1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DMM IOMMU driver support functions for TI OMAP processors. 4 * 5 * Copyright (C) 2011 Texas Instruments Incorporated - https://www.ti.com/ 6 * Author: Rob Clark <rob@ti.com> 7 * Andy Gross <andy.gross@ti.com> 8 */ 9 10 #include <linux/completion.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/errno.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/list.h> 18 #include <linux/mm.h> 19 #include <linux/module.h> 20 #include <linux/of.h> 21 #include <linux/platform_device.h> /* platform_device() */ 22 #include <linux/sched.h> 23 #include <linux/seq_file.h> 24 #include <linux/slab.h> 25 #include <linux/time.h> 26 #include <linux/vmalloc.h> 27 #include <linux/wait.h> 28 29 #include "omap_dmm_tiler.h" 30 #include "omap_dmm_priv.h" 31 32 #define DMM_DRIVER_NAME "dmm" 33 34 /* mappings for associating views to luts */ 35 static struct tcm *containers[TILFMT_NFORMATS]; 36 static struct dmm *omap_dmm; 37 38 #if defined(CONFIG_OF) 39 static const struct of_device_id dmm_of_match[]; 40 #endif 41 42 /* global spinlock for protecting lists */ 43 static DEFINE_SPINLOCK(list_lock); 44 45 /* Geometry table */ 46 #define GEOM(xshift, yshift, bytes_per_pixel) { \ 47 .x_shft = (xshift), \ 48 .y_shft = (yshift), \ 49 .cpp = (bytes_per_pixel), \ 50 .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \ 51 .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \ 52 } 53 54 static const struct { 55 u32 x_shft; /* unused X-bits (as part of bpp) */ 56 u32 y_shft; /* unused Y-bits (as part of bpp) */ 57 u32 cpp; /* bytes/chars per pixel */ 58 u32 slot_w; /* width of each slot (in pixels) */ 59 u32 slot_h; /* height of each slot (in pixels) */ 60 } geom[TILFMT_NFORMATS] = { 61 [TILFMT_8BIT] = GEOM(0, 0, 1), 62 [TILFMT_16BIT] = GEOM(0, 1, 2), 63 [TILFMT_32BIT] = GEOM(1, 1, 4), 64 [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1), 65 }; 66 67 68 /* lookup table for registers w/ per-engine instances */ 69 static const u32 reg[][4] = { 70 [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1, 71 DMM_PAT_STATUS__2, DMM_PAT_STATUS__3}, 72 [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1, 73 DMM_PAT_DESCR__2, DMM_PAT_DESCR__3}, 74 }; 75 76 static int dmm_dma_copy(struct dmm *dmm, dma_addr_t src, dma_addr_t dst) 77 { 78 struct dma_async_tx_descriptor *tx; 79 enum dma_status status; 80 dma_cookie_t cookie; 81 82 tx = dmaengine_prep_dma_memcpy(dmm->wa_dma_chan, dst, src, 4, 0); 83 if (!tx) { 84 dev_err(dmm->dev, "Failed to prepare DMA memcpy\n"); 85 return -EIO; 86 } 87 88 cookie = tx->tx_submit(tx); 89 if (dma_submit_error(cookie)) { 90 dev_err(dmm->dev, "Failed to do DMA tx_submit\n"); 91 return -EIO; 92 } 93 94 status = dma_sync_wait(dmm->wa_dma_chan, cookie); 95 if (status != DMA_COMPLETE) 96 dev_err(dmm->dev, "i878 wa DMA copy failure\n"); 97 98 dmaengine_terminate_all(dmm->wa_dma_chan); 99 return 0; 100 } 101 102 static u32 dmm_read_wa(struct dmm *dmm, u32 reg) 103 { 104 dma_addr_t src, dst; 105 int r; 106 107 src = dmm->phys_base + reg; 108 dst = dmm->wa_dma_handle; 109 110 r = dmm_dma_copy(dmm, src, dst); 111 if (r) { 112 dev_err(dmm->dev, "sDMA read transfer timeout\n"); 113 return readl(dmm->base + reg); 114 } 115 116 /* 117 * As per i878 workaround, the DMA is used to access the DMM registers. 118 * Make sure that the readl is not moved by the compiler or the CPU 119 * earlier than the DMA finished writing the value to memory. 120 */ 121 rmb(); 122 return readl((__iomem void *)dmm->wa_dma_data); 123 } 124 125 static void dmm_write_wa(struct dmm *dmm, u32 val, u32 reg) 126 { 127 dma_addr_t src, dst; 128 int r; 129 130 writel(val, (__iomem void *)dmm->wa_dma_data); 131 /* 132 * As per i878 workaround, the DMA is used to access the DMM registers. 133 * Make sure that the writel is not moved by the compiler or the CPU, so 134 * the data will be in place before we start the DMA to do the actual 135 * register write. 136 */ 137 wmb(); 138 139 src = dmm->wa_dma_handle; 140 dst = dmm->phys_base + reg; 141 142 r = dmm_dma_copy(dmm, src, dst); 143 if (r) { 144 dev_err(dmm->dev, "sDMA write transfer timeout\n"); 145 writel(val, dmm->base + reg); 146 } 147 } 148 149 static u32 dmm_read(struct dmm *dmm, u32 reg) 150 { 151 if (dmm->dmm_workaround) { 152 u32 v; 153 unsigned long flags; 154 155 spin_lock_irqsave(&dmm->wa_lock, flags); 156 v = dmm_read_wa(dmm, reg); 157 spin_unlock_irqrestore(&dmm->wa_lock, flags); 158 159 return v; 160 } else { 161 return readl(dmm->base + reg); 162 } 163 } 164 165 static void dmm_write(struct dmm *dmm, u32 val, u32 reg) 166 { 167 if (dmm->dmm_workaround) { 168 unsigned long flags; 169 170 spin_lock_irqsave(&dmm->wa_lock, flags); 171 dmm_write_wa(dmm, val, reg); 172 spin_unlock_irqrestore(&dmm->wa_lock, flags); 173 } else { 174 writel(val, dmm->base + reg); 175 } 176 } 177 178 static int dmm_workaround_init(struct dmm *dmm) 179 { 180 dma_cap_mask_t mask; 181 182 spin_lock_init(&dmm->wa_lock); 183 184 dmm->wa_dma_data = dma_alloc_coherent(dmm->dev, sizeof(u32), 185 &dmm->wa_dma_handle, GFP_KERNEL); 186 if (!dmm->wa_dma_data) 187 return -ENOMEM; 188 189 dma_cap_zero(mask); 190 dma_cap_set(DMA_MEMCPY, mask); 191 192 dmm->wa_dma_chan = dma_request_channel(mask, NULL, NULL); 193 if (!dmm->wa_dma_chan) { 194 dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle); 195 return -ENODEV; 196 } 197 198 return 0; 199 } 200 201 static void dmm_workaround_uninit(struct dmm *dmm) 202 { 203 dma_release_channel(dmm->wa_dma_chan); 204 205 dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle); 206 } 207 208 /* simple allocator to grab next 16 byte aligned memory from txn */ 209 static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa) 210 { 211 void *ptr; 212 struct refill_engine *engine = txn->engine_handle; 213 214 /* dmm programming requires 16 byte aligned addresses */ 215 txn->current_pa = round_up(txn->current_pa, 16); 216 txn->current_va = (void *)round_up((long)txn->current_va, 16); 217 218 ptr = txn->current_va; 219 *pa = txn->current_pa; 220 221 txn->current_pa += sz; 222 txn->current_va += sz; 223 224 BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE); 225 226 return ptr; 227 } 228 229 /* check status and spin until wait_mask comes true */ 230 static int wait_status(struct refill_engine *engine, u32 wait_mask) 231 { 232 struct dmm *dmm = engine->dmm; 233 u32 r = 0, err, i; 234 235 i = DMM_FIXED_RETRY_COUNT; 236 while (true) { 237 r = dmm_read(dmm, reg[PAT_STATUS][engine->id]); 238 err = r & DMM_PATSTATUS_ERR; 239 if (err) { 240 dev_err(dmm->dev, 241 "%s: error (engine%d). PAT_STATUS: 0x%08x\n", 242 __func__, engine->id, r); 243 return -EFAULT; 244 } 245 246 if ((r & wait_mask) == wait_mask) 247 break; 248 249 if (--i == 0) { 250 dev_err(dmm->dev, 251 "%s: timeout (engine%d). PAT_STATUS: 0x%08x\n", 252 __func__, engine->id, r); 253 return -ETIMEDOUT; 254 } 255 256 udelay(1); 257 } 258 259 return 0; 260 } 261 262 static void release_engine(struct refill_engine *engine) 263 { 264 unsigned long flags; 265 266 spin_lock_irqsave(&list_lock, flags); 267 list_add(&engine->idle_node, &omap_dmm->idle_head); 268 spin_unlock_irqrestore(&list_lock, flags); 269 270 atomic_inc(&omap_dmm->engine_counter); 271 wake_up_interruptible(&omap_dmm->engine_queue); 272 } 273 274 static irqreturn_t omap_dmm_irq_handler(int irq, void *arg) 275 { 276 struct dmm *dmm = arg; 277 u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS); 278 int i; 279 280 /* ack IRQ */ 281 dmm_write(dmm, status, DMM_PAT_IRQSTATUS); 282 283 for (i = 0; i < dmm->num_engines; i++) { 284 if (status & DMM_IRQSTAT_ERR_MASK) 285 dev_err(dmm->dev, 286 "irq error(engine%d): IRQSTAT 0x%02x\n", 287 i, status & 0xff); 288 289 if (status & DMM_IRQSTAT_LST) { 290 if (dmm->engines[i].async) 291 release_engine(&dmm->engines[i]); 292 293 complete(&dmm->engines[i].compl); 294 } 295 296 status >>= 8; 297 } 298 299 return IRQ_HANDLED; 300 } 301 302 /* 303 * Get a handle for a DMM transaction 304 */ 305 static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm) 306 { 307 struct dmm_txn *txn = NULL; 308 struct refill_engine *engine = NULL; 309 int ret; 310 unsigned long flags; 311 312 313 /* wait until an engine is available */ 314 ret = wait_event_interruptible(omap_dmm->engine_queue, 315 atomic_add_unless(&omap_dmm->engine_counter, -1, 0)); 316 if (ret) 317 return ERR_PTR(ret); 318 319 /* grab an idle engine */ 320 spin_lock_irqsave(&list_lock, flags); 321 if (!list_empty(&dmm->idle_head)) { 322 engine = list_entry(dmm->idle_head.next, struct refill_engine, 323 idle_node); 324 list_del(&engine->idle_node); 325 } 326 spin_unlock_irqrestore(&list_lock, flags); 327 328 BUG_ON(!engine); 329 330 txn = &engine->txn; 331 engine->tcm = tcm; 332 txn->engine_handle = engine; 333 txn->last_pat = NULL; 334 txn->current_va = engine->refill_va; 335 txn->current_pa = engine->refill_pa; 336 337 return txn; 338 } 339 340 /* 341 * Add region to DMM transaction. If pages or pages[i] is NULL, then the 342 * corresponding slot is cleared (ie. dummy_pa is programmed) 343 */ 344 static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area, 345 struct page **pages, u32 npages, u32 roll) 346 { 347 dma_addr_t pat_pa = 0, data_pa = 0; 348 u32 *data; 349 struct pat *pat; 350 struct refill_engine *engine = txn->engine_handle; 351 int columns = (1 + area->x1 - area->x0); 352 int rows = (1 + area->y1 - area->y0); 353 int i = columns*rows; 354 355 pat = alloc_dma(txn, sizeof(*pat), &pat_pa); 356 357 if (txn->last_pat) 358 txn->last_pat->next_pa = (u32)pat_pa; 359 360 pat->area = *area; 361 362 /* adjust Y coordinates based off of container parameters */ 363 pat->area.y0 += engine->tcm->y_offset; 364 pat->area.y1 += engine->tcm->y_offset; 365 366 pat->ctrl = (struct pat_ctrl){ 367 .start = 1, 368 .lut_id = engine->tcm->lut_id, 369 }; 370 371 data = alloc_dma(txn, 4*i, &data_pa); 372 /* FIXME: what if data_pa is more than 32-bit ? */ 373 pat->data_pa = data_pa; 374 375 while (i--) { 376 int n = i + roll; 377 if (n >= npages) 378 n -= npages; 379 data[i] = (pages && pages[n]) ? 380 page_to_phys(pages[n]) : engine->dmm->dummy_pa; 381 } 382 383 txn->last_pat = pat; 384 385 return; 386 } 387 388 /* 389 * Commit the DMM transaction. 390 */ 391 static int dmm_txn_commit(struct dmm_txn *txn, bool wait) 392 { 393 int ret = 0; 394 struct refill_engine *engine = txn->engine_handle; 395 struct dmm *dmm = engine->dmm; 396 397 if (!txn->last_pat) { 398 dev_err(engine->dmm->dev, "need at least one txn\n"); 399 ret = -EINVAL; 400 goto cleanup; 401 } 402 403 txn->last_pat->next_pa = 0; 404 /* ensure that the written descriptors are visible to DMM */ 405 wmb(); 406 407 /* 408 * NOTE: the wmb() above should be enough, but there seems to be a bug 409 * in OMAP's memory barrier implementation, which in some rare cases may 410 * cause the writes not to be observable after wmb(). 411 */ 412 413 /* read back to ensure the data is in RAM */ 414 readl((__iomem void *)&txn->last_pat->next_pa); 415 416 /* write to PAT_DESCR to clear out any pending transaction */ 417 dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]); 418 419 /* wait for engine ready: */ 420 ret = wait_status(engine, DMM_PATSTATUS_READY); 421 if (ret) { 422 ret = -EFAULT; 423 goto cleanup; 424 } 425 426 /* mark whether it is async to denote list management in IRQ handler */ 427 engine->async = wait ? false : true; 428 reinit_completion(&engine->compl); 429 /* verify that the irq handler sees the 'async' and completion value */ 430 smp_mb(); 431 432 /* kick reload */ 433 dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]); 434 435 if (wait) { 436 if (!wait_for_completion_timeout(&engine->compl, 437 msecs_to_jiffies(100))) { 438 dev_err(dmm->dev, "timed out waiting for done\n"); 439 ret = -ETIMEDOUT; 440 goto cleanup; 441 } 442 443 /* Check the engine status before continue */ 444 ret = wait_status(engine, DMM_PATSTATUS_READY | 445 DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE); 446 } 447 448 cleanup: 449 /* only place engine back on list if we are done with it */ 450 if (ret || wait) 451 release_engine(engine); 452 453 return ret; 454 } 455 456 /* 457 * DMM programming 458 */ 459 static int fill(struct tcm_area *area, struct page **pages, 460 u32 npages, u32 roll, bool wait) 461 { 462 int ret = 0; 463 struct tcm_area slice, area_s; 464 struct dmm_txn *txn; 465 466 /* 467 * FIXME 468 * 469 * Asynchronous fill does not work reliably, as the driver does not 470 * handle errors in the async code paths. The fill operation may 471 * silently fail, leading to leaking DMM engines, which may eventually 472 * lead to deadlock if we run out of DMM engines. 473 * 474 * For now, always set 'wait' so that we only use sync fills. Async 475 * fills should be fixed, or alternatively we could decide to only 476 * support sync fills and so the whole async code path could be removed. 477 */ 478 479 wait = true; 480 481 txn = dmm_txn_init(omap_dmm, area->tcm); 482 if (IS_ERR_OR_NULL(txn)) 483 return -ENOMEM; 484 485 tcm_for_each_slice(slice, *area, area_s) { 486 struct pat_area p_area = { 487 .x0 = slice.p0.x, .y0 = slice.p0.y, 488 .x1 = slice.p1.x, .y1 = slice.p1.y, 489 }; 490 491 dmm_txn_append(txn, &p_area, pages, npages, roll); 492 493 roll += tcm_sizeof(slice); 494 } 495 496 ret = dmm_txn_commit(txn, wait); 497 498 return ret; 499 } 500 501 /* 502 * Pin/unpin 503 */ 504 505 /* note: slots for which pages[i] == NULL are filled w/ dummy page 506 */ 507 int tiler_pin(struct tiler_block *block, struct page **pages, 508 u32 npages, u32 roll, bool wait) 509 { 510 int ret; 511 512 ret = fill(&block->area, pages, npages, roll, wait); 513 514 if (ret) 515 tiler_unpin(block); 516 517 return ret; 518 } 519 520 int tiler_unpin(struct tiler_block *block) 521 { 522 return fill(&block->area, NULL, 0, 0, false); 523 } 524 525 /* 526 * Reserve/release 527 */ 528 struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w, 529 u16 h, u16 align) 530 { 531 struct tiler_block *block; 532 u32 min_align = 128; 533 int ret; 534 unsigned long flags; 535 u32 slot_bytes; 536 537 block = kzalloc(sizeof(*block), GFP_KERNEL); 538 if (!block) 539 return ERR_PTR(-ENOMEM); 540 541 BUG_ON(!validfmt(fmt)); 542 543 /* convert width/height to slots */ 544 w = DIV_ROUND_UP(w, geom[fmt].slot_w); 545 h = DIV_ROUND_UP(h, geom[fmt].slot_h); 546 547 /* convert alignment to slots */ 548 slot_bytes = geom[fmt].slot_w * geom[fmt].cpp; 549 min_align = max(min_align, slot_bytes); 550 align = (align > min_align) ? ALIGN(align, min_align) : min_align; 551 align /= slot_bytes; 552 553 block->fmt = fmt; 554 555 ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes, 556 &block->area); 557 if (ret) { 558 kfree(block); 559 return ERR_PTR(-ENOMEM); 560 } 561 562 /* add to allocation list */ 563 spin_lock_irqsave(&list_lock, flags); 564 list_add(&block->alloc_node, &omap_dmm->alloc_head); 565 spin_unlock_irqrestore(&list_lock, flags); 566 567 return block; 568 } 569 570 struct tiler_block *tiler_reserve_1d(size_t size) 571 { 572 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); 573 int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 574 unsigned long flags; 575 576 if (!block) 577 return ERR_PTR(-ENOMEM); 578 579 block->fmt = TILFMT_PAGE; 580 581 if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages, 582 &block->area)) { 583 kfree(block); 584 return ERR_PTR(-ENOMEM); 585 } 586 587 spin_lock_irqsave(&list_lock, flags); 588 list_add(&block->alloc_node, &omap_dmm->alloc_head); 589 spin_unlock_irqrestore(&list_lock, flags); 590 591 return block; 592 } 593 594 /* note: if you have pin'd pages, you should have already unpin'd first! */ 595 int tiler_release(struct tiler_block *block) 596 { 597 int ret = tcm_free(&block->area); 598 unsigned long flags; 599 600 if (block->area.tcm) 601 dev_err(omap_dmm->dev, "failed to release block\n"); 602 603 spin_lock_irqsave(&list_lock, flags); 604 list_del(&block->alloc_node); 605 spin_unlock_irqrestore(&list_lock, flags); 606 607 kfree(block); 608 return ret; 609 } 610 611 /* 612 * Utils 613 */ 614 615 /* calculate the tiler space address of a pixel in a view orientation... 616 * below description copied from the display subsystem section of TRM: 617 * 618 * When the TILER is addressed, the bits: 619 * [28:27] = 0x0 for 8-bit tiled 620 * 0x1 for 16-bit tiled 621 * 0x2 for 32-bit tiled 622 * 0x3 for page mode 623 * [31:29] = 0x0 for 0-degree view 624 * 0x1 for 180-degree view + mirroring 625 * 0x2 for 0-degree view + mirroring 626 * 0x3 for 180-degree view 627 * 0x4 for 270-degree view + mirroring 628 * 0x5 for 270-degree view 629 * 0x6 for 90-degree view 630 * 0x7 for 90-degree view + mirroring 631 * Otherwise the bits indicated the corresponding bit address to access 632 * the SDRAM. 633 */ 634 static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y) 635 { 636 u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment; 637 638 x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft; 639 y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft; 640 alignment = geom[fmt].x_shft + geom[fmt].y_shft; 641 642 /* validate coordinate */ 643 x_mask = MASK(x_bits); 644 y_mask = MASK(y_bits); 645 646 if (x < 0 || x > x_mask || y < 0 || y > y_mask) { 647 DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u", 648 x, x, x_mask, y, y, y_mask); 649 return 0; 650 } 651 652 /* account for mirroring */ 653 if (orient & MASK_X_INVERT) 654 x ^= x_mask; 655 if (orient & MASK_Y_INVERT) 656 y ^= y_mask; 657 658 /* get coordinate address */ 659 if (orient & MASK_XY_FLIP) 660 tmp = ((x << y_bits) + y); 661 else 662 tmp = ((y << x_bits) + x); 663 664 return TIL_ADDR((tmp << alignment), orient, fmt); 665 } 666 667 dma_addr_t tiler_ssptr(struct tiler_block *block) 668 { 669 BUG_ON(!validfmt(block->fmt)); 670 671 return TILVIEW_8BIT + tiler_get_address(block->fmt, 0, 672 block->area.p0.x * geom[block->fmt].slot_w, 673 block->area.p0.y * geom[block->fmt].slot_h); 674 } 675 676 dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient, 677 u32 x, u32 y) 678 { 679 struct tcm_pt *p = &block->area.p0; 680 BUG_ON(!validfmt(block->fmt)); 681 682 return tiler_get_address(block->fmt, orient, 683 (p->x * geom[block->fmt].slot_w) + x, 684 (p->y * geom[block->fmt].slot_h) + y); 685 } 686 687 void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h) 688 { 689 BUG_ON(!validfmt(fmt)); 690 *w = round_up(*w, geom[fmt].slot_w); 691 *h = round_up(*h, geom[fmt].slot_h); 692 } 693 694 u32 tiler_stride(enum tiler_fmt fmt, u32 orient) 695 { 696 BUG_ON(!validfmt(fmt)); 697 698 if (orient & MASK_XY_FLIP) 699 return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft); 700 else 701 return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft); 702 } 703 704 size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h) 705 { 706 tiler_align(fmt, &w, &h); 707 return geom[fmt].cpp * w * h; 708 } 709 710 size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h) 711 { 712 BUG_ON(!validfmt(fmt)); 713 return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h; 714 } 715 716 u32 tiler_get_cpu_cache_flags(void) 717 { 718 return omap_dmm->plat_data->cpu_cache_flags; 719 } 720 721 bool dmm_is_available(void) 722 { 723 return omap_dmm ? true : false; 724 } 725 726 static void omap_dmm_remove(struct platform_device *dev) 727 { 728 struct tiler_block *block, *_block; 729 int i; 730 unsigned long flags; 731 732 if (omap_dmm) { 733 /* Disable all enabled interrupts */ 734 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_CLR); 735 free_irq(omap_dmm->irq, omap_dmm); 736 737 /* free all area regions */ 738 spin_lock_irqsave(&list_lock, flags); 739 list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head, 740 alloc_node) { 741 list_del(&block->alloc_node); 742 kfree(block); 743 } 744 spin_unlock_irqrestore(&list_lock, flags); 745 746 for (i = 0; i < omap_dmm->num_lut; i++) 747 if (omap_dmm->tcm && omap_dmm->tcm[i]) 748 omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]); 749 kfree(omap_dmm->tcm); 750 751 kfree(omap_dmm->engines); 752 if (omap_dmm->refill_va) 753 dma_free_wc(omap_dmm->dev, 754 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 755 omap_dmm->refill_va, omap_dmm->refill_pa); 756 if (omap_dmm->dummy_page) 757 __free_page(omap_dmm->dummy_page); 758 759 if (omap_dmm->dmm_workaround) 760 dmm_workaround_uninit(omap_dmm); 761 762 iounmap(omap_dmm->base); 763 kfree(omap_dmm); 764 omap_dmm = NULL; 765 } 766 } 767 768 static int omap_dmm_probe(struct platform_device *dev) 769 { 770 int ret = -EFAULT, i; 771 struct tcm_area area = {0}; 772 u32 hwinfo, pat_geom; 773 struct resource *mem; 774 775 omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL); 776 if (!omap_dmm) 777 goto fail; 778 779 /* initialize lists */ 780 INIT_LIST_HEAD(&omap_dmm->alloc_head); 781 INIT_LIST_HEAD(&omap_dmm->idle_head); 782 783 init_waitqueue_head(&omap_dmm->engine_queue); 784 785 if (dev->dev.of_node) { 786 const struct of_device_id *match; 787 788 match = of_match_node(dmm_of_match, dev->dev.of_node); 789 if (!match) { 790 dev_err(&dev->dev, "failed to find matching device node\n"); 791 ret = -ENODEV; 792 goto fail; 793 } 794 795 omap_dmm->plat_data = match->data; 796 } 797 798 /* lookup hwmod data - base address and irq */ 799 mem = platform_get_resource(dev, IORESOURCE_MEM, 0); 800 if (!mem) { 801 dev_err(&dev->dev, "failed to get base address resource\n"); 802 goto fail; 803 } 804 805 omap_dmm->phys_base = mem->start; 806 omap_dmm->base = ioremap(mem->start, SZ_2K); 807 808 if (!omap_dmm->base) { 809 dev_err(&dev->dev, "failed to get dmm base address\n"); 810 goto fail; 811 } 812 813 omap_dmm->irq = platform_get_irq(dev, 0); 814 if (omap_dmm->irq < 0) 815 goto fail; 816 817 omap_dmm->dev = &dev->dev; 818 819 if (of_machine_is_compatible("ti,dra7")) { 820 /* 821 * DRA7 Errata i878 says that MPU should not be used to access 822 * RAM and DMM at the same time. As it's not possible to prevent 823 * MPU accessing RAM, we need to access DMM via a proxy. 824 */ 825 if (!dmm_workaround_init(omap_dmm)) { 826 omap_dmm->dmm_workaround = true; 827 dev_info(&dev->dev, 828 "workaround for errata i878 in use\n"); 829 } else { 830 dev_warn(&dev->dev, 831 "failed to initialize work-around for i878\n"); 832 } 833 } 834 835 hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO); 836 omap_dmm->num_engines = (hwinfo >> 24) & 0x1F; 837 omap_dmm->num_lut = (hwinfo >> 16) & 0x1F; 838 omap_dmm->container_width = 256; 839 omap_dmm->container_height = 128; 840 841 atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines); 842 843 /* read out actual LUT width and height */ 844 pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY); 845 omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5; 846 omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5; 847 848 /* increment LUT by one if on OMAP5 */ 849 /* LUT has twice the height, and is split into a separate container */ 850 if (omap_dmm->lut_height != omap_dmm->container_height) 851 omap_dmm->num_lut++; 852 853 /* initialize DMM registers */ 854 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0); 855 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1); 856 dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0); 857 dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE); 858 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0); 859 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1); 860 861 omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32); 862 if (!omap_dmm->dummy_page) { 863 dev_err(&dev->dev, "could not allocate dummy page\n"); 864 ret = -ENOMEM; 865 goto fail; 866 } 867 868 /* set dma mask for device */ 869 ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32)); 870 if (ret) 871 goto fail; 872 873 omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page); 874 875 /* alloc refill memory */ 876 omap_dmm->refill_va = dma_alloc_wc(&dev->dev, 877 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 878 &omap_dmm->refill_pa, GFP_KERNEL); 879 if (!omap_dmm->refill_va) { 880 dev_err(&dev->dev, "could not allocate refill memory\n"); 881 ret = -ENOMEM; 882 goto fail; 883 } 884 885 /* alloc engines */ 886 omap_dmm->engines = kcalloc(omap_dmm->num_engines, 887 sizeof(*omap_dmm->engines), GFP_KERNEL); 888 if (!omap_dmm->engines) { 889 ret = -ENOMEM; 890 goto fail; 891 } 892 893 for (i = 0; i < omap_dmm->num_engines; i++) { 894 omap_dmm->engines[i].id = i; 895 omap_dmm->engines[i].dmm = omap_dmm; 896 omap_dmm->engines[i].refill_va = omap_dmm->refill_va + 897 (REFILL_BUFFER_SIZE * i); 898 omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa + 899 (REFILL_BUFFER_SIZE * i); 900 init_completion(&omap_dmm->engines[i].compl); 901 902 list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head); 903 } 904 905 omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm), 906 GFP_KERNEL); 907 if (!omap_dmm->tcm) { 908 ret = -ENOMEM; 909 goto fail; 910 } 911 912 /* init containers */ 913 /* Each LUT is associated with a TCM (container manager). We use the 914 lut_id to denote the lut_id used to identify the correct LUT for 915 programming during reill operations */ 916 for (i = 0; i < omap_dmm->num_lut; i++) { 917 omap_dmm->tcm[i] = sita_init(omap_dmm->container_width, 918 omap_dmm->container_height); 919 920 if (!omap_dmm->tcm[i]) { 921 dev_err(&dev->dev, "failed to allocate container\n"); 922 ret = -ENOMEM; 923 goto fail; 924 } 925 926 omap_dmm->tcm[i]->lut_id = i; 927 } 928 929 /* assign access mode containers to applicable tcm container */ 930 /* OMAP 4 has 1 container for all 4 views */ 931 /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */ 932 containers[TILFMT_8BIT] = omap_dmm->tcm[0]; 933 containers[TILFMT_16BIT] = omap_dmm->tcm[0]; 934 containers[TILFMT_32BIT] = omap_dmm->tcm[0]; 935 936 if (omap_dmm->container_height != omap_dmm->lut_height) { 937 /* second LUT is used for PAGE mode. Programming must use 938 y offset that is added to all y coordinates. LUT id is still 939 0, because it is the same LUT, just the upper 128 lines */ 940 containers[TILFMT_PAGE] = omap_dmm->tcm[1]; 941 omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET; 942 omap_dmm->tcm[1]->lut_id = 0; 943 } else { 944 containers[TILFMT_PAGE] = omap_dmm->tcm[0]; 945 } 946 947 area = (struct tcm_area) { 948 .tcm = NULL, 949 .p1.x = omap_dmm->container_width - 1, 950 .p1.y = omap_dmm->container_height - 1, 951 }; 952 953 ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED, 954 "omap_dmm_irq_handler", omap_dmm); 955 956 if (ret) { 957 dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n", 958 omap_dmm->irq, ret); 959 omap_dmm->irq = -1; 960 goto fail; 961 } 962 963 /* Enable all interrupts for each refill engine except 964 * ERR_LUT_MISS<n> (which is just advisory, and we don't care 965 * about because we want to be able to refill live scanout 966 * buffers for accelerated pan/scroll) and FILL_DSC<n> which 967 * we just generally don't care about. 968 */ 969 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET); 970 971 /* initialize all LUTs to dummy page entries */ 972 for (i = 0; i < omap_dmm->num_lut; i++) { 973 area.tcm = omap_dmm->tcm[i]; 974 if (fill(&area, NULL, 0, 0, true)) 975 dev_err(omap_dmm->dev, "refill failed"); 976 } 977 978 dev_info(omap_dmm->dev, "initialized all PAT entries\n"); 979 980 return 0; 981 982 fail: 983 omap_dmm_remove(dev); 984 return ret; 985 } 986 987 /* 988 * debugfs support 989 */ 990 991 #ifdef CONFIG_DEBUG_FS 992 993 static const char *alphabet = "abcdefghijklmnopqrstuvwxyz" 994 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 995 static const char *special = ".,:;'\"`~!^-+"; 996 997 static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a, 998 char c, bool ovw) 999 { 1000 int x, y; 1001 for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++) 1002 for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++) 1003 if (map[y][x] == ' ' || ovw) 1004 map[y][x] = c; 1005 } 1006 1007 static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p, 1008 char c) 1009 { 1010 map[p->y / ydiv][p->x / xdiv] = c; 1011 } 1012 1013 static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p) 1014 { 1015 return map[p->y / ydiv][p->x / xdiv]; 1016 } 1017 1018 static int map_width(int xdiv, int x0, int x1) 1019 { 1020 return (x1 / xdiv) - (x0 / xdiv) + 1; 1021 } 1022 1023 static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1) 1024 { 1025 char *p = map[yd] + (x0 / xdiv); 1026 int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2; 1027 if (w >= 0) { 1028 p += w; 1029 while (*nice) 1030 *p++ = *nice++; 1031 } 1032 } 1033 1034 static void map_1d_info(char **map, int xdiv, int ydiv, char *nice, 1035 struct tcm_area *a) 1036 { 1037 sprintf(nice, "%dK", tcm_sizeof(*a) * 4); 1038 if (a->p0.y + 1 < a->p1.y) { 1039 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0, 1040 256 - 1); 1041 } else if (a->p0.y < a->p1.y) { 1042 if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1)) 1043 text_map(map, xdiv, nice, a->p0.y / ydiv, 1044 a->p0.x + xdiv, 256 - 1); 1045 else if (strlen(nice) < map_width(xdiv, 0, a->p1.x)) 1046 text_map(map, xdiv, nice, a->p1.y / ydiv, 1047 0, a->p1.y - xdiv); 1048 } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) { 1049 text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x); 1050 } 1051 } 1052 1053 static void map_2d_info(char **map, int xdiv, int ydiv, char *nice, 1054 struct tcm_area *a) 1055 { 1056 sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a)); 1057 if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) 1058 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 1059 a->p0.x, a->p1.x); 1060 } 1061 1062 int tiler_map_show(struct seq_file *s, void *arg) 1063 { 1064 int xdiv = 2, ydiv = 1; 1065 char **map = NULL, *global_map; 1066 struct tiler_block *block; 1067 struct tcm_area a, p; 1068 int i; 1069 const char *m2d = alphabet; 1070 const char *a2d = special; 1071 const char *m2dp = m2d, *a2dp = a2d; 1072 char nice[128]; 1073 int h_adj; 1074 int w_adj; 1075 unsigned long flags; 1076 int lut_idx; 1077 1078 1079 if (!omap_dmm) { 1080 /* early return if dmm/tiler device is not initialized */ 1081 return 0; 1082 } 1083 1084 h_adj = omap_dmm->container_height / ydiv; 1085 w_adj = omap_dmm->container_width / xdiv; 1086 1087 map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL); 1088 global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL); 1089 1090 if (!map || !global_map) 1091 goto error; 1092 1093 for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) { 1094 memset(map, 0, h_adj * sizeof(*map)); 1095 memset(global_map, ' ', (w_adj + 1) * h_adj); 1096 1097 for (i = 0; i < omap_dmm->container_height; i++) { 1098 map[i] = global_map + i * (w_adj + 1); 1099 map[i][w_adj] = 0; 1100 } 1101 1102 spin_lock_irqsave(&list_lock, flags); 1103 1104 list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) { 1105 if (block->area.tcm == omap_dmm->tcm[lut_idx]) { 1106 if (block->fmt != TILFMT_PAGE) { 1107 fill_map(map, xdiv, ydiv, &block->area, 1108 *m2dp, true); 1109 if (!*++a2dp) 1110 a2dp = a2d; 1111 if (!*++m2dp) 1112 m2dp = m2d; 1113 map_2d_info(map, xdiv, ydiv, nice, 1114 &block->area); 1115 } else { 1116 bool start = read_map_pt(map, xdiv, 1117 ydiv, &block->area.p0) == ' '; 1118 bool end = read_map_pt(map, xdiv, ydiv, 1119 &block->area.p1) == ' '; 1120 1121 tcm_for_each_slice(a, block->area, p) 1122 fill_map(map, xdiv, ydiv, &a, 1123 '=', true); 1124 fill_map_pt(map, xdiv, ydiv, 1125 &block->area.p0, 1126 start ? '<' : 'X'); 1127 fill_map_pt(map, xdiv, ydiv, 1128 &block->area.p1, 1129 end ? '>' : 'X'); 1130 map_1d_info(map, xdiv, ydiv, nice, 1131 &block->area); 1132 } 1133 } 1134 } 1135 1136 spin_unlock_irqrestore(&list_lock, flags); 1137 1138 if (s) { 1139 seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx); 1140 for (i = 0; i < 128; i++) 1141 seq_printf(s, "%03d:%s\n", i, map[i]); 1142 seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx); 1143 } else { 1144 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n", 1145 lut_idx); 1146 for (i = 0; i < 128; i++) 1147 dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]); 1148 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n", 1149 lut_idx); 1150 } 1151 } 1152 1153 error: 1154 kfree(map); 1155 kfree(global_map); 1156 1157 return 0; 1158 } 1159 #endif 1160 1161 #ifdef CONFIG_PM_SLEEP 1162 static int omap_dmm_resume(struct device *dev) 1163 { 1164 struct tcm_area area; 1165 int i; 1166 1167 if (!omap_dmm) 1168 return -ENODEV; 1169 1170 area = (struct tcm_area) { 1171 .tcm = NULL, 1172 .p1.x = omap_dmm->container_width - 1, 1173 .p1.y = omap_dmm->container_height - 1, 1174 }; 1175 1176 /* initialize all LUTs to dummy page entries */ 1177 for (i = 0; i < omap_dmm->num_lut; i++) { 1178 area.tcm = omap_dmm->tcm[i]; 1179 if (fill(&area, NULL, 0, 0, true)) 1180 dev_err(dev, "refill failed"); 1181 } 1182 1183 return 0; 1184 } 1185 #endif 1186 1187 static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume); 1188 1189 #if defined(CONFIG_OF) 1190 static const struct dmm_platform_data dmm_omap4_platform_data = { 1191 .cpu_cache_flags = OMAP_BO_WC, 1192 }; 1193 1194 static const struct dmm_platform_data dmm_omap5_platform_data = { 1195 .cpu_cache_flags = OMAP_BO_UNCACHED, 1196 }; 1197 1198 static const struct of_device_id dmm_of_match[] = { 1199 { 1200 .compatible = "ti,omap4-dmm", 1201 .data = &dmm_omap4_platform_data, 1202 }, 1203 { 1204 .compatible = "ti,omap5-dmm", 1205 .data = &dmm_omap5_platform_data, 1206 }, 1207 {}, 1208 }; 1209 #endif 1210 1211 struct platform_driver omap_dmm_driver = { 1212 .probe = omap_dmm_probe, 1213 .remove = omap_dmm_remove, 1214 .driver = { 1215 .name = DMM_DRIVER_NAME, 1216 .of_match_table = of_match_ptr(dmm_of_match), 1217 .pm = &omap_dmm_pm_ops, 1218 }, 1219 }; 1220 1221 MODULE_LICENSE("GPL v2"); 1222 MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>"); 1223 MODULE_DESCRIPTION("OMAP DMM/Tiler Driver"); 1224