1 /* 2 * Copyright 2017 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #define NVKM_VMM_LEVELS_MAX 6 23 #include "vmm.h" 24 25 #include <subdev/fb.h> 26 27 static void 28 nvkm_vmm_pt_del(struct nvkm_vmm_pt **ppgt) 29 { 30 struct nvkm_vmm_pt *pgt = *ppgt; 31 if (pgt) { 32 kvfree(pgt->pde); 33 kfree(pgt); 34 *ppgt = NULL; 35 } 36 } 37 38 39 static struct nvkm_vmm_pt * 40 nvkm_vmm_pt_new(const struct nvkm_vmm_desc *desc, bool sparse, 41 const struct nvkm_vmm_page *page) 42 { 43 const u32 pten = 1 << desc->bits; 44 struct nvkm_vmm_pt *pgt; 45 u32 lpte = 0; 46 47 if (desc->type > PGT) { 48 if (desc->type == SPT) { 49 const struct nvkm_vmm_desc *pair = page[-1].desc; 50 lpte = pten >> (desc->bits - pair->bits); 51 } else { 52 lpte = pten; 53 } 54 } 55 56 if (!(pgt = kzalloc(sizeof(*pgt) + lpte, GFP_KERNEL))) 57 return NULL; 58 pgt->page = page ? page->shift : 0; 59 pgt->sparse = sparse; 60 61 if (desc->type == PGD) { 62 pgt->pde = kvcalloc(pten, sizeof(*pgt->pde), GFP_KERNEL); 63 if (!pgt->pde) { 64 kfree(pgt); 65 return NULL; 66 } 67 } 68 69 return pgt; 70 } 71 72 struct nvkm_vmm_iter { 73 const struct nvkm_vmm_page *page; 74 const struct nvkm_vmm_desc *desc; 75 struct nvkm_vmm *vmm; 76 u64 cnt; 77 u16 max, lvl; 78 u32 pte[NVKM_VMM_LEVELS_MAX]; 79 struct nvkm_vmm_pt *pt[NVKM_VMM_LEVELS_MAX]; 80 int flush; 81 }; 82 83 #ifdef CONFIG_NOUVEAU_DEBUG_MMU 84 static const char * 85 nvkm_vmm_desc_type(const struct nvkm_vmm_desc *desc) 86 { 87 switch (desc->type) { 88 case PGD: return "PGD"; 89 case PGT: return "PGT"; 90 case SPT: return "SPT"; 91 case LPT: return "LPT"; 92 default: 93 return "UNKNOWN"; 94 } 95 } 96 97 static void 98 nvkm_vmm_trace(struct nvkm_vmm_iter *it, char *buf) 99 { 100 int lvl; 101 for (lvl = it->max; lvl >= 0; lvl--) { 102 if (lvl >= it->lvl) 103 buf += sprintf(buf, "%05x:", it->pte[lvl]); 104 else 105 buf += sprintf(buf, "xxxxx:"); 106 } 107 } 108 109 #define TRA(i,f,a...) do { \ 110 char _buf[NVKM_VMM_LEVELS_MAX * 7]; \ 111 struct nvkm_vmm_iter *_it = (i); \ 112 nvkm_vmm_trace(_it, _buf); \ 113 VMM_TRACE(_it->vmm, "%s "f, _buf, ##a); \ 114 } while(0) 115 #else 116 #define TRA(i,f,a...) 117 #endif 118 119 static inline void 120 nvkm_vmm_flush_mark(struct nvkm_vmm_iter *it) 121 { 122 it->flush = min(it->flush, it->max - it->lvl); 123 } 124 125 static inline void 126 nvkm_vmm_flush(struct nvkm_vmm_iter *it) 127 { 128 if (it->flush != NVKM_VMM_LEVELS_MAX) { 129 if (it->vmm->func->flush) { 130 TRA(it, "flush: %d", it->flush); 131 it->vmm->func->flush(it->vmm, it->flush); 132 } 133 it->flush = NVKM_VMM_LEVELS_MAX; 134 } 135 } 136 137 static void 138 nvkm_vmm_unref_pdes(struct nvkm_vmm_iter *it) 139 { 140 const struct nvkm_vmm_desc *desc = it->desc; 141 const int type = desc[it->lvl].type == SPT; 142 struct nvkm_vmm_pt *pgd = it->pt[it->lvl + 1]; 143 struct nvkm_vmm_pt *pgt = it->pt[it->lvl]; 144 struct nvkm_mmu_pt *pt = pgt->pt[type]; 145 struct nvkm_vmm *vmm = it->vmm; 146 u32 pdei = it->pte[it->lvl + 1]; 147 148 /* Recurse up the tree, unreferencing/destroying unneeded PDs. */ 149 it->lvl++; 150 if (--pgd->refs[0]) { 151 const struct nvkm_vmm_desc_func *func = desc[it->lvl].func; 152 /* PD has other valid PDEs, so we need a proper update. */ 153 TRA(it, "PDE unmap %s", nvkm_vmm_desc_type(&desc[it->lvl - 1])); 154 pgt->pt[type] = NULL; 155 if (!pgt->refs[!type]) { 156 /* PDE no longer required. */ 157 if (pgd->pt[0]) { 158 if (pgt->sparse) { 159 func->sparse(vmm, pgd->pt[0], pdei, 1); 160 pgd->pde[pdei] = NVKM_VMM_PDE_SPARSE; 161 } else { 162 func->unmap(vmm, pgd->pt[0], pdei, 1); 163 pgd->pde[pdei] = NULL; 164 } 165 } else { 166 /* Special handling for Tesla-class GPUs, 167 * where there's no central PD, but each 168 * instance has its own embedded PD. 169 */ 170 func->pde(vmm, pgd, pdei); 171 pgd->pde[pdei] = NULL; 172 } 173 } else { 174 /* PDE was pointing at dual-PTs and we're removing 175 * one of them, leaving the other in place. 176 */ 177 func->pde(vmm, pgd, pdei); 178 } 179 180 /* GPU may have cached the PTs, flush before freeing. */ 181 nvkm_vmm_flush_mark(it); 182 nvkm_vmm_flush(it); 183 } else { 184 /* PD has no valid PDEs left, so we can just destroy it. */ 185 nvkm_vmm_unref_pdes(it); 186 } 187 188 /* Destroy PD/PT. */ 189 TRA(it, "PDE free %s", nvkm_vmm_desc_type(&desc[it->lvl - 1])); 190 nvkm_mmu_ptc_put(vmm->mmu, vmm->bootstrapped, &pt); 191 if (!pgt->refs[!type]) 192 nvkm_vmm_pt_del(&pgt); 193 it->lvl--; 194 } 195 196 static void 197 nvkm_vmm_unref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt, 198 const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes) 199 { 200 const struct nvkm_vmm_desc *pair = it->page[-1].desc; 201 const u32 sptb = desc->bits - pair->bits; 202 const u32 sptn = 1 << sptb; 203 struct nvkm_vmm *vmm = it->vmm; 204 u32 spti = ptei & (sptn - 1), lpti, pteb; 205 206 /* Determine how many SPTEs are being touched under each LPTE, 207 * and drop reference counts. 208 */ 209 for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) { 210 const u32 pten = min(sptn - spti, ptes); 211 pgt->pte[lpti] -= pten; 212 ptes -= pten; 213 } 214 215 /* We're done here if there's no corresponding LPT. */ 216 if (!pgt->refs[0]) 217 return; 218 219 for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) { 220 /* Skip over any LPTEs that still have valid SPTEs. */ 221 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPTES) { 222 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) { 223 if (!(pgt->pte[ptei] & NVKM_VMM_PTE_SPTES)) 224 break; 225 } 226 continue; 227 } 228 229 /* As there's no more non-UNMAPPED SPTEs left in the range 230 * covered by a number of LPTEs, the LPTEs once again take 231 * control over their address range. 232 * 233 * Determine how many LPTEs need to transition state. 234 */ 235 pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID; 236 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) { 237 if (pgt->pte[ptei] & NVKM_VMM_PTE_SPTES) 238 break; 239 pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID; 240 } 241 242 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) { 243 TRA(it, "LPTE %05x: U -> S %d PTEs", pteb, ptes); 244 pair->func->sparse(vmm, pgt->pt[0], pteb, ptes); 245 } else 246 if (pair->func->invalid) { 247 /* If the MMU supports it, restore the LPTE to the 248 * INVALID state to tell the MMU there is no point 249 * trying to fetch the corresponding SPTEs. 250 */ 251 TRA(it, "LPTE %05x: U -> I %d PTEs", pteb, ptes); 252 pair->func->invalid(vmm, pgt->pt[0], pteb, ptes); 253 } 254 } 255 } 256 257 static bool 258 nvkm_vmm_unref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes) 259 { 260 const struct nvkm_vmm_desc *desc = it->desc; 261 const int type = desc->type == SPT; 262 struct nvkm_vmm_pt *pgt = it->pt[0]; 263 bool dma; 264 265 if (pfn) { 266 /* Need to clear PTE valid bits before we dma_unmap_page(). */ 267 dma = desc->func->pfn_clear(it->vmm, pgt->pt[type], ptei, ptes); 268 if (dma) { 269 /* GPU may have cached the PT, flush before unmap. */ 270 nvkm_vmm_flush_mark(it); 271 nvkm_vmm_flush(it); 272 desc->func->pfn_unmap(it->vmm, pgt->pt[type], ptei, ptes); 273 } 274 } 275 276 /* Drop PTE references. */ 277 pgt->refs[type] -= ptes; 278 279 /* Dual-PTs need special handling, unless PDE becoming invalid. */ 280 if (desc->type == SPT && (pgt->refs[0] || pgt->refs[1])) 281 nvkm_vmm_unref_sptes(it, pgt, desc, ptei, ptes); 282 283 /* PT no longer needed? Destroy it. */ 284 if (!pgt->refs[type]) { 285 it->lvl++; 286 TRA(it, "%s empty", nvkm_vmm_desc_type(desc)); 287 it->lvl--; 288 nvkm_vmm_unref_pdes(it); 289 return false; /* PTE writes for unmap() not necessary. */ 290 } 291 292 return true; 293 } 294 295 static void 296 nvkm_vmm_ref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt, 297 const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes) 298 { 299 const struct nvkm_vmm_desc *pair = it->page[-1].desc; 300 const u32 sptb = desc->bits - pair->bits; 301 const u32 sptn = 1 << sptb; 302 struct nvkm_vmm *vmm = it->vmm; 303 u32 spti = ptei & (sptn - 1), lpti, pteb; 304 305 /* Determine how many SPTEs are being touched under each LPTE, 306 * and increase reference counts. 307 */ 308 for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) { 309 const u32 pten = min(sptn - spti, ptes); 310 pgt->pte[lpti] += pten; 311 ptes -= pten; 312 } 313 314 /* We're done here if there's no corresponding LPT. */ 315 if (!pgt->refs[0]) 316 return; 317 318 for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) { 319 /* Skip over any LPTEs that already have valid SPTEs. */ 320 if (pgt->pte[pteb] & NVKM_VMM_PTE_VALID) { 321 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) { 322 if (!(pgt->pte[ptei] & NVKM_VMM_PTE_VALID)) 323 break; 324 } 325 continue; 326 } 327 328 /* As there are now non-UNMAPPED SPTEs in the range covered 329 * by a number of LPTEs, we need to transfer control of the 330 * address range to the SPTEs. 331 * 332 * Determine how many LPTEs need to transition state. 333 */ 334 pgt->pte[ptei] |= NVKM_VMM_PTE_VALID; 335 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) { 336 if (pgt->pte[ptei] & NVKM_VMM_PTE_VALID) 337 break; 338 pgt->pte[ptei] |= NVKM_VMM_PTE_VALID; 339 } 340 341 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) { 342 const u32 spti = pteb * sptn; 343 const u32 sptc = ptes * sptn; 344 /* The entire LPTE is marked as sparse, we need 345 * to make sure that the SPTEs are too. 346 */ 347 TRA(it, "SPTE %05x: U -> S %d PTEs", spti, sptc); 348 desc->func->sparse(vmm, pgt->pt[1], spti, sptc); 349 /* Sparse LPTEs prevent SPTEs from being accessed. */ 350 TRA(it, "LPTE %05x: S -> U %d PTEs", pteb, ptes); 351 pair->func->unmap(vmm, pgt->pt[0], pteb, ptes); 352 } else 353 if (pair->func->invalid) { 354 /* MMU supports blocking SPTEs by marking an LPTE 355 * as INVALID. We need to reverse that here. 356 */ 357 TRA(it, "LPTE %05x: I -> U %d PTEs", pteb, ptes); 358 pair->func->unmap(vmm, pgt->pt[0], pteb, ptes); 359 } 360 } 361 } 362 363 static bool 364 nvkm_vmm_ref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes) 365 { 366 const struct nvkm_vmm_desc *desc = it->desc; 367 const int type = desc->type == SPT; 368 struct nvkm_vmm_pt *pgt = it->pt[0]; 369 370 /* Take PTE references. */ 371 pgt->refs[type] += ptes; 372 373 /* Dual-PTs need special handling. */ 374 if (desc->type == SPT) 375 nvkm_vmm_ref_sptes(it, pgt, desc, ptei, ptes); 376 377 return true; 378 } 379 380 static void 381 nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc *desc, 382 struct nvkm_vmm_pt *pgt, u32 ptei, u32 ptes) 383 { 384 if (desc->type == PGD) { 385 while (ptes--) 386 pgt->pde[ptei++] = NVKM_VMM_PDE_SPARSE; 387 } else 388 if (desc->type == LPT) { 389 memset(&pgt->pte[ptei], NVKM_VMM_PTE_SPARSE, ptes); 390 } 391 } 392 393 static bool 394 nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes) 395 { 396 struct nvkm_vmm_pt *pt = it->pt[0]; 397 if (it->desc->type == PGD) 398 memset(&pt->pde[ptei], 0x00, sizeof(pt->pde[0]) * ptes); 399 else 400 if (it->desc->type == LPT) 401 memset(&pt->pte[ptei], 0x00, sizeof(pt->pte[0]) * ptes); 402 return nvkm_vmm_unref_ptes(it, pfn, ptei, ptes); 403 } 404 405 static bool 406 nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes) 407 { 408 nvkm_vmm_sparse_ptes(it->desc, it->pt[0], ptei, ptes); 409 return nvkm_vmm_ref_ptes(it, pfn, ptei, ptes); 410 } 411 412 static bool 413 nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei) 414 { 415 const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1]; 416 const int type = desc->type == SPT; 417 struct nvkm_vmm_pt *pgt = pgd->pde[pdei]; 418 const bool zero = !pgt->sparse && !desc->func->invalid; 419 struct nvkm_vmm *vmm = it->vmm; 420 struct nvkm_mmu *mmu = vmm->mmu; 421 struct nvkm_mmu_pt *pt; 422 u32 pten = 1 << desc->bits; 423 u32 pteb, ptei, ptes; 424 u32 size = desc->size * pten; 425 426 pgd->refs[0]++; 427 428 pgt->pt[type] = nvkm_mmu_ptc_get(mmu, size, desc->align, zero); 429 if (!pgt->pt[type]) { 430 it->lvl--; 431 nvkm_vmm_unref_pdes(it); 432 return false; 433 } 434 435 if (zero) 436 goto done; 437 438 pt = pgt->pt[type]; 439 440 if (desc->type == LPT && pgt->refs[1]) { 441 /* SPT already exists covering the same range as this LPT, 442 * which means we need to be careful that any LPTEs which 443 * overlap valid SPTEs are unmapped as opposed to invalid 444 * or sparse, which would prevent the MMU from looking at 445 * the SPTEs on some GPUs. 446 */ 447 for (ptei = pteb = 0; ptei < pten; pteb = ptei) { 448 bool spte = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES; 449 for (ptes = 1, ptei++; ptei < pten; ptes++, ptei++) { 450 bool next = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES; 451 if (spte != next) 452 break; 453 } 454 455 if (!spte) { 456 if (pgt->sparse) 457 desc->func->sparse(vmm, pt, pteb, ptes); 458 else 459 desc->func->invalid(vmm, pt, pteb, ptes); 460 memset(&pgt->pte[pteb], 0x00, ptes); 461 } else { 462 desc->func->unmap(vmm, pt, pteb, ptes); 463 while (ptes--) 464 pgt->pte[pteb++] |= NVKM_VMM_PTE_VALID; 465 } 466 } 467 } else { 468 if (pgt->sparse) { 469 nvkm_vmm_sparse_ptes(desc, pgt, 0, pten); 470 desc->func->sparse(vmm, pt, 0, pten); 471 } else { 472 desc->func->invalid(vmm, pt, 0, pten); 473 } 474 } 475 476 done: 477 TRA(it, "PDE write %s", nvkm_vmm_desc_type(desc)); 478 it->desc[it->lvl].func->pde(it->vmm, pgd, pdei); 479 nvkm_vmm_flush_mark(it); 480 return true; 481 } 482 483 static bool 484 nvkm_vmm_ref_swpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei) 485 { 486 const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1]; 487 struct nvkm_vmm_pt *pgt = pgd->pde[pdei]; 488 489 pgt = nvkm_vmm_pt_new(desc, NVKM_VMM_PDE_SPARSED(pgt), it->page); 490 if (!pgt) { 491 if (!pgd->refs[0]) 492 nvkm_vmm_unref_pdes(it); 493 return false; 494 } 495 496 pgd->pde[pdei] = pgt; 497 return true; 498 } 499 500 static inline u64 501 nvkm_vmm_iter(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 502 u64 addr, u64 size, const char *name, bool ref, bool pfn, 503 bool (*REF_PTES)(struct nvkm_vmm_iter *, bool pfn, u32, u32), 504 nvkm_vmm_pte_func MAP_PTES, struct nvkm_vmm_map *map, 505 nvkm_vmm_pxe_func CLR_PTES) 506 { 507 const struct nvkm_vmm_desc *desc = page->desc; 508 struct nvkm_vmm_iter it; 509 u64 bits = addr >> page->shift; 510 511 it.page = page; 512 it.desc = desc; 513 it.vmm = vmm; 514 it.cnt = size >> page->shift; 515 it.flush = NVKM_VMM_LEVELS_MAX; 516 517 /* Deconstruct address into PTE indices for each mapping level. */ 518 for (it.lvl = 0; desc[it.lvl].bits; it.lvl++) { 519 it.pte[it.lvl] = bits & ((1 << desc[it.lvl].bits) - 1); 520 bits >>= desc[it.lvl].bits; 521 } 522 it.max = --it.lvl; 523 it.pt[it.max] = vmm->pd; 524 525 it.lvl = 0; 526 TRA(&it, "%s: %016llx %016llx %d %lld PTEs", name, 527 addr, size, page->shift, it.cnt); 528 it.lvl = it.max; 529 530 /* Depth-first traversal of page tables. */ 531 while (it.cnt) { 532 struct nvkm_vmm_pt *pgt = it.pt[it.lvl]; 533 const int type = desc->type == SPT; 534 const u32 pten = 1 << desc->bits; 535 const u32 ptei = it.pte[0]; 536 const u32 ptes = min_t(u64, it.cnt, pten - ptei); 537 538 /* Walk down the tree, finding page tables for each level. */ 539 for (; it.lvl; it.lvl--) { 540 const u32 pdei = it.pte[it.lvl]; 541 struct nvkm_vmm_pt *pgd = pgt; 542 543 /* Software PT. */ 544 if (ref && NVKM_VMM_PDE_INVALID(pgd->pde[pdei])) { 545 if (!nvkm_vmm_ref_swpt(&it, pgd, pdei)) 546 goto fail; 547 } 548 it.pt[it.lvl - 1] = pgt = pgd->pde[pdei]; 549 550 /* Hardware PT. 551 * 552 * This is a separate step from above due to GF100 and 553 * newer having dual page tables at some levels, which 554 * are refcounted independently. 555 */ 556 if (ref && !pgt->refs[desc[it.lvl - 1].type == SPT]) { 557 if (!nvkm_vmm_ref_hwpt(&it, pgd, pdei)) 558 goto fail; 559 } 560 } 561 562 /* Handle PTE updates. */ 563 if (!REF_PTES || REF_PTES(&it, pfn, ptei, ptes)) { 564 struct nvkm_mmu_pt *pt = pgt->pt[type]; 565 if (MAP_PTES || CLR_PTES) { 566 if (MAP_PTES) 567 MAP_PTES(vmm, pt, ptei, ptes, map); 568 else 569 CLR_PTES(vmm, pt, ptei, ptes); 570 nvkm_vmm_flush_mark(&it); 571 } 572 } 573 574 /* Walk back up the tree to the next position. */ 575 it.pte[it.lvl] += ptes; 576 it.cnt -= ptes; 577 if (it.cnt) { 578 while (it.pte[it.lvl] == (1 << desc[it.lvl].bits)) { 579 it.pte[it.lvl++] = 0; 580 it.pte[it.lvl]++; 581 } 582 } 583 } 584 585 nvkm_vmm_flush(&it); 586 return ~0ULL; 587 588 fail: 589 /* Reconstruct the failure address so the caller is able to 590 * reverse any partially completed operations. 591 */ 592 addr = it.pte[it.max--]; 593 do { 594 addr = addr << desc[it.max].bits; 595 addr |= it.pte[it.max]; 596 } while (it.max--); 597 598 return addr << page->shift; 599 } 600 601 static void 602 nvkm_vmm_ptes_sparse_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 603 u64 addr, u64 size) 604 { 605 nvkm_vmm_iter(vmm, page, addr, size, "sparse unref", false, false, 606 nvkm_vmm_sparse_unref_ptes, NULL, NULL, 607 page->desc->func->invalid ? 608 page->desc->func->invalid : page->desc->func->unmap); 609 } 610 611 static int 612 nvkm_vmm_ptes_sparse_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 613 u64 addr, u64 size) 614 { 615 if ((page->type & NVKM_VMM_PAGE_SPARSE)) { 616 u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "sparse ref", 617 true, false, nvkm_vmm_sparse_ref_ptes, 618 NULL, NULL, page->desc->func->sparse); 619 if (fail != ~0ULL) { 620 if ((size = fail - addr)) 621 nvkm_vmm_ptes_sparse_put(vmm, page, addr, size); 622 return -ENOMEM; 623 } 624 return 0; 625 } 626 return -EINVAL; 627 } 628 629 static int 630 nvkm_vmm_ptes_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref) 631 { 632 const struct nvkm_vmm_page *page = vmm->func->page; 633 int m = 0, i; 634 u64 start = addr; 635 u64 block; 636 637 while (size) { 638 /* Limit maximum page size based on remaining size. */ 639 while (size < (1ULL << page[m].shift)) 640 m++; 641 i = m; 642 643 /* Find largest page size suitable for alignment. */ 644 while (!IS_ALIGNED(addr, 1ULL << page[i].shift)) 645 i++; 646 647 /* Determine number of PTEs at this page size. */ 648 if (i != m) { 649 /* Limited to alignment boundary of next page size. */ 650 u64 next = 1ULL << page[i - 1].shift; 651 u64 part = ALIGN(addr, next) - addr; 652 if (size - part >= next) 653 block = (part >> page[i].shift) << page[i].shift; 654 else 655 block = (size >> page[i].shift) << page[i].shift; 656 } else { 657 block = (size >> page[i].shift) << page[i].shift; 658 } 659 660 /* Perform operation. */ 661 if (ref) { 662 int ret = nvkm_vmm_ptes_sparse_get(vmm, &page[i], addr, block); 663 if (ret) { 664 if ((size = addr - start)) 665 nvkm_vmm_ptes_sparse(vmm, start, size, false); 666 return ret; 667 } 668 } else { 669 nvkm_vmm_ptes_sparse_put(vmm, &page[i], addr, block); 670 } 671 672 size -= block; 673 addr += block; 674 } 675 676 return 0; 677 } 678 679 static void 680 nvkm_vmm_ptes_unmap(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 681 u64 addr, u64 size, bool sparse, bool pfn) 682 { 683 const struct nvkm_vmm_desc_func *func = page->desc->func; 684 685 mutex_lock(&vmm->mutex.map); 686 nvkm_vmm_iter(vmm, page, addr, size, "unmap", false, pfn, 687 NULL, NULL, NULL, 688 sparse ? func->sparse : func->invalid ? func->invalid : 689 func->unmap); 690 mutex_unlock(&vmm->mutex.map); 691 } 692 693 static void 694 nvkm_vmm_ptes_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 695 u64 addr, u64 size, struct nvkm_vmm_map *map, 696 nvkm_vmm_pte_func func) 697 { 698 mutex_lock(&vmm->mutex.map); 699 nvkm_vmm_iter(vmm, page, addr, size, "map", false, false, 700 NULL, func, map, NULL); 701 mutex_unlock(&vmm->mutex.map); 702 } 703 704 static void 705 nvkm_vmm_ptes_put_locked(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 706 u64 addr, u64 size) 707 { 708 nvkm_vmm_iter(vmm, page, addr, size, "unref", false, false, 709 nvkm_vmm_unref_ptes, NULL, NULL, NULL); 710 } 711 712 static void 713 nvkm_vmm_ptes_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 714 u64 addr, u64 size) 715 { 716 mutex_lock(&vmm->mutex.ref); 717 nvkm_vmm_ptes_put_locked(vmm, page, addr, size); 718 mutex_unlock(&vmm->mutex.ref); 719 } 720 721 static int 722 nvkm_vmm_ptes_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 723 u64 addr, u64 size) 724 { 725 u64 fail; 726 727 mutex_lock(&vmm->mutex.ref); 728 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref", true, false, 729 nvkm_vmm_ref_ptes, NULL, NULL, NULL); 730 if (fail != ~0ULL) { 731 if (fail != addr) 732 nvkm_vmm_ptes_put_locked(vmm, page, addr, fail - addr); 733 mutex_unlock(&vmm->mutex.ref); 734 return -ENOMEM; 735 } 736 mutex_unlock(&vmm->mutex.ref); 737 return 0; 738 } 739 740 static void 741 __nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 742 u64 addr, u64 size, bool sparse, bool pfn) 743 { 744 const struct nvkm_vmm_desc_func *func = page->desc->func; 745 746 nvkm_vmm_iter(vmm, page, addr, size, "unmap + unref", 747 false, pfn, nvkm_vmm_unref_ptes, NULL, NULL, 748 sparse ? func->sparse : func->invalid ? func->invalid : 749 func->unmap); 750 } 751 752 static void 753 nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 754 u64 addr, u64 size, bool sparse, bool pfn) 755 { 756 if (vmm->managed.raw) { 757 nvkm_vmm_ptes_unmap(vmm, page, addr, size, sparse, pfn); 758 nvkm_vmm_ptes_put(vmm, page, addr, size); 759 } else { 760 __nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, sparse, pfn); 761 } 762 } 763 764 static int 765 __nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 766 u64 addr, u64 size, struct nvkm_vmm_map *map, 767 nvkm_vmm_pte_func func) 768 { 769 u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref + map", true, 770 false, nvkm_vmm_ref_ptes, func, map, NULL); 771 if (fail != ~0ULL) { 772 if ((size = fail - addr)) 773 nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, false, false); 774 return -ENOMEM; 775 } 776 return 0; 777 } 778 779 static int 780 nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 781 u64 addr, u64 size, struct nvkm_vmm_map *map, 782 nvkm_vmm_pte_func func) 783 { 784 int ret; 785 786 if (vmm->managed.raw) { 787 ret = nvkm_vmm_ptes_get(vmm, page, addr, size); 788 if (ret) 789 return ret; 790 791 nvkm_vmm_ptes_map(vmm, page, addr, size, map, func); 792 793 return 0; 794 } else { 795 return __nvkm_vmm_ptes_get_map(vmm, page, addr, size, map, func); 796 } 797 } 798 799 struct nvkm_vma * 800 nvkm_vma_new(u64 addr, u64 size) 801 { 802 struct nvkm_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 803 if (vma) { 804 vma->addr = addr; 805 vma->size = size; 806 vma->page = NVKM_VMA_PAGE_NONE; 807 vma->refd = NVKM_VMA_PAGE_NONE; 808 } 809 return vma; 810 } 811 812 struct nvkm_vma * 813 nvkm_vma_tail(struct nvkm_vma *vma, u64 tail) 814 { 815 struct nvkm_vma *new; 816 817 BUG_ON(vma->size == tail); 818 819 if (!(new = nvkm_vma_new(vma->addr + (vma->size - tail), tail))) 820 return NULL; 821 vma->size -= tail; 822 823 new->mapref = vma->mapref; 824 new->sparse = vma->sparse; 825 new->page = vma->page; 826 new->refd = vma->refd; 827 new->used = vma->used; 828 new->part = vma->part; 829 new->busy = vma->busy; 830 new->mapped = vma->mapped; 831 list_add(&new->head, &vma->head); 832 return new; 833 } 834 835 static inline void 836 nvkm_vmm_free_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 837 { 838 rb_erase(&vma->tree, &vmm->free); 839 } 840 841 static inline void 842 nvkm_vmm_free_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 843 { 844 nvkm_vmm_free_remove(vmm, vma); 845 list_del(&vma->head); 846 kfree(vma); 847 } 848 849 static void 850 nvkm_vmm_free_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 851 { 852 struct rb_node **ptr = &vmm->free.rb_node; 853 struct rb_node *parent = NULL; 854 855 while (*ptr) { 856 struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree); 857 parent = *ptr; 858 if (vma->size < this->size) 859 ptr = &parent->rb_left; 860 else 861 if (vma->size > this->size) 862 ptr = &parent->rb_right; 863 else 864 if (vma->addr < this->addr) 865 ptr = &parent->rb_left; 866 else 867 if (vma->addr > this->addr) 868 ptr = &parent->rb_right; 869 else 870 BUG(); 871 } 872 873 rb_link_node(&vma->tree, parent, ptr); 874 rb_insert_color(&vma->tree, &vmm->free); 875 } 876 877 static inline void 878 nvkm_vmm_node_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 879 { 880 rb_erase(&vma->tree, &vmm->root); 881 } 882 883 static inline void 884 nvkm_vmm_node_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 885 { 886 nvkm_vmm_node_remove(vmm, vma); 887 list_del(&vma->head); 888 kfree(vma); 889 } 890 891 static void 892 nvkm_vmm_node_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 893 { 894 struct rb_node **ptr = &vmm->root.rb_node; 895 struct rb_node *parent = NULL; 896 897 while (*ptr) { 898 struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree); 899 parent = *ptr; 900 if (vma->addr < this->addr) 901 ptr = &parent->rb_left; 902 else 903 if (vma->addr > this->addr) 904 ptr = &parent->rb_right; 905 else 906 BUG(); 907 } 908 909 rb_link_node(&vma->tree, parent, ptr); 910 rb_insert_color(&vma->tree, &vmm->root); 911 } 912 913 struct nvkm_vma * 914 nvkm_vmm_node_search(struct nvkm_vmm *vmm, u64 addr) 915 { 916 struct rb_node *node = vmm->root.rb_node; 917 while (node) { 918 struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree); 919 if (addr < vma->addr) 920 node = node->rb_left; 921 else 922 if (addr >= vma->addr + vma->size) 923 node = node->rb_right; 924 else 925 return vma; 926 } 927 return NULL; 928 } 929 930 #define node(root, dir) (((root)->head.dir == &vmm->list) ? NULL : \ 931 list_entry((root)->head.dir, struct nvkm_vma, head)) 932 933 static struct nvkm_vma * 934 nvkm_vmm_node_merge(struct nvkm_vmm *vmm, struct nvkm_vma *prev, 935 struct nvkm_vma *vma, struct nvkm_vma *next, u64 size) 936 { 937 if (next) { 938 if (vma->size == size) { 939 vma->size += next->size; 940 nvkm_vmm_node_delete(vmm, next); 941 if (prev) { 942 prev->size += vma->size; 943 nvkm_vmm_node_delete(vmm, vma); 944 return prev; 945 } 946 return vma; 947 } 948 BUG_ON(prev); 949 950 nvkm_vmm_node_remove(vmm, next); 951 vma->size -= size; 952 next->addr -= size; 953 next->size += size; 954 nvkm_vmm_node_insert(vmm, next); 955 return next; 956 } 957 958 if (prev) { 959 if (vma->size != size) { 960 nvkm_vmm_node_remove(vmm, vma); 961 prev->size += size; 962 vma->addr += size; 963 vma->size -= size; 964 nvkm_vmm_node_insert(vmm, vma); 965 } else { 966 prev->size += vma->size; 967 nvkm_vmm_node_delete(vmm, vma); 968 } 969 return prev; 970 } 971 972 return vma; 973 } 974 975 struct nvkm_vma * 976 nvkm_vmm_node_split(struct nvkm_vmm *vmm, 977 struct nvkm_vma *vma, u64 addr, u64 size) 978 { 979 struct nvkm_vma *prev = NULL; 980 981 if (vma->addr != addr) { 982 prev = vma; 983 if (!(vma = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) 984 return NULL; 985 vma->part = true; 986 nvkm_vmm_node_insert(vmm, vma); 987 } 988 989 if (vma->size != size) { 990 struct nvkm_vma *tmp; 991 if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) { 992 nvkm_vmm_node_merge(vmm, prev, vma, NULL, vma->size); 993 return NULL; 994 } 995 tmp->part = true; 996 nvkm_vmm_node_insert(vmm, tmp); 997 } 998 999 return vma; 1000 } 1001 1002 static void 1003 nvkm_vma_dump(struct nvkm_vma *vma) 1004 { 1005 printk(KERN_ERR "%016llx %016llx %c%c%c%c%c%c%c%c %p\n", 1006 vma->addr, (u64)vma->size, 1007 vma->used ? '-' : 'F', 1008 vma->mapref ? 'R' : '-', 1009 vma->sparse ? 'S' : '-', 1010 vma->page != NVKM_VMA_PAGE_NONE ? '0' + vma->page : '-', 1011 vma->refd != NVKM_VMA_PAGE_NONE ? '0' + vma->refd : '-', 1012 vma->part ? 'P' : '-', 1013 vma->busy ? 'B' : '-', 1014 vma->mapped ? 'M' : '-', 1015 vma->memory); 1016 } 1017 1018 static void 1019 nvkm_vmm_dump(struct nvkm_vmm *vmm) 1020 { 1021 struct nvkm_vma *vma; 1022 list_for_each_entry(vma, &vmm->list, head) { 1023 nvkm_vma_dump(vma); 1024 } 1025 } 1026 1027 static void 1028 nvkm_vmm_dtor(struct nvkm_vmm *vmm) 1029 { 1030 struct nvkm_vma *vma; 1031 struct rb_node *node; 1032 1033 if (vmm->rm.client.gsp) 1034 r535_mmu_vaspace_del(vmm); 1035 1036 if (0) 1037 nvkm_vmm_dump(vmm); 1038 1039 while ((node = rb_first(&vmm->root))) { 1040 struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree); 1041 nvkm_vmm_put(vmm, &vma); 1042 } 1043 1044 if (vmm->bootstrapped) { 1045 const struct nvkm_vmm_page *page = vmm->func->page; 1046 const u64 limit = vmm->limit - vmm->start; 1047 1048 while (page[1].shift) 1049 page++; 1050 1051 nvkm_mmu_ptc_dump(vmm->mmu); 1052 nvkm_vmm_ptes_put(vmm, page, vmm->start, limit); 1053 } 1054 1055 vma = list_first_entry(&vmm->list, typeof(*vma), head); 1056 list_del(&vma->head); 1057 kfree(vma); 1058 WARN_ON(!list_empty(&vmm->list)); 1059 1060 if (vmm->nullp) { 1061 dma_free_coherent(vmm->mmu->subdev.device->dev, 16 * 1024, 1062 vmm->nullp, vmm->null); 1063 } 1064 1065 if (vmm->pd) { 1066 nvkm_mmu_ptc_put(vmm->mmu, true, &vmm->pd->pt[0]); 1067 nvkm_vmm_pt_del(&vmm->pd); 1068 } 1069 } 1070 1071 static int 1072 nvkm_vmm_ctor_managed(struct nvkm_vmm *vmm, u64 addr, u64 size) 1073 { 1074 struct nvkm_vma *vma; 1075 if (!(vma = nvkm_vma_new(addr, size))) 1076 return -ENOMEM; 1077 vma->mapref = true; 1078 vma->sparse = false; 1079 vma->used = true; 1080 nvkm_vmm_node_insert(vmm, vma); 1081 list_add_tail(&vma->head, &vmm->list); 1082 return 0; 1083 } 1084 1085 static int 1086 nvkm_vmm_ctor(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu, 1087 u32 pd_header, bool managed, u64 addr, u64 size, 1088 struct lock_class_key *key, const char *name, 1089 struct nvkm_vmm *vmm) 1090 { 1091 static struct lock_class_key _key; 1092 const struct nvkm_vmm_page *page = func->page; 1093 const struct nvkm_vmm_desc *desc; 1094 struct nvkm_vma *vma; 1095 int levels, bits = 0, ret; 1096 1097 vmm->func = func; 1098 vmm->mmu = mmu; 1099 vmm->name = name; 1100 vmm->debug = mmu->subdev.debug; 1101 kref_init(&vmm->kref); 1102 1103 __mutex_init(&vmm->mutex.vmm, "&vmm->mutex.vmm", key ? key : &_key); 1104 mutex_init(&vmm->mutex.ref); 1105 mutex_init(&vmm->mutex.map); 1106 1107 /* Locate the smallest page size supported by the backend, it will 1108 * have the deepest nesting of page tables. 1109 */ 1110 while (page[1].shift) 1111 page++; 1112 1113 /* Locate the structure that describes the layout of the top-level 1114 * page table, and determine the number of valid bits in a virtual 1115 * address. 1116 */ 1117 for (levels = 0, desc = page->desc; desc->bits; desc++, levels++) 1118 bits += desc->bits; 1119 bits += page->shift; 1120 desc--; 1121 1122 if (WARN_ON(levels > NVKM_VMM_LEVELS_MAX)) 1123 return -EINVAL; 1124 1125 /* Allocate top-level page table. */ 1126 vmm->pd = nvkm_vmm_pt_new(desc, false, NULL); 1127 if (!vmm->pd) 1128 return -ENOMEM; 1129 vmm->pd->refs[0] = 1; 1130 INIT_LIST_HEAD(&vmm->join); 1131 1132 /* ... and the GPU storage for it, except on Tesla-class GPUs that 1133 * have the PD embedded in the instance structure. 1134 */ 1135 if (desc->size) { 1136 const u32 size = pd_header + desc->size * (1 << desc->bits); 1137 vmm->pd->pt[0] = nvkm_mmu_ptc_get(mmu, size, desc->align, true); 1138 if (!vmm->pd->pt[0]) 1139 return -ENOMEM; 1140 } 1141 1142 /* Initialise address-space MM. */ 1143 INIT_LIST_HEAD(&vmm->list); 1144 vmm->free = RB_ROOT; 1145 vmm->root = RB_ROOT; 1146 1147 if (managed) { 1148 /* Address-space will be managed by the client for the most 1149 * part, except for a specified area where NVKM allocations 1150 * are allowed to be placed. 1151 */ 1152 vmm->start = 0; 1153 vmm->limit = 1ULL << bits; 1154 if (addr + size < addr || addr + size > vmm->limit) 1155 return -EINVAL; 1156 1157 /* Client-managed area before the NVKM-managed area. */ 1158 if (addr && (ret = nvkm_vmm_ctor_managed(vmm, 0, addr))) 1159 return ret; 1160 1161 vmm->managed.p.addr = 0; 1162 vmm->managed.p.size = addr; 1163 1164 /* NVKM-managed area. */ 1165 if (size) { 1166 if (!(vma = nvkm_vma_new(addr, size))) 1167 return -ENOMEM; 1168 nvkm_vmm_free_insert(vmm, vma); 1169 list_add_tail(&vma->head, &vmm->list); 1170 } 1171 1172 /* Client-managed area after the NVKM-managed area. */ 1173 addr = addr + size; 1174 size = vmm->limit - addr; 1175 if (size && (ret = nvkm_vmm_ctor_managed(vmm, addr, size))) 1176 return ret; 1177 1178 vmm->managed.n.addr = addr; 1179 vmm->managed.n.size = size; 1180 } else { 1181 /* Address-space fully managed by NVKM, requiring calls to 1182 * nvkm_vmm_get()/nvkm_vmm_put() to allocate address-space. 1183 */ 1184 vmm->start = addr; 1185 vmm->limit = size ? (addr + size) : (1ULL << bits); 1186 if (vmm->start > vmm->limit || vmm->limit > (1ULL << bits)) 1187 return -EINVAL; 1188 1189 if (!(vma = nvkm_vma_new(vmm->start, vmm->limit - vmm->start))) 1190 return -ENOMEM; 1191 1192 nvkm_vmm_free_insert(vmm, vma); 1193 list_add(&vma->head, &vmm->list); 1194 } 1195 1196 return 0; 1197 } 1198 1199 int 1200 nvkm_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu, 1201 u32 hdr, bool managed, u64 addr, u64 size, 1202 struct lock_class_key *key, const char *name, 1203 struct nvkm_vmm **pvmm) 1204 { 1205 if (!(*pvmm = kzalloc(sizeof(**pvmm), GFP_KERNEL))) 1206 return -ENOMEM; 1207 return nvkm_vmm_ctor(func, mmu, hdr, managed, addr, size, key, name, *pvmm); 1208 } 1209 1210 static struct nvkm_vma * 1211 nvkm_vmm_pfn_split_merge(struct nvkm_vmm *vmm, struct nvkm_vma *vma, 1212 u64 addr, u64 size, u8 page, bool map) 1213 { 1214 struct nvkm_vma *prev = NULL; 1215 struct nvkm_vma *next = NULL; 1216 1217 if (vma->addr == addr && vma->part && (prev = node(vma, prev))) { 1218 if (prev->memory || prev->mapped != map) 1219 prev = NULL; 1220 } 1221 1222 if (vma->addr + vma->size == addr + size && (next = node(vma, next))) { 1223 if (!next->part || 1224 next->memory || next->mapped != map) 1225 next = NULL; 1226 } 1227 1228 if (prev || next) 1229 return nvkm_vmm_node_merge(vmm, prev, vma, next, size); 1230 return nvkm_vmm_node_split(vmm, vma, addr, size); 1231 } 1232 1233 int 1234 nvkm_vmm_pfn_unmap(struct nvkm_vmm *vmm, u64 addr, u64 size) 1235 { 1236 struct nvkm_vma *vma = nvkm_vmm_node_search(vmm, addr); 1237 struct nvkm_vma *next; 1238 u64 limit = addr + size; 1239 u64 start = addr; 1240 1241 if (!vma) 1242 return -EINVAL; 1243 1244 do { 1245 if (!vma->mapped || vma->memory) 1246 continue; 1247 1248 size = min(limit - start, vma->size - (start - vma->addr)); 1249 1250 nvkm_vmm_ptes_unmap_put(vmm, &vmm->func->page[vma->refd], 1251 start, size, false, true); 1252 1253 next = nvkm_vmm_pfn_split_merge(vmm, vma, start, size, 0, false); 1254 if (!WARN_ON(!next)) { 1255 vma = next; 1256 vma->refd = NVKM_VMA_PAGE_NONE; 1257 vma->mapped = false; 1258 } 1259 } while ((vma = node(vma, next)) && (start = vma->addr) < limit); 1260 1261 return 0; 1262 } 1263 1264 /*TODO: 1265 * - Avoid PT readback (for dma_unmap etc), this might end up being dealt 1266 * with inside HMM, which would be a lot nicer for us to deal with. 1267 * - Support for systems without a 4KiB page size. 1268 */ 1269 int 1270 nvkm_vmm_pfn_map(struct nvkm_vmm *vmm, u8 shift, u64 addr, u64 size, u64 *pfn) 1271 { 1272 const struct nvkm_vmm_page *page = vmm->func->page; 1273 struct nvkm_vma *vma, *tmp; 1274 u64 limit = addr + size; 1275 u64 start = addr; 1276 int pm = size >> shift; 1277 int pi = 0; 1278 1279 /* Only support mapping where the page size of the incoming page 1280 * array matches a page size available for direct mapping. 1281 */ 1282 while (page->shift && (page->shift != shift || 1283 page->desc->func->pfn == NULL)) 1284 page++; 1285 1286 if (!page->shift || !IS_ALIGNED(addr, 1ULL << shift) || 1287 !IS_ALIGNED(size, 1ULL << shift) || 1288 addr + size < addr || addr + size > vmm->limit) { 1289 VMM_DEBUG(vmm, "paged map %d %d %016llx %016llx\n", 1290 shift, page->shift, addr, size); 1291 return -EINVAL; 1292 } 1293 1294 if (!(vma = nvkm_vmm_node_search(vmm, addr))) 1295 return -ENOENT; 1296 1297 do { 1298 bool map = !!(pfn[pi] & NVKM_VMM_PFN_V); 1299 bool mapped = vma->mapped; 1300 u64 size = limit - start; 1301 u64 addr = start; 1302 int pn, ret = 0; 1303 1304 /* Narrow the operation window to cover a single action (page 1305 * should be mapped or not) within a single VMA. 1306 */ 1307 for (pn = 0; pi + pn < pm; pn++) { 1308 if (map != !!(pfn[pi + pn] & NVKM_VMM_PFN_V)) 1309 break; 1310 } 1311 size = min_t(u64, size, pn << page->shift); 1312 size = min_t(u64, size, vma->size + vma->addr - addr); 1313 1314 /* Reject any operation to unmanaged regions, and areas that 1315 * have nvkm_memory objects mapped in them already. 1316 */ 1317 if (!vma->mapref || vma->memory) { 1318 ret = -EINVAL; 1319 goto next; 1320 } 1321 1322 /* In order to both properly refcount GPU page tables, and 1323 * prevent "normal" mappings and these direct mappings from 1324 * interfering with each other, we need to track contiguous 1325 * ranges that have been mapped with this interface. 1326 * 1327 * Here we attempt to either split an existing VMA so we're 1328 * able to flag the region as either unmapped/mapped, or to 1329 * merge with adjacent VMAs that are already compatible. 1330 * 1331 * If the region is already compatible, nothing is required. 1332 */ 1333 if (map != mapped) { 1334 tmp = nvkm_vmm_pfn_split_merge(vmm, vma, addr, size, 1335 page - 1336 vmm->func->page, map); 1337 if (WARN_ON(!tmp)) { 1338 ret = -ENOMEM; 1339 goto next; 1340 } 1341 1342 if ((tmp->mapped = map)) 1343 tmp->refd = page - vmm->func->page; 1344 else 1345 tmp->refd = NVKM_VMA_PAGE_NONE; 1346 vma = tmp; 1347 } 1348 1349 /* Update HW page tables. */ 1350 if (map) { 1351 struct nvkm_vmm_map args; 1352 args.page = page; 1353 args.pfn = &pfn[pi]; 1354 1355 if (!mapped) { 1356 ret = nvkm_vmm_ptes_get_map(vmm, page, addr, 1357 size, &args, page-> 1358 desc->func->pfn); 1359 } else { 1360 nvkm_vmm_ptes_map(vmm, page, addr, size, &args, 1361 page->desc->func->pfn); 1362 } 1363 } else { 1364 if (mapped) { 1365 nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, 1366 false, true); 1367 } 1368 } 1369 1370 next: 1371 /* Iterate to next operation. */ 1372 if (vma->addr + vma->size == addr + size) 1373 vma = node(vma, next); 1374 start += size; 1375 1376 if (ret) { 1377 /* Failure is signalled by clearing the valid bit on 1378 * any PFN that couldn't be modified as requested. 1379 */ 1380 while (size) { 1381 pfn[pi++] = NVKM_VMM_PFN_NONE; 1382 size -= 1 << page->shift; 1383 } 1384 } else { 1385 pi += size >> page->shift; 1386 } 1387 } while (vma && start < limit); 1388 1389 return 0; 1390 } 1391 1392 void 1393 nvkm_vmm_unmap_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 1394 { 1395 struct nvkm_vma *prev = NULL; 1396 struct nvkm_vma *next; 1397 1398 nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags); 1399 nvkm_memory_unref(&vma->memory); 1400 vma->mapped = false; 1401 1402 if (vma->part && (prev = node(vma, prev)) && prev->mapped) 1403 prev = NULL; 1404 if ((next = node(vma, next)) && (!next->part || next->mapped)) 1405 next = NULL; 1406 nvkm_vmm_node_merge(vmm, prev, vma, next, vma->size); 1407 } 1408 1409 void 1410 nvkm_vmm_unmap_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma, bool pfn) 1411 { 1412 const struct nvkm_vmm_page *page = &vmm->func->page[vma->refd]; 1413 1414 if (vma->mapref) { 1415 nvkm_vmm_ptes_unmap_put(vmm, page, vma->addr, vma->size, vma->sparse, pfn); 1416 vma->refd = NVKM_VMA_PAGE_NONE; 1417 } else { 1418 nvkm_vmm_ptes_unmap(vmm, page, vma->addr, vma->size, vma->sparse, pfn); 1419 } 1420 1421 nvkm_vmm_unmap_region(vmm, vma); 1422 } 1423 1424 void 1425 nvkm_vmm_unmap(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 1426 { 1427 if (vma->memory) { 1428 mutex_lock(&vmm->mutex.vmm); 1429 nvkm_vmm_unmap_locked(vmm, vma, false); 1430 mutex_unlock(&vmm->mutex.vmm); 1431 } 1432 } 1433 1434 static int 1435 nvkm_vmm_map_valid(struct nvkm_vmm *vmm, struct nvkm_vma *vma, 1436 void *argv, u32 argc, struct nvkm_vmm_map *map) 1437 { 1438 switch (nvkm_memory_target(map->memory)) { 1439 case NVKM_MEM_TARGET_VRAM: 1440 if (!(map->page->type & NVKM_VMM_PAGE_VRAM)) { 1441 VMM_DEBUG(vmm, "%d !VRAM", map->page->shift); 1442 return -EINVAL; 1443 } 1444 break; 1445 case NVKM_MEM_TARGET_HOST: 1446 case NVKM_MEM_TARGET_NCOH: 1447 if (!(map->page->type & NVKM_VMM_PAGE_HOST)) { 1448 VMM_DEBUG(vmm, "%d !HOST", map->page->shift); 1449 return -EINVAL; 1450 } 1451 break; 1452 default: 1453 WARN_ON(1); 1454 return -ENOSYS; 1455 } 1456 1457 if (!IS_ALIGNED( vma->addr, 1ULL << map->page->shift) || 1458 !IS_ALIGNED((u64)vma->size, 1ULL << map->page->shift) || 1459 !IS_ALIGNED( map->offset, 1ULL << map->page->shift) || 1460 nvkm_memory_page(map->memory) < map->page->shift) { 1461 VMM_DEBUG(vmm, "alignment %016llx %016llx %016llx %d %d", 1462 vma->addr, (u64)vma->size, map->offset, map->page->shift, 1463 nvkm_memory_page(map->memory)); 1464 return -EINVAL; 1465 } 1466 1467 return vmm->func->valid(vmm, argv, argc, map); 1468 } 1469 1470 static int 1471 nvkm_vmm_map_choose(struct nvkm_vmm *vmm, struct nvkm_vma *vma, 1472 void *argv, u32 argc, struct nvkm_vmm_map *map) 1473 { 1474 for (map->page = vmm->func->page; map->page->shift; map->page++) { 1475 VMM_DEBUG(vmm, "trying %d", map->page->shift); 1476 if (!nvkm_vmm_map_valid(vmm, vma, argv, argc, map)) 1477 return 0; 1478 } 1479 return -EINVAL; 1480 } 1481 1482 static int 1483 nvkm_vmm_map_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma, 1484 void *argv, u32 argc, struct nvkm_vmm_map *map) 1485 { 1486 nvkm_vmm_pte_func func; 1487 int ret; 1488 1489 map->no_comp = vma->no_comp; 1490 1491 /* Make sure we won't overrun the end of the memory object. */ 1492 if (unlikely(nvkm_memory_size(map->memory) < map->offset + vma->size)) { 1493 VMM_DEBUG(vmm, "overrun %016llx %016llx %016llx", 1494 nvkm_memory_size(map->memory), 1495 map->offset, (u64)vma->size); 1496 return -EINVAL; 1497 } 1498 1499 /* Check remaining arguments for validity. */ 1500 if (vma->page == NVKM_VMA_PAGE_NONE && 1501 vma->refd == NVKM_VMA_PAGE_NONE) { 1502 /* Find the largest page size we can perform the mapping at. */ 1503 const u32 debug = vmm->debug; 1504 vmm->debug = 0; 1505 ret = nvkm_vmm_map_choose(vmm, vma, argv, argc, map); 1506 vmm->debug = debug; 1507 if (ret) { 1508 VMM_DEBUG(vmm, "invalid at any page size"); 1509 nvkm_vmm_map_choose(vmm, vma, argv, argc, map); 1510 return -EINVAL; 1511 } 1512 } else { 1513 /* Page size of the VMA is already pre-determined. */ 1514 if (vma->refd != NVKM_VMA_PAGE_NONE) 1515 map->page = &vmm->func->page[vma->refd]; 1516 else 1517 map->page = &vmm->func->page[vma->page]; 1518 1519 ret = nvkm_vmm_map_valid(vmm, vma, argv, argc, map); 1520 if (ret) { 1521 VMM_DEBUG(vmm, "invalid %d\n", ret); 1522 return ret; 1523 } 1524 } 1525 1526 /* Deal with the 'offset' argument, and fetch the backend function. */ 1527 map->off = map->offset; 1528 if (map->mem) { 1529 for (; map->off; map->mem = map->mem->next) { 1530 u64 size = (u64)map->mem->length << NVKM_RAM_MM_SHIFT; 1531 if (size > map->off) 1532 break; 1533 map->off -= size; 1534 } 1535 func = map->page->desc->func->mem; 1536 } else 1537 if (map->sgl) { 1538 for (; map->off; map->sgl = sg_next(map->sgl)) { 1539 u64 size = sg_dma_len(map->sgl); 1540 if (size > map->off) 1541 break; 1542 map->off -= size; 1543 } 1544 func = map->page->desc->func->sgl; 1545 } else { 1546 map->dma += map->offset >> PAGE_SHIFT; 1547 map->off = map->offset & PAGE_MASK; 1548 func = map->page->desc->func->dma; 1549 } 1550 1551 /* Perform the map. */ 1552 if (vma->refd == NVKM_VMA_PAGE_NONE) { 1553 ret = nvkm_vmm_ptes_get_map(vmm, map->page, vma->addr, vma->size, map, func); 1554 if (ret) 1555 return ret; 1556 1557 vma->refd = map->page - vmm->func->page; 1558 } else { 1559 nvkm_vmm_ptes_map(vmm, map->page, vma->addr, vma->size, map, func); 1560 } 1561 1562 nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags); 1563 nvkm_memory_unref(&vma->memory); 1564 vma->memory = nvkm_memory_ref(map->memory); 1565 vma->mapped = true; 1566 vma->tags = map->tags; 1567 return 0; 1568 } 1569 1570 int 1571 nvkm_vmm_map(struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc, 1572 struct nvkm_vmm_map *map) 1573 { 1574 int ret; 1575 1576 if (nvkm_vmm_in_managed_range(vmm, vma->addr, vma->size) && 1577 vmm->managed.raw) 1578 return nvkm_vmm_map_locked(vmm, vma, argv, argc, map); 1579 1580 mutex_lock(&vmm->mutex.vmm); 1581 ret = nvkm_vmm_map_locked(vmm, vma, argv, argc, map); 1582 vma->busy = false; 1583 mutex_unlock(&vmm->mutex.vmm); 1584 return ret; 1585 } 1586 1587 static void 1588 nvkm_vmm_put_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 1589 { 1590 struct nvkm_vma *prev, *next; 1591 1592 if ((prev = node(vma, prev)) && !prev->used) { 1593 vma->addr = prev->addr; 1594 vma->size += prev->size; 1595 nvkm_vmm_free_delete(vmm, prev); 1596 } 1597 1598 if ((next = node(vma, next)) && !next->used) { 1599 vma->size += next->size; 1600 nvkm_vmm_free_delete(vmm, next); 1601 } 1602 1603 nvkm_vmm_free_insert(vmm, vma); 1604 } 1605 1606 void 1607 nvkm_vmm_put_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 1608 { 1609 const struct nvkm_vmm_page *page = vmm->func->page; 1610 struct nvkm_vma *next = vma; 1611 1612 BUG_ON(vma->part); 1613 1614 if (vma->mapref || !vma->sparse) { 1615 do { 1616 const bool mem = next->memory != NULL; 1617 const bool map = next->mapped; 1618 const u8 refd = next->refd; 1619 const u64 addr = next->addr; 1620 u64 size = next->size; 1621 1622 /* Merge regions that are in the same state. */ 1623 while ((next = node(next, next)) && next->part && 1624 (next->mapped == map) && 1625 (next->memory != NULL) == mem && 1626 (next->refd == refd)) 1627 size += next->size; 1628 1629 if (map) { 1630 /* Region(s) are mapped, merge the unmap 1631 * and dereference into a single walk of 1632 * the page tree. 1633 */ 1634 nvkm_vmm_ptes_unmap_put(vmm, &page[refd], addr, 1635 size, vma->sparse, 1636 !mem); 1637 } else 1638 if (refd != NVKM_VMA_PAGE_NONE) { 1639 /* Drop allocation-time PTE references. */ 1640 nvkm_vmm_ptes_put(vmm, &page[refd], addr, size); 1641 } 1642 } while (next && next->part); 1643 } 1644 1645 /* Merge any mapped regions that were split from the initial 1646 * address-space allocation back into the allocated VMA, and 1647 * release memory/compression resources. 1648 */ 1649 next = vma; 1650 do { 1651 if (next->mapped) 1652 nvkm_vmm_unmap_region(vmm, next); 1653 } while ((next = node(vma, next)) && next->part); 1654 1655 if (vma->sparse && !vma->mapref) { 1656 /* Sparse region that was allocated with a fixed page size, 1657 * meaning all relevant PTEs were referenced once when the 1658 * region was allocated, and remained that way, regardless 1659 * of whether memory was mapped into it afterwards. 1660 * 1661 * The process of unmapping, unsparsing, and dereferencing 1662 * PTEs can be done in a single page tree walk. 1663 */ 1664 nvkm_vmm_ptes_sparse_put(vmm, &page[vma->refd], vma->addr, vma->size); 1665 } else 1666 if (vma->sparse) { 1667 /* Sparse region that wasn't allocated with a fixed page size, 1668 * PTE references were taken both at allocation time (to make 1669 * the GPU see the region as sparse), and when mapping memory 1670 * into the region. 1671 * 1672 * The latter was handled above, and the remaining references 1673 * are dealt with here. 1674 */ 1675 nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, false); 1676 } 1677 1678 /* Remove VMA from the list of allocated nodes. */ 1679 nvkm_vmm_node_remove(vmm, vma); 1680 1681 /* Merge VMA back into the free list. */ 1682 vma->page = NVKM_VMA_PAGE_NONE; 1683 vma->refd = NVKM_VMA_PAGE_NONE; 1684 vma->used = false; 1685 nvkm_vmm_put_region(vmm, vma); 1686 } 1687 1688 void 1689 nvkm_vmm_put(struct nvkm_vmm *vmm, struct nvkm_vma **pvma) 1690 { 1691 struct nvkm_vma *vma = *pvma; 1692 if (vma) { 1693 mutex_lock(&vmm->mutex.vmm); 1694 nvkm_vmm_put_locked(vmm, vma); 1695 mutex_unlock(&vmm->mutex.vmm); 1696 *pvma = NULL; 1697 } 1698 } 1699 1700 int 1701 nvkm_vmm_get_locked(struct nvkm_vmm *vmm, bool getref, bool mapref, bool sparse, 1702 u8 shift, u8 align, u64 size, struct nvkm_vma **pvma) 1703 { 1704 const struct nvkm_vmm_page *page = &vmm->func->page[NVKM_VMA_PAGE_NONE]; 1705 struct rb_node *node = NULL, *temp; 1706 struct nvkm_vma *vma = NULL, *tmp; 1707 u64 addr, tail; 1708 int ret; 1709 1710 VMM_TRACE(vmm, "getref %d mapref %d sparse %d " 1711 "shift: %d align: %d size: %016llx", 1712 getref, mapref, sparse, shift, align, size); 1713 1714 /* Zero-sized, or lazily-allocated sparse VMAs, make no sense. */ 1715 if (unlikely(!size || (!getref && !mapref && sparse))) { 1716 VMM_DEBUG(vmm, "args %016llx %d %d %d", 1717 size, getref, mapref, sparse); 1718 return -EINVAL; 1719 } 1720 1721 /* Tesla-class GPUs can only select page size per-PDE, which means 1722 * we're required to know the mapping granularity up-front to find 1723 * a suitable region of address-space. 1724 * 1725 * The same goes if we're requesting up-front allocation of PTES. 1726 */ 1727 if (unlikely((getref || vmm->func->page_block) && !shift)) { 1728 VMM_DEBUG(vmm, "page size required: %d %016llx", 1729 getref, vmm->func->page_block); 1730 return -EINVAL; 1731 } 1732 1733 /* If a specific page size was requested, determine its index and 1734 * make sure the requested size is a multiple of the page size. 1735 */ 1736 if (shift) { 1737 for (page = vmm->func->page; page->shift; page++) { 1738 if (shift == page->shift) 1739 break; 1740 } 1741 1742 if (!page->shift || !IS_ALIGNED(size, 1ULL << page->shift)) { 1743 VMM_DEBUG(vmm, "page %d %016llx", shift, size); 1744 return -EINVAL; 1745 } 1746 align = max_t(u8, align, shift); 1747 } else { 1748 align = max_t(u8, align, 12); 1749 } 1750 1751 /* Locate smallest block that can possibly satisfy the allocation. */ 1752 temp = vmm->free.rb_node; 1753 while (temp) { 1754 struct nvkm_vma *this = rb_entry(temp, typeof(*this), tree); 1755 if (this->size < size) { 1756 temp = temp->rb_right; 1757 } else { 1758 node = temp; 1759 temp = temp->rb_left; 1760 } 1761 } 1762 1763 if (unlikely(!node)) 1764 return -ENOSPC; 1765 1766 /* Take into account alignment restrictions, trying larger blocks 1767 * in turn until we find a suitable free block. 1768 */ 1769 do { 1770 struct nvkm_vma *this = rb_entry(node, typeof(*this), tree); 1771 struct nvkm_vma *prev = node(this, prev); 1772 struct nvkm_vma *next = node(this, next); 1773 const int p = page - vmm->func->page; 1774 1775 addr = this->addr; 1776 if (vmm->func->page_block && prev && prev->page != p) 1777 addr = ALIGN(addr, vmm->func->page_block); 1778 addr = ALIGN(addr, 1ULL << align); 1779 1780 tail = this->addr + this->size; 1781 if (vmm->func->page_block && next && next->page != p) 1782 tail = ALIGN_DOWN(tail, vmm->func->page_block); 1783 1784 if (addr <= tail && tail - addr >= size) { 1785 nvkm_vmm_free_remove(vmm, this); 1786 vma = this; 1787 break; 1788 } 1789 } while ((node = rb_next(node))); 1790 1791 if (unlikely(!vma)) 1792 return -ENOSPC; 1793 1794 /* If the VMA we found isn't already exactly the requested size, 1795 * it needs to be split, and the remaining free blocks returned. 1796 */ 1797 if (addr != vma->addr) { 1798 if (!(tmp = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) { 1799 nvkm_vmm_put_region(vmm, vma); 1800 return -ENOMEM; 1801 } 1802 nvkm_vmm_free_insert(vmm, vma); 1803 vma = tmp; 1804 } 1805 1806 if (size != vma->size) { 1807 if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) { 1808 nvkm_vmm_put_region(vmm, vma); 1809 return -ENOMEM; 1810 } 1811 nvkm_vmm_free_insert(vmm, tmp); 1812 } 1813 1814 /* Pre-allocate page tables and/or setup sparse mappings. */ 1815 if (sparse && getref) 1816 ret = nvkm_vmm_ptes_sparse_get(vmm, page, vma->addr, vma->size); 1817 else if (sparse) 1818 ret = nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, true); 1819 else if (getref) 1820 ret = nvkm_vmm_ptes_get(vmm, page, vma->addr, vma->size); 1821 else 1822 ret = 0; 1823 if (ret) { 1824 nvkm_vmm_put_region(vmm, vma); 1825 return ret; 1826 } 1827 1828 vma->mapref = mapref && !getref; 1829 vma->sparse = sparse; 1830 vma->page = page - vmm->func->page; 1831 vma->refd = getref ? vma->page : NVKM_VMA_PAGE_NONE; 1832 vma->used = true; 1833 nvkm_vmm_node_insert(vmm, vma); 1834 *pvma = vma; 1835 return 0; 1836 } 1837 1838 int 1839 nvkm_vmm_get(struct nvkm_vmm *vmm, u8 page, u64 size, struct nvkm_vma **pvma) 1840 { 1841 int ret; 1842 mutex_lock(&vmm->mutex.vmm); 1843 ret = nvkm_vmm_get_locked(vmm, false, true, false, page, 0, size, pvma); 1844 mutex_unlock(&vmm->mutex.vmm); 1845 return ret; 1846 } 1847 1848 void 1849 nvkm_vmm_raw_unmap(struct nvkm_vmm *vmm, u64 addr, u64 size, 1850 bool sparse, u8 refd) 1851 { 1852 const struct nvkm_vmm_page *page = &vmm->func->page[refd]; 1853 1854 nvkm_vmm_ptes_unmap(vmm, page, addr, size, sparse, false); 1855 } 1856 1857 void 1858 nvkm_vmm_raw_put(struct nvkm_vmm *vmm, u64 addr, u64 size, u8 refd) 1859 { 1860 const struct nvkm_vmm_page *page = vmm->func->page; 1861 1862 nvkm_vmm_ptes_put(vmm, &page[refd], addr, size); 1863 } 1864 1865 int 1866 nvkm_vmm_raw_get(struct nvkm_vmm *vmm, u64 addr, u64 size, u8 refd) 1867 { 1868 const struct nvkm_vmm_page *page = vmm->func->page; 1869 1870 if (unlikely(!size)) 1871 return -EINVAL; 1872 1873 return nvkm_vmm_ptes_get(vmm, &page[refd], addr, size); 1874 } 1875 1876 int 1877 nvkm_vmm_raw_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref) 1878 { 1879 int ret; 1880 1881 mutex_lock(&vmm->mutex.ref); 1882 ret = nvkm_vmm_ptes_sparse(vmm, addr, size, ref); 1883 mutex_unlock(&vmm->mutex.ref); 1884 1885 return ret; 1886 } 1887 1888 void 1889 nvkm_vmm_part(struct nvkm_vmm *vmm, struct nvkm_memory *inst) 1890 { 1891 if (inst && vmm && vmm->func->part) { 1892 mutex_lock(&vmm->mutex.vmm); 1893 vmm->func->part(vmm, inst); 1894 mutex_unlock(&vmm->mutex.vmm); 1895 } 1896 } 1897 1898 int 1899 nvkm_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst) 1900 { 1901 int ret = 0; 1902 if (vmm->func->join) { 1903 mutex_lock(&vmm->mutex.vmm); 1904 ret = vmm->func->join(vmm, inst); 1905 mutex_unlock(&vmm->mutex.vmm); 1906 } 1907 return ret; 1908 } 1909 1910 static bool 1911 nvkm_vmm_boot_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes) 1912 { 1913 const struct nvkm_vmm_desc *desc = it->desc; 1914 const int type = desc->type == SPT; 1915 nvkm_memory_boot(it->pt[0]->pt[type]->memory, it->vmm); 1916 return false; 1917 } 1918 1919 int 1920 nvkm_vmm_boot(struct nvkm_vmm *vmm) 1921 { 1922 const struct nvkm_vmm_page *page = vmm->func->page; 1923 const u64 limit = vmm->limit - vmm->start; 1924 int ret; 1925 1926 while (page[1].shift) 1927 page++; 1928 1929 ret = nvkm_vmm_ptes_get(vmm, page, vmm->start, limit); 1930 if (ret) 1931 return ret; 1932 1933 nvkm_vmm_iter(vmm, page, vmm->start, limit, "bootstrap", false, false, 1934 nvkm_vmm_boot_ptes, NULL, NULL, NULL); 1935 vmm->bootstrapped = true; 1936 return 0; 1937 } 1938 1939 static void 1940 nvkm_vmm_del(struct kref *kref) 1941 { 1942 struct nvkm_vmm *vmm = container_of(kref, typeof(*vmm), kref); 1943 nvkm_vmm_dtor(vmm); 1944 kfree(vmm); 1945 } 1946 1947 void 1948 nvkm_vmm_unref(struct nvkm_vmm **pvmm) 1949 { 1950 struct nvkm_vmm *vmm = *pvmm; 1951 if (vmm) { 1952 kref_put(&vmm->kref, nvkm_vmm_del); 1953 *pvmm = NULL; 1954 } 1955 } 1956 1957 struct nvkm_vmm * 1958 nvkm_vmm_ref(struct nvkm_vmm *vmm) 1959 { 1960 if (vmm) 1961 kref_get(&vmm->kref); 1962 return vmm; 1963 } 1964 1965 int 1966 nvkm_vmm_new(struct nvkm_device *device, u64 addr, u64 size, void *argv, 1967 u32 argc, struct lock_class_key *key, const char *name, 1968 struct nvkm_vmm **pvmm) 1969 { 1970 struct nvkm_mmu *mmu = device->mmu; 1971 struct nvkm_vmm *vmm = NULL; 1972 int ret; 1973 ret = mmu->func->vmm.ctor(mmu, false, addr, size, argv, argc, 1974 key, name, &vmm); 1975 if (ret) 1976 nvkm_vmm_unref(&vmm); 1977 *pvmm = vmm; 1978 return ret; 1979 } 1980