xref: /linux/drivers/gpu/drm/panthor/panthor_sched.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3 
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/gpu_scheduler.h>
9 #include <drm/panthor_drm.h>
10 
11 #include <linux/build_bug.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dma-resv.h>
16 #include <linux/firmware.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/iosys-map.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 
25 #include "panthor_devfreq.h"
26 #include "panthor_device.h"
27 #include "panthor_fw.h"
28 #include "panthor_gem.h"
29 #include "panthor_gpu.h"
30 #include "panthor_heap.h"
31 #include "panthor_mmu.h"
32 #include "panthor_regs.h"
33 #include "panthor_sched.h"
34 
35 /**
36  * DOC: Scheduler
37  *
38  * Mali CSF hardware adopts a firmware-assisted scheduling model, where
39  * the firmware takes care of scheduling aspects, to some extent.
40  *
41  * The scheduling happens at the scheduling group level, each group
42  * contains 1 to N queues (N is FW/hardware dependent, and exposed
43  * through the firmware interface). Each queue is assigned a command
44  * stream ring buffer, which serves as a way to get jobs submitted to
45  * the GPU, among other things.
46  *
47  * The firmware can schedule a maximum of M groups (M is FW/hardware
48  * dependent, and exposed through the firmware interface). Passed
49  * this maximum number of groups, the kernel must take care of
50  * rotating the groups passed to the firmware so every group gets
51  * a chance to have his queues scheduled for execution.
52  *
53  * The current implementation only supports with kernel-mode queues.
54  * In other terms, userspace doesn't have access to the ring-buffer.
55  * Instead, userspace passes indirect command stream buffers that are
56  * called from the queue ring-buffer by the kernel using a pre-defined
57  * sequence of command stream instructions to ensure the userspace driver
58  * always gets consistent results (cache maintenance,
59  * synchronization, ...).
60  *
61  * We rely on the drm_gpu_scheduler framework to deal with job
62  * dependencies and submission. As any other driver dealing with a
63  * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
64  * entity has its own job scheduler. When a job is ready to be executed
65  * (all its dependencies are met), it is pushed to the appropriate
66  * queue ring-buffer, and the group is scheduled for execution if it
67  * wasn't already active.
68  *
69  * Kernel-side group scheduling is timeslice-based. When we have less
70  * groups than there are slots, the periodic tick is disabled and we
71  * just let the FW schedule the active groups. When there are more
72  * groups than slots, we let each group a chance to execute stuff for
73  * a given amount of time, and then re-evaluate and pick new groups
74  * to schedule. The group selection algorithm is based on
75  * priority+round-robin.
76  *
77  * Even though user-mode queues is out of the scope right now, the
78  * current design takes them into account by avoiding any guess on the
79  * group/queue state that would be based on information we wouldn't have
80  * if userspace was in charge of the ring-buffer. That's also one of the
81  * reason we don't do 'cooperative' scheduling (encoding FW group slot
82  * reservation as dma_fence that would be returned from the
83  * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
84  * a queue of waiters, ordered by job submission order). This approach
85  * would work for kernel-mode queues, but would make user-mode queues a
86  * lot more complicated to retrofit.
87  */
88 
89 #define JOB_TIMEOUT_MS				5000
90 
91 #define MIN_CS_PER_CSG				8
92 
93 #define MIN_CSGS				3
94 #define MAX_CSG_PRIO				0xf
95 
96 struct panthor_group;
97 
98 /**
99  * struct panthor_csg_slot - Command stream group slot
100  *
101  * This represents a FW slot for a scheduling group.
102  */
103 struct panthor_csg_slot {
104 	/** @group: Scheduling group bound to this slot. */
105 	struct panthor_group *group;
106 
107 	/** @priority: Group priority. */
108 	u8 priority;
109 
110 	/**
111 	 * @idle: True if the group bound to this slot is idle.
112 	 *
113 	 * A group is idle when it has nothing waiting for execution on
114 	 * all its queues, or when queues are blocked waiting for something
115 	 * to happen (synchronization object).
116 	 */
117 	bool idle;
118 };
119 
120 /**
121  * enum panthor_csg_priority - Group priority
122  */
123 enum panthor_csg_priority {
124 	/** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
125 	PANTHOR_CSG_PRIORITY_LOW = 0,
126 
127 	/** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
128 	PANTHOR_CSG_PRIORITY_MEDIUM,
129 
130 	/** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
131 	PANTHOR_CSG_PRIORITY_HIGH,
132 
133 	/**
134 	 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
135 	 *
136 	 * Real-time priority allows one to preempt scheduling of other
137 	 * non-real-time groups. When such a group becomes executable,
138 	 * it will evict the group with the lowest non-rt priority if
139 	 * there's no free group slot available.
140 	 *
141 	 * Currently not exposed to userspace.
142 	 */
143 	PANTHOR_CSG_PRIORITY_RT,
144 
145 	/** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
146 	PANTHOR_CSG_PRIORITY_COUNT,
147 };
148 
149 /**
150  * struct panthor_scheduler - Object used to manage the scheduler
151  */
152 struct panthor_scheduler {
153 	/** @ptdev: Device. */
154 	struct panthor_device *ptdev;
155 
156 	/**
157 	 * @wq: Workqueue used by our internal scheduler logic and
158 	 * drm_gpu_scheduler.
159 	 *
160 	 * Used for the scheduler tick, group update or other kind of FW
161 	 * event processing that can't be handled in the threaded interrupt
162 	 * path. Also passed to the drm_gpu_scheduler instances embedded
163 	 * in panthor_queue.
164 	 */
165 	struct workqueue_struct *wq;
166 
167 	/**
168 	 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
169 	 *
170 	 * We have a queue dedicated to heap chunk allocation works to avoid
171 	 * blocking the rest of the scheduler if the allocation tries to
172 	 * reclaim memory.
173 	 */
174 	struct workqueue_struct *heap_alloc_wq;
175 
176 	/** @tick_work: Work executed on a scheduling tick. */
177 	struct delayed_work tick_work;
178 
179 	/**
180 	 * @sync_upd_work: Work used to process synchronization object updates.
181 	 *
182 	 * We use this work to unblock queues/groups that were waiting on a
183 	 * synchronization object.
184 	 */
185 	struct work_struct sync_upd_work;
186 
187 	/**
188 	 * @fw_events_work: Work used to process FW events outside the interrupt path.
189 	 *
190 	 * Even if the interrupt is threaded, we need any event processing
191 	 * that require taking the panthor_scheduler::lock to be processed
192 	 * outside the interrupt path so we don't block the tick logic when
193 	 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
194 	 * event processing requires taking this lock, we just delegate all
195 	 * FW event processing to the scheduler workqueue.
196 	 */
197 	struct work_struct fw_events_work;
198 
199 	/**
200 	 * @fw_events: Bitmask encoding pending FW events.
201 	 */
202 	atomic_t fw_events;
203 
204 	/**
205 	 * @resched_target: When the next tick should occur.
206 	 *
207 	 * Expressed in jiffies.
208 	 */
209 	u64 resched_target;
210 
211 	/**
212 	 * @last_tick: When the last tick occurred.
213 	 *
214 	 * Expressed in jiffies.
215 	 */
216 	u64 last_tick;
217 
218 	/** @tick_period: Tick period in jiffies. */
219 	u64 tick_period;
220 
221 	/**
222 	 * @lock: Lock protecting access to all the scheduler fields.
223 	 *
224 	 * Should be taken in the tick work, the irq handler, and anywhere the @groups
225 	 * fields are touched.
226 	 */
227 	struct mutex lock;
228 
229 	/** @groups: Various lists used to classify groups. */
230 	struct {
231 		/**
232 		 * @runnable: Runnable group lists.
233 		 *
234 		 * When a group has queues that want to execute something,
235 		 * its panthor_group::run_node should be inserted here.
236 		 *
237 		 * One list per-priority.
238 		 */
239 		struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
240 
241 		/**
242 		 * @idle: Idle group lists.
243 		 *
244 		 * When all queues of a group are idle (either because they
245 		 * have nothing to execute, or because they are blocked), the
246 		 * panthor_group::run_node field should be inserted here.
247 		 *
248 		 * One list per-priority.
249 		 */
250 		struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
251 
252 		/**
253 		 * @waiting: List of groups whose queues are blocked on a
254 		 * synchronization object.
255 		 *
256 		 * Insert panthor_group::wait_node here when a group is waiting
257 		 * for synchronization objects to be signaled.
258 		 *
259 		 * This list is evaluated in the @sync_upd_work work.
260 		 */
261 		struct list_head waiting;
262 	} groups;
263 
264 	/**
265 	 * @csg_slots: FW command stream group slots.
266 	 */
267 	struct panthor_csg_slot csg_slots[MAX_CSGS];
268 
269 	/** @csg_slot_count: Number of command stream group slots exposed by the FW. */
270 	u32 csg_slot_count;
271 
272 	/** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
273 	u32 cs_slot_count;
274 
275 	/** @as_slot_count: Number of address space slots supported by the MMU. */
276 	u32 as_slot_count;
277 
278 	/** @used_csg_slot_count: Number of command stream group slot currently used. */
279 	u32 used_csg_slot_count;
280 
281 	/** @sb_slot_count: Number of scoreboard slots. */
282 	u32 sb_slot_count;
283 
284 	/**
285 	 * @might_have_idle_groups: True if an active group might have become idle.
286 	 *
287 	 * This will force a tick, so other runnable groups can be scheduled if one
288 	 * or more active groups became idle.
289 	 */
290 	bool might_have_idle_groups;
291 
292 	/** @pm: Power management related fields. */
293 	struct {
294 		/** @has_ref: True if the scheduler owns a runtime PM reference. */
295 		bool has_ref;
296 	} pm;
297 
298 	/** @reset: Reset related fields. */
299 	struct {
300 		/** @lock: Lock protecting the other reset fields. */
301 		struct mutex lock;
302 
303 		/**
304 		 * @in_progress: True if a reset is in progress.
305 		 *
306 		 * Set to true in panthor_sched_pre_reset() and back to false in
307 		 * panthor_sched_post_reset().
308 		 */
309 		atomic_t in_progress;
310 
311 		/**
312 		 * @stopped_groups: List containing all groups that were stopped
313 		 * before a reset.
314 		 *
315 		 * Insert panthor_group::run_node in the pre_reset path.
316 		 */
317 		struct list_head stopped_groups;
318 	} reset;
319 };
320 
321 /**
322  * struct panthor_syncobj_32b - 32-bit FW synchronization object
323  */
324 struct panthor_syncobj_32b {
325 	/** @seqno: Sequence number. */
326 	u32 seqno;
327 
328 	/**
329 	 * @status: Status.
330 	 *
331 	 * Not zero on failure.
332 	 */
333 	u32 status;
334 };
335 
336 /**
337  * struct panthor_syncobj_64b - 64-bit FW synchronization object
338  */
339 struct panthor_syncobj_64b {
340 	/** @seqno: Sequence number. */
341 	u64 seqno;
342 
343 	/**
344 	 * @status: Status.
345 	 *
346 	 * Not zero on failure.
347 	 */
348 	u32 status;
349 
350 	/** @pad: MBZ. */
351 	u32 pad;
352 };
353 
354 /**
355  * struct panthor_queue - Execution queue
356  */
357 struct panthor_queue {
358 	/** @scheduler: DRM scheduler used for this queue. */
359 	struct drm_gpu_scheduler scheduler;
360 
361 	/** @entity: DRM scheduling entity used for this queue. */
362 	struct drm_sched_entity entity;
363 
364 	/**
365 	 * @remaining_time: Time remaining before the job timeout expires.
366 	 *
367 	 * The job timeout is suspended when the queue is not scheduled by the
368 	 * FW. Every time we suspend the timer, we need to save the remaining
369 	 * time so we can restore it later on.
370 	 */
371 	unsigned long remaining_time;
372 
373 	/** @timeout_suspended: True if the job timeout was suspended. */
374 	bool timeout_suspended;
375 
376 	/**
377 	 * @doorbell_id: Doorbell assigned to this queue.
378 	 *
379 	 * Right now, all groups share the same doorbell, and the doorbell ID
380 	 * is assigned to group_slot + 1 when the group is assigned a slot. But
381 	 * we might decide to provide fine grained doorbell assignment at some
382 	 * point, so don't have to wake up all queues in a group every time one
383 	 * of them is updated.
384 	 */
385 	u8 doorbell_id;
386 
387 	/**
388 	 * @priority: Priority of the queue inside the group.
389 	 *
390 	 * Must be less than 16 (Only 4 bits available).
391 	 */
392 	u8 priority;
393 #define CSF_MAX_QUEUE_PRIO	GENMASK(3, 0)
394 
395 	/** @ringbuf: Command stream ring-buffer. */
396 	struct panthor_kernel_bo *ringbuf;
397 
398 	/** @iface: Firmware interface. */
399 	struct {
400 		/** @mem: FW memory allocated for this interface. */
401 		struct panthor_kernel_bo *mem;
402 
403 		/** @input: Input interface. */
404 		struct panthor_fw_ringbuf_input_iface *input;
405 
406 		/** @output: Output interface. */
407 		const struct panthor_fw_ringbuf_output_iface *output;
408 
409 		/** @input_fw_va: FW virtual address of the input interface buffer. */
410 		u32 input_fw_va;
411 
412 		/** @output_fw_va: FW virtual address of the output interface buffer. */
413 		u32 output_fw_va;
414 	} iface;
415 
416 	/**
417 	 * @syncwait: Stores information about the synchronization object this
418 	 * queue is waiting on.
419 	 */
420 	struct {
421 		/** @gpu_va: GPU address of the synchronization object. */
422 		u64 gpu_va;
423 
424 		/** @ref: Reference value to compare against. */
425 		u64 ref;
426 
427 		/** @gt: True if this is a greater-than test. */
428 		bool gt;
429 
430 		/** @sync64: True if this is a 64-bit sync object. */
431 		bool sync64;
432 
433 		/** @bo: Buffer object holding the synchronization object. */
434 		struct drm_gem_object *obj;
435 
436 		/** @offset: Offset of the synchronization object inside @bo. */
437 		u64 offset;
438 
439 		/**
440 		 * @kmap: Kernel mapping of the buffer object holding the
441 		 * synchronization object.
442 		 */
443 		void *kmap;
444 	} syncwait;
445 
446 	/** @fence_ctx: Fence context fields. */
447 	struct {
448 		/** @lock: Used to protect access to all fences allocated by this context. */
449 		spinlock_t lock;
450 
451 		/**
452 		 * @id: Fence context ID.
453 		 *
454 		 * Allocated with dma_fence_context_alloc().
455 		 */
456 		u64 id;
457 
458 		/** @seqno: Sequence number of the last initialized fence. */
459 		atomic64_t seqno;
460 
461 		/**
462 		 * @last_fence: Fence of the last submitted job.
463 		 *
464 		 * We return this fence when we get an empty command stream.
465 		 * This way, we are guaranteed that all earlier jobs have completed
466 		 * when drm_sched_job::s_fence::finished without having to feed
467 		 * the CS ring buffer with a dummy job that only signals the fence.
468 		 */
469 		struct dma_fence *last_fence;
470 
471 		/**
472 		 * @in_flight_jobs: List containing all in-flight jobs.
473 		 *
474 		 * Used to keep track and signal panthor_job::done_fence when the
475 		 * synchronization object attached to the queue is signaled.
476 		 */
477 		struct list_head in_flight_jobs;
478 	} fence_ctx;
479 };
480 
481 /**
482  * enum panthor_group_state - Scheduling group state.
483  */
484 enum panthor_group_state {
485 	/** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
486 	PANTHOR_CS_GROUP_CREATED,
487 
488 	/** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
489 	PANTHOR_CS_GROUP_ACTIVE,
490 
491 	/**
492 	 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
493 	 * inactive/suspended right now.
494 	 */
495 	PANTHOR_CS_GROUP_SUSPENDED,
496 
497 	/**
498 	 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
499 	 *
500 	 * Can no longer be scheduled. The only allowed action is a destruction.
501 	 */
502 	PANTHOR_CS_GROUP_TERMINATED,
503 
504 	/**
505 	 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
506 	 *
507 	 * The FW returned an inconsistent state. The group is flagged unusable
508 	 * and can no longer be scheduled. The only allowed action is a
509 	 * destruction.
510 	 *
511 	 * When that happens, we also schedule a FW reset, to start from a fresh
512 	 * state.
513 	 */
514 	PANTHOR_CS_GROUP_UNKNOWN_STATE,
515 };
516 
517 /**
518  * struct panthor_group - Scheduling group object
519  */
520 struct panthor_group {
521 	/** @refcount: Reference count */
522 	struct kref refcount;
523 
524 	/** @ptdev: Device. */
525 	struct panthor_device *ptdev;
526 
527 	/** @vm: VM bound to the group. */
528 	struct panthor_vm *vm;
529 
530 	/** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
531 	u64 compute_core_mask;
532 
533 	/** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
534 	u64 fragment_core_mask;
535 
536 	/** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
537 	u64 tiler_core_mask;
538 
539 	/** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
540 	u8 max_compute_cores;
541 
542 	/** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
543 	u8 max_fragment_cores;
544 
545 	/** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
546 	u8 max_tiler_cores;
547 
548 	/** @priority: Group priority (check panthor_csg_priority). */
549 	u8 priority;
550 
551 	/** @blocked_queues: Bitmask reflecting the blocked queues. */
552 	u32 blocked_queues;
553 
554 	/** @idle_queues: Bitmask reflecting the idle queues. */
555 	u32 idle_queues;
556 
557 	/** @fatal_lock: Lock used to protect access to fatal fields. */
558 	spinlock_t fatal_lock;
559 
560 	/** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
561 	u32 fatal_queues;
562 
563 	/** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
564 	atomic_t tiler_oom;
565 
566 	/** @queue_count: Number of queues in this group. */
567 	u32 queue_count;
568 
569 	/** @queues: Queues owned by this group. */
570 	struct panthor_queue *queues[MAX_CS_PER_CSG];
571 
572 	/**
573 	 * @csg_id: ID of the FW group slot.
574 	 *
575 	 * -1 when the group is not scheduled/active.
576 	 */
577 	int csg_id;
578 
579 	/**
580 	 * @destroyed: True when the group has been destroyed.
581 	 *
582 	 * If a group is destroyed it becomes useless: no further jobs can be submitted
583 	 * to its queues. We simply wait for all references to be dropped so we can
584 	 * release the group object.
585 	 */
586 	bool destroyed;
587 
588 	/**
589 	 * @timedout: True when a timeout occurred on any of the queues owned by
590 	 * this group.
591 	 *
592 	 * Timeouts can be reported by drm_sched or by the FW. If a reset is required,
593 	 * and the group can't be suspended, this also leads to a timeout. In any case,
594 	 * any timeout situation is unrecoverable, and the group becomes useless. We
595 	 * simply wait for all references to be dropped so we can release the group
596 	 * object.
597 	 */
598 	bool timedout;
599 
600 	/**
601 	 * @syncobjs: Pool of per-queue synchronization objects.
602 	 *
603 	 * One sync object per queue. The position of the sync object is
604 	 * determined by the queue index.
605 	 */
606 	struct panthor_kernel_bo *syncobjs;
607 
608 	/** @state: Group state. */
609 	enum panthor_group_state state;
610 
611 	/**
612 	 * @suspend_buf: Suspend buffer.
613 	 *
614 	 * Stores the state of the group and its queues when a group is suspended.
615 	 * Used at resume time to restore the group in its previous state.
616 	 *
617 	 * The size of the suspend buffer is exposed through the FW interface.
618 	 */
619 	struct panthor_kernel_bo *suspend_buf;
620 
621 	/**
622 	 * @protm_suspend_buf: Protection mode suspend buffer.
623 	 *
624 	 * Stores the state of the group and its queues when a group that's in
625 	 * protection mode is suspended.
626 	 *
627 	 * Used at resume time to restore the group in its previous state.
628 	 *
629 	 * The size of the protection mode suspend buffer is exposed through the
630 	 * FW interface.
631 	 */
632 	struct panthor_kernel_bo *protm_suspend_buf;
633 
634 	/** @sync_upd_work: Work used to check/signal job fences. */
635 	struct work_struct sync_upd_work;
636 
637 	/** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
638 	struct work_struct tiler_oom_work;
639 
640 	/** @term_work: Work used to finish the group termination procedure. */
641 	struct work_struct term_work;
642 
643 	/**
644 	 * @release_work: Work used to release group resources.
645 	 *
646 	 * We need to postpone the group release to avoid a deadlock when
647 	 * the last ref is released in the tick work.
648 	 */
649 	struct work_struct release_work;
650 
651 	/**
652 	 * @run_node: Node used to insert the group in the
653 	 * panthor_group::groups::{runnable,idle} and
654 	 * panthor_group::reset.stopped_groups lists.
655 	 */
656 	struct list_head run_node;
657 
658 	/**
659 	 * @wait_node: Node used to insert the group in the
660 	 * panthor_group::groups::waiting list.
661 	 */
662 	struct list_head wait_node;
663 };
664 
665 /**
666  * group_queue_work() - Queue a group work
667  * @group: Group to queue the work for.
668  * @wname: Work name.
669  *
670  * Grabs a ref and queue a work item to the scheduler workqueue. If
671  * the work was already queued, we release the reference we grabbed.
672  *
673  * Work callbacks must release the reference we grabbed here.
674  */
675 #define group_queue_work(group, wname) \
676 	do { \
677 		group_get(group); \
678 		if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
679 			group_put(group); \
680 	} while (0)
681 
682 /**
683  * sched_queue_work() - Queue a scheduler work.
684  * @sched: Scheduler object.
685  * @wname: Work name.
686  *
687  * Conditionally queues a scheduler work if no reset is pending/in-progress.
688  */
689 #define sched_queue_work(sched, wname) \
690 	do { \
691 		if (!atomic_read(&(sched)->reset.in_progress) && \
692 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
693 			queue_work((sched)->wq, &(sched)->wname ## _work); \
694 	} while (0)
695 
696 /**
697  * sched_queue_delayed_work() - Queue a scheduler delayed work.
698  * @sched: Scheduler object.
699  * @wname: Work name.
700  * @delay: Work delay in jiffies.
701  *
702  * Conditionally queues a scheduler delayed work if no reset is
703  * pending/in-progress.
704  */
705 #define sched_queue_delayed_work(sched, wname, delay) \
706 	do { \
707 		if (!atomic_read(&sched->reset.in_progress) && \
708 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
709 			mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
710 	} while (0)
711 
712 /*
713  * We currently set the maximum of groups per file to an arbitrary low value.
714  * But this can be updated if we need more.
715  */
716 #define MAX_GROUPS_PER_POOL 128
717 
718 /**
719  * struct panthor_group_pool - Group pool
720  *
721  * Each file get assigned a group pool.
722  */
723 struct panthor_group_pool {
724 	/** @xa: Xarray used to manage group handles. */
725 	struct xarray xa;
726 };
727 
728 /**
729  * struct panthor_job - Used to manage GPU job
730  */
731 struct panthor_job {
732 	/** @base: Inherit from drm_sched_job. */
733 	struct drm_sched_job base;
734 
735 	/** @refcount: Reference count. */
736 	struct kref refcount;
737 
738 	/** @group: Group of the queue this job will be pushed to. */
739 	struct panthor_group *group;
740 
741 	/** @queue_idx: Index of the queue inside @group. */
742 	u32 queue_idx;
743 
744 	/** @call_info: Information about the userspace command stream call. */
745 	struct {
746 		/** @start: GPU address of the userspace command stream. */
747 		u64 start;
748 
749 		/** @size: Size of the userspace command stream. */
750 		u32 size;
751 
752 		/**
753 		 * @latest_flush: Flush ID at the time the userspace command
754 		 * stream was built.
755 		 *
756 		 * Needed for the flush reduction mechanism.
757 		 */
758 		u32 latest_flush;
759 	} call_info;
760 
761 	/** @ringbuf: Position of this job is in the ring buffer. */
762 	struct {
763 		/** @start: Start offset. */
764 		u64 start;
765 
766 		/** @end: End offset. */
767 		u64 end;
768 	} ringbuf;
769 
770 	/**
771 	 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
772 	 * list.
773 	 */
774 	struct list_head node;
775 
776 	/** @done_fence: Fence signaled when the job is finished or cancelled. */
777 	struct dma_fence *done_fence;
778 };
779 
780 static void
781 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
782 {
783 	if (queue->syncwait.kmap) {
784 		struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
785 
786 		drm_gem_vunmap_unlocked(queue->syncwait.obj, &map);
787 		queue->syncwait.kmap = NULL;
788 	}
789 
790 	drm_gem_object_put(queue->syncwait.obj);
791 	queue->syncwait.obj = NULL;
792 }
793 
794 static void *
795 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
796 {
797 	struct panthor_device *ptdev = group->ptdev;
798 	struct panthor_gem_object *bo;
799 	struct iosys_map map;
800 	int ret;
801 
802 	if (queue->syncwait.kmap)
803 		return queue->syncwait.kmap + queue->syncwait.offset;
804 
805 	bo = panthor_vm_get_bo_for_va(group->vm,
806 				      queue->syncwait.gpu_va,
807 				      &queue->syncwait.offset);
808 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
809 		goto err_put_syncwait_obj;
810 
811 	queue->syncwait.obj = &bo->base.base;
812 	ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map);
813 	if (drm_WARN_ON(&ptdev->base, ret))
814 		goto err_put_syncwait_obj;
815 
816 	queue->syncwait.kmap = map.vaddr;
817 	if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
818 		goto err_put_syncwait_obj;
819 
820 	return queue->syncwait.kmap + queue->syncwait.offset;
821 
822 err_put_syncwait_obj:
823 	panthor_queue_put_syncwait_obj(queue);
824 	return NULL;
825 }
826 
827 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
828 {
829 	if (IS_ERR_OR_NULL(queue))
830 		return;
831 
832 	if (queue->entity.fence_context)
833 		drm_sched_entity_destroy(&queue->entity);
834 
835 	if (queue->scheduler.ops)
836 		drm_sched_fini(&queue->scheduler);
837 
838 	panthor_queue_put_syncwait_obj(queue);
839 
840 	panthor_kernel_bo_destroy(queue->ringbuf);
841 	panthor_kernel_bo_destroy(queue->iface.mem);
842 
843 	/* Release the last_fence we were holding, if any. */
844 	dma_fence_put(queue->fence_ctx.last_fence);
845 
846 	kfree(queue);
847 }
848 
849 static void group_release_work(struct work_struct *work)
850 {
851 	struct panthor_group *group = container_of(work,
852 						   struct panthor_group,
853 						   release_work);
854 	u32 i;
855 
856 	for (i = 0; i < group->queue_count; i++)
857 		group_free_queue(group, group->queues[i]);
858 
859 	panthor_kernel_bo_destroy(group->suspend_buf);
860 	panthor_kernel_bo_destroy(group->protm_suspend_buf);
861 	panthor_kernel_bo_destroy(group->syncobjs);
862 
863 	panthor_vm_put(group->vm);
864 	kfree(group);
865 }
866 
867 static void group_release(struct kref *kref)
868 {
869 	struct panthor_group *group = container_of(kref,
870 						   struct panthor_group,
871 						   refcount);
872 	struct panthor_device *ptdev = group->ptdev;
873 
874 	drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
875 	drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
876 	drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
877 
878 	queue_work(panthor_cleanup_wq, &group->release_work);
879 }
880 
881 static void group_put(struct panthor_group *group)
882 {
883 	if (group)
884 		kref_put(&group->refcount, group_release);
885 }
886 
887 static struct panthor_group *
888 group_get(struct panthor_group *group)
889 {
890 	if (group)
891 		kref_get(&group->refcount);
892 
893 	return group;
894 }
895 
896 /**
897  * group_bind_locked() - Bind a group to a group slot
898  * @group: Group.
899  * @csg_id: Slot.
900  *
901  * Return: 0 on success, a negative error code otherwise.
902  */
903 static int
904 group_bind_locked(struct panthor_group *group, u32 csg_id)
905 {
906 	struct panthor_device *ptdev = group->ptdev;
907 	struct panthor_csg_slot *csg_slot;
908 	int ret;
909 
910 	lockdep_assert_held(&ptdev->scheduler->lock);
911 
912 	if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
913 			ptdev->scheduler->csg_slots[csg_id].group))
914 		return -EINVAL;
915 
916 	ret = panthor_vm_active(group->vm);
917 	if (ret)
918 		return ret;
919 
920 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
921 	group_get(group);
922 	group->csg_id = csg_id;
923 
924 	/* Dummy doorbell allocation: doorbell is assigned to the group and
925 	 * all queues use the same doorbell.
926 	 *
927 	 * TODO: Implement LRU-based doorbell assignment, so the most often
928 	 * updated queues get their own doorbell, thus avoiding useless checks
929 	 * on queues belonging to the same group that are rarely updated.
930 	 */
931 	for (u32 i = 0; i < group->queue_count; i++)
932 		group->queues[i]->doorbell_id = csg_id + 1;
933 
934 	csg_slot->group = group;
935 
936 	return 0;
937 }
938 
939 /**
940  * group_unbind_locked() - Unbind a group from a slot.
941  * @group: Group to unbind.
942  *
943  * Return: 0 on success, a negative error code otherwise.
944  */
945 static int
946 group_unbind_locked(struct panthor_group *group)
947 {
948 	struct panthor_device *ptdev = group->ptdev;
949 	struct panthor_csg_slot *slot;
950 
951 	lockdep_assert_held(&ptdev->scheduler->lock);
952 
953 	if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
954 		return -EINVAL;
955 
956 	if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
957 		return -EINVAL;
958 
959 	slot = &ptdev->scheduler->csg_slots[group->csg_id];
960 	panthor_vm_idle(group->vm);
961 	group->csg_id = -1;
962 
963 	/* Tiler OOM events will be re-issued next time the group is scheduled. */
964 	atomic_set(&group->tiler_oom, 0);
965 	cancel_work(&group->tiler_oom_work);
966 
967 	for (u32 i = 0; i < group->queue_count; i++)
968 		group->queues[i]->doorbell_id = -1;
969 
970 	slot->group = NULL;
971 
972 	group_put(group);
973 	return 0;
974 }
975 
976 /**
977  * cs_slot_prog_locked() - Program a queue slot
978  * @ptdev: Device.
979  * @csg_id: Group slot ID.
980  * @cs_id: Queue slot ID.
981  *
982  * Program a queue slot with the queue information so things can start being
983  * executed on this queue.
984  *
985  * The group slot must have a group bound to it already (group_bind_locked()).
986  */
987 static void
988 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
989 {
990 	struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
991 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
992 
993 	lockdep_assert_held(&ptdev->scheduler->lock);
994 
995 	queue->iface.input->extract = queue->iface.output->extract;
996 	drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
997 
998 	cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
999 	cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
1000 	cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
1001 	cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
1002 	cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
1003 				  CS_CONFIG_DOORBELL(queue->doorbell_id);
1004 	cs_iface->input->ack_irq_mask = ~0;
1005 	panthor_fw_update_reqs(cs_iface, req,
1006 			       CS_IDLE_SYNC_WAIT |
1007 			       CS_IDLE_EMPTY |
1008 			       CS_STATE_START |
1009 			       CS_EXTRACT_EVENT,
1010 			       CS_IDLE_SYNC_WAIT |
1011 			       CS_IDLE_EMPTY |
1012 			       CS_STATE_MASK |
1013 			       CS_EXTRACT_EVENT);
1014 	if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) {
1015 		drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time);
1016 		queue->timeout_suspended = false;
1017 	}
1018 }
1019 
1020 /**
1021  * cs_slot_reset_locked() - Reset a queue slot
1022  * @ptdev: Device.
1023  * @csg_id: Group slot.
1024  * @cs_id: Queue slot.
1025  *
1026  * Change the queue slot state to STOP and suspend the queue timeout if
1027  * the queue is not blocked.
1028  *
1029  * The group slot must have a group bound to it (group_bind_locked()).
1030  */
1031 static int
1032 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1033 {
1034 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1035 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1036 	struct panthor_queue *queue = group->queues[cs_id];
1037 
1038 	lockdep_assert_held(&ptdev->scheduler->lock);
1039 
1040 	panthor_fw_update_reqs(cs_iface, req,
1041 			       CS_STATE_STOP,
1042 			       CS_STATE_MASK);
1043 
1044 	/* If the queue is blocked, we want to keep the timeout running, so
1045 	 * we can detect unbounded waits and kill the group when that happens.
1046 	 */
1047 	if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) {
1048 		queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
1049 		queue->timeout_suspended = true;
1050 		WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS));
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 /**
1057  * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1058  * @ptdev: Device.
1059  * @csg_id: Group slot ID.
1060  *
1061  * Group slot priority update happens asynchronously. When we receive a
1062  * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1063  * reflect it to our panthor_csg_slot object.
1064  */
1065 static void
1066 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1067 {
1068 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1069 	struct panthor_fw_csg_iface *csg_iface;
1070 
1071 	lockdep_assert_held(&ptdev->scheduler->lock);
1072 
1073 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1074 	csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28;
1075 }
1076 
1077 /**
1078  * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1079  * @ptdev: Device.
1080  * @csg_id: Group slot.
1081  * @cs_id: Queue slot.
1082  *
1083  * Queue state is updated on group suspend or STATUS_UPDATE event.
1084  */
1085 static void
1086 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1087 {
1088 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1089 	struct panthor_queue *queue = group->queues[cs_id];
1090 	struct panthor_fw_cs_iface *cs_iface =
1091 		panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1092 
1093 	u32 status_wait_cond;
1094 
1095 	switch (cs_iface->output->status_blocked_reason) {
1096 	case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1097 		if (queue->iface.input->insert == queue->iface.output->extract &&
1098 		    cs_iface->output->status_scoreboards == 0)
1099 			group->idle_queues |= BIT(cs_id);
1100 		break;
1101 
1102 	case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1103 		if (list_empty(&group->wait_node)) {
1104 			list_move_tail(&group->wait_node,
1105 				       &group->ptdev->scheduler->groups.waiting);
1106 		}
1107 
1108 		/* The queue is only blocked if there's no deferred operation
1109 		 * pending, which can be checked through the scoreboard status.
1110 		 */
1111 		if (!cs_iface->output->status_scoreboards)
1112 			group->blocked_queues |= BIT(cs_id);
1113 
1114 		queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1115 		queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1116 		status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1117 		queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1118 		if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1119 			u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1120 
1121 			queue->syncwait.sync64 = true;
1122 			queue->syncwait.ref |= sync_val_hi << 32;
1123 		} else {
1124 			queue->syncwait.sync64 = false;
1125 		}
1126 		break;
1127 
1128 	default:
1129 		/* Other reasons are not blocking. Consider the queue as runnable
1130 		 * in those cases.
1131 		 */
1132 		break;
1133 	}
1134 }
1135 
1136 static void
1137 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1138 {
1139 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1140 	struct panthor_group *group = csg_slot->group;
1141 	u32 i;
1142 
1143 	lockdep_assert_held(&ptdev->scheduler->lock);
1144 
1145 	group->idle_queues = 0;
1146 	group->blocked_queues = 0;
1147 
1148 	for (i = 0; i < group->queue_count; i++) {
1149 		if (group->queues[i])
1150 			cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1151 	}
1152 }
1153 
1154 static void
1155 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1156 {
1157 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1158 	struct panthor_fw_csg_iface *csg_iface;
1159 	struct panthor_group *group;
1160 	enum panthor_group_state new_state, old_state;
1161 	u32 csg_state;
1162 
1163 	lockdep_assert_held(&ptdev->scheduler->lock);
1164 
1165 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1166 	group = csg_slot->group;
1167 
1168 	if (!group)
1169 		return;
1170 
1171 	old_state = group->state;
1172 	csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1173 	switch (csg_state) {
1174 	case CSG_STATE_START:
1175 	case CSG_STATE_RESUME:
1176 		new_state = PANTHOR_CS_GROUP_ACTIVE;
1177 		break;
1178 	case CSG_STATE_TERMINATE:
1179 		new_state = PANTHOR_CS_GROUP_TERMINATED;
1180 		break;
1181 	case CSG_STATE_SUSPEND:
1182 		new_state = PANTHOR_CS_GROUP_SUSPENDED;
1183 		break;
1184 	default:
1185 		/* The unknown state might be caused by a FW state corruption,
1186 		 * which means the group metadata can't be trusted anymore, and
1187 		 * the SUSPEND operation might propagate the corruption to the
1188 		 * suspend buffers. Flag the group state as unknown to make
1189 		 * sure it's unusable after that point.
1190 		 */
1191 		drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1192 			csg_id, csg_state);
1193 		new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1194 		break;
1195 	}
1196 
1197 	if (old_state == new_state)
1198 		return;
1199 
1200 	/* The unknown state might be caused by a FW issue, reset the FW to
1201 	 * take a fresh start.
1202 	 */
1203 	if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1204 		panthor_device_schedule_reset(ptdev);
1205 
1206 	if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1207 		csg_slot_sync_queues_state_locked(ptdev, csg_id);
1208 
1209 	if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1210 		u32 i;
1211 
1212 		/* Reset the queue slots so we start from a clean
1213 		 * state when starting/resuming a new group on this
1214 		 * CSG slot. No wait needed here, and no ringbell
1215 		 * either, since the CS slot will only be re-used
1216 		 * on the next CSG start operation.
1217 		 */
1218 		for (i = 0; i < group->queue_count; i++) {
1219 			if (group->queues[i])
1220 				cs_slot_reset_locked(ptdev, csg_id, i);
1221 		}
1222 	}
1223 
1224 	group->state = new_state;
1225 }
1226 
1227 static int
1228 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1229 {
1230 	struct panthor_fw_csg_iface *csg_iface;
1231 	struct panthor_csg_slot *csg_slot;
1232 	struct panthor_group *group;
1233 	u32 queue_mask = 0, i;
1234 
1235 	lockdep_assert_held(&ptdev->scheduler->lock);
1236 
1237 	if (priority > MAX_CSG_PRIO)
1238 		return -EINVAL;
1239 
1240 	if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1241 		return -EINVAL;
1242 
1243 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1244 	group = csg_slot->group;
1245 	if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1246 		return 0;
1247 
1248 	csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1249 
1250 	for (i = 0; i < group->queue_count; i++) {
1251 		if (group->queues[i]) {
1252 			cs_slot_prog_locked(ptdev, csg_id, i);
1253 			queue_mask |= BIT(i);
1254 		}
1255 	}
1256 
1257 	csg_iface->input->allow_compute = group->compute_core_mask;
1258 	csg_iface->input->allow_fragment = group->fragment_core_mask;
1259 	csg_iface->input->allow_other = group->tiler_core_mask;
1260 	csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1261 					 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1262 					 CSG_EP_REQ_TILER(group->max_tiler_cores) |
1263 					 CSG_EP_REQ_PRIORITY(priority);
1264 	csg_iface->input->config = panthor_vm_as(group->vm);
1265 
1266 	if (group->suspend_buf)
1267 		csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1268 	else
1269 		csg_iface->input->suspend_buf = 0;
1270 
1271 	if (group->protm_suspend_buf) {
1272 		csg_iface->input->protm_suspend_buf =
1273 			panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1274 	} else {
1275 		csg_iface->input->protm_suspend_buf = 0;
1276 	}
1277 
1278 	csg_iface->input->ack_irq_mask = ~0;
1279 	panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1280 	return 0;
1281 }
1282 
1283 static void
1284 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1285 				   u32 csg_id, u32 cs_id)
1286 {
1287 	struct panthor_scheduler *sched = ptdev->scheduler;
1288 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1289 	struct panthor_group *group = csg_slot->group;
1290 	struct panthor_fw_cs_iface *cs_iface;
1291 	u32 fatal;
1292 	u64 info;
1293 
1294 	lockdep_assert_held(&sched->lock);
1295 
1296 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1297 	fatal = cs_iface->output->fatal;
1298 	info = cs_iface->output->fatal_info;
1299 
1300 	if (group)
1301 		group->fatal_queues |= BIT(cs_id);
1302 
1303 	if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1304 		/* If this exception is unrecoverable, queue a reset, and make
1305 		 * sure we stop scheduling groups until the reset has happened.
1306 		 */
1307 		panthor_device_schedule_reset(ptdev);
1308 		cancel_delayed_work(&sched->tick_work);
1309 	} else {
1310 		sched_queue_delayed_work(sched, tick, 0);
1311 	}
1312 
1313 	drm_warn(&ptdev->base,
1314 		 "CSG slot %d CS slot: %d\n"
1315 		 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1316 		 "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1317 		 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1318 		 csg_id, cs_id,
1319 		 (unsigned int)CS_EXCEPTION_TYPE(fatal),
1320 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1321 		 (unsigned int)CS_EXCEPTION_DATA(fatal),
1322 		 info);
1323 }
1324 
1325 static void
1326 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1327 				   u32 csg_id, u32 cs_id)
1328 {
1329 	struct panthor_scheduler *sched = ptdev->scheduler;
1330 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1331 	struct panthor_group *group = csg_slot->group;
1332 	struct panthor_queue *queue = group && cs_id < group->queue_count ?
1333 				      group->queues[cs_id] : NULL;
1334 	struct panthor_fw_cs_iface *cs_iface;
1335 	u32 fault;
1336 	u64 info;
1337 
1338 	lockdep_assert_held(&sched->lock);
1339 
1340 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1341 	fault = cs_iface->output->fault;
1342 	info = cs_iface->output->fault_info;
1343 
1344 	if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) {
1345 		u64 cs_extract = queue->iface.output->extract;
1346 		struct panthor_job *job;
1347 
1348 		spin_lock(&queue->fence_ctx.lock);
1349 		list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1350 			if (cs_extract >= job->ringbuf.end)
1351 				continue;
1352 
1353 			if (cs_extract < job->ringbuf.start)
1354 				break;
1355 
1356 			dma_fence_set_error(job->done_fence, -EINVAL);
1357 		}
1358 		spin_unlock(&queue->fence_ctx.lock);
1359 	}
1360 
1361 	drm_warn(&ptdev->base,
1362 		 "CSG slot %d CS slot: %d\n"
1363 		 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1364 		 "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1365 		 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1366 		 csg_id, cs_id,
1367 		 (unsigned int)CS_EXCEPTION_TYPE(fault),
1368 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1369 		 (unsigned int)CS_EXCEPTION_DATA(fault),
1370 		 info);
1371 }
1372 
1373 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1374 {
1375 	struct panthor_device *ptdev = group->ptdev;
1376 	struct panthor_scheduler *sched = ptdev->scheduler;
1377 	u32 renderpasses_in_flight, pending_frag_count;
1378 	struct panthor_heap_pool *heaps = NULL;
1379 	u64 heap_address, new_chunk_va = 0;
1380 	u32 vt_start, vt_end, frag_end;
1381 	int ret, csg_id;
1382 
1383 	mutex_lock(&sched->lock);
1384 	csg_id = group->csg_id;
1385 	if (csg_id >= 0) {
1386 		struct panthor_fw_cs_iface *cs_iface;
1387 
1388 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1389 		heaps = panthor_vm_get_heap_pool(group->vm, false);
1390 		heap_address = cs_iface->output->heap_address;
1391 		vt_start = cs_iface->output->heap_vt_start;
1392 		vt_end = cs_iface->output->heap_vt_end;
1393 		frag_end = cs_iface->output->heap_frag_end;
1394 		renderpasses_in_flight = vt_start - frag_end;
1395 		pending_frag_count = vt_end - frag_end;
1396 	}
1397 	mutex_unlock(&sched->lock);
1398 
1399 	/* The group got scheduled out, we stop here. We will get a new tiler OOM event
1400 	 * when it's scheduled again.
1401 	 */
1402 	if (unlikely(csg_id < 0))
1403 		return 0;
1404 
1405 	if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1406 		ret = -EINVAL;
1407 	} else {
1408 		/* We do the allocation without holding the scheduler lock to avoid
1409 		 * blocking the scheduling.
1410 		 */
1411 		ret = panthor_heap_grow(heaps, heap_address,
1412 					renderpasses_in_flight,
1413 					pending_frag_count, &new_chunk_va);
1414 	}
1415 
1416 	/* If the heap context doesn't have memory for us, we want to let the
1417 	 * FW try to reclaim memory by waiting for fragment jobs to land or by
1418 	 * executing the tiler OOM exception handler, which is supposed to
1419 	 * implement incremental rendering.
1420 	 */
1421 	if (ret && ret != -ENOMEM) {
1422 		drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1423 		group->fatal_queues |= BIT(cs_id);
1424 		sched_queue_delayed_work(sched, tick, 0);
1425 		goto out_put_heap_pool;
1426 	}
1427 
1428 	mutex_lock(&sched->lock);
1429 	csg_id = group->csg_id;
1430 	if (csg_id >= 0) {
1431 		struct panthor_fw_csg_iface *csg_iface;
1432 		struct panthor_fw_cs_iface *cs_iface;
1433 
1434 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1435 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1436 
1437 		cs_iface->input->heap_start = new_chunk_va;
1438 		cs_iface->input->heap_end = new_chunk_va;
1439 		panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1440 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1441 		panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1442 	}
1443 	mutex_unlock(&sched->lock);
1444 
1445 	/* We allocated a chunck, but couldn't link it to the heap
1446 	 * context because the group was scheduled out while we were
1447 	 * allocating memory. We need to return this chunk to the heap.
1448 	 */
1449 	if (unlikely(csg_id < 0 && new_chunk_va))
1450 		panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1451 
1452 	ret = 0;
1453 
1454 out_put_heap_pool:
1455 	panthor_heap_pool_put(heaps);
1456 	return ret;
1457 }
1458 
1459 static void group_tiler_oom_work(struct work_struct *work)
1460 {
1461 	struct panthor_group *group =
1462 		container_of(work, struct panthor_group, tiler_oom_work);
1463 	u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1464 
1465 	while (tiler_oom) {
1466 		u32 cs_id = ffs(tiler_oom) - 1;
1467 
1468 		group_process_tiler_oom(group, cs_id);
1469 		tiler_oom &= ~BIT(cs_id);
1470 	}
1471 
1472 	group_put(group);
1473 }
1474 
1475 static void
1476 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1477 				       u32 csg_id, u32 cs_id)
1478 {
1479 	struct panthor_scheduler *sched = ptdev->scheduler;
1480 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1481 	struct panthor_group *group = csg_slot->group;
1482 
1483 	lockdep_assert_held(&sched->lock);
1484 
1485 	if (drm_WARN_ON(&ptdev->base, !group))
1486 		return;
1487 
1488 	atomic_or(BIT(cs_id), &group->tiler_oom);
1489 
1490 	/* We don't use group_queue_work() here because we want to queue the
1491 	 * work item to the heap_alloc_wq.
1492 	 */
1493 	group_get(group);
1494 	if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1495 		group_put(group);
1496 }
1497 
1498 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1499 				       u32 csg_id, u32 cs_id)
1500 {
1501 	struct panthor_fw_cs_iface *cs_iface;
1502 	u32 req, ack, events;
1503 
1504 	lockdep_assert_held(&ptdev->scheduler->lock);
1505 
1506 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1507 	req = cs_iface->input->req;
1508 	ack = cs_iface->output->ack;
1509 	events = (req ^ ack) & CS_EVT_MASK;
1510 
1511 	if (events & CS_FATAL)
1512 		cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1513 
1514 	if (events & CS_FAULT)
1515 		cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1516 
1517 	if (events & CS_TILER_OOM)
1518 		cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1519 
1520 	/* We don't acknowledge the TILER_OOM event since its handling is
1521 	 * deferred to a separate work.
1522 	 */
1523 	panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1524 
1525 	return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1526 }
1527 
1528 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
1529 {
1530 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1531 	struct panthor_fw_csg_iface *csg_iface;
1532 
1533 	lockdep_assert_held(&ptdev->scheduler->lock);
1534 
1535 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1536 	csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
1537 }
1538 
1539 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1540 {
1541 	struct panthor_scheduler *sched = ptdev->scheduler;
1542 
1543 	lockdep_assert_held(&sched->lock);
1544 
1545 	sched->might_have_idle_groups = true;
1546 
1547 	/* Schedule a tick so we can evict idle groups and schedule non-idle
1548 	 * ones. This will also update runtime PM and devfreq busy/idle states,
1549 	 * so the device can lower its frequency or get suspended.
1550 	 */
1551 	sched_queue_delayed_work(sched, tick, 0);
1552 }
1553 
1554 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1555 					u32 csg_id)
1556 {
1557 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1558 	struct panthor_group *group = csg_slot->group;
1559 
1560 	lockdep_assert_held(&ptdev->scheduler->lock);
1561 
1562 	if (group)
1563 		group_queue_work(group, sync_upd);
1564 
1565 	sched_queue_work(ptdev->scheduler, sync_upd);
1566 }
1567 
1568 static void
1569 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1570 {
1571 	struct panthor_scheduler *sched = ptdev->scheduler;
1572 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1573 	struct panthor_group *group = csg_slot->group;
1574 
1575 	lockdep_assert_held(&sched->lock);
1576 
1577 	drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1578 
1579 	group = csg_slot->group;
1580 	if (!drm_WARN_ON(&ptdev->base, !group))
1581 		group->timedout = true;
1582 
1583 	sched_queue_delayed_work(sched, tick, 0);
1584 }
1585 
1586 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1587 {
1588 	u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1589 	struct panthor_fw_csg_iface *csg_iface;
1590 	u32 ring_cs_db_mask = 0;
1591 
1592 	lockdep_assert_held(&ptdev->scheduler->lock);
1593 
1594 	if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1595 		return;
1596 
1597 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1598 	req = READ_ONCE(csg_iface->input->req);
1599 	ack = READ_ONCE(csg_iface->output->ack);
1600 	cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1601 	cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1602 	csg_events = (req ^ ack) & CSG_EVT_MASK;
1603 
1604 	/* There may not be any pending CSG/CS interrupts to process */
1605 	if (req == ack && cs_irq_req == cs_irq_ack)
1606 		return;
1607 
1608 	/* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1609 	 * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1610 	 * doesn't miss an interrupt for the CS in the race scenario where
1611 	 * whilst Host is servicing an interrupt for the CS, firmware sends
1612 	 * another interrupt for that CS.
1613 	 */
1614 	csg_iface->input->cs_irq_ack = cs_irq_req;
1615 
1616 	panthor_fw_update_reqs(csg_iface, req, ack,
1617 			       CSG_SYNC_UPDATE |
1618 			       CSG_IDLE |
1619 			       CSG_PROGRESS_TIMER_EVENT);
1620 
1621 	if (csg_events & CSG_IDLE)
1622 		csg_slot_process_idle_event_locked(ptdev, csg_id);
1623 
1624 	if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1625 		csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1626 
1627 	cs_irqs = cs_irq_req ^ cs_irq_ack;
1628 	while (cs_irqs) {
1629 		u32 cs_id = ffs(cs_irqs) - 1;
1630 
1631 		if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1632 			ring_cs_db_mask |= BIT(cs_id);
1633 
1634 		cs_irqs &= ~BIT(cs_id);
1635 	}
1636 
1637 	if (csg_events & CSG_SYNC_UPDATE)
1638 		csg_slot_sync_update_locked(ptdev, csg_id);
1639 
1640 	if (ring_cs_db_mask)
1641 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1642 
1643 	panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1644 }
1645 
1646 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1647 {
1648 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1649 
1650 	lockdep_assert_held(&ptdev->scheduler->lock);
1651 
1652 	/* Acknowledge the idle event and schedule a tick. */
1653 	panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1654 	sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1655 }
1656 
1657 /**
1658  * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1659  * @ptdev: Device.
1660  */
1661 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1662 {
1663 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1664 	u32 req, ack, evts;
1665 
1666 	lockdep_assert_held(&ptdev->scheduler->lock);
1667 
1668 	req = READ_ONCE(glb_iface->input->req);
1669 	ack = READ_ONCE(glb_iface->output->ack);
1670 	evts = (req ^ ack) & GLB_EVT_MASK;
1671 
1672 	if (evts & GLB_IDLE)
1673 		sched_process_idle_event_locked(ptdev);
1674 }
1675 
1676 static void process_fw_events_work(struct work_struct *work)
1677 {
1678 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1679 						      fw_events_work);
1680 	u32 events = atomic_xchg(&sched->fw_events, 0);
1681 	struct panthor_device *ptdev = sched->ptdev;
1682 
1683 	mutex_lock(&sched->lock);
1684 
1685 	if (events & JOB_INT_GLOBAL_IF) {
1686 		sched_process_global_irq_locked(ptdev);
1687 		events &= ~JOB_INT_GLOBAL_IF;
1688 	}
1689 
1690 	while (events) {
1691 		u32 csg_id = ffs(events) - 1;
1692 
1693 		sched_process_csg_irq_locked(ptdev, csg_id);
1694 		events &= ~BIT(csg_id);
1695 	}
1696 
1697 	mutex_unlock(&sched->lock);
1698 }
1699 
1700 /**
1701  * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1702  */
1703 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1704 {
1705 	if (!ptdev->scheduler)
1706 		return;
1707 
1708 	atomic_or(events, &ptdev->scheduler->fw_events);
1709 	sched_queue_work(ptdev->scheduler, fw_events);
1710 }
1711 
1712 static const char *fence_get_driver_name(struct dma_fence *fence)
1713 {
1714 	return "panthor";
1715 }
1716 
1717 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1718 {
1719 	return "queue-fence";
1720 }
1721 
1722 static const struct dma_fence_ops panthor_queue_fence_ops = {
1723 	.get_driver_name = fence_get_driver_name,
1724 	.get_timeline_name = queue_fence_get_timeline_name,
1725 };
1726 
1727 struct panthor_csg_slots_upd_ctx {
1728 	u32 update_mask;
1729 	u32 timedout_mask;
1730 	struct {
1731 		u32 value;
1732 		u32 mask;
1733 	} requests[MAX_CSGS];
1734 };
1735 
1736 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1737 {
1738 	memset(ctx, 0, sizeof(*ctx));
1739 }
1740 
1741 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1742 				    struct panthor_csg_slots_upd_ctx *ctx,
1743 				    u32 csg_id, u32 value, u32 mask)
1744 {
1745 	if (drm_WARN_ON(&ptdev->base, !mask) ||
1746 	    drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1747 		return;
1748 
1749 	ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1750 	ctx->requests[csg_id].mask |= mask;
1751 	ctx->update_mask |= BIT(csg_id);
1752 }
1753 
1754 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1755 				     struct panthor_csg_slots_upd_ctx *ctx)
1756 {
1757 	struct panthor_scheduler *sched = ptdev->scheduler;
1758 	u32 update_slots = ctx->update_mask;
1759 
1760 	lockdep_assert_held(&sched->lock);
1761 
1762 	if (!ctx->update_mask)
1763 		return 0;
1764 
1765 	while (update_slots) {
1766 		struct panthor_fw_csg_iface *csg_iface;
1767 		u32 csg_id = ffs(update_slots) - 1;
1768 
1769 		update_slots &= ~BIT(csg_id);
1770 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1771 		panthor_fw_update_reqs(csg_iface, req,
1772 				       ctx->requests[csg_id].value,
1773 				       ctx->requests[csg_id].mask);
1774 	}
1775 
1776 	panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1777 
1778 	update_slots = ctx->update_mask;
1779 	while (update_slots) {
1780 		struct panthor_fw_csg_iface *csg_iface;
1781 		u32 csg_id = ffs(update_slots) - 1;
1782 		u32 req_mask = ctx->requests[csg_id].mask, acked;
1783 		int ret;
1784 
1785 		update_slots &= ~BIT(csg_id);
1786 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1787 
1788 		ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1789 
1790 		if (acked & CSG_ENDPOINT_CONFIG)
1791 			csg_slot_sync_priority_locked(ptdev, csg_id);
1792 
1793 		if (acked & CSG_STATE_MASK)
1794 			csg_slot_sync_state_locked(ptdev, csg_id);
1795 
1796 		if (acked & CSG_STATUS_UPDATE) {
1797 			csg_slot_sync_queues_state_locked(ptdev, csg_id);
1798 			csg_slot_sync_idle_state_locked(ptdev, csg_id);
1799 		}
1800 
1801 		if (ret && acked != req_mask &&
1802 		    ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
1803 			drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
1804 			ctx->timedout_mask |= BIT(csg_id);
1805 		}
1806 	}
1807 
1808 	if (ctx->timedout_mask)
1809 		return -ETIMEDOUT;
1810 
1811 	return 0;
1812 }
1813 
1814 struct panthor_sched_tick_ctx {
1815 	struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
1816 	struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
1817 	u32 idle_group_count;
1818 	u32 group_count;
1819 	enum panthor_csg_priority min_priority;
1820 	struct panthor_vm *vms[MAX_CS_PER_CSG];
1821 	u32 as_count;
1822 	bool immediate_tick;
1823 	u32 csg_upd_failed_mask;
1824 };
1825 
1826 static bool
1827 tick_ctx_is_full(const struct panthor_scheduler *sched,
1828 		 const struct panthor_sched_tick_ctx *ctx)
1829 {
1830 	return ctx->group_count == sched->csg_slot_count;
1831 }
1832 
1833 static bool
1834 group_is_idle(struct panthor_group *group)
1835 {
1836 	struct panthor_device *ptdev = group->ptdev;
1837 	u32 inactive_queues;
1838 
1839 	if (group->csg_id >= 0)
1840 		return ptdev->scheduler->csg_slots[group->csg_id].idle;
1841 
1842 	inactive_queues = group->idle_queues | group->blocked_queues;
1843 	return hweight32(inactive_queues) == group->queue_count;
1844 }
1845 
1846 static bool
1847 group_can_run(struct panthor_group *group)
1848 {
1849 	return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1850 	       group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1851 	       !group->destroyed && group->fatal_queues == 0 &&
1852 	       !group->timedout;
1853 }
1854 
1855 static void
1856 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
1857 			       struct panthor_sched_tick_ctx *ctx,
1858 			       struct list_head *queue,
1859 			       bool skip_idle_groups,
1860 			       bool owned_by_tick_ctx)
1861 {
1862 	struct panthor_group *group, *tmp;
1863 
1864 	if (tick_ctx_is_full(sched, ctx))
1865 		return;
1866 
1867 	list_for_each_entry_safe(group, tmp, queue, run_node) {
1868 		u32 i;
1869 
1870 		if (!group_can_run(group))
1871 			continue;
1872 
1873 		if (skip_idle_groups && group_is_idle(group))
1874 			continue;
1875 
1876 		for (i = 0; i < ctx->as_count; i++) {
1877 			if (ctx->vms[i] == group->vm)
1878 				break;
1879 		}
1880 
1881 		if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
1882 			continue;
1883 
1884 		if (!owned_by_tick_ctx)
1885 			group_get(group);
1886 
1887 		list_move_tail(&group->run_node, &ctx->groups[group->priority]);
1888 		ctx->group_count++;
1889 		if (group_is_idle(group))
1890 			ctx->idle_group_count++;
1891 
1892 		if (i == ctx->as_count)
1893 			ctx->vms[ctx->as_count++] = group->vm;
1894 
1895 		if (ctx->min_priority > group->priority)
1896 			ctx->min_priority = group->priority;
1897 
1898 		if (tick_ctx_is_full(sched, ctx))
1899 			return;
1900 	}
1901 }
1902 
1903 static void
1904 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
1905 			  struct panthor_sched_tick_ctx *ctx,
1906 			  struct panthor_group *group,
1907 			  bool full_tick)
1908 {
1909 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
1910 	struct panthor_group *other_group;
1911 
1912 	if (!full_tick) {
1913 		list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1914 		return;
1915 	}
1916 
1917 	/* Rotate to make sure groups with lower CSG slot
1918 	 * priorities have a chance to get a higher CSG slot
1919 	 * priority next time they get picked. This priority
1920 	 * has an impact on resource request ordering, so it's
1921 	 * important to make sure we don't let one group starve
1922 	 * all other groups with the same group priority.
1923 	 */
1924 	list_for_each_entry(other_group,
1925 			    &ctx->old_groups[csg_slot->group->priority],
1926 			    run_node) {
1927 		struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
1928 
1929 		if (other_csg_slot->priority > csg_slot->priority) {
1930 			list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
1931 			return;
1932 		}
1933 	}
1934 
1935 	list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1936 }
1937 
1938 static void
1939 tick_ctx_init(struct panthor_scheduler *sched,
1940 	      struct panthor_sched_tick_ctx *ctx,
1941 	      bool full_tick)
1942 {
1943 	struct panthor_device *ptdev = sched->ptdev;
1944 	struct panthor_csg_slots_upd_ctx upd_ctx;
1945 	int ret;
1946 	u32 i;
1947 
1948 	memset(ctx, 0, sizeof(*ctx));
1949 	csgs_upd_ctx_init(&upd_ctx);
1950 
1951 	ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
1952 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
1953 		INIT_LIST_HEAD(&ctx->groups[i]);
1954 		INIT_LIST_HEAD(&ctx->old_groups[i]);
1955 	}
1956 
1957 	for (i = 0; i < sched->csg_slot_count; i++) {
1958 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
1959 		struct panthor_group *group = csg_slot->group;
1960 		struct panthor_fw_csg_iface *csg_iface;
1961 
1962 		if (!group)
1963 			continue;
1964 
1965 		csg_iface = panthor_fw_get_csg_iface(ptdev, i);
1966 		group_get(group);
1967 
1968 		/* If there was unhandled faults on the VM, force processing of
1969 		 * CSG IRQs, so we can flag the faulty queue.
1970 		 */
1971 		if (panthor_vm_has_unhandled_faults(group->vm)) {
1972 			sched_process_csg_irq_locked(ptdev, i);
1973 
1974 			/* No fatal fault reported, flag all queues as faulty. */
1975 			if (!group->fatal_queues)
1976 				group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
1977 		}
1978 
1979 		tick_ctx_insert_old_group(sched, ctx, group, full_tick);
1980 		csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
1981 					csg_iface->output->ack ^ CSG_STATUS_UPDATE,
1982 					CSG_STATUS_UPDATE);
1983 	}
1984 
1985 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
1986 	if (ret) {
1987 		panthor_device_schedule_reset(ptdev);
1988 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
1989 	}
1990 }
1991 
1992 #define NUM_INSTRS_PER_SLOT		16
1993 
1994 static void
1995 group_term_post_processing(struct panthor_group *group)
1996 {
1997 	struct panthor_job *job, *tmp;
1998 	LIST_HEAD(faulty_jobs);
1999 	bool cookie;
2000 	u32 i = 0;
2001 
2002 	if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
2003 		return;
2004 
2005 	cookie = dma_fence_begin_signalling();
2006 	for (i = 0; i < group->queue_count; i++) {
2007 		struct panthor_queue *queue = group->queues[i];
2008 		struct panthor_syncobj_64b *syncobj;
2009 		int err;
2010 
2011 		if (group->fatal_queues & BIT(i))
2012 			err = -EINVAL;
2013 		else if (group->timedout)
2014 			err = -ETIMEDOUT;
2015 		else
2016 			err = -ECANCELED;
2017 
2018 		if (!queue)
2019 			continue;
2020 
2021 		spin_lock(&queue->fence_ctx.lock);
2022 		list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2023 			list_move_tail(&job->node, &faulty_jobs);
2024 			dma_fence_set_error(job->done_fence, err);
2025 			dma_fence_signal_locked(job->done_fence);
2026 		}
2027 		spin_unlock(&queue->fence_ctx.lock);
2028 
2029 		/* Manually update the syncobj seqno to unblock waiters. */
2030 		syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2031 		syncobj->status = ~0;
2032 		syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2033 		sched_queue_work(group->ptdev->scheduler, sync_upd);
2034 	}
2035 	dma_fence_end_signalling(cookie);
2036 
2037 	list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2038 		list_del_init(&job->node);
2039 		panthor_job_put(&job->base);
2040 	}
2041 }
2042 
2043 static void group_term_work(struct work_struct *work)
2044 {
2045 	struct panthor_group *group =
2046 		container_of(work, struct panthor_group, term_work);
2047 
2048 	group_term_post_processing(group);
2049 	group_put(group);
2050 }
2051 
2052 static void
2053 tick_ctx_cleanup(struct panthor_scheduler *sched,
2054 		 struct panthor_sched_tick_ctx *ctx)
2055 {
2056 	struct panthor_device *ptdev = sched->ptdev;
2057 	struct panthor_group *group, *tmp;
2058 	u32 i;
2059 
2060 	for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2061 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2062 			/* If everything went fine, we should only have groups
2063 			 * to be terminated in the old_groups lists.
2064 			 */
2065 			drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask &&
2066 				    group_can_run(group));
2067 
2068 			if (!group_can_run(group)) {
2069 				list_del_init(&group->run_node);
2070 				list_del_init(&group->wait_node);
2071 				group_queue_work(group, term);
2072 			} else if (group->csg_id >= 0) {
2073 				list_del_init(&group->run_node);
2074 			} else {
2075 				list_move(&group->run_node,
2076 					  group_is_idle(group) ?
2077 					  &sched->groups.idle[group->priority] :
2078 					  &sched->groups.runnable[group->priority]);
2079 			}
2080 			group_put(group);
2081 		}
2082 	}
2083 
2084 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2085 		/* If everything went fine, the groups to schedule lists should
2086 		 * be empty.
2087 		 */
2088 		drm_WARN_ON(&ptdev->base,
2089 			    !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2090 
2091 		list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2092 			if (group->csg_id >= 0) {
2093 				list_del_init(&group->run_node);
2094 			} else {
2095 				list_move(&group->run_node,
2096 					  group_is_idle(group) ?
2097 					  &sched->groups.idle[group->priority] :
2098 					  &sched->groups.runnable[group->priority]);
2099 			}
2100 			group_put(group);
2101 		}
2102 	}
2103 }
2104 
2105 static void
2106 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2107 {
2108 	struct panthor_group *group, *tmp;
2109 	struct panthor_device *ptdev = sched->ptdev;
2110 	struct panthor_csg_slot *csg_slot;
2111 	int prio, new_csg_prio = MAX_CSG_PRIO, i;
2112 	u32 free_csg_slots = 0;
2113 	struct panthor_csg_slots_upd_ctx upd_ctx;
2114 	int ret;
2115 
2116 	csgs_upd_ctx_init(&upd_ctx);
2117 
2118 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2119 		/* Suspend or terminate evicted groups. */
2120 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2121 			bool term = !group_can_run(group);
2122 			int csg_id = group->csg_id;
2123 
2124 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2125 				continue;
2126 
2127 			csg_slot = &sched->csg_slots[csg_id];
2128 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2129 						term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2130 						CSG_STATE_MASK);
2131 		}
2132 
2133 		/* Update priorities on already running groups. */
2134 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2135 			struct panthor_fw_csg_iface *csg_iface;
2136 			int csg_id = group->csg_id;
2137 
2138 			if (csg_id < 0) {
2139 				new_csg_prio--;
2140 				continue;
2141 			}
2142 
2143 			csg_slot = &sched->csg_slots[csg_id];
2144 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2145 			if (csg_slot->priority == new_csg_prio) {
2146 				new_csg_prio--;
2147 				continue;
2148 			}
2149 
2150 			panthor_fw_update_reqs(csg_iface, endpoint_req,
2151 					       CSG_EP_REQ_PRIORITY(new_csg_prio),
2152 					       CSG_EP_REQ_PRIORITY_MASK);
2153 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2154 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2155 						CSG_ENDPOINT_CONFIG);
2156 			new_csg_prio--;
2157 		}
2158 	}
2159 
2160 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2161 	if (ret) {
2162 		panthor_device_schedule_reset(ptdev);
2163 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2164 		return;
2165 	}
2166 
2167 	/* Unbind evicted groups. */
2168 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2169 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2170 			/* This group is gone. Process interrupts to clear
2171 			 * any pending interrupts before we start the new
2172 			 * group.
2173 			 */
2174 			if (group->csg_id >= 0)
2175 				sched_process_csg_irq_locked(ptdev, group->csg_id);
2176 
2177 			group_unbind_locked(group);
2178 		}
2179 	}
2180 
2181 	for (i = 0; i < sched->csg_slot_count; i++) {
2182 		if (!sched->csg_slots[i].group)
2183 			free_csg_slots |= BIT(i);
2184 	}
2185 
2186 	csgs_upd_ctx_init(&upd_ctx);
2187 	new_csg_prio = MAX_CSG_PRIO;
2188 
2189 	/* Start new groups. */
2190 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2191 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2192 			int csg_id = group->csg_id;
2193 			struct panthor_fw_csg_iface *csg_iface;
2194 
2195 			if (csg_id >= 0) {
2196 				new_csg_prio--;
2197 				continue;
2198 			}
2199 
2200 			csg_id = ffs(free_csg_slots) - 1;
2201 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2202 				break;
2203 
2204 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2205 			csg_slot = &sched->csg_slots[csg_id];
2206 			group_bind_locked(group, csg_id);
2207 			csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2208 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2209 						group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2210 						CSG_STATE_RESUME : CSG_STATE_START,
2211 						CSG_STATE_MASK);
2212 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2213 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2214 						CSG_ENDPOINT_CONFIG);
2215 			free_csg_slots &= ~BIT(csg_id);
2216 		}
2217 	}
2218 
2219 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2220 	if (ret) {
2221 		panthor_device_schedule_reset(ptdev);
2222 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2223 		return;
2224 	}
2225 
2226 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2227 		list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2228 			list_del_init(&group->run_node);
2229 
2230 			/* If the group has been destroyed while we were
2231 			 * scheduling, ask for an immediate tick to
2232 			 * re-evaluate as soon as possible and get rid of
2233 			 * this dangling group.
2234 			 */
2235 			if (group->destroyed)
2236 				ctx->immediate_tick = true;
2237 			group_put(group);
2238 		}
2239 
2240 		/* Return evicted groups to the idle or run queues. Groups
2241 		 * that can no longer be run (because they've been destroyed
2242 		 * or experienced an unrecoverable error) will be scheduled
2243 		 * for destruction in tick_ctx_cleanup().
2244 		 */
2245 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2246 			if (!group_can_run(group))
2247 				continue;
2248 
2249 			if (group_is_idle(group))
2250 				list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2251 			else
2252 				list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2253 			group_put(group);
2254 		}
2255 	}
2256 
2257 	sched->used_csg_slot_count = ctx->group_count;
2258 	sched->might_have_idle_groups = ctx->idle_group_count > 0;
2259 }
2260 
2261 static u64
2262 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2263 			       const struct panthor_sched_tick_ctx *ctx)
2264 {
2265 	/* We had space left, no need to reschedule until some external event happens. */
2266 	if (!tick_ctx_is_full(sched, ctx))
2267 		goto no_tick;
2268 
2269 	/* If idle groups were scheduled, no need to wake up until some external
2270 	 * event happens (group unblocked, new job submitted, ...).
2271 	 */
2272 	if (ctx->idle_group_count)
2273 		goto no_tick;
2274 
2275 	if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
2276 		goto no_tick;
2277 
2278 	/* If there are groups of the same priority waiting, we need to
2279 	 * keep the scheduler ticking, otherwise, we'll just wait for
2280 	 * new groups with higher priority to be queued.
2281 	 */
2282 	if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
2283 		u64 resched_target = sched->last_tick + sched->tick_period;
2284 
2285 		if (time_before64(sched->resched_target, sched->last_tick) ||
2286 		    time_before64(resched_target, sched->resched_target))
2287 			sched->resched_target = resched_target;
2288 
2289 		return sched->resched_target - sched->last_tick;
2290 	}
2291 
2292 no_tick:
2293 	sched->resched_target = U64_MAX;
2294 	return U64_MAX;
2295 }
2296 
2297 static void tick_work(struct work_struct *work)
2298 {
2299 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2300 						      tick_work.work);
2301 	struct panthor_device *ptdev = sched->ptdev;
2302 	struct panthor_sched_tick_ctx ctx;
2303 	u64 remaining_jiffies = 0, resched_delay;
2304 	u64 now = get_jiffies_64();
2305 	int prio, ret, cookie;
2306 
2307 	if (!drm_dev_enter(&ptdev->base, &cookie))
2308 		return;
2309 
2310 	ret = pm_runtime_resume_and_get(ptdev->base.dev);
2311 	if (drm_WARN_ON(&ptdev->base, ret))
2312 		goto out_dev_exit;
2313 
2314 	if (time_before64(now, sched->resched_target))
2315 		remaining_jiffies = sched->resched_target - now;
2316 
2317 	mutex_lock(&sched->lock);
2318 	if (panthor_device_reset_is_pending(sched->ptdev))
2319 		goto out_unlock;
2320 
2321 	tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
2322 	if (ctx.csg_upd_failed_mask)
2323 		goto out_cleanup_ctx;
2324 
2325 	if (remaining_jiffies) {
2326 		/* Scheduling forced in the middle of a tick. Only RT groups
2327 		 * can preempt non-RT ones. Currently running RT groups can't be
2328 		 * preempted.
2329 		 */
2330 		for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2331 		     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2332 		     prio--) {
2333 			tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2334 						       true, true);
2335 			if (prio == PANTHOR_CSG_PRIORITY_RT) {
2336 				tick_ctx_pick_groups_from_list(sched, &ctx,
2337 							       &sched->groups.runnable[prio],
2338 							       true, false);
2339 			}
2340 		}
2341 	}
2342 
2343 	/* First pick non-idle groups */
2344 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2345 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2346 	     prio--) {
2347 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2348 					       true, false);
2349 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2350 	}
2351 
2352 	/* If we have free CSG slots left, pick idle groups */
2353 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2354 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2355 	     prio--) {
2356 		/* Check the old_group queue first to avoid reprogramming the slots */
2357 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2358 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2359 					       false, false);
2360 	}
2361 
2362 	tick_ctx_apply(sched, &ctx);
2363 	if (ctx.csg_upd_failed_mask)
2364 		goto out_cleanup_ctx;
2365 
2366 	if (ctx.idle_group_count == ctx.group_count) {
2367 		panthor_devfreq_record_idle(sched->ptdev);
2368 		if (sched->pm.has_ref) {
2369 			pm_runtime_put_autosuspend(ptdev->base.dev);
2370 			sched->pm.has_ref = false;
2371 		}
2372 	} else {
2373 		panthor_devfreq_record_busy(sched->ptdev);
2374 		if (!sched->pm.has_ref) {
2375 			pm_runtime_get(ptdev->base.dev);
2376 			sched->pm.has_ref = true;
2377 		}
2378 	}
2379 
2380 	sched->last_tick = now;
2381 	resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2382 	if (ctx.immediate_tick)
2383 		resched_delay = 0;
2384 
2385 	if (resched_delay != U64_MAX)
2386 		sched_queue_delayed_work(sched, tick, resched_delay);
2387 
2388 out_cleanup_ctx:
2389 	tick_ctx_cleanup(sched, &ctx);
2390 
2391 out_unlock:
2392 	mutex_unlock(&sched->lock);
2393 	pm_runtime_mark_last_busy(ptdev->base.dev);
2394 	pm_runtime_put_autosuspend(ptdev->base.dev);
2395 
2396 out_dev_exit:
2397 	drm_dev_exit(cookie);
2398 }
2399 
2400 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2401 {
2402 	struct panthor_queue *queue = group->queues[queue_idx];
2403 	union {
2404 		struct panthor_syncobj_64b sync64;
2405 		struct panthor_syncobj_32b sync32;
2406 	} *syncobj;
2407 	bool result;
2408 	u64 value;
2409 
2410 	syncobj = panthor_queue_get_syncwait_obj(group, queue);
2411 	if (!syncobj)
2412 		return -EINVAL;
2413 
2414 	value = queue->syncwait.sync64 ?
2415 		syncobj->sync64.seqno :
2416 		syncobj->sync32.seqno;
2417 
2418 	if (queue->syncwait.gt)
2419 		result = value > queue->syncwait.ref;
2420 	else
2421 		result = value <= queue->syncwait.ref;
2422 
2423 	if (result)
2424 		panthor_queue_put_syncwait_obj(queue);
2425 
2426 	return result;
2427 }
2428 
2429 static void sync_upd_work(struct work_struct *work)
2430 {
2431 	struct panthor_scheduler *sched = container_of(work,
2432 						      struct panthor_scheduler,
2433 						      sync_upd_work);
2434 	struct panthor_group *group, *tmp;
2435 	bool immediate_tick = false;
2436 
2437 	mutex_lock(&sched->lock);
2438 	list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2439 		u32 tested_queues = group->blocked_queues;
2440 		u32 unblocked_queues = 0;
2441 
2442 		while (tested_queues) {
2443 			u32 cs_id = ffs(tested_queues) - 1;
2444 			int ret;
2445 
2446 			ret = panthor_queue_eval_syncwait(group, cs_id);
2447 			drm_WARN_ON(&group->ptdev->base, ret < 0);
2448 			if (ret)
2449 				unblocked_queues |= BIT(cs_id);
2450 
2451 			tested_queues &= ~BIT(cs_id);
2452 		}
2453 
2454 		if (unblocked_queues) {
2455 			group->blocked_queues &= ~unblocked_queues;
2456 
2457 			if (group->csg_id < 0) {
2458 				list_move(&group->run_node,
2459 					  &sched->groups.runnable[group->priority]);
2460 				if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2461 					immediate_tick = true;
2462 			}
2463 		}
2464 
2465 		if (!group->blocked_queues)
2466 			list_del_init(&group->wait_node);
2467 	}
2468 	mutex_unlock(&sched->lock);
2469 
2470 	if (immediate_tick)
2471 		sched_queue_delayed_work(sched, tick, 0);
2472 }
2473 
2474 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2475 {
2476 	struct panthor_device *ptdev = group->ptdev;
2477 	struct panthor_scheduler *sched = ptdev->scheduler;
2478 	struct list_head *queue = &sched->groups.runnable[group->priority];
2479 	u64 delay_jiffies = 0;
2480 	bool was_idle;
2481 	u64 now;
2482 
2483 	if (!group_can_run(group))
2484 		return;
2485 
2486 	/* All updated queues are blocked, no need to wake up the scheduler. */
2487 	if ((queue_mask & group->blocked_queues) == queue_mask)
2488 		return;
2489 
2490 	was_idle = group_is_idle(group);
2491 	group->idle_queues &= ~queue_mask;
2492 
2493 	/* Don't mess up with the lists if we're in a middle of a reset. */
2494 	if (atomic_read(&sched->reset.in_progress))
2495 		return;
2496 
2497 	if (was_idle && !group_is_idle(group))
2498 		list_move_tail(&group->run_node, queue);
2499 
2500 	/* RT groups are preemptive. */
2501 	if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2502 		sched_queue_delayed_work(sched, tick, 0);
2503 		return;
2504 	}
2505 
2506 	/* Some groups might be idle, force an immediate tick to
2507 	 * re-evaluate.
2508 	 */
2509 	if (sched->might_have_idle_groups) {
2510 		sched_queue_delayed_work(sched, tick, 0);
2511 		return;
2512 	}
2513 
2514 	/* Scheduler is ticking, nothing to do. */
2515 	if (sched->resched_target != U64_MAX) {
2516 		/* If there are free slots, force immediating ticking. */
2517 		if (sched->used_csg_slot_count < sched->csg_slot_count)
2518 			sched_queue_delayed_work(sched, tick, 0);
2519 
2520 		return;
2521 	}
2522 
2523 	/* Scheduler tick was off, recalculate the resched_target based on the
2524 	 * last tick event, and queue the scheduler work.
2525 	 */
2526 	now = get_jiffies_64();
2527 	sched->resched_target = sched->last_tick + sched->tick_period;
2528 	if (sched->used_csg_slot_count == sched->csg_slot_count &&
2529 	    time_before64(now, sched->resched_target))
2530 		delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2531 
2532 	sched_queue_delayed_work(sched, tick, delay_jiffies);
2533 }
2534 
2535 static void queue_stop(struct panthor_queue *queue,
2536 		       struct panthor_job *bad_job)
2537 {
2538 	drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2539 }
2540 
2541 static void queue_start(struct panthor_queue *queue)
2542 {
2543 	struct panthor_job *job;
2544 
2545 	/* Re-assign the parent fences. */
2546 	list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2547 		job->base.s_fence->parent = dma_fence_get(job->done_fence);
2548 
2549 	drm_sched_start(&queue->scheduler);
2550 }
2551 
2552 static void panthor_group_stop(struct panthor_group *group)
2553 {
2554 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2555 
2556 	lockdep_assert_held(&sched->reset.lock);
2557 
2558 	for (u32 i = 0; i < group->queue_count; i++)
2559 		queue_stop(group->queues[i], NULL);
2560 
2561 	group_get(group);
2562 	list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2563 }
2564 
2565 static void panthor_group_start(struct panthor_group *group)
2566 {
2567 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2568 
2569 	lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2570 
2571 	for (u32 i = 0; i < group->queue_count; i++)
2572 		queue_start(group->queues[i]);
2573 
2574 	if (group_can_run(group)) {
2575 		list_move_tail(&group->run_node,
2576 			       group_is_idle(group) ?
2577 			       &sched->groups.idle[group->priority] :
2578 			       &sched->groups.runnable[group->priority]);
2579 	} else {
2580 		list_del_init(&group->run_node);
2581 		list_del_init(&group->wait_node);
2582 		group_queue_work(group, term);
2583 	}
2584 
2585 	group_put(group);
2586 }
2587 
2588 static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
2589 {
2590 	struct panthor_scheduler *sched = ptdev->scheduler;
2591 
2592 	sched_queue_delayed_work(sched, tick, 0);
2593 }
2594 
2595 /**
2596  * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2597  */
2598 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2599 {
2600 	/* Force a tick to immediately kill faulty groups. */
2601 	if (ptdev->scheduler)
2602 		panthor_sched_immediate_tick(ptdev);
2603 }
2604 
2605 void panthor_sched_resume(struct panthor_device *ptdev)
2606 {
2607 	/* Force a tick to re-evaluate after a resume. */
2608 	panthor_sched_immediate_tick(ptdev);
2609 }
2610 
2611 void panthor_sched_suspend(struct panthor_device *ptdev)
2612 {
2613 	struct panthor_scheduler *sched = ptdev->scheduler;
2614 	struct panthor_csg_slots_upd_ctx upd_ctx;
2615 	struct panthor_group *group;
2616 	u32 suspended_slots;
2617 	u32 i;
2618 
2619 	mutex_lock(&sched->lock);
2620 	csgs_upd_ctx_init(&upd_ctx);
2621 	for (i = 0; i < sched->csg_slot_count; i++) {
2622 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2623 
2624 		if (csg_slot->group) {
2625 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2626 						group_can_run(csg_slot->group) ?
2627 						CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2628 						CSG_STATE_MASK);
2629 		}
2630 	}
2631 
2632 	suspended_slots = upd_ctx.update_mask;
2633 
2634 	csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2635 	suspended_slots &= ~upd_ctx.timedout_mask;
2636 
2637 	if (upd_ctx.timedout_mask) {
2638 		u32 slot_mask = upd_ctx.timedout_mask;
2639 
2640 		drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2641 		csgs_upd_ctx_init(&upd_ctx);
2642 		while (slot_mask) {
2643 			u32 csg_id = ffs(slot_mask) - 1;
2644 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2645 
2646 			/* We consider group suspension failures as fatal and flag the
2647 			 * group as unusable by setting timedout=true.
2648 			 */
2649 			csg_slot->group->timedout = true;
2650 
2651 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2652 						CSG_STATE_TERMINATE,
2653 						CSG_STATE_MASK);
2654 			slot_mask &= ~BIT(csg_id);
2655 		}
2656 
2657 		csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2658 
2659 		slot_mask = upd_ctx.timedout_mask;
2660 		while (slot_mask) {
2661 			u32 csg_id = ffs(slot_mask) - 1;
2662 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2663 
2664 			/* Terminate command timedout, but the soft-reset will
2665 			 * automatically terminate all active groups, so let's
2666 			 * force the state to halted here.
2667 			 */
2668 			if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED)
2669 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2670 			slot_mask &= ~BIT(csg_id);
2671 		}
2672 	}
2673 
2674 	/* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2675 	 * If the flush fails, flag all queues for termination.
2676 	 */
2677 	if (suspended_slots) {
2678 		bool flush_caches_failed = false;
2679 		u32 slot_mask = suspended_slots;
2680 
2681 		if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2682 			flush_caches_failed = true;
2683 
2684 		while (slot_mask) {
2685 			u32 csg_id = ffs(slot_mask) - 1;
2686 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2687 
2688 			if (flush_caches_failed)
2689 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2690 			else
2691 				csg_slot_sync_update_locked(ptdev, csg_id);
2692 
2693 			slot_mask &= ~BIT(csg_id);
2694 		}
2695 	}
2696 
2697 	for (i = 0; i < sched->csg_slot_count; i++) {
2698 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2699 
2700 		group = csg_slot->group;
2701 		if (!group)
2702 			continue;
2703 
2704 		group_get(group);
2705 
2706 		if (group->csg_id >= 0)
2707 			sched_process_csg_irq_locked(ptdev, group->csg_id);
2708 
2709 		group_unbind_locked(group);
2710 
2711 		drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2712 
2713 		if (group_can_run(group)) {
2714 			list_add(&group->run_node,
2715 				 &sched->groups.idle[group->priority]);
2716 		} else {
2717 			/* We don't bother stopping the scheduler if the group is
2718 			 * faulty, the group termination work will finish the job.
2719 			 */
2720 			list_del_init(&group->wait_node);
2721 			group_queue_work(group, term);
2722 		}
2723 		group_put(group);
2724 	}
2725 	mutex_unlock(&sched->lock);
2726 }
2727 
2728 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2729 {
2730 	struct panthor_scheduler *sched = ptdev->scheduler;
2731 	struct panthor_group *group, *group_tmp;
2732 	u32 i;
2733 
2734 	mutex_lock(&sched->reset.lock);
2735 	atomic_set(&sched->reset.in_progress, true);
2736 
2737 	/* Cancel all scheduler works. Once this is done, these works can't be
2738 	 * scheduled again until the reset operation is complete.
2739 	 */
2740 	cancel_work_sync(&sched->sync_upd_work);
2741 	cancel_delayed_work_sync(&sched->tick_work);
2742 
2743 	panthor_sched_suspend(ptdev);
2744 
2745 	/* Stop all groups that might still accept jobs, so we don't get passed
2746 	 * new jobs while we're resetting.
2747 	 */
2748 	for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2749 		/* All groups should be in the idle lists. */
2750 		drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
2751 		list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2752 			panthor_group_stop(group);
2753 	}
2754 
2755 	for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2756 		list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2757 			panthor_group_stop(group);
2758 	}
2759 
2760 	mutex_unlock(&sched->reset.lock);
2761 }
2762 
2763 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2764 {
2765 	struct panthor_scheduler *sched = ptdev->scheduler;
2766 	struct panthor_group *group, *group_tmp;
2767 
2768 	mutex_lock(&sched->reset.lock);
2769 
2770 	list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2771 		/* Consider all previously running group as terminated if the
2772 		 * reset failed.
2773 		 */
2774 		if (reset_failed)
2775 			group->state = PANTHOR_CS_GROUP_TERMINATED;
2776 
2777 		panthor_group_start(group);
2778 	}
2779 
2780 	/* We're done resetting the GPU, clear the reset.in_progress bit so we can
2781 	 * kick the scheduler.
2782 	 */
2783 	atomic_set(&sched->reset.in_progress, false);
2784 	mutex_unlock(&sched->reset.lock);
2785 
2786 	/* No need to queue a tick and update syncs if the reset failed. */
2787 	if (!reset_failed) {
2788 		sched_queue_delayed_work(sched, tick, 0);
2789 		sched_queue_work(sched, sync_upd);
2790 	}
2791 }
2792 
2793 static void group_sync_upd_work(struct work_struct *work)
2794 {
2795 	struct panthor_group *group =
2796 		container_of(work, struct panthor_group, sync_upd_work);
2797 	struct panthor_job *job, *job_tmp;
2798 	LIST_HEAD(done_jobs);
2799 	u32 queue_idx;
2800 	bool cookie;
2801 
2802 	cookie = dma_fence_begin_signalling();
2803 	for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
2804 		struct panthor_queue *queue = group->queues[queue_idx];
2805 		struct panthor_syncobj_64b *syncobj;
2806 
2807 		if (!queue)
2808 			continue;
2809 
2810 		syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj));
2811 
2812 		spin_lock(&queue->fence_ctx.lock);
2813 		list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
2814 			if (syncobj->seqno < job->done_fence->seqno)
2815 				break;
2816 
2817 			list_move_tail(&job->node, &done_jobs);
2818 			dma_fence_signal_locked(job->done_fence);
2819 		}
2820 		spin_unlock(&queue->fence_ctx.lock);
2821 	}
2822 	dma_fence_end_signalling(cookie);
2823 
2824 	list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
2825 		list_del_init(&job->node);
2826 		panthor_job_put(&job->base);
2827 	}
2828 
2829 	group_put(group);
2830 }
2831 
2832 static struct dma_fence *
2833 queue_run_job(struct drm_sched_job *sched_job)
2834 {
2835 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
2836 	struct panthor_group *group = job->group;
2837 	struct panthor_queue *queue = group->queues[job->queue_idx];
2838 	struct panthor_device *ptdev = group->ptdev;
2839 	struct panthor_scheduler *sched = ptdev->scheduler;
2840 	u32 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
2841 	u32 ringbuf_insert = queue->iface.input->insert & (ringbuf_size - 1);
2842 	u64 addr_reg = ptdev->csif_info.cs_reg_count -
2843 		       ptdev->csif_info.unpreserved_cs_reg_count;
2844 	u64 val_reg = addr_reg + 2;
2845 	u64 sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
2846 			job->queue_idx * sizeof(struct panthor_syncobj_64b);
2847 	u32 waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
2848 	struct dma_fence *done_fence;
2849 	int ret;
2850 
2851 	u64 call_instrs[NUM_INSTRS_PER_SLOT] = {
2852 		/* MOV32 rX+2, cs.latest_flush */
2853 		(2ull << 56) | (val_reg << 48) | job->call_info.latest_flush,
2854 
2855 		/* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
2856 		(36ull << 56) | (0ull << 48) | (val_reg << 40) | (0 << 16) | 0x233,
2857 
2858 		/* MOV48 rX:rX+1, cs.start */
2859 		(1ull << 56) | (addr_reg << 48) | job->call_info.start,
2860 
2861 		/* MOV32 rX+2, cs.size */
2862 		(2ull << 56) | (val_reg << 48) | job->call_info.size,
2863 
2864 		/* WAIT(0) => waits for FLUSH_CACHE2 instruction */
2865 		(3ull << 56) | (1 << 16),
2866 
2867 		/* CALL rX:rX+1, rX+2 */
2868 		(32ull << 56) | (addr_reg << 40) | (val_reg << 32),
2869 
2870 		/* MOV48 rX:rX+1, sync_addr */
2871 		(1ull << 56) | (addr_reg << 48) | sync_addr,
2872 
2873 		/* MOV48 rX+2, #1 */
2874 		(1ull << 56) | (val_reg << 48) | 1,
2875 
2876 		/* WAIT(all) */
2877 		(3ull << 56) | (waitall_mask << 16),
2878 
2879 		/* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
2880 		(51ull << 56) | (0ull << 48) | (addr_reg << 40) | (val_reg << 32) | (0 << 16) | 1,
2881 
2882 		/* ERROR_BARRIER, so we can recover from faults at job
2883 		 * boundaries.
2884 		 */
2885 		(47ull << 56),
2886 	};
2887 
2888 	/* Need to be cacheline aligned to please the prefetcher. */
2889 	static_assert(sizeof(call_instrs) % 64 == 0,
2890 		      "call_instrs is not aligned on a cacheline");
2891 
2892 	/* Stream size is zero, nothing to do except making sure all previously
2893 	 * submitted jobs are done before we signal the
2894 	 * drm_sched_job::s_fence::finished fence.
2895 	 */
2896 	if (!job->call_info.size) {
2897 		job->done_fence = dma_fence_get(queue->fence_ctx.last_fence);
2898 		return dma_fence_get(job->done_fence);
2899 	}
2900 
2901 	ret = pm_runtime_resume_and_get(ptdev->base.dev);
2902 	if (drm_WARN_ON(&ptdev->base, ret))
2903 		return ERR_PTR(ret);
2904 
2905 	mutex_lock(&sched->lock);
2906 	if (!group_can_run(group)) {
2907 		done_fence = ERR_PTR(-ECANCELED);
2908 		goto out_unlock;
2909 	}
2910 
2911 	dma_fence_init(job->done_fence,
2912 		       &panthor_queue_fence_ops,
2913 		       &queue->fence_ctx.lock,
2914 		       queue->fence_ctx.id,
2915 		       atomic64_inc_return(&queue->fence_ctx.seqno));
2916 
2917 	memcpy(queue->ringbuf->kmap + ringbuf_insert,
2918 	       call_instrs, sizeof(call_instrs));
2919 
2920 	panthor_job_get(&job->base);
2921 	spin_lock(&queue->fence_ctx.lock);
2922 	list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
2923 	spin_unlock(&queue->fence_ctx.lock);
2924 
2925 	job->ringbuf.start = queue->iface.input->insert;
2926 	job->ringbuf.end = job->ringbuf.start + sizeof(call_instrs);
2927 
2928 	/* Make sure the ring buffer is updated before the INSERT
2929 	 * register.
2930 	 */
2931 	wmb();
2932 
2933 	queue->iface.input->extract = queue->iface.output->extract;
2934 	queue->iface.input->insert = job->ringbuf.end;
2935 
2936 	if (group->csg_id < 0) {
2937 		/* If the queue is blocked, we want to keep the timeout running, so we
2938 		 * can detect unbounded waits and kill the group when that happens.
2939 		 * Otherwise, we suspend the timeout so the time we spend waiting for
2940 		 * a CSG slot is not counted.
2941 		 */
2942 		if (!(group->blocked_queues & BIT(job->queue_idx)) &&
2943 		    !queue->timeout_suspended) {
2944 			queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
2945 			queue->timeout_suspended = true;
2946 		}
2947 
2948 		group_schedule_locked(group, BIT(job->queue_idx));
2949 	} else {
2950 		gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
2951 		if (!sched->pm.has_ref &&
2952 		    !(group->blocked_queues & BIT(job->queue_idx))) {
2953 			pm_runtime_get(ptdev->base.dev);
2954 			sched->pm.has_ref = true;
2955 		}
2956 		panthor_devfreq_record_busy(sched->ptdev);
2957 	}
2958 
2959 	/* Update the last fence. */
2960 	dma_fence_put(queue->fence_ctx.last_fence);
2961 	queue->fence_ctx.last_fence = dma_fence_get(job->done_fence);
2962 
2963 	done_fence = dma_fence_get(job->done_fence);
2964 
2965 out_unlock:
2966 	mutex_unlock(&sched->lock);
2967 	pm_runtime_mark_last_busy(ptdev->base.dev);
2968 	pm_runtime_put_autosuspend(ptdev->base.dev);
2969 
2970 	return done_fence;
2971 }
2972 
2973 static enum drm_gpu_sched_stat
2974 queue_timedout_job(struct drm_sched_job *sched_job)
2975 {
2976 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
2977 	struct panthor_group *group = job->group;
2978 	struct panthor_device *ptdev = group->ptdev;
2979 	struct panthor_scheduler *sched = ptdev->scheduler;
2980 	struct panthor_queue *queue = group->queues[job->queue_idx];
2981 
2982 	drm_warn(&ptdev->base, "job timeout\n");
2983 
2984 	drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
2985 
2986 	queue_stop(queue, job);
2987 
2988 	mutex_lock(&sched->lock);
2989 	group->timedout = true;
2990 	if (group->csg_id >= 0) {
2991 		sched_queue_delayed_work(ptdev->scheduler, tick, 0);
2992 	} else {
2993 		/* Remove from the run queues, so the scheduler can't
2994 		 * pick the group on the next tick.
2995 		 */
2996 		list_del_init(&group->run_node);
2997 		list_del_init(&group->wait_node);
2998 
2999 		group_queue_work(group, term);
3000 	}
3001 	mutex_unlock(&sched->lock);
3002 
3003 	queue_start(queue);
3004 
3005 	return DRM_GPU_SCHED_STAT_NOMINAL;
3006 }
3007 
3008 static void queue_free_job(struct drm_sched_job *sched_job)
3009 {
3010 	drm_sched_job_cleanup(sched_job);
3011 	panthor_job_put(sched_job);
3012 }
3013 
3014 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
3015 	.run_job = queue_run_job,
3016 	.timedout_job = queue_timedout_job,
3017 	.free_job = queue_free_job,
3018 };
3019 
3020 static struct panthor_queue *
3021 group_create_queue(struct panthor_group *group,
3022 		   const struct drm_panthor_queue_create *args)
3023 {
3024 	struct drm_gpu_scheduler *drm_sched;
3025 	struct panthor_queue *queue;
3026 	int ret;
3027 
3028 	if (args->pad[0] || args->pad[1] || args->pad[2])
3029 		return ERR_PTR(-EINVAL);
3030 
3031 	if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3032 	    !is_power_of_2(args->ringbuf_size))
3033 		return ERR_PTR(-EINVAL);
3034 
3035 	if (args->priority > CSF_MAX_QUEUE_PRIO)
3036 		return ERR_PTR(-EINVAL);
3037 
3038 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3039 	if (!queue)
3040 		return ERR_PTR(-ENOMEM);
3041 
3042 	queue->fence_ctx.id = dma_fence_context_alloc(1);
3043 	spin_lock_init(&queue->fence_ctx.lock);
3044 	INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3045 
3046 	queue->priority = args->priority;
3047 
3048 	queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3049 						  args->ringbuf_size,
3050 						  DRM_PANTHOR_BO_NO_MMAP,
3051 						  DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3052 						  DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3053 						  PANTHOR_VM_KERNEL_AUTO_VA);
3054 	if (IS_ERR(queue->ringbuf)) {
3055 		ret = PTR_ERR(queue->ringbuf);
3056 		goto err_free_queue;
3057 	}
3058 
3059 	ret = panthor_kernel_bo_vmap(queue->ringbuf);
3060 	if (ret)
3061 		goto err_free_queue;
3062 
3063 	queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3064 							    &queue->iface.input,
3065 							    &queue->iface.output,
3066 							    &queue->iface.input_fw_va,
3067 							    &queue->iface.output_fw_va);
3068 	if (IS_ERR(queue->iface.mem)) {
3069 		ret = PTR_ERR(queue->iface.mem);
3070 		goto err_free_queue;
3071 	}
3072 
3073 	ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops,
3074 			     group->ptdev->scheduler->wq, 1,
3075 			     args->ringbuf_size / (NUM_INSTRS_PER_SLOT * sizeof(u64)),
3076 			     0, msecs_to_jiffies(JOB_TIMEOUT_MS),
3077 			     group->ptdev->reset.wq,
3078 			     NULL, "panthor-queue", group->ptdev->base.dev);
3079 	if (ret)
3080 		goto err_free_queue;
3081 
3082 	drm_sched = &queue->scheduler;
3083 	ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3084 
3085 	return queue;
3086 
3087 err_free_queue:
3088 	group_free_queue(group, queue);
3089 	return ERR_PTR(ret);
3090 }
3091 
3092 #define MAX_GROUPS_PER_POOL		128
3093 
3094 int panthor_group_create(struct panthor_file *pfile,
3095 			 const struct drm_panthor_group_create *group_args,
3096 			 const struct drm_panthor_queue_create *queue_args)
3097 {
3098 	struct panthor_device *ptdev = pfile->ptdev;
3099 	struct panthor_group_pool *gpool = pfile->groups;
3100 	struct panthor_scheduler *sched = ptdev->scheduler;
3101 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3102 	struct panthor_group *group = NULL;
3103 	u32 gid, i, suspend_size;
3104 	int ret;
3105 
3106 	if (group_args->pad)
3107 		return -EINVAL;
3108 
3109 	if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT)
3110 		return -EINVAL;
3111 
3112 	if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3113 	    (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3114 	    (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3115 		return -EINVAL;
3116 
3117 	if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3118 	    hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3119 	    hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3120 		return -EINVAL;
3121 
3122 	group = kzalloc(sizeof(*group), GFP_KERNEL);
3123 	if (!group)
3124 		return -ENOMEM;
3125 
3126 	spin_lock_init(&group->fatal_lock);
3127 	kref_init(&group->refcount);
3128 	group->state = PANTHOR_CS_GROUP_CREATED;
3129 	group->csg_id = -1;
3130 
3131 	group->ptdev = ptdev;
3132 	group->max_compute_cores = group_args->max_compute_cores;
3133 	group->compute_core_mask = group_args->compute_core_mask;
3134 	group->max_fragment_cores = group_args->max_fragment_cores;
3135 	group->fragment_core_mask = group_args->fragment_core_mask;
3136 	group->max_tiler_cores = group_args->max_tiler_cores;
3137 	group->tiler_core_mask = group_args->tiler_core_mask;
3138 	group->priority = group_args->priority;
3139 
3140 	INIT_LIST_HEAD(&group->wait_node);
3141 	INIT_LIST_HEAD(&group->run_node);
3142 	INIT_WORK(&group->term_work, group_term_work);
3143 	INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3144 	INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3145 	INIT_WORK(&group->release_work, group_release_work);
3146 
3147 	group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3148 	if (!group->vm) {
3149 		ret = -EINVAL;
3150 		goto err_put_group;
3151 	}
3152 
3153 	suspend_size = csg_iface->control->suspend_size;
3154 	group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3155 	if (IS_ERR(group->suspend_buf)) {
3156 		ret = PTR_ERR(group->suspend_buf);
3157 		group->suspend_buf = NULL;
3158 		goto err_put_group;
3159 	}
3160 
3161 	suspend_size = csg_iface->control->protm_suspend_size;
3162 	group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3163 	if (IS_ERR(group->protm_suspend_buf)) {
3164 		ret = PTR_ERR(group->protm_suspend_buf);
3165 		group->protm_suspend_buf = NULL;
3166 		goto err_put_group;
3167 	}
3168 
3169 	group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3170 						   group_args->queues.count *
3171 						   sizeof(struct panthor_syncobj_64b),
3172 						   DRM_PANTHOR_BO_NO_MMAP,
3173 						   DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3174 						   DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3175 						   PANTHOR_VM_KERNEL_AUTO_VA);
3176 	if (IS_ERR(group->syncobjs)) {
3177 		ret = PTR_ERR(group->syncobjs);
3178 		goto err_put_group;
3179 	}
3180 
3181 	ret = panthor_kernel_bo_vmap(group->syncobjs);
3182 	if (ret)
3183 		goto err_put_group;
3184 
3185 	memset(group->syncobjs->kmap, 0,
3186 	       group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3187 
3188 	for (i = 0; i < group_args->queues.count; i++) {
3189 		group->queues[i] = group_create_queue(group, &queue_args[i]);
3190 		if (IS_ERR(group->queues[i])) {
3191 			ret = PTR_ERR(group->queues[i]);
3192 			group->queues[i] = NULL;
3193 			goto err_put_group;
3194 		}
3195 
3196 		group->queue_count++;
3197 	}
3198 
3199 	group->idle_queues = GENMASK(group->queue_count - 1, 0);
3200 
3201 	ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3202 	if (ret)
3203 		goto err_put_group;
3204 
3205 	mutex_lock(&sched->reset.lock);
3206 	if (atomic_read(&sched->reset.in_progress)) {
3207 		panthor_group_stop(group);
3208 	} else {
3209 		mutex_lock(&sched->lock);
3210 		list_add_tail(&group->run_node,
3211 			      &sched->groups.idle[group->priority]);
3212 		mutex_unlock(&sched->lock);
3213 	}
3214 	mutex_unlock(&sched->reset.lock);
3215 
3216 	return gid;
3217 
3218 err_put_group:
3219 	group_put(group);
3220 	return ret;
3221 }
3222 
3223 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3224 {
3225 	struct panthor_group_pool *gpool = pfile->groups;
3226 	struct panthor_device *ptdev = pfile->ptdev;
3227 	struct panthor_scheduler *sched = ptdev->scheduler;
3228 	struct panthor_group *group;
3229 
3230 	group = xa_erase(&gpool->xa, group_handle);
3231 	if (!group)
3232 		return -EINVAL;
3233 
3234 	for (u32 i = 0; i < group->queue_count; i++) {
3235 		if (group->queues[i])
3236 			drm_sched_entity_destroy(&group->queues[i]->entity);
3237 	}
3238 
3239 	mutex_lock(&sched->reset.lock);
3240 	mutex_lock(&sched->lock);
3241 	group->destroyed = true;
3242 	if (group->csg_id >= 0) {
3243 		sched_queue_delayed_work(sched, tick, 0);
3244 	} else if (!atomic_read(&sched->reset.in_progress)) {
3245 		/* Remove from the run queues, so the scheduler can't
3246 		 * pick the group on the next tick.
3247 		 */
3248 		list_del_init(&group->run_node);
3249 		list_del_init(&group->wait_node);
3250 		group_queue_work(group, term);
3251 	}
3252 	mutex_unlock(&sched->lock);
3253 	mutex_unlock(&sched->reset.lock);
3254 
3255 	group_put(group);
3256 	return 0;
3257 }
3258 
3259 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool,
3260 					       u32 group_handle)
3261 {
3262 	struct panthor_group *group;
3263 
3264 	xa_lock(&pool->xa);
3265 	group = group_get(xa_load(&pool->xa, group_handle));
3266 	xa_unlock(&pool->xa);
3267 
3268 	return group;
3269 }
3270 
3271 int panthor_group_get_state(struct panthor_file *pfile,
3272 			    struct drm_panthor_group_get_state *get_state)
3273 {
3274 	struct panthor_group_pool *gpool = pfile->groups;
3275 	struct panthor_device *ptdev = pfile->ptdev;
3276 	struct panthor_scheduler *sched = ptdev->scheduler;
3277 	struct panthor_group *group;
3278 
3279 	if (get_state->pad)
3280 		return -EINVAL;
3281 
3282 	group = group_from_handle(gpool, get_state->group_handle);
3283 	if (!group)
3284 		return -EINVAL;
3285 
3286 	memset(get_state, 0, sizeof(*get_state));
3287 
3288 	mutex_lock(&sched->lock);
3289 	if (group->timedout)
3290 		get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3291 	if (group->fatal_queues) {
3292 		get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3293 		get_state->fatal_queues = group->fatal_queues;
3294 	}
3295 	mutex_unlock(&sched->lock);
3296 
3297 	group_put(group);
3298 	return 0;
3299 }
3300 
3301 int panthor_group_pool_create(struct panthor_file *pfile)
3302 {
3303 	struct panthor_group_pool *gpool;
3304 
3305 	gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3306 	if (!gpool)
3307 		return -ENOMEM;
3308 
3309 	xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3310 	pfile->groups = gpool;
3311 	return 0;
3312 }
3313 
3314 void panthor_group_pool_destroy(struct panthor_file *pfile)
3315 {
3316 	struct panthor_group_pool *gpool = pfile->groups;
3317 	struct panthor_group *group;
3318 	unsigned long i;
3319 
3320 	if (IS_ERR_OR_NULL(gpool))
3321 		return;
3322 
3323 	xa_for_each(&gpool->xa, i, group)
3324 		panthor_group_destroy(pfile, i);
3325 
3326 	xa_destroy(&gpool->xa);
3327 	kfree(gpool);
3328 	pfile->groups = NULL;
3329 }
3330 
3331 static void job_release(struct kref *ref)
3332 {
3333 	struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3334 
3335 	drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3336 
3337 	if (job->base.s_fence)
3338 		drm_sched_job_cleanup(&job->base);
3339 
3340 	if (job->done_fence && job->done_fence->ops)
3341 		dma_fence_put(job->done_fence);
3342 	else
3343 		dma_fence_free(job->done_fence);
3344 
3345 	group_put(job->group);
3346 
3347 	kfree(job);
3348 }
3349 
3350 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3351 {
3352 	if (sched_job) {
3353 		struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3354 
3355 		kref_get(&job->refcount);
3356 	}
3357 
3358 	return sched_job;
3359 }
3360 
3361 void panthor_job_put(struct drm_sched_job *sched_job)
3362 {
3363 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3364 
3365 	if (sched_job)
3366 		kref_put(&job->refcount, job_release);
3367 }
3368 
3369 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3370 {
3371 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3372 
3373 	return job->group->vm;
3374 }
3375 
3376 struct drm_sched_job *
3377 panthor_job_create(struct panthor_file *pfile,
3378 		   u16 group_handle,
3379 		   const struct drm_panthor_queue_submit *qsubmit)
3380 {
3381 	struct panthor_group_pool *gpool = pfile->groups;
3382 	struct panthor_job *job;
3383 	int ret;
3384 
3385 	if (qsubmit->pad)
3386 		return ERR_PTR(-EINVAL);
3387 
3388 	/* If stream_addr is zero, so stream_size should be. */
3389 	if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3390 		return ERR_PTR(-EINVAL);
3391 
3392 	/* Make sure the address is aligned on 64-byte (cacheline) and the size is
3393 	 * aligned on 8-byte (instruction size).
3394 	 */
3395 	if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3396 		return ERR_PTR(-EINVAL);
3397 
3398 	/* bits 24:30 must be zero. */
3399 	if (qsubmit->latest_flush & GENMASK(30, 24))
3400 		return ERR_PTR(-EINVAL);
3401 
3402 	job = kzalloc(sizeof(*job), GFP_KERNEL);
3403 	if (!job)
3404 		return ERR_PTR(-ENOMEM);
3405 
3406 	kref_init(&job->refcount);
3407 	job->queue_idx = qsubmit->queue_index;
3408 	job->call_info.size = qsubmit->stream_size;
3409 	job->call_info.start = qsubmit->stream_addr;
3410 	job->call_info.latest_flush = qsubmit->latest_flush;
3411 	INIT_LIST_HEAD(&job->node);
3412 
3413 	job->group = group_from_handle(gpool, group_handle);
3414 	if (!job->group) {
3415 		ret = -EINVAL;
3416 		goto err_put_job;
3417 	}
3418 
3419 	if (!group_can_run(job->group)) {
3420 		ret = -EINVAL;
3421 		goto err_put_job;
3422 	}
3423 
3424 	if (job->queue_idx >= job->group->queue_count ||
3425 	    !job->group->queues[job->queue_idx]) {
3426 		ret = -EINVAL;
3427 		goto err_put_job;
3428 	}
3429 
3430 	/* Empty command streams don't need a fence, they'll pick the one from
3431 	 * the previously submitted job.
3432 	 */
3433 	if (job->call_info.size) {
3434 		job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
3435 		if (!job->done_fence) {
3436 			ret = -ENOMEM;
3437 			goto err_put_job;
3438 		}
3439 	}
3440 
3441 	ret = drm_sched_job_init(&job->base,
3442 				 &job->group->queues[job->queue_idx]->entity,
3443 				 1, job->group);
3444 	if (ret)
3445 		goto err_put_job;
3446 
3447 	return &job->base;
3448 
3449 err_put_job:
3450 	panthor_job_put(&job->base);
3451 	return ERR_PTR(ret);
3452 }
3453 
3454 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
3455 {
3456 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3457 
3458 	panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
3459 				DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
3460 }
3461 
3462 void panthor_sched_unplug(struct panthor_device *ptdev)
3463 {
3464 	struct panthor_scheduler *sched = ptdev->scheduler;
3465 
3466 	cancel_delayed_work_sync(&sched->tick_work);
3467 
3468 	mutex_lock(&sched->lock);
3469 	if (sched->pm.has_ref) {
3470 		pm_runtime_put(ptdev->base.dev);
3471 		sched->pm.has_ref = false;
3472 	}
3473 	mutex_unlock(&sched->lock);
3474 }
3475 
3476 static void panthor_sched_fini(struct drm_device *ddev, void *res)
3477 {
3478 	struct panthor_scheduler *sched = res;
3479 	int prio;
3480 
3481 	if (!sched || !sched->csg_slot_count)
3482 		return;
3483 
3484 	cancel_delayed_work_sync(&sched->tick_work);
3485 
3486 	if (sched->wq)
3487 		destroy_workqueue(sched->wq);
3488 
3489 	if (sched->heap_alloc_wq)
3490 		destroy_workqueue(sched->heap_alloc_wq);
3491 
3492 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3493 		drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
3494 		drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
3495 	}
3496 
3497 	drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
3498 }
3499 
3500 int panthor_sched_init(struct panthor_device *ptdev)
3501 {
3502 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
3503 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3504 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
3505 	struct panthor_scheduler *sched;
3506 	u32 gpu_as_count, num_groups;
3507 	int prio, ret;
3508 
3509 	sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
3510 	if (!sched)
3511 		return -ENOMEM;
3512 
3513 	/* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
3514 	 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
3515 	 */
3516 	num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
3517 
3518 	/* The FW-side scheduler might deadlock if two groups with the same
3519 	 * priority try to access a set of resources that overlaps, with part
3520 	 * of the resources being allocated to one group and the other part to
3521 	 * the other group, both groups waiting for the remaining resources to
3522 	 * be allocated. To avoid that, it is recommended to assign each CSG a
3523 	 * different priority. In theory we could allow several groups to have
3524 	 * the same CSG priority if they don't request the same resources, but
3525 	 * that makes the scheduling logic more complicated, so let's clamp
3526 	 * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
3527 	 */
3528 	num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
3529 
3530 	/* We need at least one AS for the MCU and one for the GPU contexts. */
3531 	gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
3532 	if (!gpu_as_count) {
3533 		drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
3534 			gpu_as_count + 1);
3535 		return -EINVAL;
3536 	}
3537 
3538 	sched->ptdev = ptdev;
3539 	sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
3540 	sched->csg_slot_count = num_groups;
3541 	sched->cs_slot_count = csg_iface->control->stream_num;
3542 	sched->as_slot_count = gpu_as_count;
3543 	ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
3544 	ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
3545 	ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
3546 
3547 	sched->last_tick = 0;
3548 	sched->resched_target = U64_MAX;
3549 	sched->tick_period = msecs_to_jiffies(10);
3550 	INIT_DELAYED_WORK(&sched->tick_work, tick_work);
3551 	INIT_WORK(&sched->sync_upd_work, sync_upd_work);
3552 	INIT_WORK(&sched->fw_events_work, process_fw_events_work);
3553 
3554 	ret = drmm_mutex_init(&ptdev->base, &sched->lock);
3555 	if (ret)
3556 		return ret;
3557 
3558 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3559 		INIT_LIST_HEAD(&sched->groups.runnable[prio]);
3560 		INIT_LIST_HEAD(&sched->groups.idle[prio]);
3561 	}
3562 	INIT_LIST_HEAD(&sched->groups.waiting);
3563 
3564 	ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
3565 	if (ret)
3566 		return ret;
3567 
3568 	INIT_LIST_HEAD(&sched->reset.stopped_groups);
3569 
3570 	/* sched->heap_alloc_wq will be used for heap chunk allocation on
3571 	 * tiler OOM events, which means we can't use the same workqueue for
3572 	 * the scheduler because works queued by the scheduler are in
3573 	 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
3574 	 * work around this limitation.
3575 	 *
3576 	 * FIXME: Ultimately, what we need is a failable/non-blocking GEM
3577 	 * allocation path that we can call when a heap OOM is reported. The
3578 	 * FW is smart enough to fall back on other methods if the kernel can't
3579 	 * allocate memory, and fail the tiling job if none of these
3580 	 * countermeasures worked.
3581 	 *
3582 	 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
3583 	 * system is running out of memory.
3584 	 */
3585 	sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
3586 	sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
3587 	if (!sched->wq || !sched->heap_alloc_wq) {
3588 		panthor_sched_fini(&ptdev->base, sched);
3589 		drm_err(&ptdev->base, "Failed to allocate the workqueues");
3590 		return -ENOMEM;
3591 	}
3592 
3593 	ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
3594 	if (ret)
3595 		return ret;
3596 
3597 	ptdev->scheduler = sched;
3598 	return 0;
3599 }
3600