events will be re-issued next time the group is scheduled. */ 950 atomic_set(&group->tiler_oom, 0); 951 cancel_work(&group->tiler_oom_work); 952 953 for (u32 i = 0; i < group->queue_count; i++) 954 group->queues[i]->doorbell_id = -1; 955 956 slot->group = NULL; 957 958 group_put(group); 959 return 0; 960 } 961 962 /** 963 * cs_slot_prog_locked() - Program a queue slot 964 * @ptdev: Device. 965 * @csg_id: Group slot ID. 966 * @cs_id: Queue slot ID. 967 * 968 * Program a queue slot with the queue information so things can start being 969 * executed on this queue. 970 * 971 * The group slot must have a group bound to it already (group_bind_locked()). 972 */ 973 static void 974 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 975 { 976 struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id]; 977 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 978 979 lockdep_assert_held(&ptdev->scheduler->lock); 980 981 queue->iface.input->extract = queue->iface.output->extract; 982 drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract); 983 984 cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf); 985 cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 986 cs_iface->input->ringbuf_input = queue->iface.input_fw_va; 987 cs_iface->input->ringbuf_output = queue->iface.output_fw_va; 988 cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) | 989 CS_CONFIG_DOORBELL(queue->doorbell_id); 990 cs_iface->input->ack_irq_mask = ~0; 991 panthor_fw_update_reqs(cs_iface, req, 992 CS_IDLE_SYNC_WAIT | 993 CS_IDLE_EMPTY | 994 CS_STATE_START | 995 CS_EXTRACT_EVENT, 996 CS_IDLE_SYNC_WAIT | 997 CS_IDLE_EMPTY | 998 CS_STATE_MASK | 999 CS_EXTRACT_EVENT); 1000 if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) { 1001 drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time); 1002 queue->timeout_suspended = false; 1003 } 1004 } 1005 1006 /** 1007 * cs_slot_reset_locked() - Reset a queue slot 1008 * @ptdev: Device. 1009 * @csg_id: Group slot. 1010 * @cs_id: Queue slot. 1011 * 1012 * Change the queue slot state to STOP and suspend the queue timeout if 1013 * the queue is not blocked. 1014 * 1015 * The group slot must have a group bound to it (group_bind_locked()). 1016 */ 1017 static int 1018 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1019 { 1020 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1021 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1022 struct panthor_queue *queue = group->queues[cs_id]; 1023 1024 lockdep_assert_held(&ptdev->scheduler->lock); 1025 1026 panthor_fw_update_reqs(cs_iface, req, 1027 CS_STATE_STOP, 1028 CS_STATE_MASK); 1029 1030 /* If the queue is blocked, we want to keep the timeout running, so 1031 * we can detect unbounded waits and kill the group when that happens. 1032 */ 1033 if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) { 1034 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 1035 queue->timeout_suspended = true; 1036 WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS)); 1037 } 1038 1039 return 0; 1040 } 1041 1042 /** 1043 * csg_slot_sync_priority_locked() - Synchronize the group slot priority 1044 * @ptdev: Device. 1045 * @csg_id: Group slot ID. 1046 * 1047 * Group slot priority update happens asynchronously. When we receive a 1048 * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can 1049 * reflect it to our panthor_csg_slot object. 1050 */ 1051 static void 1052 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id) 1053 { 1054 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1055 struct panthor_fw_csg_iface *csg_iface; 1056 1057 lockdep_assert_held(&ptdev->scheduler->lock); 1058 1059 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1060 csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28; 1061 } 1062 1063 /** 1064 * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority 1065 * @ptdev: Device. 1066 * @csg_id: Group slot. 1067 * @cs_id: Queue slot. 1068 * 1069 * Queue state is updated on group suspend or STATUS_UPDATE event. 1070 */ 1071 static void 1072 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1073 { 1074 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1075 struct panthor_queue *queue = group->queues[cs_id]; 1076 struct panthor_fw_cs_iface *cs_iface = 1077 panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id); 1078 1079 u32 status_wait_cond; 1080 1081 switch (cs_iface->output->status_blocked_reason) { 1082 case CS_STATUS_BLOCKED_REASON_UNBLOCKED: 1083 if (queue->iface.input->insert == queue->iface.output->extract && 1084 cs_iface->output->status_scoreboards == 0) 1085 group->idle_queues |= BIT(cs_id); 1086 break; 1087 1088 case CS_STATUS_BLOCKED_REASON_SYNC_WAIT: 1089 if (list_empty(&group->wait_node)) { 1090 list_move_tail(&group->wait_node, 1091 &group->ptdev->scheduler->groups.waiting); 1092 } 1093 group->blocked_queues |= BIT(cs_id); 1094 queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr; 1095 queue->syncwait.ref = cs_iface->output->status_wait_sync_value; 1096 status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK; 1097 queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT; 1098 if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) { 1099 u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi; 1100 1101 queue->syncwait.sync64 = true; 1102 queue->syncwait.ref |= sync_val_hi << 32; 1103 } else { 1104 queue->syncwait.sync64 = false; 1105 } 1106 break; 1107 1108 default: 1109 /* Other reasons are not blocking. Consider the queue as runnable 1110 * in those cases. 1111 */ 1112 break; 1113 } 1114 } 1115 1116 static void 1117 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id) 1118 { 1119 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1120 struct panthor_group *group = csg_slot->group; 1121 u32 i; 1122 1123 lockdep_assert_held(&ptdev->scheduler->lock); 1124 1125 group->idle_queues = 0; 1126 group->blocked_queues = 0; 1127 1128 for (i = 0; i < group->queue_count; i++) { 1129 if (group->queues[i]) 1130 cs_slot_sync_queue_state_locked(ptdev, csg_id, i); 1131 } 1132 } 1133 1134 static void 1135 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id) 1136 { 1137 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1138 struct panthor_fw_csg_iface *csg_iface; 1139 struct panthor_group *group; 1140 enum panthor_group_state new_state, old_state; 1141 u32 csg_state; 1142 1143 lockdep_assert_held(&ptdev->scheduler->lock); 1144 1145 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1146 group = csg_slot->group; 1147 1148 if (!group) 1149 return; 1150 1151 old_state = group->state; 1152 csg_state = csg_iface->output->ack & CSG_STATE_MASK; 1153 switch (csg_state) { 1154 case CSG_STATE_START: 1155 case CSG_STATE_RESUME: 1156 new_state = PANTHOR_CS_GROUP_ACTIVE; 1157 break; 1158 case CSG_STATE_TERMINATE: 1159 new_state = PANTHOR_CS_GROUP_TERMINATED; 1160 break; 1161 case CSG_STATE_SUSPEND: 1162 new_state = PANTHOR_CS_GROUP_SUSPENDED; 1163 break; 1164 default: 1165 /* The unknown state might be caused by a FW state corruption, 1166 * which means the group metadata can't be trusted anymore, and 1167 * the SUSPEND operation might propagate the corruption to the 1168 * suspend buffers. Flag the group state as unknown to make 1169 * sure it's unusable after that point. 1170 */ 1171 drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)", 1172 csg_id, csg_state); 1173 new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE; 1174 break; 1175 } 1176 1177 if (old_state == new_state) 1178 return; 1179 1180 /* The unknown state might be caused by a FW issue, reset the FW to 1181 * take a fresh start. 1182 */ 1183 if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE) 1184 panthor_device_schedule_reset(ptdev); 1185 1186 if (new_state == PANTHOR_CS_GROUP_SUSPENDED) 1187 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1188 1189 if (old_state == PANTHOR_CS_GROUP_ACTIVE) { 1190 u32 i; 1191 1192 /* Reset the queue slots so we start from a clean 1193 * state when starting/resuming a new group on this 1194 * CSG slot. No wait needed here, and no ringbell 1195 * either, since the CS slot will only be re-used 1196 * on the next CSG start operation. 1197 */ 1198 for (i = 0; i < group->queue_count; i++) { 1199 if (group->queues[i]) 1200 cs_slot_reset_locked(ptdev, csg_id, i); 1201 } 1202 } 1203 1204 group->state = new_state; 1205 } 1206 1207 static int 1208 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority) 1209 { 1210 struct panthor_fw_csg_iface *csg_iface; 1211 struct panthor_csg_slot *csg_slot; 1212 struct panthor_group *group; 1213 u32 queue_mask = 0, i; 1214 1215 lockdep_assert_held(&ptdev->scheduler->lock); 1216 1217 if (priority > MAX_CSG_PRIO) 1218 return -EINVAL; 1219 1220 if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS)) 1221 return -EINVAL; 1222 1223 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1224 group = csg_slot->group; 1225 if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE) 1226 return 0; 1227 1228 csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id); 1229 1230 for (i = 0; i < group->queue_count; i++) { 1231 if (group->queues[i]) { 1232 cs_slot_prog_locked(ptdev, csg_id, i); 1233 queue_mask |= BIT(i); 1234 } 1235 } 1236 1237 csg_iface->input->allow_compute = group->compute_core_mask; 1238 csg_iface->input->allow_fragment = group->fragment_core_mask; 1239 csg_iface->input->allow_other = group->tiler_core_mask; 1240 csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) | 1241 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) | 1242 CSG_EP_REQ_TILER(group->max_tiler_cores) | 1243 CSG_EP_REQ_PRIORITY(priority); 1244 csg_iface->input->config = panthor_vm_as(group->vm); 1245 1246 if (group->suspend_buf) 1247 csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf); 1248 else 1249 csg_iface->input->suspend_buf = 0; 1250 1251 if (group->protm_suspend_buf) { 1252 csg_iface->input->protm_suspend_buf = 1253 panthor_kernel_bo_gpuva(group->protm_suspend_buf); 1254 } else { 1255 csg_iface->input->protm_suspend_buf = 0; 1256 } 1257 1258 csg_iface->input->ack_irq_mask = ~0; 1259 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask); 1260 return 0; 1261 } 1262 1263 static void 1264 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev, 1265 u32 csg_id, u32 cs_id) 1266 { 1267 struct panthor_scheduler *sched = ptdev->scheduler; 1268 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1269 struct panthor_group *group = csg_slot->group; 1270 struct panthor_fw_cs_iface *cs_iface; 1271 u32 fatal; 1272 u64 info; 1273 1274 lockdep_assert_held(&sched->lock); 1275 1276 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1277 fatal = cs_iface->output->fatal; 1278 info = cs_iface->output->fatal_info; 1279 1280 if (group) 1281 group->fatal_queues |= BIT(cs_id); 1282 1283 if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) { 1284 /* If this exception is unrecoverable, queue a reset, and make 1285 * sure we stop scheduling groups until the reset has happened. 1286 */ 1287 panthor_device_schedule_reset(ptdev); 1288 cancel_delayed_work(&sched->tick_work); 1289 } else { 1290 sched_queue_delayed_work(sched, tick, 0); 1291 } 1292 1293 drm_warn(&ptdev->base, 1294 "CSG slot %d CS slot: %d\n" 1295 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n" 1296 "CS_FATAL.EXCEPTION_DATA: 0x%x\n" 1297 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n", 1298 csg_id, cs_id, 1299 (unsigned int)CS_EXCEPTION_TYPE(fatal), 1300 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)), 1301 (unsigned int)CS_EXCEPTION_DATA(fatal), 1302 info); 1303 } 1304 1305 static void 1306 cs_slot_process_fault_event_locked(struct panthor_device *ptdev, 1307 u32 csg_id, u32 cs_id) 1308 { 1309 struct panthor_scheduler *sched = ptdev->scheduler; 1310 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1311 struct panthor_group *group = csg_slot->group; 1312 struct panthor_queue *queue = group && cs_id < group->queue_count ? 1313 group->queues[cs_id] : NULL; 1314 struct panthor_fw_cs_iface *cs_iface; 1315 u32 fault; 1316 u64 info; 1317 1318 lockdep_assert_held(&sched->lock); 1319 1320 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1321 fault = cs_iface->output->fault; 1322 info = cs_iface->output->fault_info; 1323 1324 if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) { 1325 u64 cs_extract = queue->iface.output->extract; 1326 struct panthor_job *job; 1327 1328 spin_lock(&queue->fence_ctx.lock); 1329 list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) { 1330 if (cs_extract >= job->ringbuf.end) 1331 continue; 1332 1333 if (cs_extract < job->ringbuf.start) 1334 break; 1335 1336 dma_fence_set_error(job->done_fence, -EINVAL); 1337 } 1338 spin_unlock(&queue->fence_ctx.lock); 1339 } 1340 1341 drm_warn(&ptdev->base, 1342 "CSG slot %d CS slot: %d\n" 1343 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n" 1344 "CS_FAULT.EXCEPTION_DATA: 0x%x\n" 1345 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n", 1346 csg_id, cs_id, 1347 (unsigned int)CS_EXCEPTION_TYPE(fault), 1348 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)), 1349 (unsigned int)CS_EXCEPTION_DATA(fault), 1350 info); 1351 } 1352 1353 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id) 1354 { 1355 struct panthor_device *ptdev = group->ptdev; 1356 struct panthor_scheduler *sched = ptdev->scheduler; 1357 u32 renderpasses_in_flight, pending_frag_count; 1358 struct panthor_heap_pool *heaps = NULL; 1359 u64 heap_address, new_chunk_va = 0; 1360 u32 vt_start, vt_end, frag_end; 1361 int ret, csg_id; 1362 1363 mutex_lock(&sched->lock); 1364 csg_id = group->csg_id; 1365 if (csg_id >= 0) { 1366 struct panthor_fw_cs_iface *cs_iface; 1367 1368 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1369 heaps = panthor_vm_get_heap_pool(group->vm, false); 1370 heap_address = cs_iface->output->heap_address; 1371 vt_start = cs_iface->output->heap_vt_start; 1372 vt_end = cs_iface->output->heap_vt_end; 1373 frag_end = cs_iface->output->heap_frag_end; 1374 renderpasses_in_flight = vt_start - frag_end; 1375 pending_frag_count = vt_end - frag_end; 1376 } 1377 mutex_unlock(&sched->lock); 1378 1379 /* The group got scheduled out, we stop here. We will get a new tiler OOM event 1380 * when it's scheduled again. 1381 */ 1382 if (unlikely(csg_id < 0)) 1383 return 0; 1384 1385 if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) { 1386 ret = -EINVAL; 1387 } else { 1388 /* We do the allocation without holding the scheduler lock to avoid 1389 * blocking the scheduling. 1390 */ 1391 ret = panthor_heap_grow(heaps, heap_address, 1392 renderpasses_in_flight, 1393 pending_frag_count, &new_chunk_va); 1394 } 1395 1396 /* If the heap context doesn't have memory for us, we want to let the 1397 * FW try to reclaim memory by waiting for fragment jobs to land or by 1398 * executing the tiler OOM exception handler, which is supposed to 1399 * implement incremental rendering. 1400 */ 1401 if (ret && ret != -ENOMEM) { 1402 drm_warn(&ptdev->base, "Failed to extend the tiler heap\n"); 1403 group->fatal_queues |= BIT(cs_id); 1404 sched_queue_delayed_work(sched, tick, 0); 1405 goto out_put_heap_pool; 1406 } 1407 1408 mutex_lock(&sched->lock); 1409 csg_id = group->csg_id; 1410 if (csg_id >= 0) { 1411 struct panthor_fw_csg_iface *csg_iface; 1412 struct panthor_fw_cs_iface *cs_iface; 1413 1414 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1415 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1416 1417 cs_iface->input->heap_start = new_chunk_va; 1418 cs_iface->input->heap_end = new_chunk_va; 1419 panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM); 1420 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id)); 1421 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1422 } 1423 mutex_unlock(&sched->lock); 1424 1425 /* We allocated a chunck, but couldn't link it to the heap 1426 * context because the group was scheduled out while we were 1427 * allocating memory. We need to return this chunk to the heap. 1428 */ 1429 if (unlikely(csg_id < 0 && new_chunk_va)) 1430 panthor_heap_return_chunk(heaps, heap_address, new_chunk_va); 1431 1432 ret = 0; 1433 1434 out_put_heap_pool: 1435 panthor_heap_pool_put(heaps); 1436 return ret; 1437 } 1438 1439 static void group_tiler_oom_work(struct work_struct *work) 1440 { 1441 struct panthor_group *group = 1442 container_of(work, struct panthor_group, tiler_oom_work); 1443 u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0); 1444 1445 while (tiler_oom) { 1446 u32 cs_id = ffs(tiler_oom) - 1; 1447 1448 group_process_tiler_oom(group, cs_id); 1449 tiler_oom &= ~BIT(cs_id); 1450 } 1451 1452 group_put(group); 1453 } 1454 1455 static void 1456 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev, 1457 u32 csg_id, u32 cs_id) 1458 { 1459 struct panthor_scheduler *sched = ptdev->scheduler; 1460 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1461 struct panthor_group *group = csg_slot->group; 1462 1463 lockdep_assert_held(&sched->lock); 1464 1465 if (drm_WARN_ON(&ptdev->base, !group)) 1466 return; 1467 1468 atomic_or(BIT(cs_id), &group->tiler_oom); 1469 1470 /* We don't use group_queue_work() here because we want to queue the 1471 * work item to the heap_alloc_wq. 1472 */ 1473 group_get(group); 1474 if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work)) 1475 group_put(group); 1476 } 1477 1478 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev, 1479 u32 csg_id, u32 cs_id) 1480 { 1481 struct panthor_fw_cs_iface *cs_iface; 1482 u32 req, ack, events; 1483 1484 lockdep_assert_held(&ptdev->scheduler->lock); 1485 1486 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1487 req = cs_iface->input->req; 1488 ack = cs_iface->output->ack; 1489 events = (req ^ ack) & CS_EVT_MASK; 1490 1491 if (events & CS_FATAL) 1492 cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id); 1493 1494 if (events & CS_FAULT) 1495 cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id); 1496 1497 if (events & CS_TILER_OOM) 1498 cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id); 1499 1500 /* We don't acknowledge the TILER_OOM event since its handling is 1501 * deferred to a separate work. 1502 */ 1503 panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT); 1504 1505 return (events & (CS_FAULT | CS_TILER_OOM)) != 0; 1506 } 1507 1508 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id) 1509 { 1510 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1511 struct panthor_fw_csg_iface *csg_iface; 1512 1513 lockdep_assert_held(&ptdev->scheduler->lock); 1514 1515 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1516 csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE; 1517 } 1518 1519 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id) 1520 { 1521 struct panthor_scheduler *sched = ptdev->scheduler; 1522 1523 lockdep_assert_held(&sched->lock); 1524 1525 sched->might_have_idle_groups = true; 1526 1527 /* Schedule a tick so we can evict idle groups and schedule non-idle 1528 * ones. This will also update runtime PM and devfreq busy/idle states, 1529 * so the device can lower its frequency or get suspended. 1530 */ 1531 sched_queue_delayed_work(sched, tick, 0); 1532 } 1533 1534 static void csg_slot_sync_update_locked(struct panthor_device *ptdev, 1535 u32 csg_id) 1536 { 1537 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1538 struct panthor_group *group = csg_slot->group; 1539 1540 lockdep_assert_held(&ptdev->scheduler->lock); 1541 1542 if (group) 1543 group_queue_work(group, sync_upd); 1544 1545 sched_queue_work(ptdev->scheduler, sync_upd); 1546 } 1547 1548 static void 1549 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id) 1550 { 1551 struct panthor_scheduler *sched = ptdev->scheduler; 1552 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1553 struct panthor_group *group = csg_slot->group; 1554 1555 lockdep_assert_held(&sched->lock); 1556 1557 drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id); 1558 1559 group = csg_slot->group; 1560 if (!drm_WARN_ON(&ptdev->base, !group)) 1561 group->timedout = true; 1562 1563 sched_queue_delayed_work(sched, tick, 0); 1564 } 1565 1566 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id) 1567 { 1568 u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events; 1569 struct panthor_fw_csg_iface *csg_iface; 1570 u32 ring_cs_db_mask = 0; 1571 1572 lockdep_assert_held(&ptdev->scheduler->lock); 1573 1574 if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1575 return; 1576 1577 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1578 req = READ_ONCE(csg_iface->input->req); 1579 ack = READ_ONCE(csg_iface->output->ack); 1580 cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req); 1581 cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack); 1582 csg_events = (req ^ ack) & CSG_EVT_MASK; 1583 1584 /* There may not be any pending CSG/CS interrupts to process */ 1585 if (req == ack && cs_irq_req == cs_irq_ack) 1586 return; 1587 1588 /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before 1589 * examining the CS_ACK & CS_REQ bits. This would ensure that Host 1590 * doesn't miss an interrupt for the CS in the race scenario where 1591 * whilst Host is servicing an interrupt for the CS, firmware sends 1592 * another interrupt for that CS. 1593 */ 1594 csg_iface->input->cs_irq_ack = cs_irq_req; 1595 1596 panthor_fw_update_reqs(csg_iface, req, ack, 1597 CSG_SYNC_UPDATE | 1598 CSG_IDLE | 1599 CSG_PROGRESS_TIMER_EVENT); 1600 1601 if (csg_events & CSG_IDLE) 1602 csg_slot_process_idle_event_locked(ptdev, csg_id); 1603 1604 if (csg_events & CSG_PROGRESS_TIMER_EVENT) 1605 csg_slot_process_progress_timer_event_locked(ptdev, csg_id); 1606 1607 cs_irqs = cs_irq_req ^ cs_irq_ack; 1608 while (cs_irqs) { 1609 u32 cs_id = ffs(cs_irqs) - 1; 1610 1611 if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id)) 1612 ring_cs_db_mask |= BIT(cs_id); 1613 1614 cs_irqs &= ~BIT(cs_id); 1615 } 1616 1617 if (csg_events & CSG_SYNC_UPDATE) 1618 csg_slot_sync_update_locked(ptdev, csg_id); 1619 1620 if (ring_cs_db_mask) 1621 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask); 1622 1623 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1624 } 1625 1626 static void sched_process_idle_event_locked(struct panthor_device *ptdev) 1627 { 1628 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1629 1630 lockdep_assert_held(&ptdev->scheduler->lock); 1631 1632 /* Acknowledge the idle event and schedule a tick. */ 1633 panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE); 1634 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 1635 } 1636 1637 /** 1638 * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ 1639 * @ptdev: Device. 1640 */ 1641 static void sched_process_global_irq_locked(struct panthor_device *ptdev) 1642 { 1643 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1644 u32 req, ack, evts; 1645 1646 lockdep_assert_held(&ptdev->scheduler->lock); 1647 1648 req = READ_ONCE(glb_iface->input->req); 1649 ack = READ_ONCE(glb_iface->output->ack); 1650 evts = (req ^ ack) & GLB_EVT_MASK; 1651 1652 if (evts & GLB_IDLE) 1653 sched_process_idle_event_locked(ptdev); 1654 } 1655 1656 static void process_fw_events_work(struct work_struct *work) 1657 { 1658 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 1659 fw_events_work); 1660 u32 events = atomic_xchg(&sched->fw_events, 0); 1661 struct panthor_device *ptdev = sched->ptdev; 1662 1663 mutex_lock(&sched->lock); 1664 1665 if (events & JOB_INT_GLOBAL_IF) { 1666 sched_process_global_irq_locked(ptdev); 1667 events &= ~JOB_INT_GLOBAL_IF; 1668 } 1669 1670 while (events) { 1671 u32 csg_id = ffs(events) - 1; 1672 1673 sched_process_csg_irq_locked(ptdev, csg_id); 1674 events &= ~BIT(csg_id); 1675 } 1676 1677 mutex_unlock(&sched->lock); 1678 } 1679 1680 /** 1681 * panthor_sched_report_fw_events() - Report FW events to the scheduler. 1682 */ 1683 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events) 1684 { 1685 if (!ptdev->scheduler) 1686 return; 1687 1688 atomic_or(events, &ptdev->scheduler->fw_events); 1689 sched_queue_work(ptdev->scheduler, fw_events); 1690 } 1691 1692 static const char *fence_get_driver_name(struct dma_fence *fence) 1693 { 1694 return "panthor"; 1695 } 1696 1697 static const char *queue_fence_get_timeline_name(struct dma_fence *fence) 1698 { 1699 return "queue-fence"; 1700 } 1701 1702 static const struct dma_fence_ops panthor_queue_fence_ops = { 1703 .get_driver_name = fence_get_driver_name, 1704 .get_timeline_name = queue_fence_get_timeline_name, 1705 }; 1706 1707 struct panthor_csg_slots_upd_ctx { 1708 u32 update_mask; 1709 u32 timedout_mask; 1710 struct { 1711 u32 value; 1712 u32 mask; 1713 } requests[MAX_CSGS]; 1714 }; 1715 1716 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx) 1717 { 1718 memset(ctx, 0, sizeof(*ctx)); 1719 } 1720 1721 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev, 1722 struct panthor_csg_slots_upd_ctx *ctx, 1723 u32 csg_id, u32 value, u32 mask) 1724 { 1725 if (drm_WARN_ON(&ptdev->base, !mask) || 1726 drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1727 return; 1728 1729 ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask); 1730 ctx->requests[csg_id].mask |= mask; 1731 ctx->update_mask |= BIT(csg_id); 1732 } 1733 1734 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev, 1735 struct panthor_csg_slots_upd_ctx *ctx) 1736 { 1737 struct panthor_scheduler *sched = ptdev->scheduler; 1738 u32 update_slots = ctx->update_mask; 1739 1740 lockdep_assert_held(&sched->lock); 1741 1742 if (!ctx->update_mask) 1743 return 0; 1744 1745 while (update_slots) { 1746 struct panthor_fw_csg_iface *csg_iface; 1747 u32 csg_id = ffs(update_slots) - 1; 1748 1749 update_slots &= ~BIT(csg_id); 1750 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1751 panthor_fw_update_reqs(csg_iface, req, 1752 ctx->requests[csg_id].value, 1753 ctx->requests[csg_id].mask); 1754 } 1755 1756 panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask); 1757 1758 update_slots = ctx->update_mask; 1759 while (update_slots) { 1760 struct panthor_fw_csg_iface *csg_iface; 1761 u32 csg_id = ffs(update_slots) - 1; 1762 u32 req_mask = ctx->requests[csg_id].mask, acked; 1763 int ret; 1764 1765 update_slots &= ~BIT(csg_id); 1766 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1767 1768 ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100); 1769 1770 if (acked & CSG_ENDPOINT_CONFIG) 1771 csg_slot_sync_priority_locked(ptdev, csg_id); 1772 1773 if (acked & CSG_STATE_MASK) 1774 csg_slot_sync_state_locked(ptdev, csg_id); 1775 1776 if (acked & CSG_STATUS_UPDATE) { 1777 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1778 csg_slot_sync_idle_state_locked(ptdev, csg_id); 1779 } 1780 1781 if (ret && acked != req_mask && 1782 ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) { 1783 drm_err(&ptdev->base, "CSG %d update request timedout", csg_id); 1784 ctx->timedout_mask |= BIT(csg_id); 1785 } 1786 } 1787 1788 if (ctx->timedout_mask) 1789 return -ETIMEDOUT; 1790 1791 return 0; 1792 } 1793 1794 struct panthor_sched_tick_ctx { 1795 struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT]; 1796 struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT]; 1797 u32 idle_group_count; 1798 u32 group_count; 1799 enum panthor_csg_priority min_priority; 1800 struct panthor_vm *vms[MAX_CS_PER_CSG]; 1801 u32 as_count; 1802 bool immediate_tick; 1803 u32 csg_upd_failed_mask; 1804 }; 1805 1806 static bool 1807 tick_ctx_is_full(const struct panthor_scheduler *sched, 1808 const struct panthor_sched_tick_ctx *ctx) 1809 { 1810 return ctx->group_count == sched->csg_slot_count; 1811 } 1812 1813 static bool 1814 group_is_idle(struct panthor_group *group) 1815 { 1816 struct panthor_device *ptdev = group->ptdev; 1817 u32 inactive_queues; 1818 1819 if (group->csg_id >= 0) 1820 return ptdev->scheduler->csg_slots[group->csg_id].idle; 1821 1822 inactive_queues = group->idle_queues | group->blocked_queues; 1823 return hweight32(inactive_queues) == group->queue_count; 1824 } 1825 1826 static bool 1827 group_can_run(struct panthor_group *group) 1828 { 1829 return group->state != PANTHOR_CS_GROUP_TERMINATED && 1830 group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE && 1831 !group->destroyed && group->fatal_queues == 0 && 1832 !group->timedout; 1833 } 1834 1835 static void 1836 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched, 1837 struct panthor_sched_tick_ctx *ctx, 1838 struct list_head *queue, 1839 bool skip_idle_groups, 1840 bool owned_by_tick_ctx) 1841 { 1842 struct panthor_group *group, *tmp; 1843 1844 if (tick_ctx_is_full(sched, ctx)) 1845 return; 1846 1847 list_for_each_entry_safe(group, tmp, queue, run_node) { 1848 u32 i; 1849 1850 if (!group_can_run(group)) 1851 continue; 1852 1853 if (skip_idle_groups && group_is_idle(group)) 1854 continue; 1855 1856 for (i = 0; i < ctx->as_count; i++) { 1857 if (ctx->vms[i] == group->vm) 1858 break; 1859 } 1860 1861 if (i == ctx->as_count && ctx->as_count == sched->as_slot_count) 1862 continue; 1863 1864 if (!owned_by_tick_ctx) 1865 group_get(group); 1866 1867 list_move_tail(&group->run_node, &ctx->groups[group->priority]); 1868 ctx->group_count++; 1869 if (group_is_idle(group)) 1870 ctx->idle_group_count++; 1871 1872 if (i == ctx->as_count) 1873 ctx->vms[ctx->as_count++] = group->vm; 1874 1875 if (ctx->min_priority > group->priority) 1876 ctx->min_priority = group->priority; 1877 1878 if (tick_ctx_is_full(sched, ctx)) 1879 return; 1880 } 1881 } 1882 1883 static void 1884 tick_ctx_insert_old_group(struct panthor_scheduler *sched, 1885 struct panthor_sched_tick_ctx *ctx, 1886 struct panthor_group *group, 1887 bool full_tick) 1888 { 1889 struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id]; 1890 struct panthor_group *other_group; 1891 1892 if (!full_tick) { 1893 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1894 return; 1895 } 1896 1897 /* Rotate to make sure groups with lower CSG slot 1898 * priorities have a chance to get a higher CSG slot 1899 * priority next time they get picked. This priority 1900 * has an impact on resource request ordering, so it's 1901 * important to make sure we don't let one group starve 1902 * all other groups with the same group priority. 1903 */ 1904 list_for_each_entry(other_group, 1905 &ctx->old_groups[csg_slot->group->priority], 1906 run_node) { 1907 struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id]; 1908 1909 if (other_csg_slot->priority > csg_slot->priority) { 1910 list_add_tail(&csg_slot->group->run_node, &other_group->run_node); 1911 return; 1912 } 1913 } 1914 1915 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1916 } 1917 1918 static void 1919 tick_ctx_init(struct panthor_scheduler *sched, 1920 struct panthor_sched_tick_ctx *ctx, 1921 bool full_tick) 1922 { 1923 struct panthor_device *ptdev = sched->ptdev; 1924 struct panthor_csg_slots_upd_ctx upd_ctx; 1925 int ret; 1926 u32 i; 1927 1928 memset(ctx, 0, sizeof(*ctx)); 1929 csgs_upd_ctx_init(&upd_ctx); 1930 1931 ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT; 1932 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 1933 INIT_LIST_HEAD(&ctx->groups[i]); 1934 INIT_LIST_HEAD(&ctx->old_groups[i]); 1935 } 1936 1937 for (i = 0; i < sched->csg_slot_count; i++) { 1938 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 1939 struct panthor_group *group = csg_slot->group; 1940 struct panthor_fw_csg_iface *csg_iface; 1941 1942 if (!group) 1943 continue; 1944 1945 csg_iface = panthor_fw_get_csg_iface(ptdev, i); 1946 group_get(group); 1947 1948 /* If there was unhandled faults on the VM, force processing of 1949 * CSG IRQs, so we can flag the faulty queue. 1950 */ 1951 if (panthor_vm_has_unhandled_faults(group->vm)) { 1952 sched_process_csg_irq_locked(ptdev, i); 1953 1954 /* No fatal fault reported, flag all queues as faulty. */ 1955 if (!group->fatal_queues) 1956 group->fatal_queues |= GENMASK(group->queue_count - 1, 0); 1957 } 1958 1959 tick_ctx_insert_old_group(sched, ctx, group, full_tick); 1960 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 1961 csg_iface->output->ack ^ CSG_STATUS_UPDATE, 1962 CSG_STATUS_UPDATE); 1963 } 1964 1965 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 1966 if (ret) { 1967 panthor_device_schedule_reset(ptdev); 1968 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 1969 } 1970 } 1971 1972 #define NUM_INSTRS_PER_SLOT 16 1973 1974 static void 1975 group_term_post_processing(struct panthor_group *group) 1976 { 1977 struct panthor_job *job, *tmp; 1978 LIST_HEAD(faulty_jobs); 1979 bool cookie; 1980 u32 i = 0; 1981 1982 if (drm_WARN_ON(&group->ptdev->base, group_can_run(group))) 1983 return; 1984 1985 cookie = dma_fence_begin_signalling(); 1986 for (i = 0; i < group->queue_count; i++) { 1987 struct panthor_queue *queue = group->queues[i]; 1988 struct panthor_syncobj_64b *syncobj; 1989 int err; 1990 1991 if (group->fatal_queues & BIT(i)) 1992 err = -EINVAL; 1993 else if (group->timedout) 1994 err = -ETIMEDOUT; 1995 else 1996 err = -ECANCELED; 1997 1998 if (!queue) 1999 continue; 2000 2001 spin_lock(&queue->fence_ctx.lock); 2002 list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) { 2003 list_move_tail(&job->node, &faulty_jobs); 2004 dma_fence_set_error(job->done_fence, err); 2005 dma_fence_signal_locked(job->done_fence); 2006 } 2007 spin_unlock(&queue->fence_ctx.lock); 2008 2009 /* Manually update the syncobj seqno to unblock waiters. */ 2010 syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj)); 2011 syncobj->status = ~0; 2012 syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno); 2013 sched_queue_work(group->ptdev->scheduler, sync_upd); 2014 } 2015 dma_fence_end_signalling(cookie); 2016 2017 list_for_each_entry_safe(job, tmp, &faulty_jobs, node) { 2018 list_del_init(&job->node); 2019 panthor_job_put(&job->base); 2020 } 2021 } 2022 2023 static void group_term_work(struct work_struct *work) 2024 { 2025 struct panthor_group *group = 2026 container_of(work, struct panthor_group, term_work); 2027 2028 group_term_post_processing(group); 2029 group_put(group); 2030 } 2031 2032 static void 2033 tick_ctx_cleanup(struct panthor_scheduler *sched, 2034 struct panthor_sched_tick_ctx *ctx) 2035 { 2036 struct panthor_group *group, *tmp; 2037 u32 i; 2038 2039 for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) { 2040 list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) { 2041 /* If everything went fine, we should only have groups 2042 * to be terminated in the old_groups lists. 2043 */ 2044 drm_WARN_ON(&group->ptdev->base, !ctx->csg_upd_failed_mask && 2045 group_can_run(group)); 2046 2047 if (!group_can_run(group)) { 2048 list_del_init(&group->run_node); 2049 list_del_init(&group->wait_node); 2050 group_queue_work(group, term); 2051 } else if (group->csg_id >= 0) { 2052 list_del_init(&group->run_node); 2053 } else { 2054 list_move(&group->run_node, 2055 group_is_idle(group) ? 2056 &sched->groups.idle[group->priority] : 2057 &sched->groups.runnable[group->priority]); 2058 } 2059 group_put(group); 2060 } 2061 } 2062 2063 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 2064 /* If everything went fine, the groups to schedule lists should 2065 * be empty. 2066 */ 2067 drm_WARN_ON(&group->ptdev->base, 2068 !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i])); 2069 2070 list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) { 2071 if (group->csg_id >= 0) { 2072 list_del_init(&group->run_node); 2073 } else { 2074 list_move(&group->run_node, 2075 group_is_idle(group) ? 2076 &sched->groups.idle[group->priority] : 2077 &sched->groups.runnable[group->priority]); 2078 } 2079 group_put(group); 2080 } 2081 } 2082 } 2083 2084 static void 2085 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx) 2086 { 2087 struct panthor_group *group, *tmp; 2088 struct panthor_device *ptdev = sched->ptdev; 2089 struct panthor_csg_slot *csg_slot; 2090 int prio, new_csg_prio = MAX_CSG_PRIO, i; 2091 u32 free_csg_slots = 0; 2092 struct panthor_csg_slots_upd_ctx upd_ctx; 2093 int ret; 2094 2095 csgs_upd_ctx_init(&upd_ctx); 2096 2097 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2098 /* Suspend or terminate evicted groups. */ 2099 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2100 bool term = !group_can_run(group); 2101 int csg_id = group->csg_id; 2102 2103 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2104 continue; 2105 2106 csg_slot = &sched->csg_slots[csg_id]; 2107 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2108 term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND, 2109 CSG_STATE_MASK); 2110 } 2111 2112 /* Update priorities on already running groups. */ 2113 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2114 struct panthor_fw_csg_iface *csg_iface; 2115 int csg_id = group->csg_id; 2116 2117 if (csg_id < 0) { 2118 new_csg_prio--; 2119 continue; 2120 } 2121 2122 csg_slot = &sched->csg_slots[csg_id]; 2123 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2124 if (csg_slot->priority == new_csg_prio) { 2125 new_csg_prio--; 2126 continue; 2127 } 2128 2129 panthor_fw_update_reqs(csg_iface, endpoint_req, 2130 CSG_EP_REQ_PRIORITY(new_csg_prio), 2131 CSG_EP_REQ_PRIORITY_MASK); 2132 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2133 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2134 CSG_ENDPOINT_CONFIG); 2135 new_csg_prio--; 2136 } 2137 } 2138 2139 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2140 if (ret) { 2141 panthor_device_schedule_reset(ptdev); 2142 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2143 return; 2144 } 2145 2146 /* Unbind evicted groups. */ 2147 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2148 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2149 /* This group is gone. Process interrupts to clear 2150 * any pending interrupts before we start the new 2151 * group. 2152 */ 2153 if (group->csg_id >= 0) 2154 sched_process_csg_irq_locked(ptdev, group->csg_id); 2155 2156 group_unbind_locked(group); 2157 } 2158 } 2159 2160 for (i = 0; i < sched->csg_slot_count; i++) { 2161 if (!sched->csg_slots[i].group) 2162 free_csg_slots |= BIT(i); 2163 } 2164 2165 csgs_upd_ctx_init(&upd_ctx); 2166 new_csg_prio = MAX_CSG_PRIO; 2167 2168 /* Start new groups. */ 2169 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2170 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2171 int csg_id = group->csg_id; 2172 struct panthor_fw_csg_iface *csg_iface; 2173 2174 if (csg_id >= 0) { 2175 new_csg_prio--; 2176 continue; 2177 } 2178 2179 csg_id = ffs(free_csg_slots) - 1; 2180 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2181 break; 2182 2183 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2184 csg_slot = &sched->csg_slots[csg_id]; 2185 group_bind_locked(group, csg_id); 2186 csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--); 2187 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2188 group->state == PANTHOR_CS_GROUP_SUSPENDED ? 2189 CSG_STATE_RESUME : CSG_STATE_START, 2190 CSG_STATE_MASK); 2191 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2192 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2193 CSG_ENDPOINT_CONFIG); 2194 free_csg_slots &= ~BIT(csg_id); 2195 } 2196 } 2197 2198 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2199 if (ret) { 2200 panthor_device_schedule_reset(ptdev); 2201 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2202 return; 2203 } 2204 2205 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2206 list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) { 2207 list_del_init(&group->run_node); 2208 2209 /* If the group has been destroyed while we were 2210 * scheduling, ask for an immediate tick to 2211 * re-evaluate as soon as possible and get rid of 2212 * this dangling group. 2213 */ 2214 if (group->destroyed) 2215 ctx->immediate_tick = true; 2216 group_put(group); 2217 } 2218 2219 /* Return evicted groups to the idle or run queues. Groups 2220 * that can no longer be run (because they've been destroyed 2221 * or experienced an unrecoverable error) will be scheduled 2222 * for destruction in tick_ctx_cleanup(). 2223 */ 2224 list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) { 2225 if (!group_can_run(group)) 2226 continue; 2227 2228 if (group_is_idle(group)) 2229 list_move_tail(&group->run_node, &sched->groups.idle[prio]); 2230 else 2231 list_move_tail(&group->run_node, &sched->groups.runnable[prio]); 2232 group_put(group); 2233 } 2234 } 2235 2236 sched->used_csg_slot_count = ctx->group_count; 2237 sched->might_have_idle_groups = ctx->idle_group_count > 0; 2238 } 2239 2240 static u64 2241 tick_ctx_update_resched_target(struct panthor_scheduler *sched, 2242 const struct panthor_sched_tick_ctx *ctx) 2243 { 2244 /* We had space left, no need to reschedule until some external event happens. */ 2245 if (!tick_ctx_is_full(sched, ctx)) 2246 goto no_tick; 2247 2248 /* If idle groups were scheduled, no need to wake up until some external 2249 * event happens (group unblocked, new job submitted, ...). 2250 */ 2251 if (ctx->idle_group_count) 2252 goto no_tick; 2253 2254 if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT)) 2255 goto no_tick; 2256 2257 /* If there are groups of the same priority waiting, we need to 2258 * keep the scheduler ticking, otherwise, we'll just wait for 2259 * new groups with higher priority to be queued. 2260 */ 2261 if (!list_empty(&sched->groups.runnable[ctx->min_priority])) { 2262 u64 resched_target = sched->last_tick + sched->tick_period; 2263 2264 if (time_before64(sched->resched_target, sched->last_tick) || 2265 time_before64(resched_target, sched->resched_target)) 2266 sched->resched_target = resched_target; 2267 2268 return sched->resched_target - sched->last_tick; 2269 } 2270 2271 no_tick: 2272 sched->resched_target = U64_MAX; 2273 return U64_MAX; 2274 } 2275 2276 static void tick_work(struct work_struct *work) 2277 { 2278 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 2279 tick_work.work); 2280 struct panthor_device *ptdev = sched->ptdev; 2281 struct panthor_sched_tick_ctx ctx; 2282 u64 remaining_jiffies = 0, resched_delay; 2283 u64 now = get_jiffies_64(); 2284 int prio, ret, cookie; 2285 2286 if (!drm_dev_enter(&ptdev->base, &cookie)) 2287 return; 2288 2289 ret = pm_runtime_resume_and_get(ptdev->base.dev); 2290 if (drm_WARN_ON(&ptdev->base, ret)) 2291 goto out_dev_exit; 2292 2293 if (time_before64(now, sched->resched_target)) 2294 remaining_jiffies = sched->resched_target - now; 2295 2296 mutex_lock(&sched->lock); 2297 if (panthor_device_reset_is_pending(sched->ptdev)) 2298 goto out_unlock; 2299 2300 tick_ctx_init(sched, &ctx, remaining_jiffies != 0); 2301 if (ctx.csg_upd_failed_mask) 2302 goto out_cleanup_ctx; 2303 2304 if (remaining_jiffies) { 2305 /* Scheduling forced in the middle of a tick. Only RT groups 2306 * can preempt non-RT ones. Currently running RT groups can't be 2307 * preempted. 2308 */ 2309 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2310 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2311 prio--) { 2312 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], 2313 true, true); 2314 if (prio == PANTHOR_CSG_PRIORITY_RT) { 2315 tick_ctx_pick_groups_from_list(sched, &ctx, 2316 &sched->groups.runnable[prio], 2317 true, false); 2318 } 2319 } 2320 } 2321 2322 /* First pick non-idle groups */ 2323 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2324 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2325 prio--) { 2326 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio], 2327 true, false); 2328 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true); 2329 } 2330 2331 /* If we have free CSG slots left, pick idle groups */ 2332 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2333 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2334 prio--) { 2335 /* Check the old_group queue first to avoid reprogramming the slots */ 2336 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true); 2337 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio], 2338 false, false); 2339 } 2340 2341 tick_ctx_apply(sched, &ctx); 2342 if (ctx.csg_upd_failed_mask) 2343 goto out_cleanup_ctx; 2344 2345 if (ctx.idle_group_count == ctx.group_count) { 2346 panthor_devfreq_record_idle(sched->ptdev); 2347 if (sched->pm.has_ref) { 2348 pm_runtime_put_autosuspend(ptdev->base.dev); 2349 sched->pm.has_ref = false; 2350 } 2351 } else { 2352 panthor_devfreq_record_busy(sched->ptdev); 2353 if (!sched->pm.has_ref) { 2354 pm_runtime_get(ptdev->base.dev); 2355 sched->pm.has_ref = true; 2356 } 2357 } 2358 2359 sched->last_tick = now; 2360 resched_delay = tick_ctx_update_resched_target(sched, &ctx); 2361 if (ctx.immediate_tick) 2362 resched_delay = 0; 2363 2364 if (resched_delay != U64_MAX) 2365 sched_queue_delayed_work(sched, tick, resched_delay); 2366 2367 out_cleanup_ctx: 2368 tick_ctx_cleanup(sched, &ctx); 2369 2370 out_unlock: 2371 mutex_unlock(&sched->lock); 2372 pm_runtime_mark_last_busy(ptdev->base.dev); 2373 pm_runtime_put_autosuspend(ptdev->base.dev); 2374 2375 out_dev_exit: 2376 drm_dev_exit(cookie); 2377 } 2378 2379 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx) 2380 { 2381 struct panthor_queue *queue = group->queues[queue_idx]; 2382 union { 2383 struct panthor_syncobj_64b sync64; 2384 struct panthor_syncobj_32b sync32; 2385 } *syncobj; 2386 bool result; 2387 u64 value; 2388 2389 syncobj = panthor_queue_get_syncwait_obj(group, queue); 2390 if (!syncobj) 2391 return -EINVAL; 2392 2393 value = queue->syncwait.sync64 ? 2394 syncobj->sync64.seqno : 2395 syncobj->sync32.seqno; 2396 2397 if (queue->syncwait.gt) 2398 result = value > queue->syncwait.ref; 2399 else 2400 result = value <= queue->syncwait.ref; 2401 2402 if (result) 2403 panthor_queue_put_syncwait_obj(queue); 2404 2405 return result; 2406 } 2407 2408 static void sync_upd_work(struct work_struct *work) 2409 { 2410 struct panthor_scheduler *sched = container_of(work, 2411 struct panthor_scheduler, 2412 sync_upd_work); 2413 struct panthor_group *group, *tmp; 2414 bool immediate_tick = false; 2415 2416 mutex_lock(&sched->lock); 2417 list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) { 2418 u32 tested_queues = group->blocked_queues; 2419 u32 unblocked_queues = 0; 2420 2421 while (tested_queues) { 2422 u32 cs_id = ffs(tested_queues) - 1; 2423 int ret; 2424 2425 ret = panthor_queue_eval_syncwait(group, cs_id); 2426 drm_WARN_ON(&group->ptdev->base, ret < 0); 2427 if (ret) 2428 unblocked_queues |= BIT(cs_id); 2429 2430 tested_queues &= ~BIT(cs_id); 2431 } 2432 2433 if (unblocked_queues) { 2434 group->blocked_queues &= ~unblocked_queues; 2435 2436 if (group->csg_id < 0) { 2437 list_move(&group->run_node, 2438 &sched->groups.runnable[group->priority]); 2439 if (group->priority == PANTHOR_CSG_PRIORITY_RT) 2440 immediate_tick = true; 2441 } 2442 } 2443 2444 if (!group->blocked_queues) 2445 list_del_init(&group->wait_node); 2446 } 2447 mutex_unlock(&sched->lock); 2448 2449 if (immediate_tick) 2450 sched_queue_delayed_work(sched, tick, 0); 2451 } 2452 2453 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask) 2454 { 2455 struct panthor_device *ptdev = group->ptdev; 2456 struct panthor_scheduler *sched = ptdev->scheduler; 2457 struct list_head *queue = &sched->groups.runnable[group->priority]; 2458 u64 delay_jiffies = 0; 2459 bool was_idle; 2460 u64 now; 2461 2462 if (!group_can_run(group)) 2463 return; 2464 2465 /* All updated queues are blocked, no need to wake up the scheduler. */ 2466 if ((queue_mask & group->blocked_queues) == queue_mask) 2467 return; 2468 2469 was_idle = group_is_idle(group); 2470 group->idle_queues &= ~queue_mask; 2471 2472 /* Don't mess up with the lists if we're in a middle of a reset. */ 2473 if (atomic_read(&sched->reset.in_progress)) 2474 return; 2475 2476 if (was_idle && !group_is_idle(group)) 2477 list_move_tail(&group->run_node, queue); 2478 2479 /* RT groups are preemptive. */ 2480 if (group->priority == PANTHOR_CSG_PRIORITY_RT) { 2481 sched_queue_delayed_work(sched, tick, 0); 2482 return; 2483 } 2484 2485 /* Some groups might be idle, force an immediate tick to 2486 * re-evaluate. 2487 */ 2488 if (sched->might_have_idle_groups) { 2489 sched_queue_delayed_work(sched, tick, 0); 2490 return; 2491 } 2492 2493 /* Scheduler is ticking, nothing to do. */ 2494 if (sched->resched_target != U64_MAX) { 2495 /* If there are free slots, force immediating ticking. */ 2496 if (sched->used_csg_slot_count < sched->csg_slot_count) 2497 sched_queue_delayed_work(sched, tick, 0); 2498 2499 return; 2500 } 2501 2502 /* Scheduler tick was off, recalculate the resched_target based on the 2503 * last tick event, and queue the scheduler work. 2504 */ 2505 now = get_jiffies_64(); 2506 sched->resched_target = sched->last_tick + sched->tick_period; 2507 if (sched->used_csg_slot_count == sched->csg_slot_count && 2508 time_before64(now, sched->resched_target)) 2509 delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX); 2510 2511 sched_queue_delayed_work(sched, tick, delay_jiffies); 2512 } 2513 2514 static void queue_stop(struct panthor_queue *queue, 2515 struct panthor_job *bad_job) 2516 { 2517 drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); 2518 } 2519 2520 static void queue_start(struct panthor_queue *queue) 2521 { 2522 struct panthor_job *job; 2523 2524 /* Re-assign the parent fences. */ 2525 list_for_each_entry(job, &queue->scheduler.pending_list, base.list) 2526 job->base.s_fence->parent = dma_fence_get(job->done_fence); 2527 2528 drm_sched_start(&queue->scheduler, true); 2529 } 2530 2531 static void panthor_group_stop(struct panthor_group *group) 2532 { 2533 struct panthor_scheduler *sched = group->ptdev->scheduler; 2534 2535 lockdep_assert_held(&sched->reset.lock); 2536 2537 for (u32 i = 0; i < group->queue_count; i++) 2538 queue_stop(group->queues[i], NULL); 2539 2540 group_get(group); 2541 list_move_tail(&group->run_node, &sched->reset.stopped_groups); 2542 } 2543 2544 static void panthor_group_start(struct panthor_group *group) 2545 { 2546 struct panthor_scheduler *sched = group->ptdev->scheduler; 2547 2548 lockdep_assert_held(&group->ptdev->scheduler->reset.lock); 2549 2550 for (u32 i = 0; i < group->queue_count; i++) 2551 queue_start(group->queues[i]); 2552 2553 if (group_can_run(group)) { 2554 list_move_tail(&group->run_node, 2555 group_is_idle(group) ? 2556 &sched->groups.idle[group->priority] : 2557 &sched->groups.runnable[group->priority]); 2558 } else { 2559 list_del_init(&group->run_node); 2560 list_del_init(&group->wait_node); 2561 group_queue_work(group, term); 2562 } 2563 2564 group_put(group); 2565 } 2566 2567 static void panthor_sched_immediate_tick(struct panthor_device *ptdev) 2568 { 2569 struct panthor_scheduler *sched = ptdev->scheduler; 2570 2571 sched_queue_delayed_work(sched, tick, 0); 2572 } 2573 2574 /** 2575 * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler. 2576 */ 2577 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev) 2578 { 2579 /* Force a tick to immediately kill faulty groups. */ 2580 if (ptdev->scheduler) 2581 panthor_sched_immediate_tick(ptdev); 2582 } 2583 2584 void panthor_sched_resume(struct panthor_device *ptdev) 2585 { 2586 /* Force a tick to re-evaluate after a resume. */ 2587 panthor_sched_immediate_tick(ptdev); 2588 } 2589 2590 void panthor_sched_suspend(struct panthor_device *ptdev) 2591 { 2592 struct panthor_scheduler *sched = ptdev->scheduler; 2593 struct panthor_csg_slots_upd_ctx upd_ctx; 2594 struct panthor_group *group; 2595 u32 suspended_slots; 2596 u32 i; 2597 2598 mutex_lock(&sched->lock); 2599 csgs_upd_ctx_init(&upd_ctx); 2600 for (i = 0; i < sched->csg_slot_count; i++) { 2601 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2602 2603 if (csg_slot->group) { 2604 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 2605 group_can_run(csg_slot->group) ? 2606 CSG_STATE_SUSPEND : CSG_STATE_TERMINATE, 2607 CSG_STATE_MASK); 2608 } 2609 } 2610 2611 suspended_slots = upd_ctx.update_mask; 2612 2613 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2614 suspended_slots &= ~upd_ctx.timedout_mask; 2615 2616 if (upd_ctx.timedout_mask) { 2617 u32 slot_mask = upd_ctx.timedout_mask; 2618 2619 drm_err(&ptdev->base, "CSG suspend failed, escalating to termination"); 2620 csgs_upd_ctx_init(&upd_ctx); 2621 while (slot_mask) { 2622 u32 csg_id = ffs(slot_mask) - 1; 2623 2624 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2625 CSG_STATE_TERMINATE, 2626 CSG_STATE_MASK); 2627 slot_mask &= ~BIT(csg_id); 2628 } 2629 2630 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2631 2632 slot_mask = upd_ctx.timedout_mask; 2633 while (slot_mask) { 2634 u32 csg_id = ffs(slot_mask) - 1; 2635 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2636 2637 /* Terminate command timedout, but the soft-reset will 2638 * automatically terminate all active groups, so let's 2639 * force the state to halted here. 2640 */ 2641 if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED) 2642 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2643 slot_mask &= ~BIT(csg_id); 2644 } 2645 } 2646 2647 /* Flush L2 and LSC caches to make sure suspend state is up-to-date. 2648 * If the flush fails, flag all queues for termination. 2649 */ 2650 if (suspended_slots) { 2651 bool flush_caches_failed = false; 2652 u32 slot_mask = suspended_slots; 2653 2654 if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0)) 2655 flush_caches_failed = true; 2656 2657 while (slot_mask) { 2658 u32 csg_id = ffs(slot_mask) - 1; 2659 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2660 2661 if (flush_caches_failed) 2662 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2663 else 2664 csg_slot_sync_update_locked(ptdev, csg_id); 2665 2666 slot_mask &= ~BIT(csg_id); 2667 } 2668 } 2669 2670 for (i = 0; i < sched->csg_slot_count; i++) { 2671 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2672 2673 group = csg_slot->group; 2674 if (!group) 2675 continue; 2676 2677 group_get(group); 2678 2679 if (group->csg_id >= 0) 2680 sched_process_csg_irq_locked(ptdev, group->csg_id); 2681 2682 group_unbind_locked(group); 2683 2684 drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node)); 2685 2686 if (group_can_run(group)) { 2687 list_add(&group->run_node, 2688 &sched->groups.idle[group->priority]); 2689 } else { 2690 /* We don't bother stopping the scheduler if the group is 2691 * faulty, the group termination work will finish the job. 2692 */ 2693 list_del_init(&group->wait_node); 2694 group_queue_work(group, term); 2695 } 2696 group_put(group); 2697 } 2698 mutex_unlock(&sched->lock); 2699 } 2700 2701 void panthor_sched_pre_reset(struct panthor_device *ptdev) 2702 { 2703 struct panthor_scheduler *sched = ptdev->scheduler; 2704 struct panthor_group *group, *group_tmp; 2705 u32 i; 2706 2707 mutex_lock(&sched->reset.lock); 2708 atomic_set(&sched->reset.in_progress, true); 2709 2710 /* Cancel all scheduler works. Once this is done, these works can't be 2711 * scheduled again until the reset operation is complete. 2712 */ 2713 cancel_work_sync(&sched->sync_upd_work); 2714 cancel_delayed_work_sync(&sched->tick_work); 2715 2716 panthor_sched_suspend(ptdev); 2717 2718 /* Stop all groups that might still accept jobs, so we don't get passed 2719 * new jobs while we're resetting. 2720 */ 2721 for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) { 2722 /* All groups should be in the idle lists. */ 2723 drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i])); 2724 list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node) 2725 panthor_group_stop(group); 2726 } 2727 2728 for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) { 2729 list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node) 2730 panthor_group_stop(group); 2731 } 2732 2733 mutex_unlock(&sched->reset.lock); 2734 } 2735 2736 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed) 2737 { 2738 struct panthor_scheduler *sched = ptdev->scheduler; 2739 struct panthor_group *group, *group_tmp; 2740 2741 mutex_lock(&sched->reset.lock); 2742 2743 list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) { 2744 /* Consider all previously running group as terminated if the 2745 * reset failed. 2746 */ 2747 if (reset_failed) 2748 group->state = PANTHOR_CS_GROUP_TERMINATED; 2749 2750 panthor_group_start(group); 2751 } 2752 2753 /* We're done resetting the GPU, clear the reset.in_progress bit so we can 2754 * kick the scheduler. 2755 */ 2756 atomic_set(&sched->reset.in_progress, false); 2757 mutex_unlock(&sched->reset.lock); 2758 2759 /* No need to queue a tick and update syncs if the reset failed. */ 2760 if (!reset_failed) { 2761 sched_queue_delayed_work(sched, tick, 0); 2762 sched_queue_work(sched, sync_upd); 2763 } 2764 } 2765 2766 static void group_sync_upd_work(struct work_struct *work) 2767 { 2768 struct panthor_group *group = 2769 container_of(work, struct panthor_group, sync_upd_work); 2770 struct panthor_job *job, *job_tmp; 2771 LIST_HEAD(done_jobs); 2772 u32 queue_idx; 2773 bool cookie; 2774 2775 cookie = dma_fence_begin_signalling(); 2776 for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) { 2777 struct panthor_queue *queue = group->queues[queue_idx]; 2778 struct panthor_syncobj_64b *syncobj; 2779 2780 if (!queue) 2781 continue; 2782 2783 syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj)); 2784 2785 spin_lock(&queue->fence_ctx.lock); 2786 list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) { 2787 if (!job->call_info.size) 2788 continue; 2789 2790 if (syncobj->seqno < job->done_fence->seqno) 2791 break; 2792 2793 list_move_tail(&job->node, &done_jobs); 2794 dma_fence_signal_locked(job->done_fence); 2795 } 2796 spin_unlock(&queue->fence_ctx.lock); 2797 } 2798 dma_fence_end_signalling(cookie); 2799 2800 list_for_each_entry_safe(job, job_tmp, &done_jobs, node) { 2801 list_del_init(&job->node); 2802 panthor_job_put(&job->base); 2803 } 2804 2805 group_put(group); 2806 } 2807 2808 static struct dma_fence * 2809 queue_run_job(struct drm_sched_job *sched_job) 2810 { 2811 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 2812 struct panthor_group *group = job->group; 2813 struct panthor_queue *queue = group->queues[job->queue_idx]; 2814 struct panthor_device *ptdev = group->ptdev; 2815 struct panthor_scheduler *sched = ptdev->scheduler; 2816 u32 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 2817 u32 ringbuf_insert = queue->iface.input->insert & (ringbuf_size - 1); 2818 u64 addr_reg = ptdev->csif_info.cs_reg_count - 2819 ptdev->csif_info.unpreserved_cs_reg_count; 2820 u64 val_reg = addr_reg + 2; 2821 u64 sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) + 2822 job->queue_idx * sizeof(struct panthor_syncobj_64b); 2823 u32 waitall_mask = GENMASK(sched->sb_slot_count - 1, 0); 2824 struct dma_fence *done_fence; 2825 int ret; 2826 2827 u64 call_instrs[NUM_INSTRS_PER_SLOT] = { 2828 /* MOV32 rX+2, cs.latest_flush */ 2829 (2ull << 56) | (val_reg << 48) | job->call_info.latest_flush, 2830 2831 /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */ 2832 (36ull << 56) | (0ull << 48) | (val_reg << 40) | (0 << 16) | 0x233, 2833 2834 /* MOV48 rX:rX+1, cs.start */ 2835 (1ull << 56) | (addr_reg << 48) | job->call_info.start, 2836 2837 /* MOV32 rX+2, cs.size */ 2838 (2ull << 56) | (val_reg << 48) | job->call_info.size, 2839 2840 /* WAIT(0) => waits for FLUSH_CACHE2 instruction */ 2841 (3ull << 56) | (1 << 16), 2842 2843 /* CALL rX:rX+1, rX+2 */ 2844 (32ull << 56) | (addr_reg << 40) | (val_reg << 32), 2845 2846 /* MOV48 rX:rX+1, sync_addr */ 2847 (1ull << 56) | (addr_reg << 48) | sync_addr, 2848 2849 /* MOV48 rX+2, #1 */ 2850 (1ull << 56) | (val_reg << 48) | 1, 2851 2852 /* WAIT(all) */ 2853 (3ull << 56) | (waitall_mask << 16), 2854 2855 /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/ 2856 (51ull << 56) | (0ull << 48) | (addr_reg << 40) | (val_reg << 32) | (0 << 16) | 1, 2857 2858 /* ERROR_BARRIER, so we can recover from faults at job 2859 * boundaries. 2860 */ 2861 (47ull << 56), 2862 }; 2863 2864 /* Need to be cacheline aligned to please the prefetcher. */ 2865 static_assert(sizeof(call_instrs) % 64 == 0, 2866 "call_instrs is not aligned on a cacheline"); 2867 2868 /* Stream size is zero, nothing to do => return a NULL fence and let 2869 * drm_sched signal the parent. 2870 */ 2871 if (!job->call_info.size) 2872 return NULL; 2873 2874 ret = pm_runtime_resume_and_get(ptdev->base.dev); 2875 if (drm_WARN_ON(&ptdev->base, ret)) 2876 return ERR_PTR(ret); 2877 2878 mutex_lock(&sched->lock); 2879 if (!group_can_run(group)) { 2880 done_fence = ERR_PTR(-ECANCELED); 2881 goto out_unlock; 2882 } 2883 2884 dma_fence_init(job->done_fence, 2885 &panthor_queue_fence_ops, 2886 &queue->fence_ctx.lock, 2887 queue->fence_ctx.id, 2888 atomic64_inc_return(&queue->fence_ctx.seqno)); 2889 2890 memcpy(queue->ringbuf->kmap + ringbuf_insert, 2891 call_instrs, sizeof(call_instrs)); 2892 2893 panthor_job_get(&job->base); 2894 spin_lock(&queue->fence_ctx.lock); 2895 list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs); 2896 spin_unlock(&queue->fence_ctx.lock); 2897 2898 job->ringbuf.start = queue->iface.input->insert; 2899 job->ringbuf.end = job->ringbuf.start + sizeof(call_instrs); 2900 2901 /* Make sure the ring buffer is updated before the INSERT 2902 * register. 2903 */ 2904 wmb(); 2905 2906 queue->iface.input->extract = queue->iface.output->extract; 2907 queue->iface.input->insert = job->ringbuf.end; 2908 2909 if (group->csg_id < 0) { 2910 /* If the queue is blocked, we want to keep the timeout running, so we 2911 * can detect unbounded waits and kill the group when that happens. 2912 * Otherwise, we suspend the timeout so the time we spend waiting for 2913 * a CSG slot is not counted. 2914 */ 2915 if (!(group->blocked_queues & BIT(job->queue_idx)) && 2916 !queue->timeout_suspended) { 2917 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 2918 queue->timeout_suspended = true; 2919 } 2920 2921 group_schedule_locked(group, BIT(job->queue_idx)); 2922 } else { 2923 gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1); 2924 if (!sched->pm.has_ref && 2925 !(group->blocked_queues & BIT(job->queue_idx))) { 2926 pm_runtime_get(ptdev->base.dev); 2927 sched->pm.has_ref = true; 2928 } 2929 } 2930 2931 done_fence = dma_fence_get(job->done_fence); 2932 2933 out_unlock: 2934 mutex_unlock(&sched->lock); 2935 pm_runtime_mark_last_busy(ptdev->base.dev); 2936 pm_runtime_put_autosuspend(ptdev->base.dev); 2937 2938 return done_fence; 2939 } 2940 2941 static enum drm_gpu_sched_stat 2942 queue_timedout_job(struct drm_sched_job *sched_job) 2943 { 2944 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 2945 struct panthor_group *group = job->group; 2946 struct panthor_device *ptdev = group->ptdev; 2947 struct panthor_scheduler *sched = ptdev->scheduler; 2948 struct panthor_queue *queue = group->queues[job->queue_idx]; 2949 2950 drm_warn(&ptdev->base, "job timeout\n"); 2951 2952 drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress)); 2953 2954 queue_stop(queue, job); 2955 2956 mutex_lock(&sched->lock); 2957 group->timedout = true; 2958 if (group->csg_id >= 0) { 2959 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 2960 } else { 2961 /* Remove from the run queues, so the scheduler can't 2962 * pick the group on the next tick. 2963 */ 2964 list_del_init(&group->run_node); 2965 list_del_init(&group->wait_node); 2966 2967 group_queue_work(group, term); 2968 } 2969 mutex_unlock(&sched->lock); 2970 2971 queue_start(queue); 2972 2973 return DRM_GPU_SCHED_STAT_NOMINAL; 2974 } 2975 2976 static void queue_free_job(struct drm_sched_job *sched_job) 2977 { 2978 drm_sched_job_cleanup(sched_job); 2979 panthor_job_put(sched_job); 2980 } 2981 2982 static const struct drm_sched_backend_ops panthor_queue_sched_ops = { 2983 .run_job = queue_run_job, 2984 .timedout_job = queue_timedout_job, 2985 .free_job = queue_free_job, 2986 }; 2987 2988 static struct panthor_queue * 2989 group_create_queue(struct panthor_group *group, 2990 const struct drm_panthor_queue_create *args) 2991 { 2992 struct drm_gpu_scheduler *drm_sched; 2993 struct panthor_queue *queue; 2994 int ret; 2995 2996 if (args->pad[0] || args->pad[1] || args->pad[2]) 2997 return ERR_PTR(-EINVAL); 2998 2999 if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K || 3000 !is_power_of_2(args->ringbuf_size)) 3001 return ERR_PTR(-EINVAL); 3002 3003 if (args->priority > CSF_MAX_QUEUE_PRIO) 3004 return ERR_PTR(-EINVAL); 3005 3006 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 3007 if (!queue) 3008 return ERR_PTR(-ENOMEM); 3009 3010 queue->fence_ctx.id = dma_fence_context_alloc(1); 3011 spin_lock_init(&queue->fence_ctx.lock); 3012 INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs); 3013 3014 queue->priority = args->priority; 3015 3016 queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm, 3017 args->ringbuf_size, 3018 DRM_PANTHOR_BO_NO_MMAP, 3019 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3020 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3021 PANTHOR_VM_KERNEL_AUTO_VA); 3022 if (IS_ERR(queue->ringbuf)) { 3023 ret = PTR_ERR(queue->ringbuf); 3024 goto err_free_queue; 3025 } 3026 3027 ret = panthor_kernel_bo_vmap(queue->ringbuf); 3028 if (ret) 3029 goto err_free_queue; 3030 3031 queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev, 3032 &queue->iface.input, 3033 &queue->iface.output, 3034 &queue->iface.input_fw_va, 3035 &queue->iface.output_fw_va); 3036 if (IS_ERR(queue->iface.mem)) { 3037 ret = PTR_ERR(queue->iface.mem); 3038 goto err_free_queue; 3039 } 3040 3041 ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops, 3042 group->ptdev->scheduler->wq, 1, 3043 args->ringbuf_size / (NUM_INSTRS_PER_SLOT * sizeof(u64)), 3044 0, msecs_to_jiffies(JOB_TIMEOUT_MS), 3045 group->ptdev->reset.wq, 3046 NULL, "panthor-queue", group->ptdev->base.dev); 3047 if (ret) 3048 goto err_free_queue; 3049 3050 drm_sched = &queue->scheduler; 3051 ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL); 3052 3053 return queue; 3054 3055 err_free_queue: 3056 group_free_queue(group, queue); 3057 return ERR_PTR(ret); 3058 } 3059 3060 #define MAX_GROUPS_PER_POOL 128 3061 3062 int panthor_group_create(struct panthor_file *pfile, 3063 const struct drm_panthor_group_create *group_args, 3064 const struct drm_panthor_queue_create *queue_args) 3065 { 3066 struct panthor_device *ptdev = pfile->ptdev; 3067 struct panthor_group_pool *gpool = pfile->groups; 3068 struct panthor_scheduler *sched = ptdev->scheduler; 3069 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3070 struct panthor_group *group = NULL; 3071 u32 gid, i, suspend_size; 3072 int ret; 3073 3074 if (group_args->pad) 3075 return -EINVAL; 3076 3077 if (group_args->priority > PANTHOR_CSG_PRIORITY_HIGH) 3078 return -EINVAL; 3079 3080 if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) || 3081 (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) || 3082 (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present)) 3083 return -EINVAL; 3084 3085 if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores || 3086 hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores || 3087 hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores) 3088 return -EINVAL; 3089 3090 group = kzalloc(sizeof(*group), GFP_KERNEL); 3091 if (!group) 3092 return -ENOMEM; 3093 3094 spin_lock_init(&group->fatal_lock); 3095 kref_init(&group->refcount); 3096 group->state = PANTHOR_CS_GROUP_CREATED; 3097 group->csg_id = -1; 3098 3099 group->ptdev = ptdev; 3100 group->max_compute_cores = group_args->max_compute_cores; 3101 group->compute_core_mask = group_args->compute_core_mask; 3102 group->max_fragment_cores = group_args->max_fragment_cores; 3103 group->fragment_core_mask = group_args->fragment_core_mask; 3104 group->max_tiler_cores = group_args->max_tiler_cores; 3105 group->tiler_core_mask = group_args->tiler_core_mask; 3106 group->priority = group_args->priority; 3107 3108 INIT_LIST_HEAD(&group->wait_node); 3109 INIT_LIST_HEAD(&group->run_node); 3110 INIT_WORK(&group->term_work, group_term_work); 3111 INIT_WORK(&group->sync_upd_work, group_sync_upd_work); 3112 INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work); 3113 INIT_WORK(&group->release_work, group_release_work); 3114 3115 group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id); 3116 if (!group->vm) { 3117 ret = -EINVAL; 3118 goto err_put_group; 3119 } 3120 3121 suspend_size = csg_iface->control->suspend_size; 3122 group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3123 if (IS_ERR(group->suspend_buf)) { 3124 ret = PTR_ERR(group->suspend_buf); 3125 group->suspend_buf = NULL; 3126 goto err_put_group; 3127 } 3128 3129 suspend_size = csg_iface->control->protm_suspend_size; 3130 group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3131 if (IS_ERR(group->protm_suspend_buf)) { 3132 ret = PTR_ERR(group->protm_suspend_buf); 3133 group->protm_suspend_buf = NULL; 3134 goto err_put_group; 3135 } 3136 3137 group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm, 3138 group_args->queues.count * 3139 sizeof(struct panthor_syncobj_64b), 3140 DRM_PANTHOR_BO_NO_MMAP, 3141 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3142 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3143 PANTHOR_VM_KERNEL_AUTO_VA); 3144 if (IS_ERR(group->syncobjs)) { 3145 ret = PTR_ERR(group->syncobjs); 3146 goto err_put_group; 3147 } 3148 3149 ret = panthor_kernel_bo_vmap(group->syncobjs); 3150 if (ret) 3151 goto err_put_group; 3152 3153 memset(group->syncobjs->kmap, 0, 3154 group_args->queues.count * sizeof(struct panthor_syncobj_64b)); 3155 3156 for (i = 0; i < group_args->queues.count; i++) { 3157 group->queues[i] = group_create_queue(group, &queue_args[i]); 3158 if (IS_ERR(group->queues[i])) { 3159 ret = PTR_ERR(group->queues[i]); 3160 group->queues[i] = NULL; 3161 goto err_put_group; 3162 } 3163 3164 group->queue_count++; 3165 } 3166 3167 group->idle_queues = GENMASK(group->queue_count - 1, 0); 3168 3169 ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL); 3170 if (ret) 3171 goto err_put_group; 3172 3173 mutex_lock(&sched->reset.lock); 3174 if (atomic_read(&sched->reset.in_progress)) { 3175 panthor_group_stop(group); 3176 } else { 3177 mutex_lock(&sched->lock); 3178 list_add_tail(&group->run_node, 3179 &sched->groups.idle[group->priority]); 3180 mutex_unlock(&sched->lock); 3181 } 3182 mutex_unlock(&sched->reset.lock); 3183 3184 return gid; 3185 3186 err_put_group: 3187 group_put(group); 3188 return ret; 3189 } 3190 3191 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle) 3192 { 3193 struct panthor_group_pool *gpool = pfile->groups; 3194 struct panthor_device *ptdev = pfile->ptdev; 3195 struct panthor_scheduler *sched = ptdev->scheduler; 3196 struct panthor_group *group; 3197 3198 group = xa_erase(&gpool->xa, group_handle); 3199 if (!group) 3200 return -EINVAL; 3201 3202 for (u32 i = 0; i < group->queue_count; i++) { 3203 if (group->queues[i]) 3204 drm_sched_entity_destroy(&group->queues[i]->entity); 3205 } 3206 3207 mutex_lock(&sched->reset.lock); 3208 mutex_lock(&sched->lock); 3209 group->destroyed = true; 3210 if (group->csg_id >= 0) { 3211 sched_queue_delayed_work(sched, tick, 0); 3212 } else if (!atomic_read(&sched->reset.in_progress)) { 3213 /* Remove from the run queues, so the scheduler can't 3214 * pick the group on the next tick. 3215 */ 3216 list_del_init(&group->run_node); 3217 list_del_init(&group->wait_node); 3218 group_queue_work(group, term); 3219 } 3220 mutex_unlock(&sched->lock); 3221 mutex_unlock(&sched->reset.lock); 3222 3223 group_put(group); 3224 return 0; 3225 } 3226 3227 int panthor_group_get_state(struct panthor_file *pfile, 3228 struct drm_panthor_group_get_state *get_state) 3229 { 3230 struct panthor_group_pool *gpool = pfile->groups; 3231 struct panthor_device *ptdev = pfile->ptdev; 3232 struct panthor_scheduler *sched = ptdev->scheduler; 3233 struct panthor_group *group; 3234 3235 if (get_state->pad) 3236 return -EINVAL; 3237 3238 group = group_get(xa_load(&gpool->xa, get_state->group_handle)); 3239 if (!group) 3240 return -EINVAL; 3241 3242 memset(get_state, 0, sizeof(*get_state)); 3243 3244 mutex_lock(&sched->lock); 3245 if (group->timedout) 3246 get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT; 3247 if (group->fatal_queues) { 3248 get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT; 3249 get_state->fatal_queues = group->fatal_queues; 3250 } 3251 mutex_unlock(&sched->lock); 3252 3253 group_put(group); 3254 return 0; 3255 } 3256 3257 int panthor_group_pool_create(struct panthor_file *pfile) 3258 { 3259 struct panthor_group_pool *gpool; 3260 3261 gpool = kzalloc(sizeof(*gpool), GFP_KERNEL); 3262 if (!gpool) 3263 return -ENOMEM; 3264 3265 xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1); 3266 pfile->groups = gpool; 3267 return 0; 3268 } 3269 3270 void panthor_group_pool_destroy(struct panthor_file *pfile) 3271 { 3272 struct panthor_group_pool *gpool = pfile->groups; 3273 struct panthor_group *group; 3274 unsigned long i; 3275 3276 if (IS_ERR_OR_NULL(gpool)) 3277 return; 3278 3279 xa_for_each(&gpool->xa, i, group) 3280 panthor_group_destroy(pfile, i); 3281 3282 xa_destroy(&gpool->xa); 3283 kfree(gpool); 3284 pfile->groups = NULL; 3285 } 3286 3287 static void job_release(struct kref *ref) 3288 { 3289 struct panthor_job *job = container_of(ref, struct panthor_job, refcount); 3290 3291 drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node)); 3292 3293 if (job->base.s_fence) 3294 drm_sched_job_cleanup(&job->base); 3295 3296 if (job->done_fence && job->done_fence->ops) 3297 dma_fence_put(job->done_fence); 3298 else 3299 dma_fence_free(job->done_fence); 3300 3301 group_put(job->group); 3302 3303 kfree(job); 3304 } 3305 3306 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job) 3307 { 3308 if (sched_job) { 3309 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3310 3311 kref_get(&job->refcount); 3312 } 3313 3314 return sched_job; 3315 } 3316 3317 void panthor_job_put(struct drm_sched_job *sched_job) 3318 { 3319 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3320 3321 if (sched_job) 3322 kref_put(&job->refcount, job_release); 3323 } 3324 3325 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job) 3326 { 3327 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3328 3329 return job->group->vm; 3330 } 3331 3332 struct drm_sched_job * 3333 panthor_job_create(struct panthor_file *pfile, 3334 u16 group_handle, 3335 const struct drm_panthor_queue_submit *qsubmit) 3336 { 3337 struct panthor_group_pool *gpool = pfile->groups; 3338 struct panthor_job *job; 3339 int ret; 3340 3341 if (qsubmit->pad) 3342 return ERR_PTR(-EINVAL); 3343 3344 /* If stream_addr is zero, so stream_size should be. */ 3345 if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0)) 3346 return ERR_PTR(-EINVAL); 3347 3348 /* Make sure the address is aligned on 64-byte (cacheline) and the size is 3349 * aligned on 8-byte (instruction size). 3350 */ 3351 if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7)) 3352 return ERR_PTR(-EINVAL); 3353 3354 /* bits 24:30 must be zero. */ 3355 if (qsubmit->latest_flush & GENMASK(30, 24)) 3356 return ERR_PTR(-EINVAL); 3357 3358 job = kzalloc(sizeof(*job), GFP_KERNEL); 3359 if (!job) 3360 return ERR_PTR(-ENOMEM); 3361 3362 kref_init(&job->refcount); 3363 job->queue_idx = qsubmit->queue_index; 3364 job->call_info.size = qsubmit->stream_size; 3365 job->call_info.start = qsubmit->stream_addr; 3366 job->call_info.latest_flush = qsubmit->latest_flush; 3367 INIT_LIST_HEAD(&job->node); 3368 3369 job->group = group_get(xa_load(&gpool->xa, group_handle)); 3370 if (!job->group) { 3371 ret = -EINVAL; 3372 goto err_put_job; 3373 } 3374 3375 if (job->queue_idx >= job->group->queue_count || 3376 !job->group->queues[job->queue_idx]) { 3377 ret = -EINVAL; 3378 goto err_put_job; 3379 } 3380 3381 job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL); 3382 if (!job->done_fence) { 3383 ret = -ENOMEM; 3384 goto err_put_job; 3385 } 3386 3387 ret = drm_sched_job_init(&job->base, 3388 &job->group->queues[job->queue_idx]->entity, 3389 1, job->group); 3390 if (ret) 3391 goto err_put_job; 3392 3393 return &job->base; 3394 3395 err_put_job: 3396 panthor_job_put(&job->base); 3397 return ERR_PTR(ret); 3398 } 3399 3400 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job) 3401 { 3402 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3403 3404 /* Still not sure why we want USAGE_WRITE for external objects, since I 3405 * was assuming this would be handled through explicit syncs being imported 3406 * to external BOs with DMA_BUF_IOCTL_IMPORT_SYNC_FILE, but other drivers 3407 * seem to pass DMA_RESV_USAGE_WRITE, so there must be a good reason. 3408 */ 3409 panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished, 3410 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_WRITE); 3411 } 3412 3413 void panthor_sched_unplug(struct panthor_device *ptdev) 3414 { 3415 struct panthor_scheduler *sched = ptdev->scheduler; 3416 3417 cancel_delayed_work_sync(&sched->tick_work); 3418 3419 mutex_lock(&sched->lock); 3420 if (sched->pm.has_ref) { 3421 pm_runtime_put(ptdev->base.dev); 3422 sched->pm.has_ref = false; 3423 } 3424 mutex_unlock(&sched->lock); 3425 } 3426 3427 static void panthor_sched_fini(struct drm_device *ddev, void *res) 3428 { 3429 struct panthor_scheduler *sched = res; 3430 int prio; 3431 3432 if (!sched || !sched->csg_slot_count) 3433 return; 3434 3435 cancel_delayed_work_sync(&sched->tick_work); 3436 3437 if (sched->wq) 3438 destroy_workqueue(sched->wq); 3439 3440 if (sched->heap_alloc_wq) 3441 destroy_workqueue(sched->heap_alloc_wq); 3442 3443 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3444 drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio])); 3445 drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio])); 3446 } 3447 3448 drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting)); 3449 } 3450 3451 int panthor_sched_init(struct panthor_device *ptdev) 3452 { 3453 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 3454 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3455 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0); 3456 struct panthor_scheduler *sched; 3457 u32 gpu_as_count, num_groups; 3458 int prio, ret; 3459 3460 sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL); 3461 if (!sched) 3462 return -ENOMEM; 3463 3464 /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That 3465 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here. 3466 */ 3467 num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num); 3468 3469 /* The FW-side scheduler might deadlock if two groups with the same 3470 * priority try to access a set of resources that overlaps, with part 3471 * of the resources being allocated to one group and the other part to 3472 * the other group, both groups waiting for the remaining resources to 3473 * be allocated. To avoid that, it is recommended to assign each CSG a 3474 * different priority. In theory we could allow several groups to have 3475 * the same CSG priority if they don't request the same resources, but 3476 * that makes the scheduling logic more complicated, so let's clamp 3477 * the number of CSG slots to MAX_CSG_PRIO + 1 for now. 3478 */ 3479 num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups); 3480 3481 /* We need at least one AS for the MCU and one for the GPU contexts. */ 3482 gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1)); 3483 if (!gpu_as_count) { 3484 drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)", 3485 gpu_as_count + 1); 3486 return -EINVAL; 3487 } 3488 3489 sched->ptdev = ptdev; 3490 sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features); 3491 sched->csg_slot_count = num_groups; 3492 sched->cs_slot_count = csg_iface->control->stream_num; 3493 sched->as_slot_count = gpu_as_count; 3494 ptdev->csif_info.csg_slot_count = sched->csg_slot_count; 3495 ptdev->csif_info.cs_slot_count = sched->cs_slot_count; 3496 ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count; 3497 3498 sched->last_tick = 0; 3499 sched->resched_target = U64_MAX; 3500 sched->tick_period = msecs_to_jiffies(10); 3501 INIT_DELAYED_WORK(&sched->tick_work, tick_work); 3502 INIT_WORK(&sched->sync_upd_work, sync_upd_work); 3503 INIT_WORK(&sched->fw_events_work, process_fw_events_work); 3504 3505 ret = drmm_mutex_init(&ptdev->base, &sched->lock); 3506 if (ret) 3507 return ret; 3508 3509 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3510 INIT_LIST_HEAD(&sched->groups.runnable[prio]); 3511 INIT_LIST_HEAD(&sched->groups.idle[prio]); 3512 } 3513 INIT_LIST_HEAD(&sched->groups.waiting); 3514 3515 ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock); 3516 if (ret) 3517 return ret; 3518 3519 INIT_LIST_HEAD(&sched->reset.stopped_groups); 3520 3521 /* sched->heap_alloc_wq will be used for heap chunk allocation on 3522 * tiler OOM events, which means we can't use the same workqueue for 3523 * the scheduler because works queued by the scheduler are in 3524 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to 3525 * work around this limitation. 3526 * 3527 * FIXME: Ultimately, what we need is a failable/non-blocking GEM 3528 * allocation path that we can call when a heap OOM is reported. The 3529 * FW is smart enough to fall back on other methods if the kernel can't 3530 * allocate memory, and fail the tiling job if none of these 3531 * countermeasures worked. 3532 * 3533 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the 3534 * system is running out of memory. 3535 */ 3536 sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0); 3537 sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 3538 if (!sched->wq || !sched->heap_alloc_wq) { 3539 panthor_sched_fini(&ptdev->base, sched); 3540 drm_err(&ptdev->base, "Failed to allocate the workqueues"); 3541 return -ENOMEM; 3542 } 3543 3544 ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched); 3545 if (ret) 3546 return ret; 3547 3548 ptdev->scheduler = sched; 3549 return 0; 3550 } 3551