1 /* 2 * DMM IOMMU driver support functions for TI OMAP processors. 3 * 4 * Author: Rob Clark <rob@ti.com> 5 * Andy Gross <andy.gross@ti.com> 6 * 7 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation version 2. 12 * 13 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 14 * kind, whether express or implied; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 */ 18 19 #include <linux/completion.h> 20 #include <linux/delay.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/errno.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/list.h> 26 #include <linux/mm.h> 27 #include <linux/module.h> 28 #include <linux/platform_device.h> /* platform_device() */ 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/time.h> 32 #include <linux/vmalloc.h> 33 #include <linux/wait.h> 34 35 #include "omap_dmm_tiler.h" 36 #include "omap_dmm_priv.h" 37 38 #define DMM_DRIVER_NAME "dmm" 39 40 /* mappings for associating views to luts */ 41 static struct tcm *containers[TILFMT_NFORMATS]; 42 static struct dmm *omap_dmm; 43 44 #if defined(CONFIG_OF) 45 static const struct of_device_id dmm_of_match[]; 46 #endif 47 48 /* global spinlock for protecting lists */ 49 static DEFINE_SPINLOCK(list_lock); 50 51 /* Geometry table */ 52 #define GEOM(xshift, yshift, bytes_per_pixel) { \ 53 .x_shft = (xshift), \ 54 .y_shft = (yshift), \ 55 .cpp = (bytes_per_pixel), \ 56 .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \ 57 .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \ 58 } 59 60 static const struct { 61 uint32_t x_shft; /* unused X-bits (as part of bpp) */ 62 uint32_t y_shft; /* unused Y-bits (as part of bpp) */ 63 uint32_t cpp; /* bytes/chars per pixel */ 64 uint32_t slot_w; /* width of each slot (in pixels) */ 65 uint32_t slot_h; /* height of each slot (in pixels) */ 66 } geom[TILFMT_NFORMATS] = { 67 [TILFMT_8BIT] = GEOM(0, 0, 1), 68 [TILFMT_16BIT] = GEOM(0, 1, 2), 69 [TILFMT_32BIT] = GEOM(1, 1, 4), 70 [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1), 71 }; 72 73 74 /* lookup table for registers w/ per-engine instances */ 75 static const uint32_t reg[][4] = { 76 [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1, 77 DMM_PAT_STATUS__2, DMM_PAT_STATUS__3}, 78 [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1, 79 DMM_PAT_DESCR__2, DMM_PAT_DESCR__3}, 80 }; 81 82 /* simple allocator to grab next 16 byte aligned memory from txn */ 83 static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa) 84 { 85 void *ptr; 86 struct refill_engine *engine = txn->engine_handle; 87 88 /* dmm programming requires 16 byte aligned addresses */ 89 txn->current_pa = round_up(txn->current_pa, 16); 90 txn->current_va = (void *)round_up((long)txn->current_va, 16); 91 92 ptr = txn->current_va; 93 *pa = txn->current_pa; 94 95 txn->current_pa += sz; 96 txn->current_va += sz; 97 98 BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE); 99 100 return ptr; 101 } 102 103 /* check status and spin until wait_mask comes true */ 104 static int wait_status(struct refill_engine *engine, uint32_t wait_mask) 105 { 106 struct dmm *dmm = engine->dmm; 107 uint32_t r = 0, err, i; 108 109 i = DMM_FIXED_RETRY_COUNT; 110 while (true) { 111 r = readl(dmm->base + reg[PAT_STATUS][engine->id]); 112 err = r & DMM_PATSTATUS_ERR; 113 if (err) 114 return -EFAULT; 115 116 if ((r & wait_mask) == wait_mask) 117 break; 118 119 if (--i == 0) 120 return -ETIMEDOUT; 121 122 udelay(1); 123 } 124 125 return 0; 126 } 127 128 static void release_engine(struct refill_engine *engine) 129 { 130 unsigned long flags; 131 132 spin_lock_irqsave(&list_lock, flags); 133 list_add(&engine->idle_node, &omap_dmm->idle_head); 134 spin_unlock_irqrestore(&list_lock, flags); 135 136 atomic_inc(&omap_dmm->engine_counter); 137 wake_up_interruptible(&omap_dmm->engine_queue); 138 } 139 140 static irqreturn_t omap_dmm_irq_handler(int irq, void *arg) 141 { 142 struct dmm *dmm = arg; 143 uint32_t status = readl(dmm->base + DMM_PAT_IRQSTATUS); 144 int i; 145 146 /* ack IRQ */ 147 writel(status, dmm->base + DMM_PAT_IRQSTATUS); 148 149 for (i = 0; i < dmm->num_engines; i++) { 150 if (status & DMM_IRQSTAT_LST) { 151 if (dmm->engines[i].async) 152 release_engine(&dmm->engines[i]); 153 154 complete(&dmm->engines[i].compl); 155 } 156 157 status >>= 8; 158 } 159 160 return IRQ_HANDLED; 161 } 162 163 /** 164 * Get a handle for a DMM transaction 165 */ 166 static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm) 167 { 168 struct dmm_txn *txn = NULL; 169 struct refill_engine *engine = NULL; 170 int ret; 171 unsigned long flags; 172 173 174 /* wait until an engine is available */ 175 ret = wait_event_interruptible(omap_dmm->engine_queue, 176 atomic_add_unless(&omap_dmm->engine_counter, -1, 0)); 177 if (ret) 178 return ERR_PTR(ret); 179 180 /* grab an idle engine */ 181 spin_lock_irqsave(&list_lock, flags); 182 if (!list_empty(&dmm->idle_head)) { 183 engine = list_entry(dmm->idle_head.next, struct refill_engine, 184 idle_node); 185 list_del(&engine->idle_node); 186 } 187 spin_unlock_irqrestore(&list_lock, flags); 188 189 BUG_ON(!engine); 190 191 txn = &engine->txn; 192 engine->tcm = tcm; 193 txn->engine_handle = engine; 194 txn->last_pat = NULL; 195 txn->current_va = engine->refill_va; 196 txn->current_pa = engine->refill_pa; 197 198 return txn; 199 } 200 201 /** 202 * Add region to DMM transaction. If pages or pages[i] is NULL, then the 203 * corresponding slot is cleared (ie. dummy_pa is programmed) 204 */ 205 static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area, 206 struct page **pages, uint32_t npages, uint32_t roll) 207 { 208 dma_addr_t pat_pa = 0, data_pa = 0; 209 uint32_t *data; 210 struct pat *pat; 211 struct refill_engine *engine = txn->engine_handle; 212 int columns = (1 + area->x1 - area->x0); 213 int rows = (1 + area->y1 - area->y0); 214 int i = columns*rows; 215 216 pat = alloc_dma(txn, sizeof(struct pat), &pat_pa); 217 218 if (txn->last_pat) 219 txn->last_pat->next_pa = (uint32_t)pat_pa; 220 221 pat->area = *area; 222 223 /* adjust Y coordinates based off of container parameters */ 224 pat->area.y0 += engine->tcm->y_offset; 225 pat->area.y1 += engine->tcm->y_offset; 226 227 pat->ctrl = (struct pat_ctrl){ 228 .start = 1, 229 .lut_id = engine->tcm->lut_id, 230 }; 231 232 data = alloc_dma(txn, 4*i, &data_pa); 233 /* FIXME: what if data_pa is more than 32-bit ? */ 234 pat->data_pa = data_pa; 235 236 while (i--) { 237 int n = i + roll; 238 if (n >= npages) 239 n -= npages; 240 data[i] = (pages && pages[n]) ? 241 page_to_phys(pages[n]) : engine->dmm->dummy_pa; 242 } 243 244 txn->last_pat = pat; 245 246 return; 247 } 248 249 /** 250 * Commit the DMM transaction. 251 */ 252 static int dmm_txn_commit(struct dmm_txn *txn, bool wait) 253 { 254 int ret = 0; 255 struct refill_engine *engine = txn->engine_handle; 256 struct dmm *dmm = engine->dmm; 257 258 if (!txn->last_pat) { 259 dev_err(engine->dmm->dev, "need at least one txn\n"); 260 ret = -EINVAL; 261 goto cleanup; 262 } 263 264 txn->last_pat->next_pa = 0; 265 266 /* write to PAT_DESCR to clear out any pending transaction */ 267 writel(0x0, dmm->base + reg[PAT_DESCR][engine->id]); 268 269 /* wait for engine ready: */ 270 ret = wait_status(engine, DMM_PATSTATUS_READY); 271 if (ret) { 272 ret = -EFAULT; 273 goto cleanup; 274 } 275 276 /* mark whether it is async to denote list management in IRQ handler */ 277 engine->async = wait ? false : true; 278 reinit_completion(&engine->compl); 279 /* verify that the irq handler sees the 'async' and completion value */ 280 smp_mb(); 281 282 /* kick reload */ 283 writel(engine->refill_pa, 284 dmm->base + reg[PAT_DESCR][engine->id]); 285 286 if (wait) { 287 if (!wait_for_completion_timeout(&engine->compl, 288 msecs_to_jiffies(1))) { 289 dev_err(dmm->dev, "timed out waiting for done\n"); 290 ret = -ETIMEDOUT; 291 } 292 } 293 294 cleanup: 295 /* only place engine back on list if we are done with it */ 296 if (ret || wait) 297 release_engine(engine); 298 299 return ret; 300 } 301 302 /* 303 * DMM programming 304 */ 305 static int fill(struct tcm_area *area, struct page **pages, 306 uint32_t npages, uint32_t roll, bool wait) 307 { 308 int ret = 0; 309 struct tcm_area slice, area_s; 310 struct dmm_txn *txn; 311 312 txn = dmm_txn_init(omap_dmm, area->tcm); 313 if (IS_ERR_OR_NULL(txn)) 314 return -ENOMEM; 315 316 tcm_for_each_slice(slice, *area, area_s) { 317 struct pat_area p_area = { 318 .x0 = slice.p0.x, .y0 = slice.p0.y, 319 .x1 = slice.p1.x, .y1 = slice.p1.y, 320 }; 321 322 dmm_txn_append(txn, &p_area, pages, npages, roll); 323 324 roll += tcm_sizeof(slice); 325 } 326 327 ret = dmm_txn_commit(txn, wait); 328 329 return ret; 330 } 331 332 /* 333 * Pin/unpin 334 */ 335 336 /* note: slots for which pages[i] == NULL are filled w/ dummy page 337 */ 338 int tiler_pin(struct tiler_block *block, struct page **pages, 339 uint32_t npages, uint32_t roll, bool wait) 340 { 341 int ret; 342 343 ret = fill(&block->area, pages, npages, roll, wait); 344 345 if (ret) 346 tiler_unpin(block); 347 348 return ret; 349 } 350 351 int tiler_unpin(struct tiler_block *block) 352 { 353 return fill(&block->area, NULL, 0, 0, false); 354 } 355 356 /* 357 * Reserve/release 358 */ 359 struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, uint16_t w, 360 uint16_t h, uint16_t align) 361 { 362 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); 363 u32 min_align = 128; 364 int ret; 365 unsigned long flags; 366 367 BUG_ON(!validfmt(fmt)); 368 369 /* convert width/height to slots */ 370 w = DIV_ROUND_UP(w, geom[fmt].slot_w); 371 h = DIV_ROUND_UP(h, geom[fmt].slot_h); 372 373 /* convert alignment to slots */ 374 min_align = max(min_align, (geom[fmt].slot_w * geom[fmt].cpp)); 375 align = ALIGN(align, min_align); 376 align /= geom[fmt].slot_w * geom[fmt].cpp; 377 378 block->fmt = fmt; 379 380 ret = tcm_reserve_2d(containers[fmt], w, h, align, &block->area); 381 if (ret) { 382 kfree(block); 383 return ERR_PTR(-ENOMEM); 384 } 385 386 /* add to allocation list */ 387 spin_lock_irqsave(&list_lock, flags); 388 list_add(&block->alloc_node, &omap_dmm->alloc_head); 389 spin_unlock_irqrestore(&list_lock, flags); 390 391 return block; 392 } 393 394 struct tiler_block *tiler_reserve_1d(size_t size) 395 { 396 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); 397 int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 398 unsigned long flags; 399 400 if (!block) 401 return ERR_PTR(-ENOMEM); 402 403 block->fmt = TILFMT_PAGE; 404 405 if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages, 406 &block->area)) { 407 kfree(block); 408 return ERR_PTR(-ENOMEM); 409 } 410 411 spin_lock_irqsave(&list_lock, flags); 412 list_add(&block->alloc_node, &omap_dmm->alloc_head); 413 spin_unlock_irqrestore(&list_lock, flags); 414 415 return block; 416 } 417 418 /* note: if you have pin'd pages, you should have already unpin'd first! */ 419 int tiler_release(struct tiler_block *block) 420 { 421 int ret = tcm_free(&block->area); 422 unsigned long flags; 423 424 if (block->area.tcm) 425 dev_err(omap_dmm->dev, "failed to release block\n"); 426 427 spin_lock_irqsave(&list_lock, flags); 428 list_del(&block->alloc_node); 429 spin_unlock_irqrestore(&list_lock, flags); 430 431 kfree(block); 432 return ret; 433 } 434 435 /* 436 * Utils 437 */ 438 439 /* calculate the tiler space address of a pixel in a view orientation... 440 * below description copied from the display subsystem section of TRM: 441 * 442 * When the TILER is addressed, the bits: 443 * [28:27] = 0x0 for 8-bit tiled 444 * 0x1 for 16-bit tiled 445 * 0x2 for 32-bit tiled 446 * 0x3 for page mode 447 * [31:29] = 0x0 for 0-degree view 448 * 0x1 for 180-degree view + mirroring 449 * 0x2 for 0-degree view + mirroring 450 * 0x3 for 180-degree view 451 * 0x4 for 270-degree view + mirroring 452 * 0x5 for 270-degree view 453 * 0x6 for 90-degree view 454 * 0x7 for 90-degree view + mirroring 455 * Otherwise the bits indicated the corresponding bit address to access 456 * the SDRAM. 457 */ 458 static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y) 459 { 460 u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment; 461 462 x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft; 463 y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft; 464 alignment = geom[fmt].x_shft + geom[fmt].y_shft; 465 466 /* validate coordinate */ 467 x_mask = MASK(x_bits); 468 y_mask = MASK(y_bits); 469 470 if (x < 0 || x > x_mask || y < 0 || y > y_mask) { 471 DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u", 472 x, x, x_mask, y, y, y_mask); 473 return 0; 474 } 475 476 /* account for mirroring */ 477 if (orient & MASK_X_INVERT) 478 x ^= x_mask; 479 if (orient & MASK_Y_INVERT) 480 y ^= y_mask; 481 482 /* get coordinate address */ 483 if (orient & MASK_XY_FLIP) 484 tmp = ((x << y_bits) + y); 485 else 486 tmp = ((y << x_bits) + x); 487 488 return TIL_ADDR((tmp << alignment), orient, fmt); 489 } 490 491 dma_addr_t tiler_ssptr(struct tiler_block *block) 492 { 493 BUG_ON(!validfmt(block->fmt)); 494 495 return TILVIEW_8BIT + tiler_get_address(block->fmt, 0, 496 block->area.p0.x * geom[block->fmt].slot_w, 497 block->area.p0.y * geom[block->fmt].slot_h); 498 } 499 500 dma_addr_t tiler_tsptr(struct tiler_block *block, uint32_t orient, 501 uint32_t x, uint32_t y) 502 { 503 struct tcm_pt *p = &block->area.p0; 504 BUG_ON(!validfmt(block->fmt)); 505 506 return tiler_get_address(block->fmt, orient, 507 (p->x * geom[block->fmt].slot_w) + x, 508 (p->y * geom[block->fmt].slot_h) + y); 509 } 510 511 void tiler_align(enum tiler_fmt fmt, uint16_t *w, uint16_t *h) 512 { 513 BUG_ON(!validfmt(fmt)); 514 *w = round_up(*w, geom[fmt].slot_w); 515 *h = round_up(*h, geom[fmt].slot_h); 516 } 517 518 uint32_t tiler_stride(enum tiler_fmt fmt, uint32_t orient) 519 { 520 BUG_ON(!validfmt(fmt)); 521 522 if (orient & MASK_XY_FLIP) 523 return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft); 524 else 525 return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft); 526 } 527 528 size_t tiler_size(enum tiler_fmt fmt, uint16_t w, uint16_t h) 529 { 530 tiler_align(fmt, &w, &h); 531 return geom[fmt].cpp * w * h; 532 } 533 534 size_t tiler_vsize(enum tiler_fmt fmt, uint16_t w, uint16_t h) 535 { 536 BUG_ON(!validfmt(fmt)); 537 return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h; 538 } 539 540 uint32_t tiler_get_cpu_cache_flags(void) 541 { 542 return omap_dmm->plat_data->cpu_cache_flags; 543 } 544 545 bool dmm_is_available(void) 546 { 547 return omap_dmm ? true : false; 548 } 549 550 static int omap_dmm_remove(struct platform_device *dev) 551 { 552 struct tiler_block *block, *_block; 553 int i; 554 unsigned long flags; 555 556 if (omap_dmm) { 557 /* free all area regions */ 558 spin_lock_irqsave(&list_lock, flags); 559 list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head, 560 alloc_node) { 561 list_del(&block->alloc_node); 562 kfree(block); 563 } 564 spin_unlock_irqrestore(&list_lock, flags); 565 566 for (i = 0; i < omap_dmm->num_lut; i++) 567 if (omap_dmm->tcm && omap_dmm->tcm[i]) 568 omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]); 569 kfree(omap_dmm->tcm); 570 571 kfree(omap_dmm->engines); 572 if (omap_dmm->refill_va) 573 dma_free_writecombine(omap_dmm->dev, 574 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 575 omap_dmm->refill_va, 576 omap_dmm->refill_pa); 577 if (omap_dmm->dummy_page) 578 __free_page(omap_dmm->dummy_page); 579 580 if (omap_dmm->irq > 0) 581 free_irq(omap_dmm->irq, omap_dmm); 582 583 iounmap(omap_dmm->base); 584 kfree(omap_dmm); 585 omap_dmm = NULL; 586 } 587 588 return 0; 589 } 590 591 static int omap_dmm_probe(struct platform_device *dev) 592 { 593 int ret = -EFAULT, i; 594 struct tcm_area area = {0}; 595 u32 hwinfo, pat_geom; 596 struct resource *mem; 597 598 omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL); 599 if (!omap_dmm) 600 goto fail; 601 602 /* initialize lists */ 603 INIT_LIST_HEAD(&omap_dmm->alloc_head); 604 INIT_LIST_HEAD(&omap_dmm->idle_head); 605 606 init_waitqueue_head(&omap_dmm->engine_queue); 607 608 if (dev->dev.of_node) { 609 const struct of_device_id *match; 610 611 match = of_match_node(dmm_of_match, dev->dev.of_node); 612 if (!match) { 613 dev_err(&dev->dev, "failed to find matching device node\n"); 614 return -ENODEV; 615 } 616 617 omap_dmm->plat_data = match->data; 618 } 619 620 /* lookup hwmod data - base address and irq */ 621 mem = platform_get_resource(dev, IORESOURCE_MEM, 0); 622 if (!mem) { 623 dev_err(&dev->dev, "failed to get base address resource\n"); 624 goto fail; 625 } 626 627 omap_dmm->base = ioremap(mem->start, SZ_2K); 628 629 if (!omap_dmm->base) { 630 dev_err(&dev->dev, "failed to get dmm base address\n"); 631 goto fail; 632 } 633 634 omap_dmm->irq = platform_get_irq(dev, 0); 635 if (omap_dmm->irq < 0) { 636 dev_err(&dev->dev, "failed to get IRQ resource\n"); 637 goto fail; 638 } 639 640 omap_dmm->dev = &dev->dev; 641 642 hwinfo = readl(omap_dmm->base + DMM_PAT_HWINFO); 643 omap_dmm->num_engines = (hwinfo >> 24) & 0x1F; 644 omap_dmm->num_lut = (hwinfo >> 16) & 0x1F; 645 omap_dmm->container_width = 256; 646 omap_dmm->container_height = 128; 647 648 atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines); 649 650 /* read out actual LUT width and height */ 651 pat_geom = readl(omap_dmm->base + DMM_PAT_GEOMETRY); 652 omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5; 653 omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5; 654 655 /* increment LUT by one if on OMAP5 */ 656 /* LUT has twice the height, and is split into a separate container */ 657 if (omap_dmm->lut_height != omap_dmm->container_height) 658 omap_dmm->num_lut++; 659 660 /* initialize DMM registers */ 661 writel(0x88888888, omap_dmm->base + DMM_PAT_VIEW__0); 662 writel(0x88888888, omap_dmm->base + DMM_PAT_VIEW__1); 663 writel(0x80808080, omap_dmm->base + DMM_PAT_VIEW_MAP__0); 664 writel(0x80000000, omap_dmm->base + DMM_PAT_VIEW_MAP_BASE); 665 writel(0x88888888, omap_dmm->base + DMM_TILER_OR__0); 666 writel(0x88888888, omap_dmm->base + DMM_TILER_OR__1); 667 668 ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED, 669 "omap_dmm_irq_handler", omap_dmm); 670 671 if (ret) { 672 dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n", 673 omap_dmm->irq, ret); 674 omap_dmm->irq = -1; 675 goto fail; 676 } 677 678 /* Enable all interrupts for each refill engine except 679 * ERR_LUT_MISS<n> (which is just advisory, and we don't care 680 * about because we want to be able to refill live scanout 681 * buffers for accelerated pan/scroll) and FILL_DSC<n> which 682 * we just generally don't care about. 683 */ 684 writel(0x7e7e7e7e, omap_dmm->base + DMM_PAT_IRQENABLE_SET); 685 686 omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32); 687 if (!omap_dmm->dummy_page) { 688 dev_err(&dev->dev, "could not allocate dummy page\n"); 689 ret = -ENOMEM; 690 goto fail; 691 } 692 693 /* set dma mask for device */ 694 ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32)); 695 if (ret) 696 goto fail; 697 698 omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page); 699 700 /* alloc refill memory */ 701 omap_dmm->refill_va = dma_alloc_writecombine(&dev->dev, 702 REFILL_BUFFER_SIZE * omap_dmm->num_engines, 703 &omap_dmm->refill_pa, GFP_KERNEL); 704 if (!omap_dmm->refill_va) { 705 dev_err(&dev->dev, "could not allocate refill memory\n"); 706 goto fail; 707 } 708 709 /* alloc engines */ 710 omap_dmm->engines = kcalloc(omap_dmm->num_engines, 711 sizeof(struct refill_engine), GFP_KERNEL); 712 if (!omap_dmm->engines) { 713 ret = -ENOMEM; 714 goto fail; 715 } 716 717 for (i = 0; i < omap_dmm->num_engines; i++) { 718 omap_dmm->engines[i].id = i; 719 omap_dmm->engines[i].dmm = omap_dmm; 720 omap_dmm->engines[i].refill_va = omap_dmm->refill_va + 721 (REFILL_BUFFER_SIZE * i); 722 omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa + 723 (REFILL_BUFFER_SIZE * i); 724 init_completion(&omap_dmm->engines[i].compl); 725 726 list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head); 727 } 728 729 omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm), 730 GFP_KERNEL); 731 if (!omap_dmm->tcm) { 732 ret = -ENOMEM; 733 goto fail; 734 } 735 736 /* init containers */ 737 /* Each LUT is associated with a TCM (container manager). We use the 738 lut_id to denote the lut_id used to identify the correct LUT for 739 programming during reill operations */ 740 for (i = 0; i < omap_dmm->num_lut; i++) { 741 omap_dmm->tcm[i] = sita_init(omap_dmm->container_width, 742 omap_dmm->container_height, 743 NULL); 744 745 if (!omap_dmm->tcm[i]) { 746 dev_err(&dev->dev, "failed to allocate container\n"); 747 ret = -ENOMEM; 748 goto fail; 749 } 750 751 omap_dmm->tcm[i]->lut_id = i; 752 } 753 754 /* assign access mode containers to applicable tcm container */ 755 /* OMAP 4 has 1 container for all 4 views */ 756 /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */ 757 containers[TILFMT_8BIT] = omap_dmm->tcm[0]; 758 containers[TILFMT_16BIT] = omap_dmm->tcm[0]; 759 containers[TILFMT_32BIT] = omap_dmm->tcm[0]; 760 761 if (omap_dmm->container_height != omap_dmm->lut_height) { 762 /* second LUT is used for PAGE mode. Programming must use 763 y offset that is added to all y coordinates. LUT id is still 764 0, because it is the same LUT, just the upper 128 lines */ 765 containers[TILFMT_PAGE] = omap_dmm->tcm[1]; 766 omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET; 767 omap_dmm->tcm[1]->lut_id = 0; 768 } else { 769 containers[TILFMT_PAGE] = omap_dmm->tcm[0]; 770 } 771 772 area = (struct tcm_area) { 773 .tcm = NULL, 774 .p1.x = omap_dmm->container_width - 1, 775 .p1.y = omap_dmm->container_height - 1, 776 }; 777 778 /* initialize all LUTs to dummy page entries */ 779 for (i = 0; i < omap_dmm->num_lut; i++) { 780 area.tcm = omap_dmm->tcm[i]; 781 if (fill(&area, NULL, 0, 0, true)) 782 dev_err(omap_dmm->dev, "refill failed"); 783 } 784 785 dev_info(omap_dmm->dev, "initialized all PAT entries\n"); 786 787 return 0; 788 789 fail: 790 if (omap_dmm_remove(dev)) 791 dev_err(&dev->dev, "cleanup failed\n"); 792 return ret; 793 } 794 795 /* 796 * debugfs support 797 */ 798 799 #ifdef CONFIG_DEBUG_FS 800 801 static const char *alphabet = "abcdefghijklmnopqrstuvwxyz" 802 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 803 static const char *special = ".,:;'\"`~!^-+"; 804 805 static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a, 806 char c, bool ovw) 807 { 808 int x, y; 809 for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++) 810 for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++) 811 if (map[y][x] == ' ' || ovw) 812 map[y][x] = c; 813 } 814 815 static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p, 816 char c) 817 { 818 map[p->y / ydiv][p->x / xdiv] = c; 819 } 820 821 static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p) 822 { 823 return map[p->y / ydiv][p->x / xdiv]; 824 } 825 826 static int map_width(int xdiv, int x0, int x1) 827 { 828 return (x1 / xdiv) - (x0 / xdiv) + 1; 829 } 830 831 static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1) 832 { 833 char *p = map[yd] + (x0 / xdiv); 834 int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2; 835 if (w >= 0) { 836 p += w; 837 while (*nice) 838 *p++ = *nice++; 839 } 840 } 841 842 static void map_1d_info(char **map, int xdiv, int ydiv, char *nice, 843 struct tcm_area *a) 844 { 845 sprintf(nice, "%dK", tcm_sizeof(*a) * 4); 846 if (a->p0.y + 1 < a->p1.y) { 847 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0, 848 256 - 1); 849 } else if (a->p0.y < a->p1.y) { 850 if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1)) 851 text_map(map, xdiv, nice, a->p0.y / ydiv, 852 a->p0.x + xdiv, 256 - 1); 853 else if (strlen(nice) < map_width(xdiv, 0, a->p1.x)) 854 text_map(map, xdiv, nice, a->p1.y / ydiv, 855 0, a->p1.y - xdiv); 856 } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) { 857 text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x); 858 } 859 } 860 861 static void map_2d_info(char **map, int xdiv, int ydiv, char *nice, 862 struct tcm_area *a) 863 { 864 sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a)); 865 if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) 866 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 867 a->p0.x, a->p1.x); 868 } 869 870 int tiler_map_show(struct seq_file *s, void *arg) 871 { 872 int xdiv = 2, ydiv = 1; 873 char **map = NULL, *global_map; 874 struct tiler_block *block; 875 struct tcm_area a, p; 876 int i; 877 const char *m2d = alphabet; 878 const char *a2d = special; 879 const char *m2dp = m2d, *a2dp = a2d; 880 char nice[128]; 881 int h_adj; 882 int w_adj; 883 unsigned long flags; 884 int lut_idx; 885 886 887 if (!omap_dmm) { 888 /* early return if dmm/tiler device is not initialized */ 889 return 0; 890 } 891 892 h_adj = omap_dmm->container_height / ydiv; 893 w_adj = omap_dmm->container_width / xdiv; 894 895 map = kmalloc(h_adj * sizeof(*map), GFP_KERNEL); 896 global_map = kmalloc((w_adj + 1) * h_adj, GFP_KERNEL); 897 898 if (!map || !global_map) 899 goto error; 900 901 for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) { 902 memset(map, 0, h_adj * sizeof(*map)); 903 memset(global_map, ' ', (w_adj + 1) * h_adj); 904 905 for (i = 0; i < omap_dmm->container_height; i++) { 906 map[i] = global_map + i * (w_adj + 1); 907 map[i][w_adj] = 0; 908 } 909 910 spin_lock_irqsave(&list_lock, flags); 911 912 list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) { 913 if (block->area.tcm == omap_dmm->tcm[lut_idx]) { 914 if (block->fmt != TILFMT_PAGE) { 915 fill_map(map, xdiv, ydiv, &block->area, 916 *m2dp, true); 917 if (!*++a2dp) 918 a2dp = a2d; 919 if (!*++m2dp) 920 m2dp = m2d; 921 map_2d_info(map, xdiv, ydiv, nice, 922 &block->area); 923 } else { 924 bool start = read_map_pt(map, xdiv, 925 ydiv, &block->area.p0) == ' '; 926 bool end = read_map_pt(map, xdiv, ydiv, 927 &block->area.p1) == ' '; 928 929 tcm_for_each_slice(a, block->area, p) 930 fill_map(map, xdiv, ydiv, &a, 931 '=', true); 932 fill_map_pt(map, xdiv, ydiv, 933 &block->area.p0, 934 start ? '<' : 'X'); 935 fill_map_pt(map, xdiv, ydiv, 936 &block->area.p1, 937 end ? '>' : 'X'); 938 map_1d_info(map, xdiv, ydiv, nice, 939 &block->area); 940 } 941 } 942 } 943 944 spin_unlock_irqrestore(&list_lock, flags); 945 946 if (s) { 947 seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx); 948 for (i = 0; i < 128; i++) 949 seq_printf(s, "%03d:%s\n", i, map[i]); 950 seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx); 951 } else { 952 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n", 953 lut_idx); 954 for (i = 0; i < 128; i++) 955 dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]); 956 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n", 957 lut_idx); 958 } 959 } 960 961 error: 962 kfree(map); 963 kfree(global_map); 964 965 return 0; 966 } 967 #endif 968 969 #ifdef CONFIG_PM_SLEEP 970 static int omap_dmm_resume(struct device *dev) 971 { 972 struct tcm_area area; 973 int i; 974 975 if (!omap_dmm) 976 return -ENODEV; 977 978 area = (struct tcm_area) { 979 .tcm = NULL, 980 .p1.x = omap_dmm->container_width - 1, 981 .p1.y = omap_dmm->container_height - 1, 982 }; 983 984 /* initialize all LUTs to dummy page entries */ 985 for (i = 0; i < omap_dmm->num_lut; i++) { 986 area.tcm = omap_dmm->tcm[i]; 987 if (fill(&area, NULL, 0, 0, true)) 988 dev_err(dev, "refill failed"); 989 } 990 991 return 0; 992 } 993 #endif 994 995 static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume); 996 997 #if defined(CONFIG_OF) 998 static const struct dmm_platform_data dmm_omap4_platform_data = { 999 .cpu_cache_flags = OMAP_BO_WC, 1000 }; 1001 1002 static const struct dmm_platform_data dmm_omap5_platform_data = { 1003 .cpu_cache_flags = OMAP_BO_UNCACHED, 1004 }; 1005 1006 static const struct of_device_id dmm_of_match[] = { 1007 { 1008 .compatible = "ti,omap4-dmm", 1009 .data = &dmm_omap4_platform_data, 1010 }, 1011 { 1012 .compatible = "ti,omap5-dmm", 1013 .data = &dmm_omap5_platform_data, 1014 }, 1015 {}, 1016 }; 1017 #endif 1018 1019 struct platform_driver omap_dmm_driver = { 1020 .probe = omap_dmm_probe, 1021 .remove = omap_dmm_remove, 1022 .driver = { 1023 .owner = THIS_MODULE, 1024 .name = DMM_DRIVER_NAME, 1025 .of_match_table = of_match_ptr(dmm_of_match), 1026 .pm = &omap_dmm_pm_ops, 1027 }, 1028 }; 1029 1030 MODULE_LICENSE("GPL v2"); 1031 MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>"); 1032 MODULE_DESCRIPTION("OMAP DMM/Tiler Driver"); 1033 MODULE_ALIAS("platform:" DMM_DRIVER_NAME); 1034