1 /* 2 * Copyright (C) 2009 Nokia Corporation 3 * Author: Tomi Valkeinen <tomi.valkeinen@ti.com> 4 * 5 * Some code and ideas taken from drivers/video/omap/ driver 6 * by Imre Deak. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #define DSS_SUBSYS_NAME "DISPC" 22 23 #include <linux/kernel.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/vmalloc.h> 26 #include <linux/export.h> 27 #include <linux/clk.h> 28 #include <linux/io.h> 29 #include <linux/jiffies.h> 30 #include <linux/seq_file.h> 31 #include <linux/delay.h> 32 #include <linux/workqueue.h> 33 #include <linux/hardirq.h> 34 #include <linux/platform_device.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/sizes.h> 37 #include <linux/mfd/syscon.h> 38 #include <linux/regmap.h> 39 #include <linux/of.h> 40 #include <linux/of_device.h> 41 #include <linux/component.h> 42 #include <linux/sys_soc.h> 43 #include <drm/drm_fourcc.h> 44 #include <drm/drm_blend.h> 45 46 #include "omapdss.h" 47 #include "dss.h" 48 #include "dispc.h" 49 50 struct dispc_device; 51 52 /* DISPC */ 53 #define DISPC_SZ_REGS SZ_4K 54 55 enum omap_burst_size { 56 BURST_SIZE_X2 = 0, 57 BURST_SIZE_X4 = 1, 58 BURST_SIZE_X8 = 2, 59 }; 60 61 #define REG_GET(dispc, idx, start, end) \ 62 FLD_GET(dispc_read_reg(dispc, idx), start, end) 63 64 #define REG_FLD_MOD(dispc, idx, val, start, end) \ 65 dispc_write_reg(dispc, idx, \ 66 FLD_MOD(dispc_read_reg(dispc, idx), val, start, end)) 67 68 /* DISPC has feature id */ 69 enum dispc_feature_id { 70 FEAT_LCDENABLEPOL, 71 FEAT_LCDENABLESIGNAL, 72 FEAT_PCKFREEENABLE, 73 FEAT_FUNCGATED, 74 FEAT_MGR_LCD2, 75 FEAT_MGR_LCD3, 76 FEAT_LINEBUFFERSPLIT, 77 FEAT_ROWREPEATENABLE, 78 FEAT_RESIZECONF, 79 /* Independent core clk divider */ 80 FEAT_CORE_CLK_DIV, 81 FEAT_HANDLE_UV_SEPARATE, 82 FEAT_ATTR2, 83 FEAT_CPR, 84 FEAT_PRELOAD, 85 FEAT_FIR_COEF_V, 86 FEAT_ALPHA_FIXED_ZORDER, 87 FEAT_ALPHA_FREE_ZORDER, 88 FEAT_FIFO_MERGE, 89 /* An unknown HW bug causing the normal FIFO thresholds not to work */ 90 FEAT_OMAP3_DSI_FIFO_BUG, 91 FEAT_BURST_2D, 92 FEAT_MFLAG, 93 }; 94 95 struct dispc_features { 96 u8 sw_start; 97 u8 fp_start; 98 u8 bp_start; 99 u16 sw_max; 100 u16 vp_max; 101 u16 hp_max; 102 u8 mgr_width_start; 103 u8 mgr_height_start; 104 u16 mgr_width_max; 105 u16 mgr_height_max; 106 unsigned long max_lcd_pclk; 107 unsigned long max_tv_pclk; 108 unsigned int max_downscale; 109 unsigned int max_line_width; 110 unsigned int min_pcd; 111 int (*calc_scaling)(struct dispc_device *dispc, 112 unsigned long pclk, unsigned long lclk, 113 const struct videomode *vm, 114 u16 width, u16 height, u16 out_width, u16 out_height, 115 u32 fourcc, bool *five_taps, 116 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y, 117 u16 pos_x, unsigned long *core_clk, bool mem_to_mem); 118 unsigned long (*calc_core_clk) (unsigned long pclk, 119 u16 width, u16 height, u16 out_width, u16 out_height, 120 bool mem_to_mem); 121 u8 num_fifos; 122 const enum dispc_feature_id *features; 123 unsigned int num_features; 124 const struct dss_reg_field *reg_fields; 125 const unsigned int num_reg_fields; 126 const enum omap_overlay_caps *overlay_caps; 127 const u32 **supported_color_modes; 128 unsigned int num_mgrs; 129 unsigned int num_ovls; 130 unsigned int buffer_size_unit; 131 unsigned int burst_size_unit; 132 133 /* swap GFX & WB fifos */ 134 bool gfx_fifo_workaround:1; 135 136 /* no DISPC_IRQ_FRAMEDONETV on this SoC */ 137 bool no_framedone_tv:1; 138 139 /* revert to the OMAP4 mechanism of DISPC Smart Standby operation */ 140 bool mstandby_workaround:1; 141 142 bool set_max_preload:1; 143 144 /* PIXEL_INC is not added to the last pixel of a line */ 145 bool last_pixel_inc_missing:1; 146 147 /* POL_FREQ has ALIGN bit */ 148 bool supports_sync_align:1; 149 150 bool has_writeback:1; 151 152 bool supports_double_pixel:1; 153 154 /* 155 * Field order for VENC is different than HDMI. We should handle this in 156 * some intelligent manner, but as the SoCs have either HDMI or VENC, 157 * never both, we can just use this flag for now. 158 */ 159 bool reverse_ilace_field_order:1; 160 161 bool has_gamma_table:1; 162 163 bool has_gamma_i734_bug:1; 164 }; 165 166 #define DISPC_MAX_NR_FIFOS 5 167 #define DISPC_MAX_CHANNEL_GAMMA 4 168 169 struct dispc_device { 170 struct platform_device *pdev; 171 void __iomem *base; 172 struct dss_device *dss; 173 174 struct dss_debugfs_entry *debugfs; 175 176 int irq; 177 irq_handler_t user_handler; 178 void *user_data; 179 180 unsigned long core_clk_rate; 181 unsigned long tv_pclk_rate; 182 183 u32 fifo_size[DISPC_MAX_NR_FIFOS]; 184 /* maps which plane is using a fifo. fifo-id -> plane-id */ 185 int fifo_assignment[DISPC_MAX_NR_FIFOS]; 186 187 bool ctx_valid; 188 u32 ctx[DISPC_SZ_REGS / sizeof(u32)]; 189 190 u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA]; 191 192 const struct dispc_features *feat; 193 194 bool is_enabled; 195 196 struct regmap *syscon_pol; 197 u32 syscon_pol_offset; 198 199 /* DISPC_CONTROL & DISPC_CONFIG lock*/ 200 spinlock_t control_lock; 201 }; 202 203 enum omap_color_component { 204 /* used for all color formats for OMAP3 and earlier 205 * and for RGB and Y color component on OMAP4 206 */ 207 DISPC_COLOR_COMPONENT_RGB_Y = 1 << 0, 208 /* used for UV component for 209 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12 210 * color formats on OMAP4 211 */ 212 DISPC_COLOR_COMPONENT_UV = 1 << 1, 213 }; 214 215 enum mgr_reg_fields { 216 DISPC_MGR_FLD_ENABLE, 217 DISPC_MGR_FLD_STNTFT, 218 DISPC_MGR_FLD_GO, 219 DISPC_MGR_FLD_TFTDATALINES, 220 DISPC_MGR_FLD_STALLMODE, 221 DISPC_MGR_FLD_TCKENABLE, 222 DISPC_MGR_FLD_TCKSELECTION, 223 DISPC_MGR_FLD_CPR, 224 DISPC_MGR_FLD_FIFOHANDCHECK, 225 /* used to maintain a count of the above fields */ 226 DISPC_MGR_FLD_NUM, 227 }; 228 229 /* DISPC register field id */ 230 enum dispc_feat_reg_field { 231 FEAT_REG_FIRHINC, 232 FEAT_REG_FIRVINC, 233 FEAT_REG_FIFOHIGHTHRESHOLD, 234 FEAT_REG_FIFOLOWTHRESHOLD, 235 FEAT_REG_FIFOSIZE, 236 FEAT_REG_HORIZONTALACCU, 237 FEAT_REG_VERTICALACCU, 238 }; 239 240 struct dispc_reg_field { 241 u16 reg; 242 u8 high; 243 u8 low; 244 }; 245 246 struct dispc_gamma_desc { 247 u32 len; 248 u32 bits; 249 u16 reg; 250 bool has_index; 251 }; 252 253 static const struct { 254 const char *name; 255 u32 vsync_irq; 256 u32 framedone_irq; 257 u32 sync_lost_irq; 258 struct dispc_gamma_desc gamma; 259 struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM]; 260 } mgr_desc[] = { 261 [OMAP_DSS_CHANNEL_LCD] = { 262 .name = "LCD", 263 .vsync_irq = DISPC_IRQ_VSYNC, 264 .framedone_irq = DISPC_IRQ_FRAMEDONE, 265 .sync_lost_irq = DISPC_IRQ_SYNC_LOST, 266 .gamma = { 267 .len = 256, 268 .bits = 8, 269 .reg = DISPC_GAMMA_TABLE0, 270 .has_index = true, 271 }, 272 .reg_desc = { 273 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 0, 0 }, 274 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL, 3, 3 }, 275 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 5, 5 }, 276 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL, 9, 8 }, 277 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL, 11, 11 }, 278 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 10, 10 }, 279 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 11, 11 }, 280 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG, 15, 15 }, 281 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 }, 282 }, 283 }, 284 [OMAP_DSS_CHANNEL_DIGIT] = { 285 .name = "DIGIT", 286 .vsync_irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN, 287 .framedone_irq = DISPC_IRQ_FRAMEDONETV, 288 .sync_lost_irq = DISPC_IRQ_SYNC_LOST_DIGIT, 289 .gamma = { 290 .len = 1024, 291 .bits = 10, 292 .reg = DISPC_GAMMA_TABLE2, 293 .has_index = false, 294 }, 295 .reg_desc = { 296 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 1, 1 }, 297 [DISPC_MGR_FLD_STNTFT] = { }, 298 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 6, 6 }, 299 [DISPC_MGR_FLD_TFTDATALINES] = { }, 300 [DISPC_MGR_FLD_STALLMODE] = { }, 301 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 12, 12 }, 302 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 13, 13 }, 303 [DISPC_MGR_FLD_CPR] = { }, 304 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 }, 305 }, 306 }, 307 [OMAP_DSS_CHANNEL_LCD2] = { 308 .name = "LCD2", 309 .vsync_irq = DISPC_IRQ_VSYNC2, 310 .framedone_irq = DISPC_IRQ_FRAMEDONE2, 311 .sync_lost_irq = DISPC_IRQ_SYNC_LOST2, 312 .gamma = { 313 .len = 256, 314 .bits = 8, 315 .reg = DISPC_GAMMA_TABLE1, 316 .has_index = true, 317 }, 318 .reg_desc = { 319 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL2, 0, 0 }, 320 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL2, 3, 3 }, 321 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL2, 5, 5 }, 322 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL2, 9, 8 }, 323 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL2, 11, 11 }, 324 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG2, 10, 10 }, 325 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG2, 11, 11 }, 326 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG2, 15, 15 }, 327 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG2, 16, 16 }, 328 }, 329 }, 330 [OMAP_DSS_CHANNEL_LCD3] = { 331 .name = "LCD3", 332 .vsync_irq = DISPC_IRQ_VSYNC3, 333 .framedone_irq = DISPC_IRQ_FRAMEDONE3, 334 .sync_lost_irq = DISPC_IRQ_SYNC_LOST3, 335 .gamma = { 336 .len = 256, 337 .bits = 8, 338 .reg = DISPC_GAMMA_TABLE3, 339 .has_index = true, 340 }, 341 .reg_desc = { 342 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL3, 0, 0 }, 343 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL3, 3, 3 }, 344 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL3, 5, 5 }, 345 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL3, 9, 8 }, 346 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL3, 11, 11 }, 347 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG3, 10, 10 }, 348 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG3, 11, 11 }, 349 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG3, 15, 15 }, 350 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG3, 16, 16 }, 351 }, 352 }, 353 }; 354 355 static unsigned long dispc_fclk_rate(struct dispc_device *dispc); 356 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc); 357 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc, 358 enum omap_channel channel); 359 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc, 360 enum omap_channel channel); 361 362 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc, 363 enum omap_plane_id plane); 364 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc, 365 enum omap_plane_id plane); 366 367 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask); 368 369 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val) 370 { 371 __raw_writel(val, dispc->base + idx); 372 } 373 374 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx) 375 { 376 return __raw_readl(dispc->base + idx); 377 } 378 379 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel, 380 enum mgr_reg_fields regfld) 381 { 382 const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld]; 383 384 return REG_GET(dispc, rfld.reg, rfld.high, rfld.low); 385 } 386 387 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel, 388 enum mgr_reg_fields regfld, int val) 389 { 390 const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld]; 391 const bool need_lock = rfld.reg == DISPC_CONTROL || rfld.reg == DISPC_CONFIG; 392 unsigned long flags; 393 394 if (need_lock) { 395 spin_lock_irqsave(&dispc->control_lock, flags); 396 REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low); 397 spin_unlock_irqrestore(&dispc->control_lock, flags); 398 } else { 399 REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low); 400 } 401 } 402 403 static int dispc_get_num_ovls(struct dispc_device *dispc) 404 { 405 return dispc->feat->num_ovls; 406 } 407 408 static int dispc_get_num_mgrs(struct dispc_device *dispc) 409 { 410 return dispc->feat->num_mgrs; 411 } 412 413 static void dispc_get_reg_field(struct dispc_device *dispc, 414 enum dispc_feat_reg_field id, 415 u8 *start, u8 *end) 416 { 417 if (id >= dispc->feat->num_reg_fields) 418 BUG(); 419 420 *start = dispc->feat->reg_fields[id].start; 421 *end = dispc->feat->reg_fields[id].end; 422 } 423 424 static bool dispc_has_feature(struct dispc_device *dispc, 425 enum dispc_feature_id id) 426 { 427 unsigned int i; 428 429 for (i = 0; i < dispc->feat->num_features; i++) { 430 if (dispc->feat->features[i] == id) 431 return true; 432 } 433 434 return false; 435 } 436 437 #define SR(dispc, reg) \ 438 dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg) 439 #define RR(dispc, reg) \ 440 dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)]) 441 442 static void dispc_save_context(struct dispc_device *dispc) 443 { 444 int i, j; 445 446 DSSDBG("dispc_save_context\n"); 447 448 SR(dispc, IRQENABLE); 449 SR(dispc, CONTROL); 450 SR(dispc, CONFIG); 451 SR(dispc, LINE_NUMBER); 452 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) || 453 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) 454 SR(dispc, GLOBAL_ALPHA); 455 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) { 456 SR(dispc, CONTROL2); 457 SR(dispc, CONFIG2); 458 } 459 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) { 460 SR(dispc, CONTROL3); 461 SR(dispc, CONFIG3); 462 } 463 464 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) { 465 SR(dispc, DEFAULT_COLOR(i)); 466 SR(dispc, TRANS_COLOR(i)); 467 SR(dispc, SIZE_MGR(i)); 468 if (i == OMAP_DSS_CHANNEL_DIGIT) 469 continue; 470 SR(dispc, TIMING_H(i)); 471 SR(dispc, TIMING_V(i)); 472 SR(dispc, POL_FREQ(i)); 473 SR(dispc, DIVISORo(i)); 474 475 SR(dispc, DATA_CYCLE1(i)); 476 SR(dispc, DATA_CYCLE2(i)); 477 SR(dispc, DATA_CYCLE3(i)); 478 479 if (dispc_has_feature(dispc, FEAT_CPR)) { 480 SR(dispc, CPR_COEF_R(i)); 481 SR(dispc, CPR_COEF_G(i)); 482 SR(dispc, CPR_COEF_B(i)); 483 } 484 } 485 486 for (i = 0; i < dispc_get_num_ovls(dispc); i++) { 487 SR(dispc, OVL_BA0(i)); 488 SR(dispc, OVL_BA1(i)); 489 SR(dispc, OVL_POSITION(i)); 490 SR(dispc, OVL_SIZE(i)); 491 SR(dispc, OVL_ATTRIBUTES(i)); 492 SR(dispc, OVL_FIFO_THRESHOLD(i)); 493 SR(dispc, OVL_ROW_INC(i)); 494 SR(dispc, OVL_PIXEL_INC(i)); 495 if (dispc_has_feature(dispc, FEAT_PRELOAD)) 496 SR(dispc, OVL_PRELOAD(i)); 497 if (i == OMAP_DSS_GFX) { 498 SR(dispc, OVL_WINDOW_SKIP(i)); 499 SR(dispc, OVL_TABLE_BA(i)); 500 continue; 501 } 502 SR(dispc, OVL_FIR(i)); 503 SR(dispc, OVL_PICTURE_SIZE(i)); 504 SR(dispc, OVL_ACCU0(i)); 505 SR(dispc, OVL_ACCU1(i)); 506 507 for (j = 0; j < 8; j++) 508 SR(dispc, OVL_FIR_COEF_H(i, j)); 509 510 for (j = 0; j < 8; j++) 511 SR(dispc, OVL_FIR_COEF_HV(i, j)); 512 513 for (j = 0; j < 5; j++) 514 SR(dispc, OVL_CONV_COEF(i, j)); 515 516 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) { 517 for (j = 0; j < 8; j++) 518 SR(dispc, OVL_FIR_COEF_V(i, j)); 519 } 520 521 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { 522 SR(dispc, OVL_BA0_UV(i)); 523 SR(dispc, OVL_BA1_UV(i)); 524 SR(dispc, OVL_FIR2(i)); 525 SR(dispc, OVL_ACCU2_0(i)); 526 SR(dispc, OVL_ACCU2_1(i)); 527 528 for (j = 0; j < 8; j++) 529 SR(dispc, OVL_FIR_COEF_H2(i, j)); 530 531 for (j = 0; j < 8; j++) 532 SR(dispc, OVL_FIR_COEF_HV2(i, j)); 533 534 for (j = 0; j < 8; j++) 535 SR(dispc, OVL_FIR_COEF_V2(i, j)); 536 } 537 if (dispc_has_feature(dispc, FEAT_ATTR2)) 538 SR(dispc, OVL_ATTRIBUTES2(i)); 539 } 540 541 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) 542 SR(dispc, DIVISOR); 543 544 dispc->ctx_valid = true; 545 546 DSSDBG("context saved\n"); 547 } 548 549 static void dispc_restore_context(struct dispc_device *dispc) 550 { 551 int i, j; 552 553 DSSDBG("dispc_restore_context\n"); 554 555 if (!dispc->ctx_valid) 556 return; 557 558 /*RR(dispc, IRQENABLE);*/ 559 /*RR(dispc, CONTROL);*/ 560 RR(dispc, CONFIG); 561 RR(dispc, LINE_NUMBER); 562 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) || 563 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) 564 RR(dispc, GLOBAL_ALPHA); 565 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) 566 RR(dispc, CONFIG2); 567 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) 568 RR(dispc, CONFIG3); 569 570 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) { 571 RR(dispc, DEFAULT_COLOR(i)); 572 RR(dispc, TRANS_COLOR(i)); 573 RR(dispc, SIZE_MGR(i)); 574 if (i == OMAP_DSS_CHANNEL_DIGIT) 575 continue; 576 RR(dispc, TIMING_H(i)); 577 RR(dispc, TIMING_V(i)); 578 RR(dispc, POL_FREQ(i)); 579 RR(dispc, DIVISORo(i)); 580 581 RR(dispc, DATA_CYCLE1(i)); 582 RR(dispc, DATA_CYCLE2(i)); 583 RR(dispc, DATA_CYCLE3(i)); 584 585 if (dispc_has_feature(dispc, FEAT_CPR)) { 586 RR(dispc, CPR_COEF_R(i)); 587 RR(dispc, CPR_COEF_G(i)); 588 RR(dispc, CPR_COEF_B(i)); 589 } 590 } 591 592 for (i = 0; i < dispc_get_num_ovls(dispc); i++) { 593 RR(dispc, OVL_BA0(i)); 594 RR(dispc, OVL_BA1(i)); 595 RR(dispc, OVL_POSITION(i)); 596 RR(dispc, OVL_SIZE(i)); 597 RR(dispc, OVL_ATTRIBUTES(i)); 598 RR(dispc, OVL_FIFO_THRESHOLD(i)); 599 RR(dispc, OVL_ROW_INC(i)); 600 RR(dispc, OVL_PIXEL_INC(i)); 601 if (dispc_has_feature(dispc, FEAT_PRELOAD)) 602 RR(dispc, OVL_PRELOAD(i)); 603 if (i == OMAP_DSS_GFX) { 604 RR(dispc, OVL_WINDOW_SKIP(i)); 605 RR(dispc, OVL_TABLE_BA(i)); 606 continue; 607 } 608 RR(dispc, OVL_FIR(i)); 609 RR(dispc, OVL_PICTURE_SIZE(i)); 610 RR(dispc, OVL_ACCU0(i)); 611 RR(dispc, OVL_ACCU1(i)); 612 613 for (j = 0; j < 8; j++) 614 RR(dispc, OVL_FIR_COEF_H(i, j)); 615 616 for (j = 0; j < 8; j++) 617 RR(dispc, OVL_FIR_COEF_HV(i, j)); 618 619 for (j = 0; j < 5; j++) 620 RR(dispc, OVL_CONV_COEF(i, j)); 621 622 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) { 623 for (j = 0; j < 8; j++) 624 RR(dispc, OVL_FIR_COEF_V(i, j)); 625 } 626 627 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { 628 RR(dispc, OVL_BA0_UV(i)); 629 RR(dispc, OVL_BA1_UV(i)); 630 RR(dispc, OVL_FIR2(i)); 631 RR(dispc, OVL_ACCU2_0(i)); 632 RR(dispc, OVL_ACCU2_1(i)); 633 634 for (j = 0; j < 8; j++) 635 RR(dispc, OVL_FIR_COEF_H2(i, j)); 636 637 for (j = 0; j < 8; j++) 638 RR(dispc, OVL_FIR_COEF_HV2(i, j)); 639 640 for (j = 0; j < 8; j++) 641 RR(dispc, OVL_FIR_COEF_V2(i, j)); 642 } 643 if (dispc_has_feature(dispc, FEAT_ATTR2)) 644 RR(dispc, OVL_ATTRIBUTES2(i)); 645 } 646 647 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) 648 RR(dispc, DIVISOR); 649 650 /* enable last, because LCD & DIGIT enable are here */ 651 RR(dispc, CONTROL); 652 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) 653 RR(dispc, CONTROL2); 654 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) 655 RR(dispc, CONTROL3); 656 /* clear spurious SYNC_LOST_DIGIT interrupts */ 657 dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT); 658 659 /* 660 * enable last so IRQs won't trigger before 661 * the context is fully restored 662 */ 663 RR(dispc, IRQENABLE); 664 665 DSSDBG("context restored\n"); 666 } 667 668 #undef SR 669 #undef RR 670 671 int dispc_runtime_get(struct dispc_device *dispc) 672 { 673 int r; 674 675 DSSDBG("dispc_runtime_get\n"); 676 677 r = pm_runtime_get_sync(&dispc->pdev->dev); 678 WARN_ON(r < 0); 679 return r < 0 ? r : 0; 680 } 681 682 void dispc_runtime_put(struct dispc_device *dispc) 683 { 684 int r; 685 686 DSSDBG("dispc_runtime_put\n"); 687 688 r = pm_runtime_put_sync(&dispc->pdev->dev); 689 WARN_ON(r < 0 && r != -ENOSYS); 690 } 691 692 static u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc, 693 enum omap_channel channel) 694 { 695 return mgr_desc[channel].vsync_irq; 696 } 697 698 static u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc, 699 enum omap_channel channel) 700 { 701 if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv) 702 return 0; 703 704 return mgr_desc[channel].framedone_irq; 705 } 706 707 static u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc, 708 enum omap_channel channel) 709 { 710 return mgr_desc[channel].sync_lost_irq; 711 } 712 713 static u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc) 714 { 715 return DISPC_IRQ_FRAMEDONEWB; 716 } 717 718 static void dispc_mgr_enable(struct dispc_device *dispc, 719 enum omap_channel channel, bool enable) 720 { 721 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable); 722 /* flush posted write */ 723 mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE); 724 } 725 726 static bool dispc_mgr_is_enabled(struct dispc_device *dispc, 727 enum omap_channel channel) 728 { 729 return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE); 730 } 731 732 static bool dispc_mgr_go_busy(struct dispc_device *dispc, 733 enum omap_channel channel) 734 { 735 return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1; 736 } 737 738 static void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel) 739 { 740 WARN_ON(!dispc_mgr_is_enabled(dispc, channel)); 741 WARN_ON(dispc_mgr_go_busy(dispc, channel)); 742 743 DSSDBG("GO %s\n", mgr_desc[channel].name); 744 745 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1); 746 } 747 748 static bool dispc_wb_go_busy(struct dispc_device *dispc) 749 { 750 return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1; 751 } 752 753 static void dispc_wb_go(struct dispc_device *dispc) 754 { 755 enum omap_plane_id plane = OMAP_DSS_WB; 756 bool enable, go; 757 758 enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1; 759 760 if (!enable) 761 return; 762 763 go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1; 764 if (go) { 765 DSSERR("GO bit not down for WB\n"); 766 return; 767 } 768 769 REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6); 770 } 771 772 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc, 773 enum omap_plane_id plane, int reg, 774 u32 value) 775 { 776 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value); 777 } 778 779 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc, 780 enum omap_plane_id plane, int reg, 781 u32 value) 782 { 783 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value); 784 } 785 786 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc, 787 enum omap_plane_id plane, int reg, 788 u32 value) 789 { 790 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value); 791 } 792 793 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc, 794 enum omap_plane_id plane, int reg, 795 u32 value) 796 { 797 BUG_ON(plane == OMAP_DSS_GFX); 798 799 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value); 800 } 801 802 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc, 803 enum omap_plane_id plane, int reg, 804 u32 value) 805 { 806 BUG_ON(plane == OMAP_DSS_GFX); 807 808 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value); 809 } 810 811 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc, 812 enum omap_plane_id plane, int reg, 813 u32 value) 814 { 815 BUG_ON(plane == OMAP_DSS_GFX); 816 817 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value); 818 } 819 820 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc, 821 enum omap_plane_id plane, int fir_hinc, 822 int fir_vinc, int five_taps, 823 enum omap_color_component color_comp) 824 { 825 const struct dispc_coef *h_coef, *v_coef; 826 int i; 827 828 h_coef = dispc_ovl_get_scale_coef(fir_hinc, true); 829 v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps); 830 831 if (!h_coef || !v_coef) { 832 dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n", 833 __func__); 834 return; 835 } 836 837 for (i = 0; i < 8; i++) { 838 u32 h, hv; 839 840 h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0) 841 | FLD_VAL(h_coef[i].hc1_vc0, 15, 8) 842 | FLD_VAL(h_coef[i].hc2_vc1, 23, 16) 843 | FLD_VAL(h_coef[i].hc3_vc2, 31, 24); 844 hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0) 845 | FLD_VAL(v_coef[i].hc1_vc0, 15, 8) 846 | FLD_VAL(v_coef[i].hc2_vc1, 23, 16) 847 | FLD_VAL(v_coef[i].hc3_vc2, 31, 24); 848 849 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) { 850 dispc_ovl_write_firh_reg(dispc, plane, i, h); 851 dispc_ovl_write_firhv_reg(dispc, plane, i, hv); 852 } else { 853 dispc_ovl_write_firh2_reg(dispc, plane, i, h); 854 dispc_ovl_write_firhv2_reg(dispc, plane, i, hv); 855 } 856 857 } 858 859 if (five_taps) { 860 for (i = 0; i < 8; i++) { 861 u32 v; 862 v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0) 863 | FLD_VAL(v_coef[i].hc4_vc22, 15, 8); 864 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) 865 dispc_ovl_write_firv_reg(dispc, plane, i, v); 866 else 867 dispc_ovl_write_firv2_reg(dispc, plane, i, v); 868 } 869 } 870 } 871 872 struct csc_coef_yuv2rgb { 873 int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr; 874 bool full_range; 875 }; 876 877 struct csc_coef_rgb2yuv { 878 int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb; 879 bool full_range; 880 }; 881 882 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc, 883 enum omap_plane_id plane, 884 const struct csc_coef_yuv2rgb *ct) 885 { 886 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0)) 887 888 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry)); 889 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy, ct->rcb)); 890 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr)); 891 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by)); 892 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb)); 893 894 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11); 895 896 #undef CVAL 897 } 898 899 static void dispc_wb_write_color_conv_coef(struct dispc_device *dispc, 900 const struct csc_coef_rgb2yuv *ct) 901 { 902 const enum omap_plane_id plane = OMAP_DSS_WB; 903 904 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0)) 905 906 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->yg, ct->yr)); 907 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->crr, ct->yb)); 908 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->crb, ct->crg)); 909 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->cbg, ct->cbr)); 910 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->cbb)); 911 912 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11); 913 914 #undef CVAL 915 } 916 917 static void dispc_setup_color_conv_coef(struct dispc_device *dispc) 918 { 919 int i; 920 int num_ovl = dispc_get_num_ovls(dispc); 921 922 /* YUV -> RGB, ITU-R BT.601, limited range */ 923 const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = { 924 298, 0, 409, /* ry, rcb, rcr */ 925 298, -100, -208, /* gy, gcb, gcr */ 926 298, 516, 0, /* by, bcb, bcr */ 927 false, /* limited range */ 928 }; 929 930 /* RGB -> YUV, ITU-R BT.601, limited range */ 931 const struct csc_coef_rgb2yuv coefs_rgb2yuv_bt601_lim = { 932 66, 129, 25, /* yr, yg, yb */ 933 -38, -74, 112, /* cbr, cbg, cbb */ 934 112, -94, -18, /* crr, crg, crb */ 935 false, /* limited range */ 936 }; 937 938 for (i = 1; i < num_ovl; i++) 939 dispc_ovl_write_color_conv_coef(dispc, i, &coefs_yuv2rgb_bt601_lim); 940 941 if (dispc->feat->has_writeback) 942 dispc_wb_write_color_conv_coef(dispc, &coefs_rgb2yuv_bt601_lim); 943 } 944 945 static void dispc_ovl_set_ba0(struct dispc_device *dispc, 946 enum omap_plane_id plane, u32 paddr) 947 { 948 dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr); 949 } 950 951 static void dispc_ovl_set_ba1(struct dispc_device *dispc, 952 enum omap_plane_id plane, u32 paddr) 953 { 954 dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr); 955 } 956 957 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc, 958 enum omap_plane_id plane, u32 paddr) 959 { 960 dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr); 961 } 962 963 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc, 964 enum omap_plane_id plane, u32 paddr) 965 { 966 dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr); 967 } 968 969 static void dispc_ovl_set_pos(struct dispc_device *dispc, 970 enum omap_plane_id plane, 971 enum omap_overlay_caps caps, int x, int y) 972 { 973 u32 val; 974 975 if ((caps & OMAP_DSS_OVL_CAP_POS) == 0) 976 return; 977 978 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0); 979 980 dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val); 981 } 982 983 static void dispc_ovl_set_input_size(struct dispc_device *dispc, 984 enum omap_plane_id plane, int width, 985 int height) 986 { 987 u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0); 988 989 if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB) 990 dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val); 991 else 992 dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val); 993 } 994 995 static void dispc_ovl_set_output_size(struct dispc_device *dispc, 996 enum omap_plane_id plane, int width, 997 int height) 998 { 999 u32 val; 1000 1001 BUG_ON(plane == OMAP_DSS_GFX); 1002 1003 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0); 1004 1005 if (plane == OMAP_DSS_WB) 1006 dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val); 1007 else 1008 dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val); 1009 } 1010 1011 static void dispc_ovl_set_zorder(struct dispc_device *dispc, 1012 enum omap_plane_id plane, 1013 enum omap_overlay_caps caps, u8 zorder) 1014 { 1015 if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0) 1016 return; 1017 1018 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26); 1019 } 1020 1021 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc) 1022 { 1023 int i; 1024 1025 if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) 1026 return; 1027 1028 for (i = 0; i < dispc_get_num_ovls(dispc); i++) 1029 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25); 1030 } 1031 1032 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc, 1033 enum omap_plane_id plane, 1034 enum omap_overlay_caps caps, 1035 bool enable) 1036 { 1037 if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0) 1038 return; 1039 1040 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28); 1041 } 1042 1043 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc, 1044 enum omap_plane_id plane, 1045 enum omap_overlay_caps caps, 1046 u8 global_alpha) 1047 { 1048 static const unsigned int shifts[] = { 0, 8, 16, 24, }; 1049 int shift; 1050 1051 if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0) 1052 return; 1053 1054 shift = shifts[plane]; 1055 REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift); 1056 } 1057 1058 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc, 1059 enum omap_plane_id plane, s32 inc) 1060 { 1061 dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc); 1062 } 1063 1064 static void dispc_ovl_set_row_inc(struct dispc_device *dispc, 1065 enum omap_plane_id plane, s32 inc) 1066 { 1067 dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc); 1068 } 1069 1070 static void dispc_ovl_set_color_mode(struct dispc_device *dispc, 1071 enum omap_plane_id plane, u32 fourcc) 1072 { 1073 u32 m = 0; 1074 if (plane != OMAP_DSS_GFX) { 1075 switch (fourcc) { 1076 case DRM_FORMAT_NV12: 1077 m = 0x0; break; 1078 case DRM_FORMAT_XRGB4444: 1079 m = 0x1; break; 1080 case DRM_FORMAT_RGBA4444: 1081 m = 0x2; break; 1082 case DRM_FORMAT_RGBX4444: 1083 m = 0x4; break; 1084 case DRM_FORMAT_ARGB4444: 1085 m = 0x5; break; 1086 case DRM_FORMAT_RGB565: 1087 m = 0x6; break; 1088 case DRM_FORMAT_ARGB1555: 1089 m = 0x7; break; 1090 case DRM_FORMAT_XRGB8888: 1091 m = 0x8; break; 1092 case DRM_FORMAT_RGB888: 1093 m = 0x9; break; 1094 case DRM_FORMAT_YUYV: 1095 m = 0xa; break; 1096 case DRM_FORMAT_UYVY: 1097 m = 0xb; break; 1098 case DRM_FORMAT_ARGB8888: 1099 m = 0xc; break; 1100 case DRM_FORMAT_RGBA8888: 1101 m = 0xd; break; 1102 case DRM_FORMAT_RGBX8888: 1103 m = 0xe; break; 1104 case DRM_FORMAT_XRGB1555: 1105 m = 0xf; break; 1106 default: 1107 BUG(); return; 1108 } 1109 } else { 1110 switch (fourcc) { 1111 case DRM_FORMAT_RGBX4444: 1112 m = 0x4; break; 1113 case DRM_FORMAT_ARGB4444: 1114 m = 0x5; break; 1115 case DRM_FORMAT_RGB565: 1116 m = 0x6; break; 1117 case DRM_FORMAT_ARGB1555: 1118 m = 0x7; break; 1119 case DRM_FORMAT_XRGB8888: 1120 m = 0x8; break; 1121 case DRM_FORMAT_RGB888: 1122 m = 0x9; break; 1123 case DRM_FORMAT_XRGB4444: 1124 m = 0xa; break; 1125 case DRM_FORMAT_RGBA4444: 1126 m = 0xb; break; 1127 case DRM_FORMAT_ARGB8888: 1128 m = 0xc; break; 1129 case DRM_FORMAT_RGBA8888: 1130 m = 0xd; break; 1131 case DRM_FORMAT_RGBX8888: 1132 m = 0xe; break; 1133 case DRM_FORMAT_XRGB1555: 1134 m = 0xf; break; 1135 default: 1136 BUG(); return; 1137 } 1138 } 1139 1140 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1); 1141 } 1142 1143 static bool format_is_yuv(u32 fourcc) 1144 { 1145 switch (fourcc) { 1146 case DRM_FORMAT_YUYV: 1147 case DRM_FORMAT_UYVY: 1148 case DRM_FORMAT_NV12: 1149 return true; 1150 default: 1151 return false; 1152 } 1153 } 1154 1155 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc, 1156 enum omap_plane_id plane, 1157 enum omap_dss_rotation_type rotation) 1158 { 1159 if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0) 1160 return; 1161 1162 if (rotation == OMAP_DSS_ROT_TILER) 1163 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29); 1164 else 1165 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29); 1166 } 1167 1168 static void dispc_ovl_set_channel_out(struct dispc_device *dispc, 1169 enum omap_plane_id plane, 1170 enum omap_channel channel) 1171 { 1172 int shift; 1173 u32 val; 1174 int chan = 0, chan2 = 0; 1175 1176 switch (plane) { 1177 case OMAP_DSS_GFX: 1178 shift = 8; 1179 break; 1180 case OMAP_DSS_VIDEO1: 1181 case OMAP_DSS_VIDEO2: 1182 case OMAP_DSS_VIDEO3: 1183 shift = 16; 1184 break; 1185 default: 1186 BUG(); 1187 return; 1188 } 1189 1190 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); 1191 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) { 1192 switch (channel) { 1193 case OMAP_DSS_CHANNEL_LCD: 1194 chan = 0; 1195 chan2 = 0; 1196 break; 1197 case OMAP_DSS_CHANNEL_DIGIT: 1198 chan = 1; 1199 chan2 = 0; 1200 break; 1201 case OMAP_DSS_CHANNEL_LCD2: 1202 chan = 0; 1203 chan2 = 1; 1204 break; 1205 case OMAP_DSS_CHANNEL_LCD3: 1206 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) { 1207 chan = 0; 1208 chan2 = 2; 1209 } else { 1210 BUG(); 1211 return; 1212 } 1213 break; 1214 case OMAP_DSS_CHANNEL_WB: 1215 chan = 0; 1216 chan2 = 3; 1217 break; 1218 default: 1219 BUG(); 1220 return; 1221 } 1222 1223 val = FLD_MOD(val, chan, shift, shift); 1224 val = FLD_MOD(val, chan2, 31, 30); 1225 } else { 1226 val = FLD_MOD(val, channel, shift, shift); 1227 } 1228 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val); 1229 } 1230 1231 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc, 1232 enum omap_plane_id plane) 1233 { 1234 int shift; 1235 u32 val; 1236 1237 switch (plane) { 1238 case OMAP_DSS_GFX: 1239 shift = 8; 1240 break; 1241 case OMAP_DSS_VIDEO1: 1242 case OMAP_DSS_VIDEO2: 1243 case OMAP_DSS_VIDEO3: 1244 shift = 16; 1245 break; 1246 default: 1247 BUG(); 1248 return 0; 1249 } 1250 1251 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); 1252 1253 if (FLD_GET(val, shift, shift) == 1) 1254 return OMAP_DSS_CHANNEL_DIGIT; 1255 1256 if (!dispc_has_feature(dispc, FEAT_MGR_LCD2)) 1257 return OMAP_DSS_CHANNEL_LCD; 1258 1259 switch (FLD_GET(val, 31, 30)) { 1260 case 0: 1261 default: 1262 return OMAP_DSS_CHANNEL_LCD; 1263 case 1: 1264 return OMAP_DSS_CHANNEL_LCD2; 1265 case 2: 1266 return OMAP_DSS_CHANNEL_LCD3; 1267 case 3: 1268 return OMAP_DSS_CHANNEL_WB; 1269 } 1270 } 1271 1272 static void dispc_ovl_set_burst_size(struct dispc_device *dispc, 1273 enum omap_plane_id plane, 1274 enum omap_burst_size burst_size) 1275 { 1276 static const unsigned int shifts[] = { 6, 14, 14, 14, 14, }; 1277 int shift; 1278 1279 shift = shifts[plane]; 1280 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size, 1281 shift + 1, shift); 1282 } 1283 1284 static void dispc_configure_burst_sizes(struct dispc_device *dispc) 1285 { 1286 int i; 1287 const int burst_size = BURST_SIZE_X8; 1288 1289 /* Configure burst size always to maximum size */ 1290 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) 1291 dispc_ovl_set_burst_size(dispc, i, burst_size); 1292 if (dispc->feat->has_writeback) 1293 dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size); 1294 } 1295 1296 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc, 1297 enum omap_plane_id plane) 1298 { 1299 /* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */ 1300 return dispc->feat->burst_size_unit * 8; 1301 } 1302 1303 static bool dispc_ovl_color_mode_supported(struct dispc_device *dispc, 1304 enum omap_plane_id plane, u32 fourcc) 1305 { 1306 const u32 *modes; 1307 unsigned int i; 1308 1309 modes = dispc->feat->supported_color_modes[plane]; 1310 1311 for (i = 0; modes[i]; ++i) { 1312 if (modes[i] == fourcc) 1313 return true; 1314 } 1315 1316 return false; 1317 } 1318 1319 static const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc, 1320 enum omap_plane_id plane) 1321 { 1322 return dispc->feat->supported_color_modes[plane]; 1323 } 1324 1325 static void dispc_mgr_enable_cpr(struct dispc_device *dispc, 1326 enum omap_channel channel, bool enable) 1327 { 1328 if (channel == OMAP_DSS_CHANNEL_DIGIT) 1329 return; 1330 1331 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable); 1332 } 1333 1334 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc, 1335 enum omap_channel channel, 1336 const struct omap_dss_cpr_coefs *coefs) 1337 { 1338 u32 coef_r, coef_g, coef_b; 1339 1340 if (!dss_mgr_is_lcd(channel)) 1341 return; 1342 1343 coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) | 1344 FLD_VAL(coefs->rb, 9, 0); 1345 coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) | 1346 FLD_VAL(coefs->gb, 9, 0); 1347 coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) | 1348 FLD_VAL(coefs->bb, 9, 0); 1349 1350 dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r); 1351 dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g); 1352 dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b); 1353 } 1354 1355 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc, 1356 enum omap_plane_id plane, bool enable) 1357 { 1358 u32 val; 1359 1360 BUG_ON(plane == OMAP_DSS_GFX); 1361 1362 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); 1363 val = FLD_MOD(val, enable, 9, 9); 1364 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val); 1365 } 1366 1367 static void dispc_ovl_enable_replication(struct dispc_device *dispc, 1368 enum omap_plane_id plane, 1369 enum omap_overlay_caps caps, 1370 bool enable) 1371 { 1372 static const unsigned int shifts[] = { 5, 10, 10, 10 }; 1373 int shift; 1374 1375 if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0) 1376 return; 1377 1378 shift = shifts[plane]; 1379 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift); 1380 } 1381 1382 static void dispc_mgr_set_size(struct dispc_device *dispc, 1383 enum omap_channel channel, u16 width, u16 height) 1384 { 1385 u32 val; 1386 1387 val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) | 1388 FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0); 1389 1390 dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val); 1391 } 1392 1393 static void dispc_init_fifos(struct dispc_device *dispc) 1394 { 1395 u32 size; 1396 int fifo; 1397 u8 start, end; 1398 u32 unit; 1399 int i; 1400 1401 unit = dispc->feat->buffer_size_unit; 1402 1403 dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end); 1404 1405 for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) { 1406 size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo), 1407 start, end); 1408 size *= unit; 1409 dispc->fifo_size[fifo] = size; 1410 1411 /* 1412 * By default fifos are mapped directly to overlays, fifo 0 to 1413 * ovl 0, fifo 1 to ovl 1, etc. 1414 */ 1415 dispc->fifo_assignment[fifo] = fifo; 1416 } 1417 1418 /* 1419 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo 1420 * causes problems with certain use cases, like using the tiler in 2D 1421 * mode. The below hack swaps the fifos of GFX and WB planes, thus 1422 * giving GFX plane a larger fifo. WB but should work fine with a 1423 * smaller fifo. 1424 */ 1425 if (dispc->feat->gfx_fifo_workaround) { 1426 u32 v; 1427 1428 v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER); 1429 1430 v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */ 1431 v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */ 1432 v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */ 1433 v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */ 1434 1435 dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v); 1436 1437 dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB; 1438 dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX; 1439 } 1440 1441 /* 1442 * Setup default fifo thresholds. 1443 */ 1444 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) { 1445 u32 low, high; 1446 const bool use_fifomerge = false; 1447 const bool manual_update = false; 1448 1449 dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high, 1450 use_fifomerge, manual_update); 1451 1452 dispc_ovl_set_fifo_threshold(dispc, i, low, high); 1453 } 1454 1455 if (dispc->feat->has_writeback) { 1456 u32 low, high; 1457 const bool use_fifomerge = false; 1458 const bool manual_update = false; 1459 1460 dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB, 1461 &low, &high, use_fifomerge, 1462 manual_update); 1463 1464 dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high); 1465 } 1466 } 1467 1468 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc, 1469 enum omap_plane_id plane) 1470 { 1471 int fifo; 1472 u32 size = 0; 1473 1474 for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) { 1475 if (dispc->fifo_assignment[fifo] == plane) 1476 size += dispc->fifo_size[fifo]; 1477 } 1478 1479 return size; 1480 } 1481 1482 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc, 1483 enum omap_plane_id plane, 1484 u32 low, u32 high) 1485 { 1486 u8 hi_start, hi_end, lo_start, lo_end; 1487 u32 unit; 1488 1489 unit = dispc->feat->buffer_size_unit; 1490 1491 WARN_ON(low % unit != 0); 1492 WARN_ON(high % unit != 0); 1493 1494 low /= unit; 1495 high /= unit; 1496 1497 dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD, 1498 &hi_start, &hi_end); 1499 dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD, 1500 &lo_start, &lo_end); 1501 1502 DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n", 1503 plane, 1504 REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane), 1505 lo_start, lo_end) * unit, 1506 REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane), 1507 hi_start, hi_end) * unit, 1508 low * unit, high * unit); 1509 1510 dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane), 1511 FLD_VAL(high, hi_start, hi_end) | 1512 FLD_VAL(low, lo_start, lo_end)); 1513 1514 /* 1515 * configure the preload to the pipeline's high threhold, if HT it's too 1516 * large for the preload field, set the threshold to the maximum value 1517 * that can be held by the preload register 1518 */ 1519 if (dispc_has_feature(dispc, FEAT_PRELOAD) && 1520 dispc->feat->set_max_preload && plane != OMAP_DSS_WB) 1521 dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane), 1522 min(high, 0xfffu)); 1523 } 1524 1525 void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable) 1526 { 1527 if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) { 1528 WARN_ON(enable); 1529 return; 1530 } 1531 1532 DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled"); 1533 REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14); 1534 } 1535 1536 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc, 1537 enum omap_plane_id plane, 1538 u32 *fifo_low, u32 *fifo_high, 1539 bool use_fifomerge, bool manual_update) 1540 { 1541 /* 1542 * All sizes are in bytes. Both the buffer and burst are made of 1543 * buffer_units, and the fifo thresholds must be buffer_unit aligned. 1544 */ 1545 unsigned int buf_unit = dispc->feat->buffer_size_unit; 1546 unsigned int ovl_fifo_size, total_fifo_size, burst_size; 1547 int i; 1548 1549 burst_size = dispc_ovl_get_burst_size(dispc, plane); 1550 ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane); 1551 1552 if (use_fifomerge) { 1553 total_fifo_size = 0; 1554 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) 1555 total_fifo_size += dispc_ovl_get_fifo_size(dispc, i); 1556 } else { 1557 total_fifo_size = ovl_fifo_size; 1558 } 1559 1560 /* 1561 * We use the same low threshold for both fifomerge and non-fifomerge 1562 * cases, but for fifomerge we calculate the high threshold using the 1563 * combined fifo size 1564 */ 1565 1566 if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) { 1567 *fifo_low = ovl_fifo_size - burst_size * 2; 1568 *fifo_high = total_fifo_size - burst_size; 1569 } else if (plane == OMAP_DSS_WB) { 1570 /* 1571 * Most optimal configuration for writeback is to push out data 1572 * to the interconnect the moment writeback pushes enough pixels 1573 * in the FIFO to form a burst 1574 */ 1575 *fifo_low = 0; 1576 *fifo_high = burst_size; 1577 } else { 1578 *fifo_low = ovl_fifo_size - burst_size; 1579 *fifo_high = total_fifo_size - buf_unit; 1580 } 1581 } 1582 1583 static void dispc_ovl_set_mflag(struct dispc_device *dispc, 1584 enum omap_plane_id plane, bool enable) 1585 { 1586 int bit; 1587 1588 if (plane == OMAP_DSS_GFX) 1589 bit = 14; 1590 else 1591 bit = 23; 1592 1593 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit); 1594 } 1595 1596 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc, 1597 enum omap_plane_id plane, 1598 int low, int high) 1599 { 1600 dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane), 1601 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); 1602 } 1603 1604 static void dispc_init_mflag(struct dispc_device *dispc) 1605 { 1606 int i; 1607 1608 /* 1609 * HACK: NV12 color format and MFLAG seem to have problems working 1610 * together: using two displays, and having an NV12 overlay on one of 1611 * the displays will cause underflows/synclosts when MFLAG_CTRL=2. 1612 * Changing MFLAG thresholds and PRELOAD to certain values seem to 1613 * remove the errors, but there doesn't seem to be a clear logic on 1614 * which values work and which not. 1615 * 1616 * As a work-around, set force MFLAG to always on. 1617 */ 1618 dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 1619 (1 << 0) | /* MFLAG_CTRL = force always on */ 1620 (0 << 2)); /* MFLAG_START = disable */ 1621 1622 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) { 1623 u32 size = dispc_ovl_get_fifo_size(dispc, i); 1624 u32 unit = dispc->feat->buffer_size_unit; 1625 u32 low, high; 1626 1627 dispc_ovl_set_mflag(dispc, i, true); 1628 1629 /* 1630 * Simulation team suggests below thesholds: 1631 * HT = fifosize * 5 / 8; 1632 * LT = fifosize * 4 / 8; 1633 */ 1634 1635 low = size * 4 / 8 / unit; 1636 high = size * 5 / 8 / unit; 1637 1638 dispc_ovl_set_mflag_threshold(dispc, i, low, high); 1639 } 1640 1641 if (dispc->feat->has_writeback) { 1642 u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB); 1643 u32 unit = dispc->feat->buffer_size_unit; 1644 u32 low, high; 1645 1646 dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true); 1647 1648 /* 1649 * Simulation team suggests below thesholds: 1650 * HT = fifosize * 5 / 8; 1651 * LT = fifosize * 4 / 8; 1652 */ 1653 1654 low = size * 4 / 8 / unit; 1655 high = size * 5 / 8 / unit; 1656 1657 dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high); 1658 } 1659 } 1660 1661 static void dispc_ovl_set_fir(struct dispc_device *dispc, 1662 enum omap_plane_id plane, 1663 int hinc, int vinc, 1664 enum omap_color_component color_comp) 1665 { 1666 u32 val; 1667 1668 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) { 1669 u8 hinc_start, hinc_end, vinc_start, vinc_end; 1670 1671 dispc_get_reg_field(dispc, FEAT_REG_FIRHINC, 1672 &hinc_start, &hinc_end); 1673 dispc_get_reg_field(dispc, FEAT_REG_FIRVINC, 1674 &vinc_start, &vinc_end); 1675 val = FLD_VAL(vinc, vinc_start, vinc_end) | 1676 FLD_VAL(hinc, hinc_start, hinc_end); 1677 1678 dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val); 1679 } else { 1680 val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0); 1681 dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val); 1682 } 1683 } 1684 1685 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc, 1686 enum omap_plane_id plane, int haccu, 1687 int vaccu) 1688 { 1689 u32 val; 1690 u8 hor_start, hor_end, vert_start, vert_end; 1691 1692 dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU, 1693 &hor_start, &hor_end); 1694 dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU, 1695 &vert_start, &vert_end); 1696 1697 val = FLD_VAL(vaccu, vert_start, vert_end) | 1698 FLD_VAL(haccu, hor_start, hor_end); 1699 1700 dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val); 1701 } 1702 1703 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc, 1704 enum omap_plane_id plane, int haccu, 1705 int vaccu) 1706 { 1707 u32 val; 1708 u8 hor_start, hor_end, vert_start, vert_end; 1709 1710 dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU, 1711 &hor_start, &hor_end); 1712 dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU, 1713 &vert_start, &vert_end); 1714 1715 val = FLD_VAL(vaccu, vert_start, vert_end) | 1716 FLD_VAL(haccu, hor_start, hor_end); 1717 1718 dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val); 1719 } 1720 1721 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc, 1722 enum omap_plane_id plane, int haccu, 1723 int vaccu) 1724 { 1725 u32 val; 1726 1727 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0); 1728 dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val); 1729 } 1730 1731 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc, 1732 enum omap_plane_id plane, int haccu, 1733 int vaccu) 1734 { 1735 u32 val; 1736 1737 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0); 1738 dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val); 1739 } 1740 1741 static void dispc_ovl_set_scale_param(struct dispc_device *dispc, 1742 enum omap_plane_id plane, 1743 u16 orig_width, u16 orig_height, 1744 u16 out_width, u16 out_height, 1745 bool five_taps, u8 rotation, 1746 enum omap_color_component color_comp) 1747 { 1748 int fir_hinc, fir_vinc; 1749 1750 fir_hinc = 1024 * orig_width / out_width; 1751 fir_vinc = 1024 * orig_height / out_height; 1752 1753 dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps, 1754 color_comp); 1755 dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp); 1756 } 1757 1758 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc, 1759 enum omap_plane_id plane, 1760 u16 orig_width, u16 orig_height, 1761 u16 out_width, u16 out_height, 1762 bool ilace, u32 fourcc, u8 rotation) 1763 { 1764 int h_accu2_0, h_accu2_1; 1765 int v_accu2_0, v_accu2_1; 1766 int chroma_hinc, chroma_vinc; 1767 int idx; 1768 1769 struct accu { 1770 s8 h0_m, h0_n; 1771 s8 h1_m, h1_n; 1772 s8 v0_m, v0_n; 1773 s8 v1_m, v1_n; 1774 }; 1775 1776 const struct accu *accu_table; 1777 const struct accu *accu_val; 1778 1779 static const struct accu accu_nv12[4] = { 1780 { 0, 1, 0, 1 , -1, 2, 0, 1 }, 1781 { 1, 2, -3, 4 , 0, 1, 0, 1 }, 1782 { -1, 1, 0, 1 , -1, 2, 0, 1 }, 1783 { -1, 2, -1, 2 , -1, 1, 0, 1 }, 1784 }; 1785 1786 static const struct accu accu_nv12_ilace[4] = { 1787 { 0, 1, 0, 1 , -3, 4, -1, 4 }, 1788 { -1, 4, -3, 4 , 0, 1, 0, 1 }, 1789 { -1, 1, 0, 1 , -1, 4, -3, 4 }, 1790 { -3, 4, -3, 4 , -1, 1, 0, 1 }, 1791 }; 1792 1793 static const struct accu accu_yuv[4] = { 1794 { 0, 1, 0, 1, 0, 1, 0, 1 }, 1795 { 0, 1, 0, 1, 0, 1, 0, 1 }, 1796 { -1, 1, 0, 1, 0, 1, 0, 1 }, 1797 { 0, 1, 0, 1, -1, 1, 0, 1 }, 1798 }; 1799 1800 /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */ 1801 switch (rotation & DRM_MODE_ROTATE_MASK) { 1802 default: 1803 case DRM_MODE_ROTATE_0: 1804 idx = 0; 1805 break; 1806 case DRM_MODE_ROTATE_90: 1807 idx = 3; 1808 break; 1809 case DRM_MODE_ROTATE_180: 1810 idx = 2; 1811 break; 1812 case DRM_MODE_ROTATE_270: 1813 idx = 1; 1814 break; 1815 } 1816 1817 switch (fourcc) { 1818 case DRM_FORMAT_NV12: 1819 if (ilace) 1820 accu_table = accu_nv12_ilace; 1821 else 1822 accu_table = accu_nv12; 1823 break; 1824 case DRM_FORMAT_YUYV: 1825 case DRM_FORMAT_UYVY: 1826 accu_table = accu_yuv; 1827 break; 1828 default: 1829 BUG(); 1830 return; 1831 } 1832 1833 accu_val = &accu_table[idx]; 1834 1835 chroma_hinc = 1024 * orig_width / out_width; 1836 chroma_vinc = 1024 * orig_height / out_height; 1837 1838 h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024; 1839 h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024; 1840 v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024; 1841 v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024; 1842 1843 dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0); 1844 dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1); 1845 } 1846 1847 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc, 1848 enum omap_plane_id plane, 1849 u16 orig_width, u16 orig_height, 1850 u16 out_width, u16 out_height, 1851 bool ilace, bool five_taps, 1852 bool fieldmode, u32 fourcc, 1853 u8 rotation) 1854 { 1855 int accu0 = 0; 1856 int accu1 = 0; 1857 u32 l; 1858 1859 dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height, 1860 out_width, out_height, five_taps, 1861 rotation, DISPC_COLOR_COMPONENT_RGB_Y); 1862 l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); 1863 1864 /* RESIZEENABLE and VERTICALTAPS */ 1865 l &= ~((0x3 << 5) | (0x1 << 21)); 1866 l |= (orig_width != out_width) ? (1 << 5) : 0; 1867 l |= (orig_height != out_height) ? (1 << 6) : 0; 1868 l |= five_taps ? (1 << 21) : 0; 1869 1870 /* VRESIZECONF and HRESIZECONF */ 1871 if (dispc_has_feature(dispc, FEAT_RESIZECONF)) { 1872 l &= ~(0x3 << 7); 1873 l |= (orig_width <= out_width) ? 0 : (1 << 7); 1874 l |= (orig_height <= out_height) ? 0 : (1 << 8); 1875 } 1876 1877 /* LINEBUFFERSPLIT */ 1878 if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) { 1879 l &= ~(0x1 << 22); 1880 l |= five_taps ? (1 << 22) : 0; 1881 } 1882 1883 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l); 1884 1885 /* 1886 * field 0 = even field = bottom field 1887 * field 1 = odd field = top field 1888 */ 1889 if (ilace && !fieldmode) { 1890 accu1 = 0; 1891 accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff; 1892 if (accu0 >= 1024/2) { 1893 accu1 = 1024/2; 1894 accu0 -= accu1; 1895 } 1896 } 1897 1898 dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0); 1899 dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1); 1900 } 1901 1902 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc, 1903 enum omap_plane_id plane, 1904 u16 orig_width, u16 orig_height, 1905 u16 out_width, u16 out_height, 1906 bool ilace, bool five_taps, 1907 bool fieldmode, u32 fourcc, 1908 u8 rotation) 1909 { 1910 int scale_x = out_width != orig_width; 1911 int scale_y = out_height != orig_height; 1912 bool chroma_upscale = plane != OMAP_DSS_WB; 1913 1914 if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) 1915 return; 1916 1917 if (!format_is_yuv(fourcc)) { 1918 /* reset chroma resampling for RGB formats */ 1919 if (plane != OMAP_DSS_WB) 1920 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 1921 0, 8, 8); 1922 return; 1923 } 1924 1925 dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width, 1926 out_height, ilace, fourcc, rotation); 1927 1928 switch (fourcc) { 1929 case DRM_FORMAT_NV12: 1930 if (chroma_upscale) { 1931 /* UV is subsampled by 2 horizontally and vertically */ 1932 orig_height >>= 1; 1933 orig_width >>= 1; 1934 } else { 1935 /* UV is downsampled by 2 horizontally and vertically */ 1936 orig_height <<= 1; 1937 orig_width <<= 1; 1938 } 1939 1940 break; 1941 case DRM_FORMAT_YUYV: 1942 case DRM_FORMAT_UYVY: 1943 /* For YUV422 with 90/270 rotation, we don't upsample chroma */ 1944 if (!drm_rotation_90_or_270(rotation)) { 1945 if (chroma_upscale) 1946 /* UV is subsampled by 2 horizontally */ 1947 orig_width >>= 1; 1948 else 1949 /* UV is downsampled by 2 horizontally */ 1950 orig_width <<= 1; 1951 } 1952 1953 /* must use FIR for YUV422 if rotated */ 1954 if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0) 1955 scale_x = scale_y = true; 1956 1957 break; 1958 default: 1959 BUG(); 1960 return; 1961 } 1962 1963 if (out_width != orig_width) 1964 scale_x = true; 1965 if (out_height != orig_height) 1966 scale_y = true; 1967 1968 dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height, 1969 out_width, out_height, five_taps, 1970 rotation, DISPC_COLOR_COMPONENT_UV); 1971 1972 if (plane != OMAP_DSS_WB) 1973 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 1974 (scale_x || scale_y) ? 1 : 0, 8, 8); 1975 1976 /* set H scaling */ 1977 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5); 1978 /* set V scaling */ 1979 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6); 1980 } 1981 1982 static void dispc_ovl_set_scaling(struct dispc_device *dispc, 1983 enum omap_plane_id plane, 1984 u16 orig_width, u16 orig_height, 1985 u16 out_width, u16 out_height, 1986 bool ilace, bool five_taps, 1987 bool fieldmode, u32 fourcc, 1988 u8 rotation) 1989 { 1990 BUG_ON(plane == OMAP_DSS_GFX); 1991 1992 dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height, 1993 out_width, out_height, ilace, five_taps, 1994 fieldmode, fourcc, rotation); 1995 1996 dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height, 1997 out_width, out_height, ilace, five_taps, 1998 fieldmode, fourcc, rotation); 1999 } 2000 2001 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc, 2002 enum omap_plane_id plane, u8 rotation, 2003 enum omap_dss_rotation_type rotation_type, 2004 u32 fourcc) 2005 { 2006 bool row_repeat = false; 2007 int vidrot = 0; 2008 2009 /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */ 2010 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) { 2011 2012 if (rotation & DRM_MODE_REFLECT_X) { 2013 switch (rotation & DRM_MODE_ROTATE_MASK) { 2014 case DRM_MODE_ROTATE_0: 2015 vidrot = 2; 2016 break; 2017 case DRM_MODE_ROTATE_90: 2018 vidrot = 1; 2019 break; 2020 case DRM_MODE_ROTATE_180: 2021 vidrot = 0; 2022 break; 2023 case DRM_MODE_ROTATE_270: 2024 vidrot = 3; 2025 break; 2026 } 2027 } else { 2028 switch (rotation & DRM_MODE_ROTATE_MASK) { 2029 case DRM_MODE_ROTATE_0: 2030 vidrot = 0; 2031 break; 2032 case DRM_MODE_ROTATE_90: 2033 vidrot = 3; 2034 break; 2035 case DRM_MODE_ROTATE_180: 2036 vidrot = 2; 2037 break; 2038 case DRM_MODE_ROTATE_270: 2039 vidrot = 1; 2040 break; 2041 } 2042 } 2043 2044 if (drm_rotation_90_or_270(rotation)) 2045 row_repeat = true; 2046 else 2047 row_repeat = false; 2048 } 2049 2050 /* 2051 * OMAP4/5 Errata i631: 2052 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra 2053 * rows beyond the framebuffer, which may cause OCP error. 2054 */ 2055 if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER) 2056 vidrot = 1; 2057 2058 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12); 2059 if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE)) 2060 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 2061 row_repeat ? 1 : 0, 18, 18); 2062 2063 if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) { 2064 bool doublestride = 2065 fourcc == DRM_FORMAT_NV12 && 2066 rotation_type == OMAP_DSS_ROT_TILER && 2067 !drm_rotation_90_or_270(rotation); 2068 2069 /* DOUBLESTRIDE */ 2070 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 2071 doublestride, 22, 22); 2072 } 2073 } 2074 2075 static int color_mode_to_bpp(u32 fourcc) 2076 { 2077 switch (fourcc) { 2078 case DRM_FORMAT_NV12: 2079 return 8; 2080 case DRM_FORMAT_RGBX4444: 2081 case DRM_FORMAT_RGB565: 2082 case DRM_FORMAT_ARGB4444: 2083 case DRM_FORMAT_YUYV: 2084 case DRM_FORMAT_UYVY: 2085 case DRM_FORMAT_RGBA4444: 2086 case DRM_FORMAT_XRGB4444: 2087 case DRM_FORMAT_ARGB1555: 2088 case DRM_FORMAT_XRGB1555: 2089 return 16; 2090 case DRM_FORMAT_RGB888: 2091 return 24; 2092 case DRM_FORMAT_XRGB8888: 2093 case DRM_FORMAT_ARGB8888: 2094 case DRM_FORMAT_RGBA8888: 2095 case DRM_FORMAT_RGBX8888: 2096 return 32; 2097 default: 2098 BUG(); 2099 return 0; 2100 } 2101 } 2102 2103 static s32 pixinc(int pixels, u8 ps) 2104 { 2105 if (pixels == 1) 2106 return 1; 2107 else if (pixels > 1) 2108 return 1 + (pixels - 1) * ps; 2109 else if (pixels < 0) 2110 return 1 - (-pixels + 1) * ps; 2111 else 2112 BUG(); 2113 return 0; 2114 } 2115 2116 static void calc_offset(u16 screen_width, u16 width, 2117 u32 fourcc, bool fieldmode, unsigned int field_offset, 2118 unsigned int *offset0, unsigned int *offset1, 2119 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim, 2120 enum omap_dss_rotation_type rotation_type, u8 rotation) 2121 { 2122 u8 ps; 2123 2124 ps = color_mode_to_bpp(fourcc) / 8; 2125 2126 DSSDBG("scrw %d, width %d\n", screen_width, width); 2127 2128 if (rotation_type == OMAP_DSS_ROT_TILER && 2129 (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) && 2130 drm_rotation_90_or_270(rotation)) { 2131 /* 2132 * HACK: ROW_INC needs to be calculated with TILER units. 2133 * We get such 'screen_width' that multiplying it with the 2134 * YUV422 pixel size gives the correct TILER container width. 2135 * However, 'width' is in pixels and multiplying it with YUV422 2136 * pixel size gives incorrect result. We thus multiply it here 2137 * with 2 to match the 32 bit TILER unit size. 2138 */ 2139 width *= 2; 2140 } 2141 2142 /* 2143 * field 0 = even field = bottom field 2144 * field 1 = odd field = top field 2145 */ 2146 *offset0 = field_offset * screen_width * ps; 2147 *offset1 = 0; 2148 2149 *row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) + 2150 (fieldmode ? screen_width : 0), ps); 2151 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) 2152 *pix_inc = pixinc(x_predecim, 2 * ps); 2153 else 2154 *pix_inc = pixinc(x_predecim, ps); 2155 } 2156 2157 /* 2158 * This function is used to avoid synclosts in OMAP3, because of some 2159 * undocumented horizontal position and timing related limitations. 2160 */ 2161 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk, 2162 const struct videomode *vm, u16 pos_x, 2163 u16 width, u16 height, u16 out_width, u16 out_height, 2164 bool five_taps) 2165 { 2166 const int ds = DIV_ROUND_UP(height, out_height); 2167 unsigned long nonactive; 2168 static const u8 limits[3] = { 8, 10, 20 }; 2169 u64 val, blank; 2170 int i; 2171 2172 nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len + 2173 vm->hback_porch - out_width; 2174 2175 i = 0; 2176 if (out_height < height) 2177 i++; 2178 if (out_width < width) 2179 i++; 2180 blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) * 2181 lclk, pclk); 2182 DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]); 2183 if (blank <= limits[i]) 2184 return -EINVAL; 2185 2186 /* FIXME add checks for 3-tap filter once the limitations are known */ 2187 if (!five_taps) 2188 return 0; 2189 2190 /* 2191 * Pixel data should be prepared before visible display point starts. 2192 * So, atleast DS-2 lines must have already been fetched by DISPC 2193 * during nonactive - pos_x period. 2194 */ 2195 val = div_u64((u64)(nonactive - pos_x) * lclk, pclk); 2196 DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n", 2197 val, max(0, ds - 2) * width); 2198 if (val < max(0, ds - 2) * width) 2199 return -EINVAL; 2200 2201 /* 2202 * All lines need to be refilled during the nonactive period of which 2203 * only one line can be loaded during the active period. So, atleast 2204 * DS - 1 lines should be loaded during nonactive period. 2205 */ 2206 val = div_u64((u64)nonactive * lclk, pclk); 2207 DSSDBG("nonactive * pcd = %llu, max(0, DS - 1) * width = %d\n", 2208 val, max(0, ds - 1) * width); 2209 if (val < max(0, ds - 1) * width) 2210 return -EINVAL; 2211 2212 return 0; 2213 } 2214 2215 static unsigned long calc_core_clk_five_taps(unsigned long pclk, 2216 const struct videomode *vm, u16 width, 2217 u16 height, u16 out_width, u16 out_height, 2218 u32 fourcc) 2219 { 2220 u32 core_clk = 0; 2221 u64 tmp; 2222 2223 if (height <= out_height && width <= out_width) 2224 return (unsigned long) pclk; 2225 2226 if (height > out_height) { 2227 unsigned int ppl = vm->hactive; 2228 2229 tmp = (u64)pclk * height * out_width; 2230 do_div(tmp, 2 * out_height * ppl); 2231 core_clk = tmp; 2232 2233 if (height > 2 * out_height) { 2234 if (ppl == out_width) 2235 return 0; 2236 2237 tmp = (u64)pclk * (height - 2 * out_height) * out_width; 2238 do_div(tmp, 2 * out_height * (ppl - out_width)); 2239 core_clk = max_t(u32, core_clk, tmp); 2240 } 2241 } 2242 2243 if (width > out_width) { 2244 tmp = (u64)pclk * width; 2245 do_div(tmp, out_width); 2246 core_clk = max_t(u32, core_clk, tmp); 2247 2248 if (fourcc == DRM_FORMAT_XRGB8888) 2249 core_clk <<= 1; 2250 } 2251 2252 return core_clk; 2253 } 2254 2255 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width, 2256 u16 height, u16 out_width, u16 out_height, bool mem_to_mem) 2257 { 2258 if (height > out_height && width > out_width) 2259 return pclk * 4; 2260 else 2261 return pclk * 2; 2262 } 2263 2264 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width, 2265 u16 height, u16 out_width, u16 out_height, bool mem_to_mem) 2266 { 2267 unsigned int hf, vf; 2268 2269 /* 2270 * FIXME how to determine the 'A' factor 2271 * for the no downscaling case ? 2272 */ 2273 2274 if (width > 3 * out_width) 2275 hf = 4; 2276 else if (width > 2 * out_width) 2277 hf = 3; 2278 else if (width > out_width) 2279 hf = 2; 2280 else 2281 hf = 1; 2282 if (height > out_height) 2283 vf = 2; 2284 else 2285 vf = 1; 2286 2287 return pclk * vf * hf; 2288 } 2289 2290 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width, 2291 u16 height, u16 out_width, u16 out_height, bool mem_to_mem) 2292 { 2293 /* 2294 * If the overlay/writeback is in mem to mem mode, there are no 2295 * downscaling limitations with respect to pixel clock, return 1 as 2296 * required core clock to represent that we have sufficient enough 2297 * core clock to do maximum downscaling 2298 */ 2299 if (mem_to_mem) 2300 return 1; 2301 2302 if (width > out_width) 2303 return DIV_ROUND_UP(pclk, out_width) * width; 2304 else 2305 return pclk; 2306 } 2307 2308 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc, 2309 unsigned long pclk, unsigned long lclk, 2310 const struct videomode *vm, 2311 u16 width, u16 height, 2312 u16 out_width, u16 out_height, 2313 u32 fourcc, bool *five_taps, 2314 int *x_predecim, int *y_predecim, 2315 int *decim_x, int *decim_y, 2316 u16 pos_x, unsigned long *core_clk, 2317 bool mem_to_mem) 2318 { 2319 int error; 2320 u16 in_width, in_height; 2321 int min_factor = min(*decim_x, *decim_y); 2322 const int maxsinglelinewidth = dispc->feat->max_line_width; 2323 2324 *five_taps = false; 2325 2326 do { 2327 in_height = height / *decim_y; 2328 in_width = width / *decim_x; 2329 *core_clk = dispc->feat->calc_core_clk(pclk, in_width, 2330 in_height, out_width, out_height, mem_to_mem); 2331 error = (in_width > maxsinglelinewidth || !*core_clk || 2332 *core_clk > dispc_core_clk_rate(dispc)); 2333 if (error) { 2334 if (*decim_x == *decim_y) { 2335 *decim_x = min_factor; 2336 ++*decim_y; 2337 } else { 2338 swap(*decim_x, *decim_y); 2339 if (*decim_x < *decim_y) 2340 ++*decim_x; 2341 } 2342 } 2343 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error); 2344 2345 if (error) { 2346 DSSERR("failed to find scaling settings\n"); 2347 return -EINVAL; 2348 } 2349 2350 if (in_width > maxsinglelinewidth) { 2351 DSSERR("Cannot scale max input width exceeded\n"); 2352 return -EINVAL; 2353 } 2354 return 0; 2355 } 2356 2357 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc, 2358 unsigned long pclk, unsigned long lclk, 2359 const struct videomode *vm, 2360 u16 width, u16 height, 2361 u16 out_width, u16 out_height, 2362 u32 fourcc, bool *five_taps, 2363 int *x_predecim, int *y_predecim, 2364 int *decim_x, int *decim_y, 2365 u16 pos_x, unsigned long *core_clk, 2366 bool mem_to_mem) 2367 { 2368 int error; 2369 u16 in_width, in_height; 2370 const int maxsinglelinewidth = dispc->feat->max_line_width; 2371 2372 do { 2373 in_height = height / *decim_y; 2374 in_width = width / *decim_x; 2375 *five_taps = in_height > out_height; 2376 2377 if (in_width > maxsinglelinewidth) 2378 if (in_height > out_height && 2379 in_height < out_height * 2) 2380 *five_taps = false; 2381 again: 2382 if (*five_taps) 2383 *core_clk = calc_core_clk_five_taps(pclk, vm, 2384 in_width, in_height, out_width, 2385 out_height, fourcc); 2386 else 2387 *core_clk = dispc->feat->calc_core_clk(pclk, in_width, 2388 in_height, out_width, out_height, 2389 mem_to_mem); 2390 2391 error = check_horiz_timing_omap3(pclk, lclk, vm, 2392 pos_x, in_width, in_height, out_width, 2393 out_height, *five_taps); 2394 if (error && *five_taps) { 2395 *five_taps = false; 2396 goto again; 2397 } 2398 2399 error = (error || in_width > maxsinglelinewidth * 2 || 2400 (in_width > maxsinglelinewidth && *five_taps) || 2401 !*core_clk || *core_clk > dispc_core_clk_rate(dispc)); 2402 2403 if (!error) { 2404 /* verify that we're inside the limits of scaler */ 2405 if (in_width / 4 > out_width) 2406 error = 1; 2407 2408 if (*five_taps) { 2409 if (in_height / 4 > out_height) 2410 error = 1; 2411 } else { 2412 if (in_height / 2 > out_height) 2413 error = 1; 2414 } 2415 } 2416 2417 if (error) 2418 ++*decim_y; 2419 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error); 2420 2421 if (error) { 2422 DSSERR("failed to find scaling settings\n"); 2423 return -EINVAL; 2424 } 2425 2426 if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width, 2427 in_height, out_width, out_height, *five_taps)) { 2428 DSSERR("horizontal timing too tight\n"); 2429 return -EINVAL; 2430 } 2431 2432 if (in_width > (maxsinglelinewidth * 2)) { 2433 DSSERR("Cannot setup scaling\n"); 2434 DSSERR("width exceeds maximum width possible\n"); 2435 return -EINVAL; 2436 } 2437 2438 if (in_width > maxsinglelinewidth && *five_taps) { 2439 DSSERR("cannot setup scaling with five taps\n"); 2440 return -EINVAL; 2441 } 2442 return 0; 2443 } 2444 2445 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc, 2446 unsigned long pclk, unsigned long lclk, 2447 const struct videomode *vm, 2448 u16 width, u16 height, 2449 u16 out_width, u16 out_height, 2450 u32 fourcc, bool *five_taps, 2451 int *x_predecim, int *y_predecim, 2452 int *decim_x, int *decim_y, 2453 u16 pos_x, unsigned long *core_clk, 2454 bool mem_to_mem) 2455 { 2456 u16 in_width, in_width_max; 2457 int decim_x_min = *decim_x; 2458 u16 in_height = height / *decim_y; 2459 const int maxsinglelinewidth = dispc->feat->max_line_width; 2460 const int maxdownscale = dispc->feat->max_downscale; 2461 2462 if (mem_to_mem) { 2463 in_width_max = out_width * maxdownscale; 2464 } else { 2465 in_width_max = dispc_core_clk_rate(dispc) 2466 / DIV_ROUND_UP(pclk, out_width); 2467 } 2468 2469 *decim_x = DIV_ROUND_UP(width, in_width_max); 2470 2471 *decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min; 2472 if (*decim_x > *x_predecim) 2473 return -EINVAL; 2474 2475 do { 2476 in_width = width / *decim_x; 2477 } while (*decim_x <= *x_predecim && 2478 in_width > maxsinglelinewidth && ++*decim_x); 2479 2480 if (in_width > maxsinglelinewidth) { 2481 DSSERR("Cannot scale width exceeds max line width\n"); 2482 return -EINVAL; 2483 } 2484 2485 if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) { 2486 /* 2487 * Let's disable all scaling that requires horizontal 2488 * decimation with higher factor than 4, until we have 2489 * better estimates of what we can and can not 2490 * do. However, NV12 color format appears to work Ok 2491 * with all decimation factors. 2492 * 2493 * When decimating horizontally by more that 4 the dss 2494 * is not able to fetch the data in burst mode. When 2495 * this happens it is hard to tell if there enough 2496 * bandwidth. Despite what theory says this appears to 2497 * be true also for 16-bit color formats. 2498 */ 2499 DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x); 2500 2501 return -EINVAL; 2502 } 2503 2504 *core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height, 2505 out_width, out_height, mem_to_mem); 2506 return 0; 2507 } 2508 2509 #define DIV_FRAC(dividend, divisor) \ 2510 ((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100)) 2511 2512 static int dispc_ovl_calc_scaling(struct dispc_device *dispc, 2513 enum omap_plane_id plane, 2514 unsigned long pclk, unsigned long lclk, 2515 enum omap_overlay_caps caps, 2516 const struct videomode *vm, 2517 u16 width, u16 height, 2518 u16 out_width, u16 out_height, 2519 u32 fourcc, bool *five_taps, 2520 int *x_predecim, int *y_predecim, u16 pos_x, 2521 enum omap_dss_rotation_type rotation_type, 2522 bool mem_to_mem) 2523 { 2524 int maxhdownscale = dispc->feat->max_downscale; 2525 int maxvdownscale = dispc->feat->max_downscale; 2526 const int max_decim_limit = 16; 2527 unsigned long core_clk = 0; 2528 int decim_x, decim_y, ret; 2529 2530 if (width == out_width && height == out_height) 2531 return 0; 2532 2533 if (plane == OMAP_DSS_WB) { 2534 switch (fourcc) { 2535 case DRM_FORMAT_NV12: 2536 maxhdownscale = maxvdownscale = 2; 2537 break; 2538 case DRM_FORMAT_YUYV: 2539 case DRM_FORMAT_UYVY: 2540 maxhdownscale = 2; 2541 maxvdownscale = 4; 2542 break; 2543 default: 2544 break; 2545 } 2546 } 2547 if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) { 2548 DSSERR("cannot calculate scaling settings: pclk is zero\n"); 2549 return -EINVAL; 2550 } 2551 2552 if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0) 2553 return -EINVAL; 2554 2555 if (mem_to_mem) { 2556 *x_predecim = *y_predecim = 1; 2557 } else { 2558 *x_predecim = max_decim_limit; 2559 *y_predecim = (rotation_type == OMAP_DSS_ROT_TILER && 2560 dispc_has_feature(dispc, FEAT_BURST_2D)) ? 2561 2 : max_decim_limit; 2562 } 2563 2564 decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale); 2565 decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale); 2566 2567 if (decim_x > *x_predecim || out_width > width * 8) 2568 return -EINVAL; 2569 2570 if (decim_y > *y_predecim || out_height > height * 8) 2571 return -EINVAL; 2572 2573 ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height, 2574 out_width, out_height, fourcc, 2575 five_taps, x_predecim, y_predecim, 2576 &decim_x, &decim_y, pos_x, &core_clk, 2577 mem_to_mem); 2578 if (ret) 2579 return ret; 2580 2581 DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n", 2582 width, height, 2583 out_width, out_height, 2584 out_width / width, DIV_FRAC(out_width, width), 2585 out_height / height, DIV_FRAC(out_height, height), 2586 2587 decim_x, decim_y, 2588 width / decim_x, height / decim_y, 2589 out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x), 2590 out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y), 2591 2592 *five_taps ? 5 : 3, 2593 core_clk, dispc_core_clk_rate(dispc)); 2594 2595 if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) { 2596 DSSERR("failed to set up scaling, " 2597 "required core clk rate = %lu Hz, " 2598 "current core clk rate = %lu Hz\n", 2599 core_clk, dispc_core_clk_rate(dispc)); 2600 return -EINVAL; 2601 } 2602 2603 *x_predecim = decim_x; 2604 *y_predecim = decim_y; 2605 return 0; 2606 } 2607 2608 static int dispc_ovl_setup_common(struct dispc_device *dispc, 2609 enum omap_plane_id plane, 2610 enum omap_overlay_caps caps, 2611 u32 paddr, u32 p_uv_addr, 2612 u16 screen_width, int pos_x, int pos_y, 2613 u16 width, u16 height, 2614 u16 out_width, u16 out_height, 2615 u32 fourcc, u8 rotation, u8 zorder, 2616 u8 pre_mult_alpha, u8 global_alpha, 2617 enum omap_dss_rotation_type rotation_type, 2618 bool replication, const struct videomode *vm, 2619 bool mem_to_mem) 2620 { 2621 bool five_taps = true; 2622 bool fieldmode = false; 2623 int r, cconv = 0; 2624 unsigned int offset0, offset1; 2625 s32 row_inc; 2626 s32 pix_inc; 2627 u16 frame_width, frame_height; 2628 unsigned int field_offset = 0; 2629 u16 in_height = height; 2630 u16 in_width = width; 2631 int x_predecim = 1, y_predecim = 1; 2632 bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED); 2633 unsigned long pclk = dispc_plane_pclk_rate(dispc, plane); 2634 unsigned long lclk = dispc_plane_lclk_rate(dispc, plane); 2635 2636 /* when setting up WB, dispc_plane_pclk_rate() returns 0 */ 2637 if (plane == OMAP_DSS_WB) 2638 pclk = vm->pixelclock; 2639 2640 if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER) 2641 return -EINVAL; 2642 2643 if (format_is_yuv(fourcc) && (in_width & 1)) { 2644 DSSERR("input width %d is not even for YUV format\n", in_width); 2645 return -EINVAL; 2646 } 2647 2648 out_width = out_width == 0 ? width : out_width; 2649 out_height = out_height == 0 ? height : out_height; 2650 2651 if (plane != OMAP_DSS_WB) { 2652 if (ilace && height == out_height) 2653 fieldmode = true; 2654 2655 if (ilace) { 2656 if (fieldmode) 2657 in_height /= 2; 2658 pos_y /= 2; 2659 out_height /= 2; 2660 2661 DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n", 2662 in_height, pos_y, out_height); 2663 } 2664 } 2665 2666 if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc)) 2667 return -EINVAL; 2668 2669 r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width, 2670 in_height, out_width, out_height, fourcc, 2671 &five_taps, &x_predecim, &y_predecim, pos_x, 2672 rotation_type, mem_to_mem); 2673 if (r) 2674 return r; 2675 2676 in_width = in_width / x_predecim; 2677 in_height = in_height / y_predecim; 2678 2679 if (x_predecim > 1 || y_predecim > 1) 2680 DSSDBG("predecimation %d x %x, new input size %d x %d\n", 2681 x_predecim, y_predecim, in_width, in_height); 2682 2683 if (format_is_yuv(fourcc) && (in_width & 1)) { 2684 DSSDBG("predecimated input width is not even for YUV format\n"); 2685 DSSDBG("adjusting input width %d -> %d\n", 2686 in_width, in_width & ~1); 2687 2688 in_width &= ~1; 2689 } 2690 2691 if (format_is_yuv(fourcc)) 2692 cconv = 1; 2693 2694 if (ilace && !fieldmode) { 2695 /* 2696 * when downscaling the bottom field may have to start several 2697 * source lines below the top field. Unfortunately ACCUI 2698 * registers will only hold the fractional part of the offset 2699 * so the integer part must be added to the base address of the 2700 * bottom field. 2701 */ 2702 if (!in_height || in_height == out_height) 2703 field_offset = 0; 2704 else 2705 field_offset = in_height / out_height / 2; 2706 } 2707 2708 /* Fields are independent but interleaved in memory. */ 2709 if (fieldmode) 2710 field_offset = 1; 2711 2712 offset0 = 0; 2713 offset1 = 0; 2714 row_inc = 0; 2715 pix_inc = 0; 2716 2717 if (plane == OMAP_DSS_WB) { 2718 frame_width = out_width; 2719 frame_height = out_height; 2720 } else { 2721 frame_width = in_width; 2722 frame_height = height; 2723 } 2724 2725 calc_offset(screen_width, frame_width, 2726 fourcc, fieldmode, field_offset, 2727 &offset0, &offset1, &row_inc, &pix_inc, 2728 x_predecim, y_predecim, 2729 rotation_type, rotation); 2730 2731 DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n", 2732 offset0, offset1, row_inc, pix_inc); 2733 2734 dispc_ovl_set_color_mode(dispc, plane, fourcc); 2735 2736 dispc_ovl_configure_burst_type(dispc, plane, rotation_type); 2737 2738 if (dispc->feat->reverse_ilace_field_order) 2739 swap(offset0, offset1); 2740 2741 dispc_ovl_set_ba0(dispc, plane, paddr + offset0); 2742 dispc_ovl_set_ba1(dispc, plane, paddr + offset1); 2743 2744 if (fourcc == DRM_FORMAT_NV12) { 2745 dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0); 2746 dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1); 2747 } 2748 2749 if (dispc->feat->last_pixel_inc_missing) 2750 row_inc += pix_inc - 1; 2751 2752 dispc_ovl_set_row_inc(dispc, plane, row_inc); 2753 dispc_ovl_set_pix_inc(dispc, plane, pix_inc); 2754 2755 DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width, 2756 in_height, out_width, out_height); 2757 2758 dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y); 2759 2760 dispc_ovl_set_input_size(dispc, plane, in_width, in_height); 2761 2762 if (caps & OMAP_DSS_OVL_CAP_SCALE) { 2763 dispc_ovl_set_scaling(dispc, plane, in_width, in_height, 2764 out_width, out_height, ilace, five_taps, 2765 fieldmode, fourcc, rotation); 2766 dispc_ovl_set_output_size(dispc, plane, out_width, out_height); 2767 dispc_ovl_set_vid_color_conv(dispc, plane, cconv); 2768 } 2769 2770 dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type, 2771 fourcc); 2772 2773 dispc_ovl_set_zorder(dispc, plane, caps, zorder); 2774 dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha); 2775 dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha); 2776 2777 dispc_ovl_enable_replication(dispc, plane, caps, replication); 2778 2779 return 0; 2780 } 2781 2782 static int dispc_ovl_setup(struct dispc_device *dispc, 2783 enum omap_plane_id plane, 2784 const struct omap_overlay_info *oi, 2785 const struct videomode *vm, bool mem_to_mem, 2786 enum omap_channel channel) 2787 { 2788 int r; 2789 enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane]; 2790 const bool replication = true; 2791 2792 DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->" 2793 " %dx%d, cmode %x, rot %d, chan %d repl %d\n", 2794 plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x, 2795 oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height, 2796 oi->fourcc, oi->rotation, channel, replication); 2797 2798 dispc_ovl_set_channel_out(dispc, plane, channel); 2799 2800 r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr, 2801 oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height, 2802 oi->out_width, oi->out_height, oi->fourcc, oi->rotation, 2803 oi->zorder, oi->pre_mult_alpha, oi->global_alpha, 2804 oi->rotation_type, replication, vm, mem_to_mem); 2805 2806 return r; 2807 } 2808 2809 static int dispc_wb_setup(struct dispc_device *dispc, 2810 const struct omap_dss_writeback_info *wi, 2811 bool mem_to_mem, const struct videomode *vm, 2812 enum dss_writeback_channel channel_in) 2813 { 2814 int r; 2815 u32 l; 2816 enum omap_plane_id plane = OMAP_DSS_WB; 2817 const int pos_x = 0, pos_y = 0; 2818 const u8 zorder = 0, global_alpha = 0; 2819 const bool replication = true; 2820 bool truncation; 2821 int in_width = vm->hactive; 2822 int in_height = vm->vactive; 2823 enum omap_overlay_caps caps = 2824 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA; 2825 2826 if (vm->flags & DISPLAY_FLAGS_INTERLACED) 2827 in_height /= 2; 2828 2829 DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, " 2830 "rot %d\n", wi->paddr, wi->p_uv_addr, in_width, 2831 in_height, wi->width, wi->height, wi->fourcc, wi->rotation); 2832 2833 r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr, 2834 wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width, 2835 wi->height, wi->fourcc, wi->rotation, zorder, 2836 wi->pre_mult_alpha, global_alpha, wi->rotation_type, 2837 replication, vm, mem_to_mem); 2838 if (r) 2839 return r; 2840 2841 switch (wi->fourcc) { 2842 case DRM_FORMAT_RGB565: 2843 case DRM_FORMAT_RGB888: 2844 case DRM_FORMAT_ARGB4444: 2845 case DRM_FORMAT_RGBA4444: 2846 case DRM_FORMAT_RGBX4444: 2847 case DRM_FORMAT_ARGB1555: 2848 case DRM_FORMAT_XRGB1555: 2849 case DRM_FORMAT_XRGB4444: 2850 truncation = true; 2851 break; 2852 default: 2853 truncation = false; 2854 break; 2855 } 2856 2857 /* setup extra DISPC_WB_ATTRIBUTES */ 2858 l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane)); 2859 l = FLD_MOD(l, truncation, 10, 10); /* TRUNCATIONENABLE */ 2860 l = FLD_MOD(l, channel_in, 18, 16); /* CHANNELIN */ 2861 l = FLD_MOD(l, mem_to_mem, 19, 19); /* WRITEBACKMODE */ 2862 if (mem_to_mem) 2863 l = FLD_MOD(l, 1, 26, 24); /* CAPTUREMODE */ 2864 else 2865 l = FLD_MOD(l, 0, 26, 24); /* CAPTUREMODE */ 2866 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l); 2867 2868 if (mem_to_mem) { 2869 /* WBDELAYCOUNT */ 2870 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0); 2871 } else { 2872 u32 wbdelay; 2873 2874 if (channel_in == DSS_WB_TV_MGR) 2875 wbdelay = vm->vsync_len + vm->vback_porch; 2876 else 2877 wbdelay = vm->vfront_porch + vm->vsync_len + 2878 vm->vback_porch; 2879 2880 if (vm->flags & DISPLAY_FLAGS_INTERLACED) 2881 wbdelay /= 2; 2882 2883 wbdelay = min(wbdelay, 255u); 2884 2885 /* WBDELAYCOUNT */ 2886 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0); 2887 } 2888 2889 return 0; 2890 } 2891 2892 static bool dispc_has_writeback(struct dispc_device *dispc) 2893 { 2894 return dispc->feat->has_writeback; 2895 } 2896 2897 static int dispc_ovl_enable(struct dispc_device *dispc, 2898 enum omap_plane_id plane, bool enable) 2899 { 2900 DSSDBG("dispc_enable_plane %d, %d\n", plane, enable); 2901 2902 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0); 2903 2904 return 0; 2905 } 2906 2907 static enum omap_dss_output_id 2908 dispc_mgr_get_supported_outputs(struct dispc_device *dispc, 2909 enum omap_channel channel) 2910 { 2911 return dss_get_supported_outputs(dispc->dss, channel); 2912 } 2913 2914 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc, 2915 bool act_high) 2916 { 2917 if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL)) 2918 return; 2919 2920 REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29); 2921 } 2922 2923 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable) 2924 { 2925 if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL)) 2926 return; 2927 2928 REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28); 2929 } 2930 2931 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable) 2932 { 2933 if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE)) 2934 return; 2935 2936 REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27); 2937 } 2938 2939 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc, 2940 enum omap_channel channel, 2941 bool enable) 2942 { 2943 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable); 2944 } 2945 2946 2947 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc, 2948 enum omap_channel channel) 2949 { 2950 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1); 2951 } 2952 2953 static void dispc_set_loadmode(struct dispc_device *dispc, 2954 enum omap_dss_load_mode mode) 2955 { 2956 REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1); 2957 } 2958 2959 2960 static void dispc_mgr_set_default_color(struct dispc_device *dispc, 2961 enum omap_channel channel, u32 color) 2962 { 2963 dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color); 2964 } 2965 2966 static void dispc_mgr_set_trans_key(struct dispc_device *dispc, 2967 enum omap_channel ch, 2968 enum omap_dss_trans_key_type type, 2969 u32 trans_key) 2970 { 2971 mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type); 2972 2973 dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key); 2974 } 2975 2976 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc, 2977 enum omap_channel ch, bool enable) 2978 { 2979 mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable); 2980 } 2981 2982 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc, 2983 enum omap_channel ch, 2984 bool enable) 2985 { 2986 if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER)) 2987 return; 2988 2989 if (ch == OMAP_DSS_CHANNEL_LCD) 2990 REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18); 2991 else if (ch == OMAP_DSS_CHANNEL_DIGIT) 2992 REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19); 2993 } 2994 2995 static void dispc_mgr_setup(struct dispc_device *dispc, 2996 enum omap_channel channel, 2997 const struct omap_overlay_manager_info *info) 2998 { 2999 dispc_mgr_set_default_color(dispc, channel, info->default_color); 3000 dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type, 3001 info->trans_key); 3002 dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled); 3003 dispc_mgr_enable_alpha_fixed_zorder(dispc, channel, 3004 info->partial_alpha_enabled); 3005 if (dispc_has_feature(dispc, FEAT_CPR)) { 3006 dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable); 3007 dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs); 3008 } 3009 } 3010 3011 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc, 3012 enum omap_channel channel, 3013 u8 data_lines) 3014 { 3015 int code; 3016 3017 switch (data_lines) { 3018 case 12: 3019 code = 0; 3020 break; 3021 case 16: 3022 code = 1; 3023 break; 3024 case 18: 3025 code = 2; 3026 break; 3027 case 24: 3028 code = 3; 3029 break; 3030 default: 3031 BUG(); 3032 return; 3033 } 3034 3035 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code); 3036 } 3037 3038 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc, 3039 enum dss_io_pad_mode mode) 3040 { 3041 u32 l; 3042 int gpout0, gpout1; 3043 3044 switch (mode) { 3045 case DSS_IO_PAD_MODE_RESET: 3046 gpout0 = 0; 3047 gpout1 = 0; 3048 break; 3049 case DSS_IO_PAD_MODE_RFBI: 3050 gpout0 = 1; 3051 gpout1 = 0; 3052 break; 3053 case DSS_IO_PAD_MODE_BYPASS: 3054 gpout0 = 1; 3055 gpout1 = 1; 3056 break; 3057 default: 3058 BUG(); 3059 return; 3060 } 3061 3062 l = dispc_read_reg(dispc, DISPC_CONTROL); 3063 l = FLD_MOD(l, gpout0, 15, 15); 3064 l = FLD_MOD(l, gpout1, 16, 16); 3065 dispc_write_reg(dispc, DISPC_CONTROL, l); 3066 } 3067 3068 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc, 3069 enum omap_channel channel, bool enable) 3070 { 3071 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable); 3072 } 3073 3074 static void dispc_mgr_set_lcd_config(struct dispc_device *dispc, 3075 enum omap_channel channel, 3076 const struct dss_lcd_mgr_config *config) 3077 { 3078 dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode); 3079 3080 dispc_mgr_enable_stallmode(dispc, channel, config->stallmode); 3081 dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck); 3082 3083 dispc_mgr_set_clock_div(dispc, channel, &config->clock_info); 3084 3085 dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width); 3086 3087 dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity); 3088 3089 dispc_mgr_set_lcd_type_tft(dispc, channel); 3090 } 3091 3092 static bool _dispc_mgr_size_ok(struct dispc_device *dispc, 3093 u16 width, u16 height) 3094 { 3095 return width <= dispc->feat->mgr_width_max && 3096 height <= dispc->feat->mgr_height_max; 3097 } 3098 3099 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc, 3100 int hsync_len, int hfp, int hbp, 3101 int vsw, int vfp, int vbp) 3102 { 3103 if (hsync_len < 1 || hsync_len > dispc->feat->sw_max || 3104 hfp < 1 || hfp > dispc->feat->hp_max || 3105 hbp < 1 || hbp > dispc->feat->hp_max || 3106 vsw < 1 || vsw > dispc->feat->sw_max || 3107 vfp < 0 || vfp > dispc->feat->vp_max || 3108 vbp < 0 || vbp > dispc->feat->vp_max) 3109 return false; 3110 return true; 3111 } 3112 3113 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc, 3114 enum omap_channel channel, 3115 unsigned long pclk) 3116 { 3117 if (dss_mgr_is_lcd(channel)) 3118 return pclk <= dispc->feat->max_lcd_pclk; 3119 else 3120 return pclk <= dispc->feat->max_tv_pclk; 3121 } 3122 3123 bool dispc_mgr_timings_ok(struct dispc_device *dispc, enum omap_channel channel, 3124 const struct videomode *vm) 3125 { 3126 if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive)) 3127 return false; 3128 3129 if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock)) 3130 return false; 3131 3132 if (dss_mgr_is_lcd(channel)) { 3133 /* TODO: OMAP4+ supports interlace for LCD outputs */ 3134 if (vm->flags & DISPLAY_FLAGS_INTERLACED) 3135 return false; 3136 3137 if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len, 3138 vm->hfront_porch, vm->hback_porch, 3139 vm->vsync_len, vm->vfront_porch, 3140 vm->vback_porch)) 3141 return false; 3142 } 3143 3144 return true; 3145 } 3146 3147 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc, 3148 enum omap_channel channel, 3149 const struct videomode *vm) 3150 { 3151 u32 timing_h, timing_v, l; 3152 bool onoff, rf, ipc, vs, hs, de; 3153 3154 timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) | 3155 FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) | 3156 FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20); 3157 timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) | 3158 FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) | 3159 FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20); 3160 3161 dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h); 3162 dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v); 3163 3164 if (vm->flags & DISPLAY_FLAGS_VSYNC_HIGH) 3165 vs = false; 3166 else 3167 vs = true; 3168 3169 if (vm->flags & DISPLAY_FLAGS_HSYNC_HIGH) 3170 hs = false; 3171 else 3172 hs = true; 3173 3174 if (vm->flags & DISPLAY_FLAGS_DE_HIGH) 3175 de = false; 3176 else 3177 de = true; 3178 3179 if (vm->flags & DISPLAY_FLAGS_PIXDATA_POSEDGE) 3180 ipc = false; 3181 else 3182 ipc = true; 3183 3184 /* always use the 'rf' setting */ 3185 onoff = true; 3186 3187 if (vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE) 3188 rf = true; 3189 else 3190 rf = false; 3191 3192 l = FLD_VAL(onoff, 17, 17) | 3193 FLD_VAL(rf, 16, 16) | 3194 FLD_VAL(de, 15, 15) | 3195 FLD_VAL(ipc, 14, 14) | 3196 FLD_VAL(hs, 13, 13) | 3197 FLD_VAL(vs, 12, 12); 3198 3199 /* always set ALIGN bit when available */ 3200 if (dispc->feat->supports_sync_align) 3201 l |= (1 << 18); 3202 3203 dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l); 3204 3205 if (dispc->syscon_pol) { 3206 const int shifts[] = { 3207 [OMAP_DSS_CHANNEL_LCD] = 0, 3208 [OMAP_DSS_CHANNEL_LCD2] = 1, 3209 [OMAP_DSS_CHANNEL_LCD3] = 2, 3210 }; 3211 3212 u32 mask, val; 3213 3214 mask = (1 << 0) | (1 << 3) | (1 << 6); 3215 val = (rf << 0) | (ipc << 3) | (onoff << 6); 3216 3217 mask <<= 16 + shifts[channel]; 3218 val <<= 16 + shifts[channel]; 3219 3220 regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset, 3221 mask, val); 3222 } 3223 } 3224 3225 static int vm_flag_to_int(enum display_flags flags, enum display_flags high, 3226 enum display_flags low) 3227 { 3228 if (flags & high) 3229 return 1; 3230 if (flags & low) 3231 return -1; 3232 return 0; 3233 } 3234 3235 /* change name to mode? */ 3236 static void dispc_mgr_set_timings(struct dispc_device *dispc, 3237 enum omap_channel channel, 3238 const struct videomode *vm) 3239 { 3240 unsigned int xtot, ytot; 3241 unsigned long ht, vt; 3242 struct videomode t = *vm; 3243 3244 DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive); 3245 3246 if (!dispc_mgr_timings_ok(dispc, channel, &t)) { 3247 BUG(); 3248 return; 3249 } 3250 3251 if (dss_mgr_is_lcd(channel)) { 3252 _dispc_mgr_set_lcd_timings(dispc, channel, &t); 3253 3254 xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch; 3255 ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch; 3256 3257 ht = vm->pixelclock / xtot; 3258 vt = vm->pixelclock / xtot / ytot; 3259 3260 DSSDBG("pck %lu\n", vm->pixelclock); 3261 DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n", 3262 t.hsync_len, t.hfront_porch, t.hback_porch, 3263 t.vsync_len, t.vfront_porch, t.vback_porch); 3264 DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n", 3265 vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW), 3266 vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW), 3267 vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE), 3268 vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW), 3269 vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE)); 3270 3271 DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt); 3272 } else { 3273 if (t.flags & DISPLAY_FLAGS_INTERLACED) 3274 t.vactive /= 2; 3275 3276 if (dispc->feat->supports_double_pixel) 3277 REG_FLD_MOD(dispc, DISPC_CONTROL, 3278 !!(t.flags & DISPLAY_FLAGS_DOUBLECLK), 3279 19, 17); 3280 } 3281 3282 dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive); 3283 } 3284 3285 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc, 3286 enum omap_channel channel, u16 lck_div, 3287 u16 pck_div) 3288 { 3289 BUG_ON(lck_div < 1); 3290 BUG_ON(pck_div < 1); 3291 3292 dispc_write_reg(dispc, DISPC_DIVISORo(channel), 3293 FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0)); 3294 3295 if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) && 3296 channel == OMAP_DSS_CHANNEL_LCD) 3297 dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div; 3298 } 3299 3300 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc, 3301 enum omap_channel channel, int *lck_div, 3302 int *pck_div) 3303 { 3304 u32 l; 3305 l = dispc_read_reg(dispc, DISPC_DIVISORo(channel)); 3306 *lck_div = FLD_GET(l, 23, 16); 3307 *pck_div = FLD_GET(l, 7, 0); 3308 } 3309 3310 static unsigned long dispc_fclk_rate(struct dispc_device *dispc) 3311 { 3312 unsigned long r; 3313 enum dss_clk_source src; 3314 3315 src = dss_get_dispc_clk_source(dispc->dss); 3316 3317 if (src == DSS_CLK_SRC_FCK) { 3318 r = dss_get_dispc_clk_rate(dispc->dss); 3319 } else { 3320 struct dss_pll *pll; 3321 unsigned int clkout_idx; 3322 3323 pll = dss_pll_find_by_src(dispc->dss, src); 3324 clkout_idx = dss_pll_get_clkout_idx_for_src(src); 3325 3326 r = pll->cinfo.clkout[clkout_idx]; 3327 } 3328 3329 return r; 3330 } 3331 3332 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc, 3333 enum omap_channel channel) 3334 { 3335 int lcd; 3336 unsigned long r; 3337 enum dss_clk_source src; 3338 3339 /* for TV, LCLK rate is the FCLK rate */ 3340 if (!dss_mgr_is_lcd(channel)) 3341 return dispc_fclk_rate(dispc); 3342 3343 src = dss_get_lcd_clk_source(dispc->dss, channel); 3344 3345 if (src == DSS_CLK_SRC_FCK) { 3346 r = dss_get_dispc_clk_rate(dispc->dss); 3347 } else { 3348 struct dss_pll *pll; 3349 unsigned int clkout_idx; 3350 3351 pll = dss_pll_find_by_src(dispc->dss, src); 3352 clkout_idx = dss_pll_get_clkout_idx_for_src(src); 3353 3354 r = pll->cinfo.clkout[clkout_idx]; 3355 } 3356 3357 lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16); 3358 3359 return r / lcd; 3360 } 3361 3362 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc, 3363 enum omap_channel channel) 3364 { 3365 unsigned long r; 3366 3367 if (dss_mgr_is_lcd(channel)) { 3368 int pcd; 3369 u32 l; 3370 3371 l = dispc_read_reg(dispc, DISPC_DIVISORo(channel)); 3372 3373 pcd = FLD_GET(l, 7, 0); 3374 3375 r = dispc_mgr_lclk_rate(dispc, channel); 3376 3377 return r / pcd; 3378 } else { 3379 return dispc->tv_pclk_rate; 3380 } 3381 } 3382 3383 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk) 3384 { 3385 dispc->tv_pclk_rate = pclk; 3386 } 3387 3388 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc) 3389 { 3390 return dispc->core_clk_rate; 3391 } 3392 3393 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc, 3394 enum omap_plane_id plane) 3395 { 3396 enum omap_channel channel; 3397 3398 if (plane == OMAP_DSS_WB) 3399 return 0; 3400 3401 channel = dispc_ovl_get_channel_out(dispc, plane); 3402 3403 return dispc_mgr_pclk_rate(dispc, channel); 3404 } 3405 3406 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc, 3407 enum omap_plane_id plane) 3408 { 3409 enum omap_channel channel; 3410 3411 if (plane == OMAP_DSS_WB) 3412 return 0; 3413 3414 channel = dispc_ovl_get_channel_out(dispc, plane); 3415 3416 return dispc_mgr_lclk_rate(dispc, channel); 3417 } 3418 3419 static void dispc_dump_clocks_channel(struct dispc_device *dispc, 3420 struct seq_file *s, 3421 enum omap_channel channel) 3422 { 3423 int lcd, pcd; 3424 enum dss_clk_source lcd_clk_src; 3425 3426 seq_printf(s, "- %s -\n", mgr_desc[channel].name); 3427 3428 lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel); 3429 3430 seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name, 3431 dss_get_clk_source_name(lcd_clk_src)); 3432 3433 dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd); 3434 3435 seq_printf(s, "lck\t\t%-16lulck div\t%u\n", 3436 dispc_mgr_lclk_rate(dispc, channel), lcd); 3437 seq_printf(s, "pck\t\t%-16lupck div\t%u\n", 3438 dispc_mgr_pclk_rate(dispc, channel), pcd); 3439 } 3440 3441 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s) 3442 { 3443 enum dss_clk_source dispc_clk_src; 3444 int lcd; 3445 u32 l; 3446 3447 if (dispc_runtime_get(dispc)) 3448 return; 3449 3450 seq_printf(s, "- DISPC -\n"); 3451 3452 dispc_clk_src = dss_get_dispc_clk_source(dispc->dss); 3453 seq_printf(s, "dispc fclk source = %s\n", 3454 dss_get_clk_source_name(dispc_clk_src)); 3455 3456 seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc)); 3457 3458 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) { 3459 seq_printf(s, "- DISPC-CORE-CLK -\n"); 3460 l = dispc_read_reg(dispc, DISPC_DIVISOR); 3461 lcd = FLD_GET(l, 23, 16); 3462 3463 seq_printf(s, "lck\t\t%-16lulck div\t%u\n", 3464 (dispc_fclk_rate(dispc)/lcd), lcd); 3465 } 3466 3467 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD); 3468 3469 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) 3470 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2); 3471 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) 3472 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3); 3473 3474 dispc_runtime_put(dispc); 3475 } 3476 3477 static int dispc_dump_regs(struct seq_file *s, void *p) 3478 { 3479 struct dispc_device *dispc = s->private; 3480 int i, j; 3481 const char *mgr_names[] = { 3482 [OMAP_DSS_CHANNEL_LCD] = "LCD", 3483 [OMAP_DSS_CHANNEL_DIGIT] = "TV", 3484 [OMAP_DSS_CHANNEL_LCD2] = "LCD2", 3485 [OMAP_DSS_CHANNEL_LCD3] = "LCD3", 3486 }; 3487 const char *ovl_names[] = { 3488 [OMAP_DSS_GFX] = "GFX", 3489 [OMAP_DSS_VIDEO1] = "VID1", 3490 [OMAP_DSS_VIDEO2] = "VID2", 3491 [OMAP_DSS_VIDEO3] = "VID3", 3492 [OMAP_DSS_WB] = "WB", 3493 }; 3494 const char **p_names; 3495 3496 #define DUMPREG(dispc, r) \ 3497 seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r)) 3498 3499 if (dispc_runtime_get(dispc)) 3500 return 0; 3501 3502 /* DISPC common registers */ 3503 DUMPREG(dispc, DISPC_REVISION); 3504 DUMPREG(dispc, DISPC_SYSCONFIG); 3505 DUMPREG(dispc, DISPC_SYSSTATUS); 3506 DUMPREG(dispc, DISPC_IRQSTATUS); 3507 DUMPREG(dispc, DISPC_IRQENABLE); 3508 DUMPREG(dispc, DISPC_CONTROL); 3509 DUMPREG(dispc, DISPC_CONFIG); 3510 DUMPREG(dispc, DISPC_CAPABLE); 3511 DUMPREG(dispc, DISPC_LINE_STATUS); 3512 DUMPREG(dispc, DISPC_LINE_NUMBER); 3513 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) || 3514 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER)) 3515 DUMPREG(dispc, DISPC_GLOBAL_ALPHA); 3516 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) { 3517 DUMPREG(dispc, DISPC_CONTROL2); 3518 DUMPREG(dispc, DISPC_CONFIG2); 3519 } 3520 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) { 3521 DUMPREG(dispc, DISPC_CONTROL3); 3522 DUMPREG(dispc, DISPC_CONFIG3); 3523 } 3524 if (dispc_has_feature(dispc, FEAT_MFLAG)) 3525 DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE); 3526 3527 #undef DUMPREG 3528 3529 #define DISPC_REG(i, name) name(i) 3530 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \ 3531 (int)(48 - strlen(#r) - strlen(p_names[i])), " ", \ 3532 dispc_read_reg(dispc, DISPC_REG(i, r))) 3533 3534 p_names = mgr_names; 3535 3536 /* DISPC channel specific registers */ 3537 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) { 3538 DUMPREG(dispc, i, DISPC_DEFAULT_COLOR); 3539 DUMPREG(dispc, i, DISPC_TRANS_COLOR); 3540 DUMPREG(dispc, i, DISPC_SIZE_MGR); 3541 3542 if (i == OMAP_DSS_CHANNEL_DIGIT) 3543 continue; 3544 3545 DUMPREG(dispc, i, DISPC_TIMING_H); 3546 DUMPREG(dispc, i, DISPC_TIMING_V); 3547 DUMPREG(dispc, i, DISPC_POL_FREQ); 3548 DUMPREG(dispc, i, DISPC_DIVISORo); 3549 3550 DUMPREG(dispc, i, DISPC_DATA_CYCLE1); 3551 DUMPREG(dispc, i, DISPC_DATA_CYCLE2); 3552 DUMPREG(dispc, i, DISPC_DATA_CYCLE3); 3553 3554 if (dispc_has_feature(dispc, FEAT_CPR)) { 3555 DUMPREG(dispc, i, DISPC_CPR_COEF_R); 3556 DUMPREG(dispc, i, DISPC_CPR_COEF_G); 3557 DUMPREG(dispc, i, DISPC_CPR_COEF_B); 3558 } 3559 } 3560 3561 p_names = ovl_names; 3562 3563 for (i = 0; i < dispc_get_num_ovls(dispc); i++) { 3564 DUMPREG(dispc, i, DISPC_OVL_BA0); 3565 DUMPREG(dispc, i, DISPC_OVL_BA1); 3566 DUMPREG(dispc, i, DISPC_OVL_POSITION); 3567 DUMPREG(dispc, i, DISPC_OVL_SIZE); 3568 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES); 3569 DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD); 3570 DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS); 3571 DUMPREG(dispc, i, DISPC_OVL_ROW_INC); 3572 DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC); 3573 3574 if (dispc_has_feature(dispc, FEAT_PRELOAD)) 3575 DUMPREG(dispc, i, DISPC_OVL_PRELOAD); 3576 if (dispc_has_feature(dispc, FEAT_MFLAG)) 3577 DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD); 3578 3579 if (i == OMAP_DSS_GFX) { 3580 DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP); 3581 DUMPREG(dispc, i, DISPC_OVL_TABLE_BA); 3582 continue; 3583 } 3584 3585 DUMPREG(dispc, i, DISPC_OVL_FIR); 3586 DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE); 3587 DUMPREG(dispc, i, DISPC_OVL_ACCU0); 3588 DUMPREG(dispc, i, DISPC_OVL_ACCU1); 3589 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { 3590 DUMPREG(dispc, i, DISPC_OVL_BA0_UV); 3591 DUMPREG(dispc, i, DISPC_OVL_BA1_UV); 3592 DUMPREG(dispc, i, DISPC_OVL_FIR2); 3593 DUMPREG(dispc, i, DISPC_OVL_ACCU2_0); 3594 DUMPREG(dispc, i, DISPC_OVL_ACCU2_1); 3595 } 3596 if (dispc_has_feature(dispc, FEAT_ATTR2)) 3597 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2); 3598 } 3599 3600 if (dispc->feat->has_writeback) { 3601 i = OMAP_DSS_WB; 3602 DUMPREG(dispc, i, DISPC_OVL_BA0); 3603 DUMPREG(dispc, i, DISPC_OVL_BA1); 3604 DUMPREG(dispc, i, DISPC_OVL_SIZE); 3605 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES); 3606 DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD); 3607 DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS); 3608 DUMPREG(dispc, i, DISPC_OVL_ROW_INC); 3609 DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC); 3610 3611 if (dispc_has_feature(dispc, FEAT_MFLAG)) 3612 DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD); 3613 3614 DUMPREG(dispc, i, DISPC_OVL_FIR); 3615 DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE); 3616 DUMPREG(dispc, i, DISPC_OVL_ACCU0); 3617 DUMPREG(dispc, i, DISPC_OVL_ACCU1); 3618 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { 3619 DUMPREG(dispc, i, DISPC_OVL_BA0_UV); 3620 DUMPREG(dispc, i, DISPC_OVL_BA1_UV); 3621 DUMPREG(dispc, i, DISPC_OVL_FIR2); 3622 DUMPREG(dispc, i, DISPC_OVL_ACCU2_0); 3623 DUMPREG(dispc, i, DISPC_OVL_ACCU2_1); 3624 } 3625 if (dispc_has_feature(dispc, FEAT_ATTR2)) 3626 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2); 3627 } 3628 3629 #undef DISPC_REG 3630 #undef DUMPREG 3631 3632 #define DISPC_REG(plane, name, i) name(plane, i) 3633 #define DUMPREG(dispc, plane, name, i) \ 3634 seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \ 3635 (int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \ 3636 dispc_read_reg(dispc, DISPC_REG(plane, name, i))) 3637 3638 /* Video pipeline coefficient registers */ 3639 3640 /* start from OMAP_DSS_VIDEO1 */ 3641 for (i = 1; i < dispc_get_num_ovls(dispc); i++) { 3642 for (j = 0; j < 8; j++) 3643 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j); 3644 3645 for (j = 0; j < 8; j++) 3646 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j); 3647 3648 for (j = 0; j < 5; j++) 3649 DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j); 3650 3651 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) { 3652 for (j = 0; j < 8; j++) 3653 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j); 3654 } 3655 3656 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) { 3657 for (j = 0; j < 8; j++) 3658 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j); 3659 3660 for (j = 0; j < 8; j++) 3661 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j); 3662 3663 for (j = 0; j < 8; j++) 3664 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j); 3665 } 3666 } 3667 3668 dispc_runtime_put(dispc); 3669 3670 #undef DISPC_REG 3671 #undef DUMPREG 3672 3673 return 0; 3674 } 3675 3676 /* calculate clock rates using dividers in cinfo */ 3677 int dispc_calc_clock_rates(struct dispc_device *dispc, 3678 unsigned long dispc_fclk_rate, 3679 struct dispc_clock_info *cinfo) 3680 { 3681 if (cinfo->lck_div > 255 || cinfo->lck_div == 0) 3682 return -EINVAL; 3683 if (cinfo->pck_div < 1 || cinfo->pck_div > 255) 3684 return -EINVAL; 3685 3686 cinfo->lck = dispc_fclk_rate / cinfo->lck_div; 3687 cinfo->pck = cinfo->lck / cinfo->pck_div; 3688 3689 return 0; 3690 } 3691 3692 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq, 3693 unsigned long pck_min, unsigned long pck_max, 3694 dispc_div_calc_func func, void *data) 3695 { 3696 int lckd, lckd_start, lckd_stop; 3697 int pckd, pckd_start, pckd_stop; 3698 unsigned long pck, lck; 3699 unsigned long lck_max; 3700 unsigned long pckd_hw_min, pckd_hw_max; 3701 unsigned int min_fck_per_pck; 3702 unsigned long fck; 3703 3704 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK 3705 min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK; 3706 #else 3707 min_fck_per_pck = 0; 3708 #endif 3709 3710 pckd_hw_min = dispc->feat->min_pcd; 3711 pckd_hw_max = 255; 3712 3713 lck_max = dss_get_max_fck_rate(dispc->dss); 3714 3715 pck_min = pck_min ? pck_min : 1; 3716 pck_max = pck_max ? pck_max : ULONG_MAX; 3717 3718 lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul); 3719 lckd_stop = min(dispc_freq / pck_min, 255ul); 3720 3721 for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) { 3722 lck = dispc_freq / lckd; 3723 3724 pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min); 3725 pckd_stop = min(lck / pck_min, pckd_hw_max); 3726 3727 for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) { 3728 pck = lck / pckd; 3729 3730 /* 3731 * For OMAP2/3 the DISPC fclk is the same as LCD's logic 3732 * clock, which means we're configuring DISPC fclk here 3733 * also. Thus we need to use the calculated lck. For 3734 * OMAP4+ the DISPC fclk is a separate clock. 3735 */ 3736 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) 3737 fck = dispc_core_clk_rate(dispc); 3738 else 3739 fck = lck; 3740 3741 if (fck < pck * min_fck_per_pck) 3742 continue; 3743 3744 if (func(lckd, pckd, lck, pck, data)) 3745 return true; 3746 } 3747 } 3748 3749 return false; 3750 } 3751 3752 void dispc_mgr_set_clock_div(struct dispc_device *dispc, 3753 enum omap_channel channel, 3754 const struct dispc_clock_info *cinfo) 3755 { 3756 DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div); 3757 DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div); 3758 3759 dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div, 3760 cinfo->pck_div); 3761 } 3762 3763 int dispc_mgr_get_clock_div(struct dispc_device *dispc, 3764 enum omap_channel channel, 3765 struct dispc_clock_info *cinfo) 3766 { 3767 unsigned long fck; 3768 3769 fck = dispc_fclk_rate(dispc); 3770 3771 cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16); 3772 cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0); 3773 3774 cinfo->lck = fck / cinfo->lck_div; 3775 cinfo->pck = cinfo->lck / cinfo->pck_div; 3776 3777 return 0; 3778 } 3779 3780 static u32 dispc_read_irqstatus(struct dispc_device *dispc) 3781 { 3782 return dispc_read_reg(dispc, DISPC_IRQSTATUS); 3783 } 3784 3785 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask) 3786 { 3787 dispc_write_reg(dispc, DISPC_IRQSTATUS, mask); 3788 } 3789 3790 static void dispc_write_irqenable(struct dispc_device *dispc, u32 mask) 3791 { 3792 u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE); 3793 3794 /* clear the irqstatus for newly enabled irqs */ 3795 dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask); 3796 3797 dispc_write_reg(dispc, DISPC_IRQENABLE, mask); 3798 3799 /* flush posted write */ 3800 dispc_read_reg(dispc, DISPC_IRQENABLE); 3801 } 3802 3803 void dispc_enable_sidle(struct dispc_device *dispc) 3804 { 3805 /* SIDLEMODE: smart idle */ 3806 REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3); 3807 } 3808 3809 void dispc_disable_sidle(struct dispc_device *dispc) 3810 { 3811 REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */ 3812 } 3813 3814 static u32 dispc_mgr_gamma_size(struct dispc_device *dispc, 3815 enum omap_channel channel) 3816 { 3817 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; 3818 3819 if (!dispc->feat->has_gamma_table) 3820 return 0; 3821 3822 return gdesc->len; 3823 } 3824 3825 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc, 3826 enum omap_channel channel) 3827 { 3828 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; 3829 u32 *table = dispc->gamma_table[channel]; 3830 unsigned int i; 3831 3832 DSSDBG("%s: channel %d\n", __func__, channel); 3833 3834 for (i = 0; i < gdesc->len; ++i) { 3835 u32 v = table[i]; 3836 3837 if (gdesc->has_index) 3838 v |= i << 24; 3839 else if (i == 0) 3840 v |= 1 << 31; 3841 3842 dispc_write_reg(dispc, gdesc->reg, v); 3843 } 3844 } 3845 3846 static void dispc_restore_gamma_tables(struct dispc_device *dispc) 3847 { 3848 DSSDBG("%s()\n", __func__); 3849 3850 if (!dispc->feat->has_gamma_table) 3851 return; 3852 3853 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD); 3854 3855 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT); 3856 3857 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) 3858 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2); 3859 3860 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) 3861 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3); 3862 } 3863 3864 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = { 3865 { .red = 0, .green = 0, .blue = 0, }, 3866 { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, }, 3867 }; 3868 3869 static void dispc_mgr_set_gamma(struct dispc_device *dispc, 3870 enum omap_channel channel, 3871 const struct drm_color_lut *lut, 3872 unsigned int length) 3873 { 3874 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; 3875 u32 *table = dispc->gamma_table[channel]; 3876 uint i; 3877 3878 DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__, 3879 channel, length, gdesc->len); 3880 3881 if (!dispc->feat->has_gamma_table) 3882 return; 3883 3884 if (lut == NULL || length < 2) { 3885 lut = dispc_mgr_gamma_default_lut; 3886 length = ARRAY_SIZE(dispc_mgr_gamma_default_lut); 3887 } 3888 3889 for (i = 0; i < length - 1; ++i) { 3890 uint first = i * (gdesc->len - 1) / (length - 1); 3891 uint last = (i + 1) * (gdesc->len - 1) / (length - 1); 3892 uint w = last - first; 3893 u16 r, g, b; 3894 uint j; 3895 3896 if (w == 0) 3897 continue; 3898 3899 for (j = 0; j <= w; j++) { 3900 r = (lut[i].red * (w - j) + lut[i+1].red * j) / w; 3901 g = (lut[i].green * (w - j) + lut[i+1].green * j) / w; 3902 b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w; 3903 3904 r >>= 16 - gdesc->bits; 3905 g >>= 16 - gdesc->bits; 3906 b >>= 16 - gdesc->bits; 3907 3908 table[first + j] = (r << (gdesc->bits * 2)) | 3909 (g << gdesc->bits) | b; 3910 } 3911 } 3912 3913 if (dispc->is_enabled) 3914 dispc_mgr_write_gamma_table(dispc, channel); 3915 } 3916 3917 static int dispc_init_gamma_tables(struct dispc_device *dispc) 3918 { 3919 int channel; 3920 3921 if (!dispc->feat->has_gamma_table) 3922 return 0; 3923 3924 for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) { 3925 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma; 3926 u32 *gt; 3927 3928 if (channel == OMAP_DSS_CHANNEL_LCD2 && 3929 !dispc_has_feature(dispc, FEAT_MGR_LCD2)) 3930 continue; 3931 3932 if (channel == OMAP_DSS_CHANNEL_LCD3 && 3933 !dispc_has_feature(dispc, FEAT_MGR_LCD3)) 3934 continue; 3935 3936 gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len, 3937 sizeof(u32), GFP_KERNEL); 3938 if (!gt) 3939 return -ENOMEM; 3940 3941 dispc->gamma_table[channel] = gt; 3942 3943 dispc_mgr_set_gamma(dispc, channel, NULL, 0); 3944 } 3945 return 0; 3946 } 3947 3948 static void _omap_dispc_initial_config(struct dispc_device *dispc) 3949 { 3950 u32 l; 3951 3952 /* Exclusively enable DISPC_CORE_CLK and set divider to 1 */ 3953 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) { 3954 l = dispc_read_reg(dispc, DISPC_DIVISOR); 3955 /* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */ 3956 l = FLD_MOD(l, 1, 0, 0); 3957 l = FLD_MOD(l, 1, 23, 16); 3958 dispc_write_reg(dispc, DISPC_DIVISOR, l); 3959 3960 dispc->core_clk_rate = dispc_fclk_rate(dispc); 3961 } 3962 3963 /* Use gamma table mode, instead of palette mode */ 3964 if (dispc->feat->has_gamma_table) 3965 REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3); 3966 3967 /* For older DSS versions (FEAT_FUNCGATED) this enables 3968 * func-clock auto-gating. For newer versions 3969 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables. 3970 */ 3971 if (dispc_has_feature(dispc, FEAT_FUNCGATED) || 3972 dispc->feat->has_gamma_table) 3973 REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9); 3974 3975 dispc_setup_color_conv_coef(dispc); 3976 3977 dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY); 3978 3979 dispc_init_fifos(dispc); 3980 3981 dispc_configure_burst_sizes(dispc); 3982 3983 dispc_ovl_enable_zorder_planes(dispc); 3984 3985 if (dispc->feat->mstandby_workaround) 3986 REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0); 3987 3988 if (dispc_has_feature(dispc, FEAT_MFLAG)) 3989 dispc_init_mflag(dispc); 3990 } 3991 3992 static const enum dispc_feature_id omap2_dispc_features_list[] = { 3993 FEAT_LCDENABLEPOL, 3994 FEAT_LCDENABLESIGNAL, 3995 FEAT_PCKFREEENABLE, 3996 FEAT_FUNCGATED, 3997 FEAT_ROWREPEATENABLE, 3998 FEAT_RESIZECONF, 3999 }; 4000 4001 static const enum dispc_feature_id omap3_dispc_features_list[] = { 4002 FEAT_LCDENABLEPOL, 4003 FEAT_LCDENABLESIGNAL, 4004 FEAT_PCKFREEENABLE, 4005 FEAT_FUNCGATED, 4006 FEAT_LINEBUFFERSPLIT, 4007 FEAT_ROWREPEATENABLE, 4008 FEAT_RESIZECONF, 4009 FEAT_CPR, 4010 FEAT_PRELOAD, 4011 FEAT_FIR_COEF_V, 4012 FEAT_ALPHA_FIXED_ZORDER, 4013 FEAT_FIFO_MERGE, 4014 FEAT_OMAP3_DSI_FIFO_BUG, 4015 }; 4016 4017 static const enum dispc_feature_id am43xx_dispc_features_list[] = { 4018 FEAT_LCDENABLEPOL, 4019 FEAT_LCDENABLESIGNAL, 4020 FEAT_PCKFREEENABLE, 4021 FEAT_FUNCGATED, 4022 FEAT_LINEBUFFERSPLIT, 4023 FEAT_ROWREPEATENABLE, 4024 FEAT_RESIZECONF, 4025 FEAT_CPR, 4026 FEAT_PRELOAD, 4027 FEAT_FIR_COEF_V, 4028 FEAT_ALPHA_FIXED_ZORDER, 4029 FEAT_FIFO_MERGE, 4030 }; 4031 4032 static const enum dispc_feature_id omap4_dispc_features_list[] = { 4033 FEAT_MGR_LCD2, 4034 FEAT_CORE_CLK_DIV, 4035 FEAT_HANDLE_UV_SEPARATE, 4036 FEAT_ATTR2, 4037 FEAT_CPR, 4038 FEAT_PRELOAD, 4039 FEAT_FIR_COEF_V, 4040 FEAT_ALPHA_FREE_ZORDER, 4041 FEAT_FIFO_MERGE, 4042 FEAT_BURST_2D, 4043 }; 4044 4045 static const enum dispc_feature_id omap5_dispc_features_list[] = { 4046 FEAT_MGR_LCD2, 4047 FEAT_MGR_LCD3, 4048 FEAT_CORE_CLK_DIV, 4049 FEAT_HANDLE_UV_SEPARATE, 4050 FEAT_ATTR2, 4051 FEAT_CPR, 4052 FEAT_PRELOAD, 4053 FEAT_FIR_COEF_V, 4054 FEAT_ALPHA_FREE_ZORDER, 4055 FEAT_FIFO_MERGE, 4056 FEAT_BURST_2D, 4057 FEAT_MFLAG, 4058 }; 4059 4060 static const struct dss_reg_field omap2_dispc_reg_fields[] = { 4061 [FEAT_REG_FIRHINC] = { 11, 0 }, 4062 [FEAT_REG_FIRVINC] = { 27, 16 }, 4063 [FEAT_REG_FIFOLOWTHRESHOLD] = { 8, 0 }, 4064 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 24, 16 }, 4065 [FEAT_REG_FIFOSIZE] = { 8, 0 }, 4066 [FEAT_REG_HORIZONTALACCU] = { 9, 0 }, 4067 [FEAT_REG_VERTICALACCU] = { 25, 16 }, 4068 }; 4069 4070 static const struct dss_reg_field omap3_dispc_reg_fields[] = { 4071 [FEAT_REG_FIRHINC] = { 12, 0 }, 4072 [FEAT_REG_FIRVINC] = { 28, 16 }, 4073 [FEAT_REG_FIFOLOWTHRESHOLD] = { 11, 0 }, 4074 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 27, 16 }, 4075 [FEAT_REG_FIFOSIZE] = { 10, 0 }, 4076 [FEAT_REG_HORIZONTALACCU] = { 9, 0 }, 4077 [FEAT_REG_VERTICALACCU] = { 25, 16 }, 4078 }; 4079 4080 static const struct dss_reg_field omap4_dispc_reg_fields[] = { 4081 [FEAT_REG_FIRHINC] = { 12, 0 }, 4082 [FEAT_REG_FIRVINC] = { 28, 16 }, 4083 [FEAT_REG_FIFOLOWTHRESHOLD] = { 15, 0 }, 4084 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 31, 16 }, 4085 [FEAT_REG_FIFOSIZE] = { 15, 0 }, 4086 [FEAT_REG_HORIZONTALACCU] = { 10, 0 }, 4087 [FEAT_REG_VERTICALACCU] = { 26, 16 }, 4088 }; 4089 4090 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = { 4091 /* OMAP_DSS_GFX */ 4092 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4093 4094 /* OMAP_DSS_VIDEO1 */ 4095 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | 4096 OMAP_DSS_OVL_CAP_REPLICATION, 4097 4098 /* OMAP_DSS_VIDEO2 */ 4099 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | 4100 OMAP_DSS_OVL_CAP_REPLICATION, 4101 }; 4102 4103 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = { 4104 /* OMAP_DSS_GFX */ 4105 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS | 4106 OMAP_DSS_OVL_CAP_REPLICATION, 4107 4108 /* OMAP_DSS_VIDEO1 */ 4109 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | 4110 OMAP_DSS_OVL_CAP_REPLICATION, 4111 4112 /* OMAP_DSS_VIDEO2 */ 4113 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | 4114 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4115 }; 4116 4117 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = { 4118 /* OMAP_DSS_GFX */ 4119 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | 4120 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4121 4122 /* OMAP_DSS_VIDEO1 */ 4123 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS | 4124 OMAP_DSS_OVL_CAP_REPLICATION, 4125 4126 /* OMAP_DSS_VIDEO2 */ 4127 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | 4128 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS | 4129 OMAP_DSS_OVL_CAP_REPLICATION, 4130 }; 4131 4132 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = { 4133 /* OMAP_DSS_GFX */ 4134 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | 4135 OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS | 4136 OMAP_DSS_OVL_CAP_REPLICATION, 4137 4138 /* OMAP_DSS_VIDEO1 */ 4139 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | 4140 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER | 4141 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4142 4143 /* OMAP_DSS_VIDEO2 */ 4144 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | 4145 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER | 4146 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4147 4148 /* OMAP_DSS_VIDEO3 */ 4149 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | 4150 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER | 4151 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION, 4152 }; 4153 4154 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 } 4155 4156 static const u32 *omap2_dispc_supported_color_modes[] = { 4157 4158 /* OMAP_DSS_GFX */ 4159 COLOR_ARRAY( 4160 DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565, 4161 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888), 4162 4163 /* OMAP_DSS_VIDEO1 */ 4164 COLOR_ARRAY( 4165 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, 4166 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV, 4167 DRM_FORMAT_UYVY), 4168 4169 /* OMAP_DSS_VIDEO2 */ 4170 COLOR_ARRAY( 4171 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, 4172 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV, 4173 DRM_FORMAT_UYVY), 4174 }; 4175 4176 static const u32 *omap3_dispc_supported_color_modes[] = { 4177 /* OMAP_DSS_GFX */ 4178 COLOR_ARRAY( 4179 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444, 4180 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, 4181 DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888, 4182 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888), 4183 4184 /* OMAP_DSS_VIDEO1 */ 4185 COLOR_ARRAY( 4186 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888, 4187 DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565, 4188 DRM_FORMAT_YUYV, DRM_FORMAT_UYVY), 4189 4190 /* OMAP_DSS_VIDEO2 */ 4191 COLOR_ARRAY( 4192 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444, 4193 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, 4194 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV, 4195 DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888, 4196 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888), 4197 }; 4198 4199 static const u32 *omap4_dispc_supported_color_modes[] = { 4200 /* OMAP_DSS_GFX */ 4201 COLOR_ARRAY( 4202 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444, 4203 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, 4204 DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888, 4205 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888, 4206 DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444, 4207 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555), 4208 4209 /* OMAP_DSS_VIDEO1 */ 4210 COLOR_ARRAY( 4211 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, 4212 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, 4213 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, 4214 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, 4215 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, 4216 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, 4217 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, 4218 DRM_FORMAT_RGBX8888), 4219 4220 /* OMAP_DSS_VIDEO2 */ 4221 COLOR_ARRAY( 4222 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, 4223 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, 4224 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, 4225 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, 4226 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, 4227 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, 4228 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, 4229 DRM_FORMAT_RGBX8888), 4230 4231 /* OMAP_DSS_VIDEO3 */ 4232 COLOR_ARRAY( 4233 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, 4234 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, 4235 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, 4236 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, 4237 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, 4238 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, 4239 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, 4240 DRM_FORMAT_RGBX8888), 4241 4242 /* OMAP_DSS_WB */ 4243 COLOR_ARRAY( 4244 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444, 4245 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555, 4246 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12, 4247 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888, 4248 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY, 4249 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, 4250 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444, 4251 DRM_FORMAT_RGBX8888), 4252 }; 4253 4254 static const struct dispc_features omap24xx_dispc_feats = { 4255 .sw_start = 5, 4256 .fp_start = 15, 4257 .bp_start = 27, 4258 .sw_max = 64, 4259 .vp_max = 255, 4260 .hp_max = 256, 4261 .mgr_width_start = 10, 4262 .mgr_height_start = 26, 4263 .mgr_width_max = 2048, 4264 .mgr_height_max = 2048, 4265 .max_lcd_pclk = 66500000, 4266 .max_downscale = 2, 4267 /* 4268 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler 4269 * cannot scale an image width larger than 768. 4270 */ 4271 .max_line_width = 768, 4272 .min_pcd = 2, 4273 .calc_scaling = dispc_ovl_calc_scaling_24xx, 4274 .calc_core_clk = calc_core_clk_24xx, 4275 .num_fifos = 3, 4276 .features = omap2_dispc_features_list, 4277 .num_features = ARRAY_SIZE(omap2_dispc_features_list), 4278 .reg_fields = omap2_dispc_reg_fields, 4279 .num_reg_fields = ARRAY_SIZE(omap2_dispc_reg_fields), 4280 .overlay_caps = omap2_dispc_overlay_caps, 4281 .supported_color_modes = omap2_dispc_supported_color_modes, 4282 .num_mgrs = 2, 4283 .num_ovls = 3, 4284 .buffer_size_unit = 1, 4285 .burst_size_unit = 8, 4286 .no_framedone_tv = true, 4287 .set_max_preload = false, 4288 .last_pixel_inc_missing = true, 4289 }; 4290 4291 static const struct dispc_features omap34xx_rev1_0_dispc_feats = { 4292 .sw_start = 5, 4293 .fp_start = 15, 4294 .bp_start = 27, 4295 .sw_max = 64, 4296 .vp_max = 255, 4297 .hp_max = 256, 4298 .mgr_width_start = 10, 4299 .mgr_height_start = 26, 4300 .mgr_width_max = 2048, 4301 .mgr_height_max = 2048, 4302 .max_lcd_pclk = 173000000, 4303 .max_tv_pclk = 59000000, 4304 .max_downscale = 4, 4305 .max_line_width = 1024, 4306 .min_pcd = 1, 4307 .calc_scaling = dispc_ovl_calc_scaling_34xx, 4308 .calc_core_clk = calc_core_clk_34xx, 4309 .num_fifos = 3, 4310 .features = omap3_dispc_features_list, 4311 .num_features = ARRAY_SIZE(omap3_dispc_features_list), 4312 .reg_fields = omap3_dispc_reg_fields, 4313 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), 4314 .overlay_caps = omap3430_dispc_overlay_caps, 4315 .supported_color_modes = omap3_dispc_supported_color_modes, 4316 .num_mgrs = 2, 4317 .num_ovls = 3, 4318 .buffer_size_unit = 1, 4319 .burst_size_unit = 8, 4320 .no_framedone_tv = true, 4321 .set_max_preload = false, 4322 .last_pixel_inc_missing = true, 4323 }; 4324 4325 static const struct dispc_features omap34xx_rev3_0_dispc_feats = { 4326 .sw_start = 7, 4327 .fp_start = 19, 4328 .bp_start = 31, 4329 .sw_max = 256, 4330 .vp_max = 4095, 4331 .hp_max = 4096, 4332 .mgr_width_start = 10, 4333 .mgr_height_start = 26, 4334 .mgr_width_max = 2048, 4335 .mgr_height_max = 2048, 4336 .max_lcd_pclk = 173000000, 4337 .max_tv_pclk = 59000000, 4338 .max_downscale = 4, 4339 .max_line_width = 1024, 4340 .min_pcd = 1, 4341 .calc_scaling = dispc_ovl_calc_scaling_34xx, 4342 .calc_core_clk = calc_core_clk_34xx, 4343 .num_fifos = 3, 4344 .features = omap3_dispc_features_list, 4345 .num_features = ARRAY_SIZE(omap3_dispc_features_list), 4346 .reg_fields = omap3_dispc_reg_fields, 4347 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), 4348 .overlay_caps = omap3430_dispc_overlay_caps, 4349 .supported_color_modes = omap3_dispc_supported_color_modes, 4350 .num_mgrs = 2, 4351 .num_ovls = 3, 4352 .buffer_size_unit = 1, 4353 .burst_size_unit = 8, 4354 .no_framedone_tv = true, 4355 .set_max_preload = false, 4356 .last_pixel_inc_missing = true, 4357 }; 4358 4359 static const struct dispc_features omap36xx_dispc_feats = { 4360 .sw_start = 7, 4361 .fp_start = 19, 4362 .bp_start = 31, 4363 .sw_max = 256, 4364 .vp_max = 4095, 4365 .hp_max = 4096, 4366 .mgr_width_start = 10, 4367 .mgr_height_start = 26, 4368 .mgr_width_max = 2048, 4369 .mgr_height_max = 2048, 4370 .max_lcd_pclk = 173000000, 4371 .max_tv_pclk = 59000000, 4372 .max_downscale = 4, 4373 .max_line_width = 1024, 4374 .min_pcd = 1, 4375 .calc_scaling = dispc_ovl_calc_scaling_34xx, 4376 .calc_core_clk = calc_core_clk_34xx, 4377 .num_fifos = 3, 4378 .features = omap3_dispc_features_list, 4379 .num_features = ARRAY_SIZE(omap3_dispc_features_list), 4380 .reg_fields = omap3_dispc_reg_fields, 4381 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), 4382 .overlay_caps = omap3630_dispc_overlay_caps, 4383 .supported_color_modes = omap3_dispc_supported_color_modes, 4384 .num_mgrs = 2, 4385 .num_ovls = 3, 4386 .buffer_size_unit = 1, 4387 .burst_size_unit = 8, 4388 .no_framedone_tv = true, 4389 .set_max_preload = false, 4390 .last_pixel_inc_missing = true, 4391 }; 4392 4393 static const struct dispc_features am43xx_dispc_feats = { 4394 .sw_start = 7, 4395 .fp_start = 19, 4396 .bp_start = 31, 4397 .sw_max = 256, 4398 .vp_max = 4095, 4399 .hp_max = 4096, 4400 .mgr_width_start = 10, 4401 .mgr_height_start = 26, 4402 .mgr_width_max = 2048, 4403 .mgr_height_max = 2048, 4404 .max_lcd_pclk = 173000000, 4405 .max_tv_pclk = 59000000, 4406 .max_downscale = 4, 4407 .max_line_width = 1024, 4408 .min_pcd = 1, 4409 .calc_scaling = dispc_ovl_calc_scaling_34xx, 4410 .calc_core_clk = calc_core_clk_34xx, 4411 .num_fifos = 3, 4412 .features = am43xx_dispc_features_list, 4413 .num_features = ARRAY_SIZE(am43xx_dispc_features_list), 4414 .reg_fields = omap3_dispc_reg_fields, 4415 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields), 4416 .overlay_caps = omap3430_dispc_overlay_caps, 4417 .supported_color_modes = omap3_dispc_supported_color_modes, 4418 .num_mgrs = 1, 4419 .num_ovls = 3, 4420 .buffer_size_unit = 1, 4421 .burst_size_unit = 8, 4422 .no_framedone_tv = true, 4423 .set_max_preload = false, 4424 .last_pixel_inc_missing = true, 4425 }; 4426 4427 static const struct dispc_features omap44xx_dispc_feats = { 4428 .sw_start = 7, 4429 .fp_start = 19, 4430 .bp_start = 31, 4431 .sw_max = 256, 4432 .vp_max = 4095, 4433 .hp_max = 4096, 4434 .mgr_width_start = 10, 4435 .mgr_height_start = 26, 4436 .mgr_width_max = 2048, 4437 .mgr_height_max = 2048, 4438 .max_lcd_pclk = 170000000, 4439 .max_tv_pclk = 185625000, 4440 .max_downscale = 4, 4441 .max_line_width = 2048, 4442 .min_pcd = 1, 4443 .calc_scaling = dispc_ovl_calc_scaling_44xx, 4444 .calc_core_clk = calc_core_clk_44xx, 4445 .num_fifos = 5, 4446 .features = omap4_dispc_features_list, 4447 .num_features = ARRAY_SIZE(omap4_dispc_features_list), 4448 .reg_fields = omap4_dispc_reg_fields, 4449 .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields), 4450 .overlay_caps = omap4_dispc_overlay_caps, 4451 .supported_color_modes = omap4_dispc_supported_color_modes, 4452 .num_mgrs = 3, 4453 .num_ovls = 4, 4454 .buffer_size_unit = 16, 4455 .burst_size_unit = 16, 4456 .gfx_fifo_workaround = true, 4457 .set_max_preload = true, 4458 .supports_sync_align = true, 4459 .has_writeback = true, 4460 .supports_double_pixel = true, 4461 .reverse_ilace_field_order = true, 4462 .has_gamma_table = true, 4463 .has_gamma_i734_bug = true, 4464 }; 4465 4466 static const struct dispc_features omap54xx_dispc_feats = { 4467 .sw_start = 7, 4468 .fp_start = 19, 4469 .bp_start = 31, 4470 .sw_max = 256, 4471 .vp_max = 4095, 4472 .hp_max = 4096, 4473 .mgr_width_start = 11, 4474 .mgr_height_start = 27, 4475 .mgr_width_max = 4096, 4476 .mgr_height_max = 4096, 4477 .max_lcd_pclk = 170000000, 4478 .max_tv_pclk = 186000000, 4479 .max_downscale = 4, 4480 .max_line_width = 2048, 4481 .min_pcd = 1, 4482 .calc_scaling = dispc_ovl_calc_scaling_44xx, 4483 .calc_core_clk = calc_core_clk_44xx, 4484 .num_fifos = 5, 4485 .features = omap5_dispc_features_list, 4486 .num_features = ARRAY_SIZE(omap5_dispc_features_list), 4487 .reg_fields = omap4_dispc_reg_fields, 4488 .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields), 4489 .overlay_caps = omap4_dispc_overlay_caps, 4490 .supported_color_modes = omap4_dispc_supported_color_modes, 4491 .num_mgrs = 4, 4492 .num_ovls = 4, 4493 .buffer_size_unit = 16, 4494 .burst_size_unit = 16, 4495 .gfx_fifo_workaround = true, 4496 .mstandby_workaround = true, 4497 .set_max_preload = true, 4498 .supports_sync_align = true, 4499 .has_writeback = true, 4500 .supports_double_pixel = true, 4501 .reverse_ilace_field_order = true, 4502 .has_gamma_table = true, 4503 .has_gamma_i734_bug = true, 4504 }; 4505 4506 static irqreturn_t dispc_irq_handler(int irq, void *arg) 4507 { 4508 struct dispc_device *dispc = arg; 4509 4510 if (!dispc->is_enabled) 4511 return IRQ_NONE; 4512 4513 return dispc->user_handler(irq, dispc->user_data); 4514 } 4515 4516 static int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler, 4517 void *dev_id) 4518 { 4519 int r; 4520 4521 if (dispc->user_handler != NULL) 4522 return -EBUSY; 4523 4524 dispc->user_handler = handler; 4525 dispc->user_data = dev_id; 4526 4527 /* ensure the dispc_irq_handler sees the values above */ 4528 smp_wmb(); 4529 4530 r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler, 4531 IRQF_SHARED, "OMAP DISPC", dispc); 4532 if (r) { 4533 dispc->user_handler = NULL; 4534 dispc->user_data = NULL; 4535 } 4536 4537 return r; 4538 } 4539 4540 static void dispc_free_irq(struct dispc_device *dispc, void *dev_id) 4541 { 4542 devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc); 4543 4544 dispc->user_handler = NULL; 4545 dispc->user_data = NULL; 4546 } 4547 4548 static u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc) 4549 { 4550 u32 limit = 0; 4551 4552 /* Optional maximum memory bandwidth */ 4553 of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth", 4554 &limit); 4555 4556 return limit; 4557 } 4558 4559 /* 4560 * Workaround for errata i734 in DSS dispc 4561 * - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled 4562 * 4563 * For gamma tables to work on LCD1 the GFX plane has to be used at 4564 * least once after DSS HW has come out of reset. The workaround 4565 * sets up a minimal LCD setup with GFX plane and waits for one 4566 * vertical sync irq before disabling the setup and continuing with 4567 * the context restore. The physical outputs are gated during the 4568 * operation. This workaround requires that gamma table's LOADMODE 4569 * is set to 0x2 in DISPC_CONTROL1 register. 4570 * 4571 * For details see: 4572 * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata 4573 * Literature Number: SWPZ037E 4574 * Or some other relevant errata document for the DSS IP version. 4575 */ 4576 4577 static const struct dispc_errata_i734_data { 4578 struct videomode vm; 4579 struct omap_overlay_info ovli; 4580 struct omap_overlay_manager_info mgri; 4581 struct dss_lcd_mgr_config lcd_conf; 4582 } i734 = { 4583 .vm = { 4584 .hactive = 8, .vactive = 1, 4585 .pixelclock = 16000000, 4586 .hsync_len = 8, .hfront_porch = 4, .hback_porch = 4, 4587 .vsync_len = 1, .vfront_porch = 1, .vback_porch = 1, 4588 4589 .flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW | 4590 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE | 4591 DISPLAY_FLAGS_PIXDATA_POSEDGE, 4592 }, 4593 .ovli = { 4594 .screen_width = 1, 4595 .width = 1, .height = 1, 4596 .fourcc = DRM_FORMAT_XRGB8888, 4597 .rotation = DRM_MODE_ROTATE_0, 4598 .rotation_type = OMAP_DSS_ROT_NONE, 4599 .pos_x = 0, .pos_y = 0, 4600 .out_width = 0, .out_height = 0, 4601 .global_alpha = 0xff, 4602 .pre_mult_alpha = 0, 4603 .zorder = 0, 4604 }, 4605 .mgri = { 4606 .default_color = 0, 4607 .trans_enabled = false, 4608 .partial_alpha_enabled = false, 4609 .cpr_enable = false, 4610 }, 4611 .lcd_conf = { 4612 .io_pad_mode = DSS_IO_PAD_MODE_BYPASS, 4613 .stallmode = false, 4614 .fifohandcheck = false, 4615 .clock_info = { 4616 .lck_div = 1, 4617 .pck_div = 2, 4618 }, 4619 .video_port_width = 24, 4620 .lcden_sig_polarity = 0, 4621 }, 4622 }; 4623 4624 static struct i734_buf { 4625 size_t size; 4626 dma_addr_t paddr; 4627 void *vaddr; 4628 } i734_buf; 4629 4630 static int dispc_errata_i734_wa_init(struct dispc_device *dispc) 4631 { 4632 if (!dispc->feat->has_gamma_i734_bug) 4633 return 0; 4634 4635 i734_buf.size = i734.ovli.width * i734.ovli.height * 4636 color_mode_to_bpp(i734.ovli.fourcc) / 8; 4637 4638 i734_buf.vaddr = dma_alloc_writecombine(&dispc->pdev->dev, 4639 i734_buf.size, &i734_buf.paddr, 4640 GFP_KERNEL); 4641 if (!i734_buf.vaddr) { 4642 dev_err(&dispc->pdev->dev, "%s: dma_alloc_writecombine failed\n", 4643 __func__); 4644 return -ENOMEM; 4645 } 4646 4647 return 0; 4648 } 4649 4650 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc) 4651 { 4652 if (!dispc->feat->has_gamma_i734_bug) 4653 return; 4654 4655 dma_free_writecombine(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr, 4656 i734_buf.paddr); 4657 } 4658 4659 static void dispc_errata_i734_wa(struct dispc_device *dispc) 4660 { 4661 u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc, 4662 OMAP_DSS_CHANNEL_LCD); 4663 struct omap_overlay_info ovli; 4664 struct dss_lcd_mgr_config lcd_conf; 4665 u32 gatestate; 4666 unsigned int count; 4667 4668 if (!dispc->feat->has_gamma_i734_bug) 4669 return; 4670 4671 gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4); 4672 4673 ovli = i734.ovli; 4674 ovli.paddr = i734_buf.paddr; 4675 lcd_conf = i734.lcd_conf; 4676 4677 /* Gate all LCD1 outputs */ 4678 REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4); 4679 4680 /* Setup and enable GFX plane */ 4681 dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false, 4682 OMAP_DSS_CHANNEL_LCD); 4683 dispc_ovl_enable(dispc, OMAP_DSS_GFX, true); 4684 4685 /* Set up and enable display manager for LCD1 */ 4686 dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri); 4687 dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss), 4688 &lcd_conf.clock_info); 4689 dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf); 4690 dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm); 4691 4692 dispc_clear_irqstatus(dispc, framedone_irq); 4693 4694 /* Enable and shut the channel to produce just one frame */ 4695 dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true); 4696 dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false); 4697 4698 /* Busy wait for framedone. We can't fiddle with irq handlers 4699 * in PM resume. Typically the loop runs less than 5 times and 4700 * waits less than a micro second. 4701 */ 4702 count = 0; 4703 while (!(dispc_read_irqstatus(dispc) & framedone_irq)) { 4704 if (count++ > 10000) { 4705 dev_err(&dispc->pdev->dev, "%s: framedone timeout\n", 4706 __func__); 4707 break; 4708 } 4709 } 4710 dispc_ovl_enable(dispc, OMAP_DSS_GFX, false); 4711 4712 /* Clear all irq bits before continuing */ 4713 dispc_clear_irqstatus(dispc, 0xffffffff); 4714 4715 /* Restore the original state to LCD1 output gates */ 4716 REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4); 4717 } 4718 4719 static const struct dispc_ops dispc_ops = { 4720 .read_irqstatus = dispc_read_irqstatus, 4721 .clear_irqstatus = dispc_clear_irqstatus, 4722 .write_irqenable = dispc_write_irqenable, 4723 4724 .request_irq = dispc_request_irq, 4725 .free_irq = dispc_free_irq, 4726 4727 .runtime_get = dispc_runtime_get, 4728 .runtime_put = dispc_runtime_put, 4729 4730 .get_num_ovls = dispc_get_num_ovls, 4731 .get_num_mgrs = dispc_get_num_mgrs, 4732 4733 .get_memory_bandwidth_limit = dispc_get_memory_bandwidth_limit, 4734 4735 .mgr_enable = dispc_mgr_enable, 4736 .mgr_is_enabled = dispc_mgr_is_enabled, 4737 .mgr_get_vsync_irq = dispc_mgr_get_vsync_irq, 4738 .mgr_get_framedone_irq = dispc_mgr_get_framedone_irq, 4739 .mgr_get_sync_lost_irq = dispc_mgr_get_sync_lost_irq, 4740 .mgr_go_busy = dispc_mgr_go_busy, 4741 .mgr_go = dispc_mgr_go, 4742 .mgr_set_lcd_config = dispc_mgr_set_lcd_config, 4743 .mgr_set_timings = dispc_mgr_set_timings, 4744 .mgr_setup = dispc_mgr_setup, 4745 .mgr_get_supported_outputs = dispc_mgr_get_supported_outputs, 4746 .mgr_gamma_size = dispc_mgr_gamma_size, 4747 .mgr_set_gamma = dispc_mgr_set_gamma, 4748 4749 .ovl_enable = dispc_ovl_enable, 4750 .ovl_setup = dispc_ovl_setup, 4751 .ovl_get_color_modes = dispc_ovl_get_color_modes, 4752 4753 .wb_get_framedone_irq = dispc_wb_get_framedone_irq, 4754 .wb_setup = dispc_wb_setup, 4755 .has_writeback = dispc_has_writeback, 4756 .wb_go_busy = dispc_wb_go_busy, 4757 .wb_go = dispc_wb_go, 4758 }; 4759 4760 /* DISPC HW IP initialisation */ 4761 static const struct of_device_id dispc_of_match[] = { 4762 { .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats }, 4763 { .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats }, 4764 { .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats }, 4765 { .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats }, 4766 { .compatible = "ti,dra7-dispc", .data = &omap54xx_dispc_feats }, 4767 {}, 4768 }; 4769 4770 static const struct soc_device_attribute dispc_soc_devices[] = { 4771 { .machine = "OMAP3[45]*", 4772 .revision = "ES[12].?", .data = &omap34xx_rev1_0_dispc_feats }, 4773 { .machine = "OMAP3[45]*", .data = &omap34xx_rev3_0_dispc_feats }, 4774 { .machine = "AM35*", .data = &omap34xx_rev3_0_dispc_feats }, 4775 { .machine = "AM43*", .data = &am43xx_dispc_feats }, 4776 { /* sentinel */ } 4777 }; 4778 4779 static int dispc_bind(struct device *dev, struct device *master, void *data) 4780 { 4781 struct platform_device *pdev = to_platform_device(dev); 4782 const struct soc_device_attribute *soc; 4783 struct dss_device *dss = dss_get_device(master); 4784 struct dispc_device *dispc; 4785 u32 rev; 4786 int r = 0; 4787 struct resource *dispc_mem; 4788 struct device_node *np = pdev->dev.of_node; 4789 4790 dispc = kzalloc(sizeof(*dispc), GFP_KERNEL); 4791 if (!dispc) 4792 return -ENOMEM; 4793 4794 dispc->pdev = pdev; 4795 platform_set_drvdata(pdev, dispc); 4796 dispc->dss = dss; 4797 4798 spin_lock_init(&dispc->control_lock); 4799 4800 /* 4801 * The OMAP3-based models can't be told apart using the compatible 4802 * string, use SoC device matching. 4803 */ 4804 soc = soc_device_match(dispc_soc_devices); 4805 if (soc) 4806 dispc->feat = soc->data; 4807 else 4808 dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data; 4809 4810 r = dispc_errata_i734_wa_init(dispc); 4811 if (r) 4812 goto err_free; 4813 4814 dispc_mem = platform_get_resource(dispc->pdev, IORESOURCE_MEM, 0); 4815 dispc->base = devm_ioremap_resource(&pdev->dev, dispc_mem); 4816 if (IS_ERR(dispc->base)) { 4817 r = PTR_ERR(dispc->base); 4818 goto err_free; 4819 } 4820 4821 dispc->irq = platform_get_irq(dispc->pdev, 0); 4822 if (dispc->irq < 0) { 4823 DSSERR("platform_get_irq failed\n"); 4824 r = -ENODEV; 4825 goto err_free; 4826 } 4827 4828 if (np && of_property_read_bool(np, "syscon-pol")) { 4829 dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol"); 4830 if (IS_ERR(dispc->syscon_pol)) { 4831 dev_err(&pdev->dev, "failed to get syscon-pol regmap\n"); 4832 r = PTR_ERR(dispc->syscon_pol); 4833 goto err_free; 4834 } 4835 4836 if (of_property_read_u32_index(np, "syscon-pol", 1, 4837 &dispc->syscon_pol_offset)) { 4838 dev_err(&pdev->dev, "failed to get syscon-pol offset\n"); 4839 r = -EINVAL; 4840 goto err_free; 4841 } 4842 } 4843 4844 r = dispc_init_gamma_tables(dispc); 4845 if (r) 4846 goto err_free; 4847 4848 pm_runtime_enable(&pdev->dev); 4849 4850 r = dispc_runtime_get(dispc); 4851 if (r) 4852 goto err_runtime_get; 4853 4854 _omap_dispc_initial_config(dispc); 4855 4856 rev = dispc_read_reg(dispc, DISPC_REVISION); 4857 dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n", 4858 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0)); 4859 4860 dispc_runtime_put(dispc); 4861 4862 dss->dispc = dispc; 4863 dss->dispc_ops = &dispc_ops; 4864 4865 dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs, 4866 dispc); 4867 4868 return 0; 4869 4870 err_runtime_get: 4871 pm_runtime_disable(&pdev->dev); 4872 err_free: 4873 kfree(dispc); 4874 return r; 4875 } 4876 4877 static void dispc_unbind(struct device *dev, struct device *master, void *data) 4878 { 4879 struct dispc_device *dispc = dev_get_drvdata(dev); 4880 struct dss_device *dss = dispc->dss; 4881 4882 dss_debugfs_remove_file(dispc->debugfs); 4883 4884 dss->dispc = NULL; 4885 dss->dispc_ops = NULL; 4886 4887 pm_runtime_disable(dev); 4888 4889 dispc_errata_i734_wa_fini(dispc); 4890 4891 kfree(dispc); 4892 } 4893 4894 static const struct component_ops dispc_component_ops = { 4895 .bind = dispc_bind, 4896 .unbind = dispc_unbind, 4897 }; 4898 4899 static int dispc_probe(struct platform_device *pdev) 4900 { 4901 return component_add(&pdev->dev, &dispc_component_ops); 4902 } 4903 4904 static int dispc_remove(struct platform_device *pdev) 4905 { 4906 component_del(&pdev->dev, &dispc_component_ops); 4907 return 0; 4908 } 4909 4910 static int dispc_runtime_suspend(struct device *dev) 4911 { 4912 struct dispc_device *dispc = dev_get_drvdata(dev); 4913 4914 dispc->is_enabled = false; 4915 /* ensure the dispc_irq_handler sees the is_enabled value */ 4916 smp_wmb(); 4917 /* wait for current handler to finish before turning the DISPC off */ 4918 synchronize_irq(dispc->irq); 4919 4920 dispc_save_context(dispc); 4921 4922 return 0; 4923 } 4924 4925 static int dispc_runtime_resume(struct device *dev) 4926 { 4927 struct dispc_device *dispc = dev_get_drvdata(dev); 4928 4929 /* 4930 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME) 4931 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in 4932 * _omap_dispc_initial_config(). We can thus use it to detect if 4933 * we have lost register context. 4934 */ 4935 if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) { 4936 _omap_dispc_initial_config(dispc); 4937 4938 dispc_errata_i734_wa(dispc); 4939 4940 dispc_restore_context(dispc); 4941 4942 dispc_restore_gamma_tables(dispc); 4943 } 4944 4945 dispc->is_enabled = true; 4946 /* ensure the dispc_irq_handler sees the is_enabled value */ 4947 smp_wmb(); 4948 4949 return 0; 4950 } 4951 4952 static const struct dev_pm_ops dispc_pm_ops = { 4953 .runtime_suspend = dispc_runtime_suspend, 4954 .runtime_resume = dispc_runtime_resume, 4955 }; 4956 4957 struct platform_driver omap_dispchw_driver = { 4958 .probe = dispc_probe, 4959 .remove = dispc_remove, 4960 .driver = { 4961 .name = "omapdss_dispc", 4962 .pm = &dispc_pm_ops, 4963 .of_match_table = dispc_of_match, 4964 .suppress_bind_attrs = true, 4965 }, 4966 }; 4967