1 /* 2 * DMM IOMMU driver support functions for TI OMAP processors. 3 * 4 * Author: Rob Clark <rob@ti.com> 5 * Andy Gross <andy.gross@ti.com> 6 * 7 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation version 2. 12 * 13 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 14 * kind, whether express or implied; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 */ 18 19 #include <linux/completion.h> 20 #include <linux/delay.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/errno.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/list.h> 26 #include <linux/mm.h> 27 #include <linux/module.h> 28 #include <linux/platform_device.h> /* platform_device() */ 29 #include <linux/sched.h> 30 #include <linux/seq_file.h> 31 #include <linux/slab.h> 32 #include <linux/time.h> 33 #include <linux/vmalloc.h> 34 #include <linux/wait.h> 35 36 #include "omap_dmm_tiler.h" 37 #include "omap_dmm_priv.h" 38 39 #define DMM_DRIVER_NAME "dmm" 40 41 /* mappings for associating views to luts */ 42 static struct tcm *containers[TILFMT_NFORMATS]; 43 static struct dmm *omap_dmm; 44 45 #if defined(CONFIG_OF) 46 static const struct of_device_id dmm_of_match[]; 47 #endif 48 49 /* global spinlock for protecting lists */ 50 static DEFINE_SPINLOCK(list_lock); 51 52 /* Geometry table */ 53 #define GEOM(xshift, yshift, bytes_per_pixel) { \ 54 .x_shft = (xshift), \ 55 .y_shft = (yshift), \ 56 .cpp = (bytes_per_pixel), \ 57 .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \ 58 .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \ 59 } 60 61 static const struct { 62 uint32_t x_shft; /* unused X-bits (as part of bpp) */ 63 uint32_t y_shft; /* unused Y-bits (as part of bpp) */ 64 uint32_t cpp; /* bytes/chars per pixel */ 65 uint32_t slot_w; /* width of each slot (in pixels) */ 66 uint32_t slot_h; /* height of each slot (in pixels) */ 67 } geom[TILFMT_NFORMATS] = { 68 [TILFMT_8BIT] = GEOM(0, 0, 1), 69 [TILFMT_16BIT] = GEOM(0, 1, 2), 70 [TILFMT_32BIT] = GEOM(1, 1, 4), 71 [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1), 72 }; 73 74 75 /* lookup table for registers w/ per-engine instances */ 76 static const uint32_t reg[][4] = { 77 [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1, 78 DMM_PAT_STATUS__2, DMM_PAT_STATUS__3}, 79 [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1, 80 DMM_PAT_DESCR__2, DMM_PAT_DESCR__3}, 81 }; 82 83 static u32 dmm_read(struct dmm *dmm, u32 reg) 84 { 85 return readl(dmm->base + reg); 86 } 87 88 static void dmm_write(struct dmm *dmm, u32 val, u32 reg) 89 { 90 writel(val, dmm->base + reg); 91 } 92 93 /* simple allocator to grab next 16 byte aligned memory from txn */ 94 static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa) 95 { 96 void *ptr; 97 struct refill_engine *engine = txn->engine_handle; 98 99 /* dmm programming requires 16 byte aligned addresses */ 100 txn->current_pa = round_up(txn->current_pa, 16); 101 txn->current_va = (void *)round_up((long)txn->current_va, 16); 102 103 ptr = txn->current_va; 104 *pa = txn->current_pa; 105 106 txn->current_pa += sz; 107 txn->current_va += sz; 108 109 BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE); 110 111 return ptr; 112 } 113 114 /* check status and spin until wait_mask comes true */ 115 static int wait_status(struct refill_engine *engine, uint32_t wait_mask) 116 { 117 struct dmm *dmm = engine->dmm; 118 uint32_t r = 0, err, i; 119 120 i = DMM_FIXED_RETRY_COUNT; 121 while (true) { 122 r = dmm_read(dmm, reg[PAT_STATUS][engine->id]); 123 err = r & DMM_PATSTATUS_ERR; 124 if (err) 125 return -EFAULT; 126 127 if ((r & wait_mask) == wait_mask) 128 break; 129 130 if (--i == 0) 131 return -ETIMEDOUT; 132 133 udelay(1); 134 } 135 136 return 0; 137 } 138 139 static void release_engine(struct refill_engine *engine) 140 { 141 unsigned long flags; 142 143 spin_lock_irqsave(&list_lock, flags); 144 list_add(&engine->idle_node, &omap_dmm->idle_head); 145 spin_unlock_irqrestore(&list_lock, flags); 146 147 atomic_inc(&omap_dmm->engine_counter); 148 wake_up_interruptible(&omap_dmm->engine_queue); 149 } 150 151 static irqreturn_t omap_dmm_irq_handler(int irq, void *arg) 152 { 153 struct dmm *dmm = arg; 154 uint32_t status = dmm_read(dmm, DMM_PAT_IRQSTATUS); 155 int i; 156 157 /* ack IRQ */ 158 dmm_write(dmm, status, DMM_PAT_IRQSTATUS); 159 160 for (i = 0; i < dmm->num_engines; i++) { 161 if (status & DMM_IRQSTAT_LST) { 162 if (dmm->engines[i].async) 163 release_engine(&dmm->engines[i]); 164 165 complete(&dmm->engines[i].compl); 166 } 167 168 status >>= 8; 169 } 170 171 return IRQ_HANDLED; 172 } 173 174 /** 175 * Get a handle for a DMM transaction 176 */ 177 static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm) 178 { 179 struct dmm_txn *txn = NULL; 180 struct refill_engine *engine = NULL; 181 int ret; 182 unsigned long flags; 183 184 185 /* wait until an engine is available */ 186 ret = wait_event_interruptible(omap_dmm->engine_queue, 187 atomic_add_unless(&omap_dmm->engine_counter, -1, 0)); 188 if (ret) 189 return ERR_PTR(ret); 190 191 /* grab an idle engine */ 192 spin_lock_irqsave(&list_lock, flags); 193 if (!list_empty(&dmm->idle_head)) { 194 engine = list_entry(dmm->idle_head.next, struct refill_engine, 195 idle_node); 196 list_del(&engine->idle_node); 197 } 198 spin_unlock_irqrestore(&list_lock, flags); 199 200 BUG_ON(!engine); 201 202 txn = &engine->txn; 203 engine->tcm = tcm; 204 txn->engine_handle = engine; 205 txn->last_pat = NULL; 206 txn->current_va = engine->refill_va; 207 txn->current_pa = engine->refill_pa; 208 209 return txn; 210 } 211 212 /** 213 * Add region to DMM transaction. If pages or pages[i] is NULL, then the 214 * corresponding slot is cleared (ie. dummy_pa is programmed) 215 */ 216 static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area, 217 struct page **pages, uint32_t npages, uint32_t roll) 218 { 219 dma_addr_t pat_pa = 0, data_pa = 0; 220 uint32_t *data; 221 struct pat *pat; 222 struct refill_engine *engine = txn->engine_handle; 223 int columns = (1 + area->x1 - area->x0); 224 int rows = (1 + area->y1 - area->y0); 225 int i = columns*rows; 226 227 pat = alloc_dma(txn, sizeof(*pat), &pat_pa); 228 229 if (txn->last_pat) 230 txn->last_pat->next_pa = (uint32_t)pat_pa; 231 232 pat->area = *area; 233 234 /* adjust Y coordinates based off of container parameters */ 235 pat->area.y0 += engine->tcm->y_offset; 236 pat->area.y1 += engine->tcm->y_offset; 237 238 pat->ctrl = (struct pat_ctrl){ 239 .start = 1, 240 .lut_id = engine->tcm->lut_id, 241 }; 242 243 data = alloc_dma(txn, 4*i, &data_pa); 244 /* FIXME: what if data_pa is more than 32-bit ? */ 245 pat->data_pa = data_pa; 246 247 while (i--) { 248 int n = i + roll; 249 if (n >= npages) 250 n -= npages; 251 data[i] = (pages && pages[n]) ? 252 page_to_phys(pages[n]) : engine->dmm->dummy_pa; 253 } 254 255 txn->last_pat = pat; 256 257 return; 258 } 259 260 /** 261 * Commit the DMM transaction. 262 */ 263 static int dmm_txn_commit(struct dmm_txn *txn, bool wait) 264 { 265 int ret = 0; 266 struct refill_engine *engine = txn->engine_handle; 267 struct dmm *dmm = engine->dmm; 268 269 if (!txn->last_pat) { 270 dev_err(engine->dmm->dev, "need at least one txn\n"); 271 ret = -EINVAL; 272 goto cleanup; 273 } 274 275 txn->last_pat->next_pa = 0; 276 277 /* write to PAT_DESCR to clear out any pending transaction */ 278 dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]); 279 280 /* wait for engine ready: */ 281 ret = wait_status(engine, DMM_PATSTATUS_READY); 282 if (ret) { 283 ret = -EFAULT; 284 goto cleanup; 285 } 286 287 /* mark whether it is async to denote list management in IRQ handler */ 288 engine->async = wait ? false : true; 289 reinit_completion(&engine->compl); 290 /* verify that the irq handler sees the 'async' and completion value */ 291 smp_mb(); 292 293 /* kick reload */ 294 dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]); 295 296 if (wait) { 297 if (!wait_for_completion_timeout(&engine->compl, 298 msecs_to_jiffies(100))) { 299 dev_err(dmm->dev, "timed out waiting for done\n"); 300 ret = -ETIMEDOUT; 301 } 302 } 303 304 cleanup: 305 /* only place engine back on list if we are done with it */ 306 if (ret || wait) 307 release_engine(engine); 308 309 return ret; 310 } 311 312 /* 313 * DMM programming 314 */ 315 static int fill(struct tcm_area *area, struct page **pages, 316 uint32_t npages, uint32_t roll, bool wait) 317 { 318 int ret = 0; 319 struct tcm_area slice, area_s; 320 struct dmm_txn *txn; 321 322 /* 323 * FIXME 324 * 325 * Asynchronous fill does not work reliably, as the driver does not 326 * handle errors in the async code paths. The fill operation may 327 * silently fail, leading to leaking DMM engines, which may eventually 328 * lead to deadlock if we run out of DMM engines. 329 * 330 * For now, always set 'wait' so that we only use sync fills. Async 331 * fills should be fixed, or alternatively we could decide to only 332 * support sync fills and so the whole async code path could be removed. 333 */ 334 335 wait = true; 336 337 txn = dmm_txn_init(omap_dmm, area->tcm); 338 if (IS_ERR_OR_NULL(txn)) 339 return -ENOMEM; 340 341 tcm_for_each_slice(slice, *area, area_s) { 342 struct pat_area p_area = { 343 .x0 = slice.p0.x, .y0 = slice.p0.y, 344 .x1 = slice.p1.x, .y1 = slice.p1.y, 345 }; 346 347 dmm_txn_append(txn, &p_area, pages, npages, roll); 348 349 roll += tcm_sizeof(slice); 350 } 351 352 ret = dmm_txn_commit(txn, wait); 353 354 return ret; 355 } 356 357 /* 358 * Pin/unpin 359 */ 360 361 /* note: slots for which pages[i] == NULL are filled w/ dummy page 362 */ 363 int tiler_pin(struct tiler_block *block, struct page **pages, 364 uint32_t npages, uint32_t roll, bool wait) 365 { 366 int ret; 367 368 ret = fill(&block->area, pages, npages, roll, wait); 369 370 if (ret) 371 tiler_unpin(block); 372 373 return ret; 374 } 375 376 int tiler_unpin(struct tiler_block *block) 377 { 378 return fill(&block->area, NULL, 0, 0, false); 379 } 380 381 /* 382 * Reserve/release 383 */ 384 struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, uint16_t w, 385 uint16_t h, uint16_t align) 386 { 387 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); 388 u32 min_align = 128; 389 int ret; 390 unsigned long flags; 391 size_t slot_bytes; 392 393 BUG_ON(!validfmt(fmt)); 394 395 /* convert width/height to slots */ 396 w = DIV_ROUND_UP(w, geom[fmt].slot_w); 397 h = DIV_ROUND_UP(h, geom[fmt].slot_h); 398 399 /* convert alignment to slots */ 400 slot_bytes = geom[fmt].slot_w * geom[fmt].cpp; 401 min_align = max(min_align, slot_bytes); 402 align = (align > min_align) ? ALIGN(align, min_align) : min_align; 403 align /= slot_bytes; 404 405 block->fmt = fmt; 406 407 ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes, 408 &block->area); 409 if (ret) { 410 kfree(block); 411 return ERR_PTR(-ENOMEM); 412 } 413 414 /* add to allocation list */ 415 spin_lock_irqsave(&list_lock, flags); 416 list_add(&block->alloc_node, &omap_dmm->alloc_head); 417 spin_unlock_irqrestore(&list_lock, flags); 418 419 return block; 420 } 421 422 struct tiler_block *tiler_reserve_1d(size_t size) 423 { 424 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); 425 int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 426 unsigned long flags; 427 428 if (!block) 429 return ERR_PTR(-ENOMEM); 430 431 block->fmt = TILFMT_PAGE; 432 433 if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages, 434 &block->area)) { 435 kfree(block); 436 return ERR_PTR(-ENOMEM); 437 } 438 439 spin_lock_irqsave(&list_lock, flags); 440 list_add(&block->alloc_node, &omap_dmm->alloc_head); 441 spin_unlock_irqrestore(&list_lock, flags); 442 443 return block; 444 } 445 446 /* note: if you have pin'd pages, you should have already unpin'd first! */ 447 int tiler_release(struct tiler_block *block) 448 { 449 int ret = tcm_free(&block->area); 450 unsigned long flags; 451 452 if (block->area.tcm) 453 dev_err(omap_dmm->dev, "failed to release block\n"); 454 455 spin_lock_irqsave(&list_lock, flags); 456 list_del(&block->alloc_node); 457 spin_unlock_irqrestore(&list_lock, flags); 458 459 kfree(block); 460 return ret; 461 } 462 463 /* 464 * Utils 465 */ 466 467 /* calculate the tiler space address of a pixel in a view orientation... 468 * below description copied from the display subsystem section of TRM: 469 * 470 * When the TILER is addressed, the bits: 471 * [28:27] = 0x0 for 8-bit tiled 472 * 0x1 for 16-bit tiled 473 * 0x2 for 32-bit tiled 474 * 0x3 for page mode 475 * [31:29] = 0x0 for 0-degree view 476 * 0x1 for 180-degree view + mirroring 477 * 0x2 for 0-degree view + mirroring 478 * 0x3 for 180-degree view 479 * 0x4 for 270-degree view + mirroring 480 * 0x5 for 270-degree view 481 * 0x6 for 90-degree view 482 * 0x7 for 90-degree view + mirroring 483 * Otherwise the bits indicated the corresponding bit address to access 484 * the SDRAM. 485 */ 486 static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y) 487 { 488 u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment; 489 490 x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft; 491 y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft; 492 alignment = geom[fmt].x_shft + geom[fmt].y_shft; 493 494 /* validate coordinate */ 495 x_mask = MASK(x_bits); 496 y_mask = MASK(y_bits); 497 498 if (x < 0 || x > x_mask || y < 0 || y > y_mask) { 499 DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u", 500 x, x, x_mask, y, y, y_mask); 501 return 0; 502 } 503 504 /* account for mirroring */ 505 if (orient & MASK_X_INVERT) 506 x ^= x_mask; 507 if (orient & MASK_Y_INVERT) 508 y ^= y_mask; 509 510 /* get coordinate address */ 511 if (orient & MASK_XY_FLIP) 512 tmp = ((x << y_bits) + y); 513 else 514 tmp = ((y << x_bits) + x); 515 516 return TIL_ADDR((tmp << alignment), orient, fmt); 517 } 518 519 dma_addr_t tiler_ssptr(struct tiler_block *block) 520 { 521 BUG_ON(!validfmt(block->fmt)); 522 523 return TILVIEW_8BIT + tiler_get_address(block->fmt, 0, 524 block->area.p0.x * geom[block->fmt].slot_w, 525 block->area.p0.y * geom[block->fmt].slot_h); 526 } 527 528 dma_addr_t tiler_tsptr(struct tiler_block *block, uint32_t orient, 529 uint32_t x, uint32_t y) 530 { 531 struct tcm_pt *p = &block->area.p0; 532 BUG_ON(!validfmt(block->fmt)); 533 534 return tiler_get_address(block->fmt, orient, 535 (p->x * geom[block->fmt].slot_w) + x, 536 (p->y * geom[block->fmt].slot_h) + y); 537 } 538 539 void tiler_align(enum tiler_fmt fmt, uint16_t *w, uint16_t *h) 540 { 541 BUG_ON(!validfmt(fmt)); 542 *w = round_up(*w, geom[fmt].slot_w); 543 *h = round_up(*h, geom[fmt].slot_h); 544 } 545 546 uint32_t tiler_stride(enum tiler_fmt fmt, uint32_t orient) 547 { 548 BUG_ON(!validfmt(fmt)); 549 550 if (orient & MASK_XY_FLIP) 551 return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft); 552 else 553 return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft); 554 } 555 556 size_t tiler_size(enum tiler_fmt fmt, uint16_t w, uint16_t h) 557 { 558 tiler_align(fmt, &w, &h); 559 return geom[fmt].cpp * w * h; 560 } 561 562 size_t tiler_vsize(enum tiler_fmt fmt, uint16_t w, uint16_t h) 563 { 564 BUG_ON(!validfmt(fmt)); 565 return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h; 566 } 567 568 uint32_t tiler_get_cpu_cache_flags(void) 569 { 570 return omap_dmm->plat_data->cpu_cache_flags; 571 } 572 573 bool dmm_is_available(void) 574 { 575 return omap_dmm ? true : false; 576 } 577 578 static int omap_dmm_remove(struct platform_device *dev) 579 { 580 struct tiler_block *block, *_block; 581 int i; 582 unsigned long flags; 583 584 if (omap_dmm) { 585 /* free all area regions */ 586 spin_lock_irqsave(&list_lock, flags); 587 list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head, 588 alloc_node) { 589 list_del(&block->alloc_node); 590 kfree(block); 591 } 592 spin_unlock_irqrestore(&list_lock, flags); 593 594 for (i = 0; i < omap_dmm->num_lut; i++) 595 if (omap_dmm->tcm && omap_dmm->tcm[i]) 596 omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]); 597 kfree(omap_dmm->tcm); 598 599 kfree(omap_dmm->engines); 600 if (omap_dmm->refill_va) 601 dma_free_wc(omap_dmm->dev, 602 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 603 omap_dmm->refill_va, omap_dmm->refill_pa); 604 if (omap_dmm->dummy_page) 605 __free_page(omap_dmm->dummy_page); 606 607 if (omap_dmm->irq > 0) 608 free_irq(omap_dmm->irq, omap_dmm); 609 610 iounmap(omap_dmm->base); 611 kfree(omap_dmm); 612 omap_dmm = NULL; 613 } 614 615 return 0; 616 } 617 618 static int omap_dmm_probe(struct platform_device *dev) 619 { 620 int ret = -EFAULT, i; 621 struct tcm_area area = {0}; 622 u32 hwinfo, pat_geom; 623 struct resource *mem; 624 625 omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL); 626 if (!omap_dmm) 627 goto fail; 628 629 /* initialize lists */ 630 INIT_LIST_HEAD(&omap_dmm->alloc_head); 631 INIT_LIST_HEAD(&omap_dmm->idle_head); 632 633 init_waitqueue_head(&omap_dmm->engine_queue); 634 635 if (dev->dev.of_node) { 636 const struct of_device_id *match; 637 638 match = of_match_node(dmm_of_match, dev->dev.of_node); 639 if (!match) { 640 dev_err(&dev->dev, "failed to find matching device node\n"); 641 return -ENODEV; 642 } 643 644 omap_dmm->plat_data = match->data; 645 } 646 647 /* lookup hwmod data - base address and irq */ 648 mem = platform_get_resource(dev, IORESOURCE_MEM, 0); 649 if (!mem) { 650 dev_err(&dev->dev, "failed to get base address resource\n"); 651 goto fail; 652 } 653 654 omap_dmm->base = ioremap(mem->start, SZ_2K); 655 656 if (!omap_dmm->base) { 657 dev_err(&dev->dev, "failed to get dmm base address\n"); 658 goto fail; 659 } 660 661 omap_dmm->irq = platform_get_irq(dev, 0); 662 if (omap_dmm->irq < 0) { 663 dev_err(&dev->dev, "failed to get IRQ resource\n"); 664 goto fail; 665 } 666 667 omap_dmm->dev = &dev->dev; 668 669 hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO); 670 omap_dmm->num_engines = (hwinfo >> 24) & 0x1F; 671 omap_dmm->num_lut = (hwinfo >> 16) & 0x1F; 672 omap_dmm->container_width = 256; 673 omap_dmm->container_height = 128; 674 675 atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines); 676 677 /* read out actual LUT width and height */ 678 pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY); 679 omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5; 680 omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5; 681 682 /* increment LUT by one if on OMAP5 */ 683 /* LUT has twice the height, and is split into a separate container */ 684 if (omap_dmm->lut_height != omap_dmm->container_height) 685 omap_dmm->num_lut++; 686 687 /* initialize DMM registers */ 688 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0); 689 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1); 690 dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0); 691 dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE); 692 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0); 693 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1); 694 695 ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED, 696 "omap_dmm_irq_handler", omap_dmm); 697 698 if (ret) { 699 dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n", 700 omap_dmm->irq, ret); 701 omap_dmm->irq = -1; 702 goto fail; 703 } 704 705 /* Enable all interrupts for each refill engine except 706 * ERR_LUT_MISS<n> (which is just advisory, and we don't care 707 * about because we want to be able to refill live scanout 708 * buffers for accelerated pan/scroll) and FILL_DSC<n> which 709 * we just generally don't care about. 710 */ 711 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET); 712 713 omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32); 714 if (!omap_dmm->dummy_page) { 715 dev_err(&dev->dev, "could not allocate dummy page\n"); 716 ret = -ENOMEM; 717 goto fail; 718 } 719 720 /* set dma mask for device */ 721 ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32)); 722 if (ret) 723 goto fail; 724 725 omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page); 726 727 /* alloc refill memory */ 728 omap_dmm->refill_va = dma_alloc_wc(&dev->dev, 729 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 730 &omap_dmm->refill_pa, GFP_KERNEL); 731 if (!omap_dmm->refill_va) { 732 dev_err(&dev->dev, "could not allocate refill memory\n"); 733 goto fail; 734 } 735 736 /* alloc engines */ 737 omap_dmm->engines = kcalloc(omap_dmm->num_engines, 738 sizeof(*omap_dmm->engines), GFP_KERNEL); 739 if (!omap_dmm->engines) { 740 ret = -ENOMEM; 741 goto fail; 742 } 743 744 for (i = 0; i < omap_dmm->num_engines; i++) { 745 omap_dmm->engines[i].id = i; 746 omap_dmm->engines[i].dmm = omap_dmm; 747 omap_dmm->engines[i].refill_va = omap_dmm->refill_va + 748 (REFILL_BUFFER_SIZE * i); 749 omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa + 750 (REFILL_BUFFER_SIZE * i); 751 init_completion(&omap_dmm->engines[i].compl); 752 753 list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head); 754 } 755 756 omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm), 757 GFP_KERNEL); 758 if (!omap_dmm->tcm) { 759 ret = -ENOMEM; 760 goto fail; 761 } 762 763 /* init containers */ 764 /* Each LUT is associated with a TCM (container manager). We use the 765 lut_id to denote the lut_id used to identify the correct LUT for 766 programming during reill operations */ 767 for (i = 0; i < omap_dmm->num_lut; i++) { 768 omap_dmm->tcm[i] = sita_init(omap_dmm->container_width, 769 omap_dmm->container_height); 770 771 if (!omap_dmm->tcm[i]) { 772 dev_err(&dev->dev, "failed to allocate container\n"); 773 ret = -ENOMEM; 774 goto fail; 775 } 776 777 omap_dmm->tcm[i]->lut_id = i; 778 } 779 780 /* assign access mode containers to applicable tcm container */ 781 /* OMAP 4 has 1 container for all 4 views */ 782 /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */ 783 containers[TILFMT_8BIT] = omap_dmm->tcm[0]; 784 containers[TILFMT_16BIT] = omap_dmm->tcm[0]; 785 containers[TILFMT_32BIT] = omap_dmm->tcm[0]; 786 787 if (omap_dmm->container_height != omap_dmm->lut_height) { 788 /* second LUT is used for PAGE mode. Programming must use 789 y offset that is added to all y coordinates. LUT id is still 790 0, because it is the same LUT, just the upper 128 lines */ 791 containers[TILFMT_PAGE] = omap_dmm->tcm[1]; 792 omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET; 793 omap_dmm->tcm[1]->lut_id = 0; 794 } else { 795 containers[TILFMT_PAGE] = omap_dmm->tcm[0]; 796 } 797 798 area = (struct tcm_area) { 799 .tcm = NULL, 800 .p1.x = omap_dmm->container_width - 1, 801 .p1.y = omap_dmm->container_height - 1, 802 }; 803 804 /* initialize all LUTs to dummy page entries */ 805 for (i = 0; i < omap_dmm->num_lut; i++) { 806 area.tcm = omap_dmm->tcm[i]; 807 if (fill(&area, NULL, 0, 0, true)) 808 dev_err(omap_dmm->dev, "refill failed"); 809 } 810 811 dev_info(omap_dmm->dev, "initialized all PAT entries\n"); 812 813 return 0; 814 815 fail: 816 if (omap_dmm_remove(dev)) 817 dev_err(&dev->dev, "cleanup failed\n"); 818 return ret; 819 } 820 821 /* 822 * debugfs support 823 */ 824 825 #ifdef CONFIG_DEBUG_FS 826 827 static const char *alphabet = "abcdefghijklmnopqrstuvwxyz" 828 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 829 static const char *special = ".,:;'\"`~!^-+"; 830 831 static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a, 832 char c, bool ovw) 833 { 834 int x, y; 835 for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++) 836 for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++) 837 if (map[y][x] == ' ' || ovw) 838 map[y][x] = c; 839 } 840 841 static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p, 842 char c) 843 { 844 map[p->y / ydiv][p->x / xdiv] = c; 845 } 846 847 static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p) 848 { 849 return map[p->y / ydiv][p->x / xdiv]; 850 } 851 852 static int map_width(int xdiv, int x0, int x1) 853 { 854 return (x1 / xdiv) - (x0 / xdiv) + 1; 855 } 856 857 static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1) 858 { 859 char *p = map[yd] + (x0 / xdiv); 860 int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2; 861 if (w >= 0) { 862 p += w; 863 while (*nice) 864 *p++ = *nice++; 865 } 866 } 867 868 static void map_1d_info(char **map, int xdiv, int ydiv, char *nice, 869 struct tcm_area *a) 870 { 871 sprintf(nice, "%dK", tcm_sizeof(*a) * 4); 872 if (a->p0.y + 1 < a->p1.y) { 873 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0, 874 256 - 1); 875 } else if (a->p0.y < a->p1.y) { 876 if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1)) 877 text_map(map, xdiv, nice, a->p0.y / ydiv, 878 a->p0.x + xdiv, 256 - 1); 879 else if (strlen(nice) < map_width(xdiv, 0, a->p1.x)) 880 text_map(map, xdiv, nice, a->p1.y / ydiv, 881 0, a->p1.y - xdiv); 882 } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) { 883 text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x); 884 } 885 } 886 887 static void map_2d_info(char **map, int xdiv, int ydiv, char *nice, 888 struct tcm_area *a) 889 { 890 sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a)); 891 if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) 892 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 893 a->p0.x, a->p1.x); 894 } 895 896 int tiler_map_show(struct seq_file *s, void *arg) 897 { 898 int xdiv = 2, ydiv = 1; 899 char **map = NULL, *global_map; 900 struct tiler_block *block; 901 struct tcm_area a, p; 902 int i; 903 const char *m2d = alphabet; 904 const char *a2d = special; 905 const char *m2dp = m2d, *a2dp = a2d; 906 char nice[128]; 907 int h_adj; 908 int w_adj; 909 unsigned long flags; 910 int lut_idx; 911 912 913 if (!omap_dmm) { 914 /* early return if dmm/tiler device is not initialized */ 915 return 0; 916 } 917 918 h_adj = omap_dmm->container_height / ydiv; 919 w_adj = omap_dmm->container_width / xdiv; 920 921 map = kmalloc(h_adj * sizeof(*map), GFP_KERNEL); 922 global_map = kmalloc((w_adj + 1) * h_adj, GFP_KERNEL); 923 924 if (!map || !global_map) 925 goto error; 926 927 for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) { 928 memset(map, 0, h_adj * sizeof(*map)); 929 memset(global_map, ' ', (w_adj + 1) * h_adj); 930 931 for (i = 0; i < omap_dmm->container_height; i++) { 932 map[i] = global_map + i * (w_adj + 1); 933 map[i][w_adj] = 0; 934 } 935 936 spin_lock_irqsave(&list_lock, flags); 937 938 list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) { 939 if (block->area.tcm == omap_dmm->tcm[lut_idx]) { 940 if (block->fmt != TILFMT_PAGE) { 941 fill_map(map, xdiv, ydiv, &block->area, 942 *m2dp, true); 943 if (!*++a2dp) 944 a2dp = a2d; 945 if (!*++m2dp) 946 m2dp = m2d; 947 map_2d_info(map, xdiv, ydiv, nice, 948 &block->area); 949 } else { 950 bool start = read_map_pt(map, xdiv, 951 ydiv, &block->area.p0) == ' '; 952 bool end = read_map_pt(map, xdiv, ydiv, 953 &block->area.p1) == ' '; 954 955 tcm_for_each_slice(a, block->area, p) 956 fill_map(map, xdiv, ydiv, &a, 957 '=', true); 958 fill_map_pt(map, xdiv, ydiv, 959 &block->area.p0, 960 start ? '<' : 'X'); 961 fill_map_pt(map, xdiv, ydiv, 962 &block->area.p1, 963 end ? '>' : 'X'); 964 map_1d_info(map, xdiv, ydiv, nice, 965 &block->area); 966 } 967 } 968 } 969 970 spin_unlock_irqrestore(&list_lock, flags); 971 972 if (s) { 973 seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx); 974 for (i = 0; i < 128; i++) 975 seq_printf(s, "%03d:%s\n", i, map[i]); 976 seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx); 977 } else { 978 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n", 979 lut_idx); 980 for (i = 0; i < 128; i++) 981 dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]); 982 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n", 983 lut_idx); 984 } 985 } 986 987 error: 988 kfree(map); 989 kfree(global_map); 990 991 return 0; 992 } 993 #endif 994 995 #ifdef CONFIG_PM_SLEEP 996 static int omap_dmm_resume(struct device *dev) 997 { 998 struct tcm_area area; 999 int i; 1000 1001 if (!omap_dmm) 1002 return -ENODEV; 1003 1004 area = (struct tcm_area) { 1005 .tcm = NULL, 1006 .p1.x = omap_dmm->container_width - 1, 1007 .p1.y = omap_dmm->container_height - 1, 1008 }; 1009 1010 /* initialize all LUTs to dummy page entries */ 1011 for (i = 0; i < omap_dmm->num_lut; i++) { 1012 area.tcm = omap_dmm->tcm[i]; 1013 if (fill(&area, NULL, 0, 0, true)) 1014 dev_err(dev, "refill failed"); 1015 } 1016 1017 return 0; 1018 } 1019 #endif 1020 1021 static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume); 1022 1023 #if defined(CONFIG_OF) 1024 static const struct dmm_platform_data dmm_omap4_platform_data = { 1025 .cpu_cache_flags = OMAP_BO_WC, 1026 }; 1027 1028 static const struct dmm_platform_data dmm_omap5_platform_data = { 1029 .cpu_cache_flags = OMAP_BO_UNCACHED, 1030 }; 1031 1032 static const struct of_device_id dmm_of_match[] = { 1033 { 1034 .compatible = "ti,omap4-dmm", 1035 .data = &dmm_omap4_platform_data, 1036 }, 1037 { 1038 .compatible = "ti,omap5-dmm", 1039 .data = &dmm_omap5_platform_data, 1040 }, 1041 {}, 1042 }; 1043 #endif 1044 1045 struct platform_driver omap_dmm_driver = { 1046 .probe = omap_dmm_probe, 1047 .remove = omap_dmm_remove, 1048 .driver = { 1049 .owner = THIS_MODULE, 1050 .name = DMM_DRIVER_NAME, 1051 .of_match_table = of_match_ptr(dmm_of_match), 1052 .pm = &omap_dmm_pm_ops, 1053 }, 1054 }; 1055 1056 MODULE_LICENSE("GPL v2"); 1057 MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>"); 1058 MODULE_DESCRIPTION("OMAP DMM/Tiler Driver"); 1059