1 /* 2 * Copyright 2017 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #define NVKM_VMM_LEVELS_MAX 5 23 #include "vmm.h" 24 25 #include <subdev/fb.h> 26 27 static void 28 nvkm_vmm_pt_del(struct nvkm_vmm_pt **ppgt) 29 { 30 struct nvkm_vmm_pt *pgt = *ppgt; 31 if (pgt) { 32 kvfree(pgt->pde); 33 kfree(pgt); 34 *ppgt = NULL; 35 } 36 } 37 38 39 static struct nvkm_vmm_pt * 40 nvkm_vmm_pt_new(const struct nvkm_vmm_desc *desc, bool sparse, 41 const struct nvkm_vmm_page *page) 42 { 43 const u32 pten = 1 << desc->bits; 44 struct nvkm_vmm_pt *pgt; 45 u32 lpte = 0; 46 47 if (desc->type > PGT) { 48 if (desc->type == SPT) { 49 const struct nvkm_vmm_desc *pair = page[-1].desc; 50 lpte = pten >> (desc->bits - pair->bits); 51 } else { 52 lpte = pten; 53 } 54 } 55 56 if (!(pgt = kzalloc(sizeof(*pgt) + lpte, GFP_KERNEL))) 57 return NULL; 58 pgt->page = page ? page->shift : 0; 59 pgt->sparse = sparse; 60 61 if (desc->type == PGD) { 62 pgt->pde = kvcalloc(pten, sizeof(*pgt->pde), GFP_KERNEL); 63 if (!pgt->pde) { 64 kfree(pgt); 65 return NULL; 66 } 67 } 68 69 return pgt; 70 } 71 72 struct nvkm_vmm_iter { 73 const struct nvkm_vmm_page *page; 74 const struct nvkm_vmm_desc *desc; 75 struct nvkm_vmm *vmm; 76 u64 cnt; 77 u16 max, lvl; 78 u32 pte[NVKM_VMM_LEVELS_MAX]; 79 struct nvkm_vmm_pt *pt[NVKM_VMM_LEVELS_MAX]; 80 int flush; 81 }; 82 83 #ifdef CONFIG_NOUVEAU_DEBUG_MMU 84 static const char * 85 nvkm_vmm_desc_type(const struct nvkm_vmm_desc *desc) 86 { 87 switch (desc->type) { 88 case PGD: return "PGD"; 89 case PGT: return "PGT"; 90 case SPT: return "SPT"; 91 case LPT: return "LPT"; 92 default: 93 return "UNKNOWN"; 94 } 95 } 96 97 static void 98 nvkm_vmm_trace(struct nvkm_vmm_iter *it, char *buf) 99 { 100 int lvl; 101 for (lvl = it->max; lvl >= 0; lvl--) { 102 if (lvl >= it->lvl) 103 buf += sprintf(buf, "%05x:", it->pte[lvl]); 104 else 105 buf += sprintf(buf, "xxxxx:"); 106 } 107 } 108 109 #define TRA(i,f,a...) do { \ 110 char _buf[NVKM_VMM_LEVELS_MAX * 7]; \ 111 struct nvkm_vmm_iter *_it = (i); \ 112 nvkm_vmm_trace(_it, _buf); \ 113 VMM_TRACE(_it->vmm, "%s "f, _buf, ##a); \ 114 } while(0) 115 #else 116 #define TRA(i,f,a...) 117 #endif 118 119 static inline void 120 nvkm_vmm_flush_mark(struct nvkm_vmm_iter *it) 121 { 122 it->flush = min(it->flush, it->max - it->lvl); 123 } 124 125 static inline void 126 nvkm_vmm_flush(struct nvkm_vmm_iter *it) 127 { 128 if (it->flush != NVKM_VMM_LEVELS_MAX) { 129 if (it->vmm->func->flush) { 130 TRA(it, "flush: %d", it->flush); 131 it->vmm->func->flush(it->vmm, it->flush); 132 } 133 it->flush = NVKM_VMM_LEVELS_MAX; 134 } 135 } 136 137 static void 138 nvkm_vmm_unref_pdes(struct nvkm_vmm_iter *it) 139 { 140 const struct nvkm_vmm_desc *desc = it->desc; 141 const int type = desc[it->lvl].type == SPT; 142 struct nvkm_vmm_pt *pgd = it->pt[it->lvl + 1]; 143 struct nvkm_vmm_pt *pgt = it->pt[it->lvl]; 144 struct nvkm_mmu_pt *pt = pgt->pt[type]; 145 struct nvkm_vmm *vmm = it->vmm; 146 u32 pdei = it->pte[it->lvl + 1]; 147 148 /* Recurse up the tree, unreferencing/destroying unneeded PDs. */ 149 it->lvl++; 150 if (--pgd->refs[0]) { 151 const struct nvkm_vmm_desc_func *func = desc[it->lvl].func; 152 /* PD has other valid PDEs, so we need a proper update. */ 153 TRA(it, "PDE unmap %s", nvkm_vmm_desc_type(&desc[it->lvl - 1])); 154 pgt->pt[type] = NULL; 155 if (!pgt->refs[!type]) { 156 /* PDE no longer required. */ 157 if (pgd->pt[0]) { 158 if (pgt->sparse) { 159 func->sparse(vmm, pgd->pt[0], pdei, 1); 160 pgd->pde[pdei] = NVKM_VMM_PDE_SPARSE; 161 } else { 162 func->unmap(vmm, pgd->pt[0], pdei, 1); 163 pgd->pde[pdei] = NULL; 164 } 165 } else { 166 /* Special handling for Tesla-class GPUs, 167 * where there's no central PD, but each 168 * instance has its own embedded PD. 169 */ 170 func->pde(vmm, pgd, pdei); 171 pgd->pde[pdei] = NULL; 172 } 173 } else { 174 /* PDE was pointing at dual-PTs and we're removing 175 * one of them, leaving the other in place. 176 */ 177 func->pde(vmm, pgd, pdei); 178 } 179 180 /* GPU may have cached the PTs, flush before freeing. */ 181 nvkm_vmm_flush_mark(it); 182 nvkm_vmm_flush(it); 183 } else { 184 /* PD has no valid PDEs left, so we can just destroy it. */ 185 nvkm_vmm_unref_pdes(it); 186 } 187 188 /* Destroy PD/PT. */ 189 TRA(it, "PDE free %s", nvkm_vmm_desc_type(&desc[it->lvl - 1])); 190 nvkm_mmu_ptc_put(vmm->mmu, vmm->bootstrapped, &pt); 191 if (!pgt->refs[!type]) 192 nvkm_vmm_pt_del(&pgt); 193 it->lvl--; 194 } 195 196 static void 197 nvkm_vmm_unref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt, 198 const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes) 199 { 200 const struct nvkm_vmm_desc *pair = it->page[-1].desc; 201 const u32 sptb = desc->bits - pair->bits; 202 const u32 sptn = 1 << sptb; 203 struct nvkm_vmm *vmm = it->vmm; 204 u32 spti = ptei & (sptn - 1), lpti, pteb; 205 206 /* Determine how many SPTEs are being touched under each LPTE, 207 * and drop reference counts. 208 */ 209 for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) { 210 const u32 pten = min(sptn - spti, ptes); 211 pgt->pte[lpti] -= pten; 212 ptes -= pten; 213 } 214 215 /* We're done here if there's no corresponding LPT. */ 216 if (!pgt->refs[0]) 217 return; 218 219 for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) { 220 /* Skip over any LPTEs that still have valid SPTEs. */ 221 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPTES) { 222 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) { 223 if (!(pgt->pte[ptei] & NVKM_VMM_PTE_SPTES)) 224 break; 225 } 226 continue; 227 } 228 229 /* As there's no more non-UNMAPPED SPTEs left in the range 230 * covered by a number of LPTEs, the LPTEs once again take 231 * control over their address range. 232 * 233 * Determine how many LPTEs need to transition state. 234 */ 235 pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID; 236 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) { 237 if (pgt->pte[ptei] & NVKM_VMM_PTE_SPTES) 238 break; 239 pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID; 240 } 241 242 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) { 243 TRA(it, "LPTE %05x: U -> S %d PTEs", pteb, ptes); 244 pair->func->sparse(vmm, pgt->pt[0], pteb, ptes); 245 } else 246 if (pair->func->invalid) { 247 /* If the MMU supports it, restore the LPTE to the 248 * INVALID state to tell the MMU there is no point 249 * trying to fetch the corresponding SPTEs. 250 */ 251 TRA(it, "LPTE %05x: U -> I %d PTEs", pteb, ptes); 252 pair->func->invalid(vmm, pgt->pt[0], pteb, ptes); 253 } 254 } 255 } 256 257 static bool 258 nvkm_vmm_unref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes) 259 { 260 const struct nvkm_vmm_desc *desc = it->desc; 261 const int type = desc->type == SPT; 262 struct nvkm_vmm_pt *pgt = it->pt[0]; 263 bool dma; 264 265 if (pfn) { 266 /* Need to clear PTE valid bits before we dma_unmap_page(). */ 267 dma = desc->func->pfn_clear(it->vmm, pgt->pt[type], ptei, ptes); 268 if (dma) { 269 /* GPU may have cached the PT, flush before unmap. */ 270 nvkm_vmm_flush_mark(it); 271 nvkm_vmm_flush(it); 272 desc->func->pfn_unmap(it->vmm, pgt->pt[type], ptei, ptes); 273 } 274 } 275 276 /* Drop PTE references. */ 277 pgt->refs[type] -= ptes; 278 279 /* Dual-PTs need special handling, unless PDE becoming invalid. */ 280 if (desc->type == SPT && (pgt->refs[0] || pgt->refs[1])) 281 nvkm_vmm_unref_sptes(it, pgt, desc, ptei, ptes); 282 283 /* PT no longer needed? Destroy it. */ 284 if (!pgt->refs[type]) { 285 it->lvl++; 286 TRA(it, "%s empty", nvkm_vmm_desc_type(desc)); 287 it->lvl--; 288 nvkm_vmm_unref_pdes(it); 289 return false; /* PTE writes for unmap() not necessary. */ 290 } 291 292 return true; 293 } 294 295 static void 296 nvkm_vmm_ref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt, 297 const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes) 298 { 299 const struct nvkm_vmm_desc *pair = it->page[-1].desc; 300 const u32 sptb = desc->bits - pair->bits; 301 const u32 sptn = 1 << sptb; 302 struct nvkm_vmm *vmm = it->vmm; 303 u32 spti = ptei & (sptn - 1), lpti, pteb; 304 305 /* Determine how many SPTEs are being touched under each LPTE, 306 * and increase reference counts. 307 */ 308 for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) { 309 const u32 pten = min(sptn - spti, ptes); 310 pgt->pte[lpti] += pten; 311 ptes -= pten; 312 } 313 314 /* We're done here if there's no corresponding LPT. */ 315 if (!pgt->refs[0]) 316 return; 317 318 for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) { 319 /* Skip over any LPTEs that already have valid SPTEs. */ 320 if (pgt->pte[pteb] & NVKM_VMM_PTE_VALID) { 321 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) { 322 if (!(pgt->pte[ptei] & NVKM_VMM_PTE_VALID)) 323 break; 324 } 325 continue; 326 } 327 328 /* As there are now non-UNMAPPED SPTEs in the range covered 329 * by a number of LPTEs, we need to transfer control of the 330 * address range to the SPTEs. 331 * 332 * Determine how many LPTEs need to transition state. 333 */ 334 pgt->pte[ptei] |= NVKM_VMM_PTE_VALID; 335 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) { 336 if (pgt->pte[ptei] & NVKM_VMM_PTE_VALID) 337 break; 338 pgt->pte[ptei] |= NVKM_VMM_PTE_VALID; 339 } 340 341 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) { 342 const u32 spti = pteb * sptn; 343 const u32 sptc = ptes * sptn; 344 /* The entire LPTE is marked as sparse, we need 345 * to make sure that the SPTEs are too. 346 */ 347 TRA(it, "SPTE %05x: U -> S %d PTEs", spti, sptc); 348 desc->func->sparse(vmm, pgt->pt[1], spti, sptc); 349 /* Sparse LPTEs prevent SPTEs from being accessed. */ 350 TRA(it, "LPTE %05x: S -> U %d PTEs", pteb, ptes); 351 pair->func->unmap(vmm, pgt->pt[0], pteb, ptes); 352 } else 353 if (pair->func->invalid) { 354 /* MMU supports blocking SPTEs by marking an LPTE 355 * as INVALID. We need to reverse that here. 356 */ 357 TRA(it, "LPTE %05x: I -> U %d PTEs", pteb, ptes); 358 pair->func->unmap(vmm, pgt->pt[0], pteb, ptes); 359 } 360 } 361 } 362 363 static bool 364 nvkm_vmm_ref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes) 365 { 366 const struct nvkm_vmm_desc *desc = it->desc; 367 const int type = desc->type == SPT; 368 struct nvkm_vmm_pt *pgt = it->pt[0]; 369 370 /* Take PTE references. */ 371 pgt->refs[type] += ptes; 372 373 /* Dual-PTs need special handling. */ 374 if (desc->type == SPT) 375 nvkm_vmm_ref_sptes(it, pgt, desc, ptei, ptes); 376 377 return true; 378 } 379 380 static void 381 nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc *desc, 382 struct nvkm_vmm_pt *pgt, u32 ptei, u32 ptes) 383 { 384 if (desc->type == PGD) { 385 while (ptes--) 386 pgt->pde[ptei++] = NVKM_VMM_PDE_SPARSE; 387 } else 388 if (desc->type == LPT) { 389 memset(&pgt->pte[ptei], NVKM_VMM_PTE_SPARSE, ptes); 390 } 391 } 392 393 static bool 394 nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes) 395 { 396 struct nvkm_vmm_pt *pt = it->pt[0]; 397 if (it->desc->type == PGD) 398 memset(&pt->pde[ptei], 0x00, sizeof(pt->pde[0]) * ptes); 399 else 400 if (it->desc->type == LPT) 401 memset(&pt->pte[ptei], 0x00, sizeof(pt->pte[0]) * ptes); 402 return nvkm_vmm_unref_ptes(it, pfn, ptei, ptes); 403 } 404 405 static bool 406 nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes) 407 { 408 nvkm_vmm_sparse_ptes(it->desc, it->pt[0], ptei, ptes); 409 return nvkm_vmm_ref_ptes(it, pfn, ptei, ptes); 410 } 411 412 static bool 413 nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei) 414 { 415 const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1]; 416 const int type = desc->type == SPT; 417 struct nvkm_vmm_pt *pgt = pgd->pde[pdei]; 418 const bool zero = !pgt->sparse && !desc->func->invalid; 419 struct nvkm_vmm *vmm = it->vmm; 420 struct nvkm_mmu *mmu = vmm->mmu; 421 struct nvkm_mmu_pt *pt; 422 u32 pten = 1 << desc->bits; 423 u32 pteb, ptei, ptes; 424 u32 size = desc->size * pten; 425 426 pgd->refs[0]++; 427 428 pgt->pt[type] = nvkm_mmu_ptc_get(mmu, size, desc->align, zero); 429 if (!pgt->pt[type]) { 430 it->lvl--; 431 nvkm_vmm_unref_pdes(it); 432 return false; 433 } 434 435 if (zero) 436 goto done; 437 438 pt = pgt->pt[type]; 439 440 if (desc->type == LPT && pgt->refs[1]) { 441 /* SPT already exists covering the same range as this LPT, 442 * which means we need to be careful that any LPTEs which 443 * overlap valid SPTEs are unmapped as opposed to invalid 444 * or sparse, which would prevent the MMU from looking at 445 * the SPTEs on some GPUs. 446 */ 447 for (ptei = pteb = 0; ptei < pten; pteb = ptei) { 448 bool spte = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES; 449 for (ptes = 1, ptei++; ptei < pten; ptes++, ptei++) { 450 bool next = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES; 451 if (spte != next) 452 break; 453 } 454 455 if (!spte) { 456 if (pgt->sparse) 457 desc->func->sparse(vmm, pt, pteb, ptes); 458 else 459 desc->func->invalid(vmm, pt, pteb, ptes); 460 memset(&pgt->pte[pteb], 0x00, ptes); 461 } else { 462 desc->func->unmap(vmm, pt, pteb, ptes); 463 while (ptes--) 464 pgt->pte[pteb++] |= NVKM_VMM_PTE_VALID; 465 } 466 } 467 } else { 468 if (pgt->sparse) { 469 nvkm_vmm_sparse_ptes(desc, pgt, 0, pten); 470 desc->func->sparse(vmm, pt, 0, pten); 471 } else { 472 desc->func->invalid(vmm, pt, 0, pten); 473 } 474 } 475 476 done: 477 TRA(it, "PDE write %s", nvkm_vmm_desc_type(desc)); 478 it->desc[it->lvl].func->pde(it->vmm, pgd, pdei); 479 nvkm_vmm_flush_mark(it); 480 return true; 481 } 482 483 static bool 484 nvkm_vmm_ref_swpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei) 485 { 486 const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1]; 487 struct nvkm_vmm_pt *pgt = pgd->pde[pdei]; 488 489 pgt = nvkm_vmm_pt_new(desc, NVKM_VMM_PDE_SPARSED(pgt), it->page); 490 if (!pgt) { 491 if (!pgd->refs[0]) 492 nvkm_vmm_unref_pdes(it); 493 return false; 494 } 495 496 pgd->pde[pdei] = pgt; 497 return true; 498 } 499 500 static inline u64 501 nvkm_vmm_iter(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 502 u64 addr, u64 size, const char *name, bool ref, bool pfn, 503 bool (*REF_PTES)(struct nvkm_vmm_iter *, bool pfn, u32, u32), 504 nvkm_vmm_pte_func MAP_PTES, struct nvkm_vmm_map *map, 505 nvkm_vmm_pxe_func CLR_PTES) 506 { 507 const struct nvkm_vmm_desc *desc = page->desc; 508 struct nvkm_vmm_iter it; 509 u64 bits = addr >> page->shift; 510 511 it.page = page; 512 it.desc = desc; 513 it.vmm = vmm; 514 it.cnt = size >> page->shift; 515 it.flush = NVKM_VMM_LEVELS_MAX; 516 517 /* Deconstruct address into PTE indices for each mapping level. */ 518 for (it.lvl = 0; desc[it.lvl].bits; it.lvl++) { 519 it.pte[it.lvl] = bits & ((1 << desc[it.lvl].bits) - 1); 520 bits >>= desc[it.lvl].bits; 521 } 522 it.max = --it.lvl; 523 it.pt[it.max] = vmm->pd; 524 525 it.lvl = 0; 526 TRA(&it, "%s: %016llx %016llx %d %lld PTEs", name, 527 addr, size, page->shift, it.cnt); 528 it.lvl = it.max; 529 530 /* Depth-first traversal of page tables. */ 531 while (it.cnt) { 532 struct nvkm_vmm_pt *pgt = it.pt[it.lvl]; 533 const int type = desc->type == SPT; 534 const u32 pten = 1 << desc->bits; 535 const u32 ptei = it.pte[0]; 536 const u32 ptes = min_t(u64, it.cnt, pten - ptei); 537 538 /* Walk down the tree, finding page tables for each level. */ 539 for (; it.lvl; it.lvl--) { 540 const u32 pdei = it.pte[it.lvl]; 541 struct nvkm_vmm_pt *pgd = pgt; 542 543 /* Software PT. */ 544 if (ref && NVKM_VMM_PDE_INVALID(pgd->pde[pdei])) { 545 if (!nvkm_vmm_ref_swpt(&it, pgd, pdei)) 546 goto fail; 547 } 548 it.pt[it.lvl - 1] = pgt = pgd->pde[pdei]; 549 550 /* Hardware PT. 551 * 552 * This is a separate step from above due to GF100 and 553 * newer having dual page tables at some levels, which 554 * are refcounted independently. 555 */ 556 if (ref && !pgt->refs[desc[it.lvl - 1].type == SPT]) { 557 if (!nvkm_vmm_ref_hwpt(&it, pgd, pdei)) 558 goto fail; 559 } 560 } 561 562 /* Handle PTE updates. */ 563 if (!REF_PTES || REF_PTES(&it, pfn, ptei, ptes)) { 564 struct nvkm_mmu_pt *pt = pgt->pt[type]; 565 if (MAP_PTES || CLR_PTES) { 566 if (MAP_PTES) 567 MAP_PTES(vmm, pt, ptei, ptes, map); 568 else 569 CLR_PTES(vmm, pt, ptei, ptes); 570 nvkm_vmm_flush_mark(&it); 571 } 572 } 573 574 /* Walk back up the tree to the next position. */ 575 it.pte[it.lvl] += ptes; 576 it.cnt -= ptes; 577 if (it.cnt) { 578 while (it.pte[it.lvl] == (1 << desc[it.lvl].bits)) { 579 it.pte[it.lvl++] = 0; 580 it.pte[it.lvl]++; 581 } 582 } 583 } 584 585 nvkm_vmm_flush(&it); 586 return ~0ULL; 587 588 fail: 589 /* Reconstruct the failure address so the caller is able to 590 * reverse any partially completed operations. 591 */ 592 addr = it.pte[it.max--]; 593 do { 594 addr = addr << desc[it.max].bits; 595 addr |= it.pte[it.max]; 596 } while (it.max--); 597 598 return addr << page->shift; 599 } 600 601 static void 602 nvkm_vmm_ptes_sparse_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 603 u64 addr, u64 size) 604 { 605 nvkm_vmm_iter(vmm, page, addr, size, "sparse unref", false, false, 606 nvkm_vmm_sparse_unref_ptes, NULL, NULL, 607 page->desc->func->invalid ? 608 page->desc->func->invalid : page->desc->func->unmap); 609 } 610 611 static int 612 nvkm_vmm_ptes_sparse_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 613 u64 addr, u64 size) 614 { 615 if ((page->type & NVKM_VMM_PAGE_SPARSE)) { 616 u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "sparse ref", 617 true, false, nvkm_vmm_sparse_ref_ptes, 618 NULL, NULL, page->desc->func->sparse); 619 if (fail != ~0ULL) { 620 if ((size = fail - addr)) 621 nvkm_vmm_ptes_sparse_put(vmm, page, addr, size); 622 return -ENOMEM; 623 } 624 return 0; 625 } 626 return -EINVAL; 627 } 628 629 static int 630 nvkm_vmm_ptes_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref) 631 { 632 const struct nvkm_vmm_page *page = vmm->func->page; 633 int m = 0, i; 634 u64 start = addr; 635 u64 block; 636 637 while (size) { 638 /* Limit maximum page size based on remaining size. */ 639 while (size < (1ULL << page[m].shift)) 640 m++; 641 i = m; 642 643 /* Find largest page size suitable for alignment. */ 644 while (!IS_ALIGNED(addr, 1ULL << page[i].shift)) 645 i++; 646 647 /* Determine number of PTEs at this page size. */ 648 if (i != m) { 649 /* Limited to alignment boundary of next page size. */ 650 u64 next = 1ULL << page[i - 1].shift; 651 u64 part = ALIGN(addr, next) - addr; 652 if (size - part >= next) 653 block = (part >> page[i].shift) << page[i].shift; 654 else 655 block = (size >> page[i].shift) << page[i].shift; 656 } else { 657 block = (size >> page[i].shift) << page[i].shift; 658 } 659 660 /* Perform operation. */ 661 if (ref) { 662 int ret = nvkm_vmm_ptes_sparse_get(vmm, &page[i], addr, block); 663 if (ret) { 664 if ((size = addr - start)) 665 nvkm_vmm_ptes_sparse(vmm, start, size, false); 666 return ret; 667 } 668 } else { 669 nvkm_vmm_ptes_sparse_put(vmm, &page[i], addr, block); 670 } 671 672 size -= block; 673 addr += block; 674 } 675 676 return 0; 677 } 678 679 static void 680 nvkm_vmm_ptes_unmap(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 681 u64 addr, u64 size, bool sparse, bool pfn) 682 { 683 const struct nvkm_vmm_desc_func *func = page->desc->func; 684 685 mutex_lock(&vmm->mutex.map); 686 nvkm_vmm_iter(vmm, page, addr, size, "unmap", false, pfn, 687 NULL, NULL, NULL, 688 sparse ? func->sparse : func->invalid ? func->invalid : 689 func->unmap); 690 mutex_unlock(&vmm->mutex.map); 691 } 692 693 static void 694 nvkm_vmm_ptes_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 695 u64 addr, u64 size, struct nvkm_vmm_map *map, 696 nvkm_vmm_pte_func func) 697 { 698 mutex_lock(&vmm->mutex.map); 699 nvkm_vmm_iter(vmm, page, addr, size, "map", false, false, 700 NULL, func, map, NULL); 701 mutex_unlock(&vmm->mutex.map); 702 } 703 704 static void 705 nvkm_vmm_ptes_put_locked(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 706 u64 addr, u64 size) 707 { 708 nvkm_vmm_iter(vmm, page, addr, size, "unref", false, false, 709 nvkm_vmm_unref_ptes, NULL, NULL, NULL); 710 } 711 712 static void 713 nvkm_vmm_ptes_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 714 u64 addr, u64 size) 715 { 716 mutex_lock(&vmm->mutex.ref); 717 nvkm_vmm_ptes_put_locked(vmm, page, addr, size); 718 mutex_unlock(&vmm->mutex.ref); 719 } 720 721 static int 722 nvkm_vmm_ptes_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 723 u64 addr, u64 size) 724 { 725 u64 fail; 726 727 mutex_lock(&vmm->mutex.ref); 728 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref", true, false, 729 nvkm_vmm_ref_ptes, NULL, NULL, NULL); 730 if (fail != ~0ULL) { 731 if (fail != addr) 732 nvkm_vmm_ptes_put_locked(vmm, page, addr, fail - addr); 733 mutex_unlock(&vmm->mutex.ref); 734 return -ENOMEM; 735 } 736 mutex_unlock(&vmm->mutex.ref); 737 return 0; 738 } 739 740 static void 741 __nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 742 u64 addr, u64 size, bool sparse, bool pfn) 743 { 744 const struct nvkm_vmm_desc_func *func = page->desc->func; 745 746 nvkm_vmm_iter(vmm, page, addr, size, "unmap + unref", 747 false, pfn, nvkm_vmm_unref_ptes, NULL, NULL, 748 sparse ? func->sparse : func->invalid ? func->invalid : 749 func->unmap); 750 } 751 752 static void 753 nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 754 u64 addr, u64 size, bool sparse, bool pfn) 755 { 756 if (vmm->managed.raw) { 757 nvkm_vmm_ptes_unmap(vmm, page, addr, size, sparse, pfn); 758 nvkm_vmm_ptes_put(vmm, page, addr, size); 759 } else { 760 __nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, sparse, pfn); 761 } 762 } 763 764 static int 765 __nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 766 u64 addr, u64 size, struct nvkm_vmm_map *map, 767 nvkm_vmm_pte_func func) 768 { 769 u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref + map", true, 770 false, nvkm_vmm_ref_ptes, func, map, NULL); 771 if (fail != ~0ULL) { 772 if ((size = fail - addr)) 773 nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, false, false); 774 return -ENOMEM; 775 } 776 return 0; 777 } 778 779 static int 780 nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page, 781 u64 addr, u64 size, struct nvkm_vmm_map *map, 782 nvkm_vmm_pte_func func) 783 { 784 int ret; 785 786 if (vmm->managed.raw) { 787 ret = nvkm_vmm_ptes_get(vmm, page, addr, size); 788 if (ret) 789 return ret; 790 791 nvkm_vmm_ptes_map(vmm, page, addr, size, map, func); 792 793 return 0; 794 } else { 795 return __nvkm_vmm_ptes_get_map(vmm, page, addr, size, map, func); 796 } 797 } 798 799 struct nvkm_vma * 800 nvkm_vma_new(u64 addr, u64 size) 801 { 802 struct nvkm_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 803 if (vma) { 804 vma->addr = addr; 805 vma->size = size; 806 vma->page = NVKM_VMA_PAGE_NONE; 807 vma->refd = NVKM_VMA_PAGE_NONE; 808 } 809 return vma; 810 } 811 812 struct nvkm_vma * 813 nvkm_vma_tail(struct nvkm_vma *vma, u64 tail) 814 { 815 struct nvkm_vma *new; 816 817 BUG_ON(vma->size == tail); 818 819 if (!(new = nvkm_vma_new(vma->addr + (vma->size - tail), tail))) 820 return NULL; 821 vma->size -= tail; 822 823 new->mapref = vma->mapref; 824 new->sparse = vma->sparse; 825 new->page = vma->page; 826 new->refd = vma->refd; 827 new->used = vma->used; 828 new->part = vma->part; 829 new->busy = vma->busy; 830 new->mapped = vma->mapped; 831 list_add(&new->head, &vma->head); 832 return new; 833 } 834 835 static inline void 836 nvkm_vmm_free_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 837 { 838 rb_erase(&vma->tree, &vmm->free); 839 } 840 841 static inline void 842 nvkm_vmm_free_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 843 { 844 nvkm_vmm_free_remove(vmm, vma); 845 list_del(&vma->head); 846 kfree(vma); 847 } 848 849 static void 850 nvkm_vmm_free_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 851 { 852 struct rb_node **ptr = &vmm->free.rb_node; 853 struct rb_node *parent = NULL; 854 855 while (*ptr) { 856 struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree); 857 parent = *ptr; 858 if (vma->size < this->size) 859 ptr = &parent->rb_left; 860 else 861 if (vma->size > this->size) 862 ptr = &parent->rb_right; 863 else 864 if (vma->addr < this->addr) 865 ptr = &parent->rb_left; 866 else 867 if (vma->addr > this->addr) 868 ptr = &parent->rb_right; 869 else 870 BUG(); 871 } 872 873 rb_link_node(&vma->tree, parent, ptr); 874 rb_insert_color(&vma->tree, &vmm->free); 875 } 876 877 static inline void 878 nvkm_vmm_node_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 879 { 880 rb_erase(&vma->tree, &vmm->root); 881 } 882 883 static inline void 884 nvkm_vmm_node_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 885 { 886 nvkm_vmm_node_remove(vmm, vma); 887 list_del(&vma->head); 888 kfree(vma); 889 } 890 891 static void 892 nvkm_vmm_node_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 893 { 894 struct rb_node **ptr = &vmm->root.rb_node; 895 struct rb_node *parent = NULL; 896 897 while (*ptr) { 898 struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree); 899 parent = *ptr; 900 if (vma->addr < this->addr) 901 ptr = &parent->rb_left; 902 else 903 if (vma->addr > this->addr) 904 ptr = &parent->rb_right; 905 else 906 BUG(); 907 } 908 909 rb_link_node(&vma->tree, parent, ptr); 910 rb_insert_color(&vma->tree, &vmm->root); 911 } 912 913 struct nvkm_vma * 914 nvkm_vmm_node_search(struct nvkm_vmm *vmm, u64 addr) 915 { 916 struct rb_node *node = vmm->root.rb_node; 917 while (node) { 918 struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree); 919 if (addr < vma->addr) 920 node = node->rb_left; 921 else 922 if (addr >= vma->addr + vma->size) 923 node = node->rb_right; 924 else 925 return vma; 926 } 927 return NULL; 928 } 929 930 #define node(root, dir) (((root)->head.dir == &vmm->list) ? NULL : \ 931 list_entry((root)->head.dir, struct nvkm_vma, head)) 932 933 static struct nvkm_vma * 934 nvkm_vmm_node_merge(struct nvkm_vmm *vmm, struct nvkm_vma *prev, 935 struct nvkm_vma *vma, struct nvkm_vma *next, u64 size) 936 { 937 if (next) { 938 if (vma->size == size) { 939 vma->size += next->size; 940 nvkm_vmm_node_delete(vmm, next); 941 if (prev) { 942 prev->size += vma->size; 943 nvkm_vmm_node_delete(vmm, vma); 944 return prev; 945 } 946 return vma; 947 } 948 BUG_ON(prev); 949 950 nvkm_vmm_node_remove(vmm, next); 951 vma->size -= size; 952 next->addr -= size; 953 next->size += size; 954 nvkm_vmm_node_insert(vmm, next); 955 return next; 956 } 957 958 if (prev) { 959 if (vma->size != size) { 960 nvkm_vmm_node_remove(vmm, vma); 961 prev->size += size; 962 vma->addr += size; 963 vma->size -= size; 964 nvkm_vmm_node_insert(vmm, vma); 965 } else { 966 prev->size += vma->size; 967 nvkm_vmm_node_delete(vmm, vma); 968 } 969 return prev; 970 } 971 972 return vma; 973 } 974 975 struct nvkm_vma * 976 nvkm_vmm_node_split(struct nvkm_vmm *vmm, 977 struct nvkm_vma *vma, u64 addr, u64 size) 978 { 979 struct nvkm_vma *prev = NULL; 980 981 if (vma->addr != addr) { 982 prev = vma; 983 if (!(vma = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) 984 return NULL; 985 vma->part = true; 986 nvkm_vmm_node_insert(vmm, vma); 987 } 988 989 if (vma->size != size) { 990 struct nvkm_vma *tmp; 991 if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) { 992 nvkm_vmm_node_merge(vmm, prev, vma, NULL, vma->size); 993 return NULL; 994 } 995 tmp->part = true; 996 nvkm_vmm_node_insert(vmm, tmp); 997 } 998 999 return vma; 1000 } 1001 1002 static void 1003 nvkm_vma_dump(struct nvkm_vma *vma) 1004 { 1005 printk(KERN_ERR "%016llx %016llx %c%c%c%c%c%c%c%c %p\n", 1006 vma->addr, (u64)vma->size, 1007 vma->used ? '-' : 'F', 1008 vma->mapref ? 'R' : '-', 1009 vma->sparse ? 'S' : '-', 1010 vma->page != NVKM_VMA_PAGE_NONE ? '0' + vma->page : '-', 1011 vma->refd != NVKM_VMA_PAGE_NONE ? '0' + vma->refd : '-', 1012 vma->part ? 'P' : '-', 1013 vma->busy ? 'B' : '-', 1014 vma->mapped ? 'M' : '-', 1015 vma->memory); 1016 } 1017 1018 static void 1019 nvkm_vmm_dump(struct nvkm_vmm *vmm) 1020 { 1021 struct nvkm_vma *vma; 1022 list_for_each_entry(vma, &vmm->list, head) { 1023 nvkm_vma_dump(vma); 1024 } 1025 } 1026 1027 static void 1028 nvkm_vmm_dtor(struct nvkm_vmm *vmm) 1029 { 1030 struct nvkm_vma *vma; 1031 struct rb_node *node; 1032 1033 if (0) 1034 nvkm_vmm_dump(vmm); 1035 1036 while ((node = rb_first(&vmm->root))) { 1037 struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree); 1038 nvkm_vmm_put(vmm, &vma); 1039 } 1040 1041 if (vmm->bootstrapped) { 1042 const struct nvkm_vmm_page *page = vmm->func->page; 1043 const u64 limit = vmm->limit - vmm->start; 1044 1045 while (page[1].shift) 1046 page++; 1047 1048 nvkm_mmu_ptc_dump(vmm->mmu); 1049 nvkm_vmm_ptes_put(vmm, page, vmm->start, limit); 1050 } 1051 1052 vma = list_first_entry(&vmm->list, typeof(*vma), head); 1053 list_del(&vma->head); 1054 kfree(vma); 1055 WARN_ON(!list_empty(&vmm->list)); 1056 1057 if (vmm->nullp) { 1058 dma_free_coherent(vmm->mmu->subdev.device->dev, 16 * 1024, 1059 vmm->nullp, vmm->null); 1060 } 1061 1062 if (vmm->pd) { 1063 nvkm_mmu_ptc_put(vmm->mmu, true, &vmm->pd->pt[0]); 1064 nvkm_vmm_pt_del(&vmm->pd); 1065 } 1066 } 1067 1068 static int 1069 nvkm_vmm_ctor_managed(struct nvkm_vmm *vmm, u64 addr, u64 size) 1070 { 1071 struct nvkm_vma *vma; 1072 if (!(vma = nvkm_vma_new(addr, size))) 1073 return -ENOMEM; 1074 vma->mapref = true; 1075 vma->sparse = false; 1076 vma->used = true; 1077 nvkm_vmm_node_insert(vmm, vma); 1078 list_add_tail(&vma->head, &vmm->list); 1079 return 0; 1080 } 1081 1082 static int 1083 nvkm_vmm_ctor(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu, 1084 u32 pd_header, bool managed, u64 addr, u64 size, 1085 struct lock_class_key *key, const char *name, 1086 struct nvkm_vmm *vmm) 1087 { 1088 static struct lock_class_key _key; 1089 const struct nvkm_vmm_page *page = func->page; 1090 const struct nvkm_vmm_desc *desc; 1091 struct nvkm_vma *vma; 1092 int levels, bits = 0, ret; 1093 1094 vmm->func = func; 1095 vmm->mmu = mmu; 1096 vmm->name = name; 1097 vmm->debug = mmu->subdev.debug; 1098 kref_init(&vmm->kref); 1099 1100 __mutex_init(&vmm->mutex.vmm, "&vmm->mutex.vmm", key ? key : &_key); 1101 mutex_init(&vmm->mutex.ref); 1102 mutex_init(&vmm->mutex.map); 1103 1104 /* Locate the smallest page size supported by the backend, it will 1105 * have the deepest nesting of page tables. 1106 */ 1107 while (page[1].shift) 1108 page++; 1109 1110 /* Locate the structure that describes the layout of the top-level 1111 * page table, and determine the number of valid bits in a virtual 1112 * address. 1113 */ 1114 for (levels = 0, desc = page->desc; desc->bits; desc++, levels++) 1115 bits += desc->bits; 1116 bits += page->shift; 1117 desc--; 1118 1119 if (WARN_ON(levels > NVKM_VMM_LEVELS_MAX)) 1120 return -EINVAL; 1121 1122 /* Allocate top-level page table. */ 1123 vmm->pd = nvkm_vmm_pt_new(desc, false, NULL); 1124 if (!vmm->pd) 1125 return -ENOMEM; 1126 vmm->pd->refs[0] = 1; 1127 INIT_LIST_HEAD(&vmm->join); 1128 1129 /* ... and the GPU storage for it, except on Tesla-class GPUs that 1130 * have the PD embedded in the instance structure. 1131 */ 1132 if (desc->size) { 1133 const u32 size = pd_header + desc->size * (1 << desc->bits); 1134 vmm->pd->pt[0] = nvkm_mmu_ptc_get(mmu, size, desc->align, true); 1135 if (!vmm->pd->pt[0]) 1136 return -ENOMEM; 1137 } 1138 1139 /* Initialise address-space MM. */ 1140 INIT_LIST_HEAD(&vmm->list); 1141 vmm->free = RB_ROOT; 1142 vmm->root = RB_ROOT; 1143 1144 if (managed) { 1145 /* Address-space will be managed by the client for the most 1146 * part, except for a specified area where NVKM allocations 1147 * are allowed to be placed. 1148 */ 1149 vmm->start = 0; 1150 vmm->limit = 1ULL << bits; 1151 if (addr + size < addr || addr + size > vmm->limit) 1152 return -EINVAL; 1153 1154 /* Client-managed area before the NVKM-managed area. */ 1155 if (addr && (ret = nvkm_vmm_ctor_managed(vmm, 0, addr))) 1156 return ret; 1157 1158 vmm->managed.p.addr = 0; 1159 vmm->managed.p.size = addr; 1160 1161 /* NVKM-managed area. */ 1162 if (size) { 1163 if (!(vma = nvkm_vma_new(addr, size))) 1164 return -ENOMEM; 1165 nvkm_vmm_free_insert(vmm, vma); 1166 list_add_tail(&vma->head, &vmm->list); 1167 } 1168 1169 /* Client-managed area after the NVKM-managed area. */ 1170 addr = addr + size; 1171 size = vmm->limit - addr; 1172 if (size && (ret = nvkm_vmm_ctor_managed(vmm, addr, size))) 1173 return ret; 1174 1175 vmm->managed.n.addr = addr; 1176 vmm->managed.n.size = size; 1177 } else { 1178 /* Address-space fully managed by NVKM, requiring calls to 1179 * nvkm_vmm_get()/nvkm_vmm_put() to allocate address-space. 1180 */ 1181 vmm->start = addr; 1182 vmm->limit = size ? (addr + size) : (1ULL << bits); 1183 if (vmm->start > vmm->limit || vmm->limit > (1ULL << bits)) 1184 return -EINVAL; 1185 1186 if (!(vma = nvkm_vma_new(vmm->start, vmm->limit - vmm->start))) 1187 return -ENOMEM; 1188 1189 nvkm_vmm_free_insert(vmm, vma); 1190 list_add(&vma->head, &vmm->list); 1191 } 1192 1193 return 0; 1194 } 1195 1196 int 1197 nvkm_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu, 1198 u32 hdr, bool managed, u64 addr, u64 size, 1199 struct lock_class_key *key, const char *name, 1200 struct nvkm_vmm **pvmm) 1201 { 1202 if (!(*pvmm = kzalloc(sizeof(**pvmm), GFP_KERNEL))) 1203 return -ENOMEM; 1204 return nvkm_vmm_ctor(func, mmu, hdr, managed, addr, size, key, name, *pvmm); 1205 } 1206 1207 static struct nvkm_vma * 1208 nvkm_vmm_pfn_split_merge(struct nvkm_vmm *vmm, struct nvkm_vma *vma, 1209 u64 addr, u64 size, u8 page, bool map) 1210 { 1211 struct nvkm_vma *prev = NULL; 1212 struct nvkm_vma *next = NULL; 1213 1214 if (vma->addr == addr && vma->part && (prev = node(vma, prev))) { 1215 if (prev->memory || prev->mapped != map) 1216 prev = NULL; 1217 } 1218 1219 if (vma->addr + vma->size == addr + size && (next = node(vma, next))) { 1220 if (!next->part || 1221 next->memory || next->mapped != map) 1222 next = NULL; 1223 } 1224 1225 if (prev || next) 1226 return nvkm_vmm_node_merge(vmm, prev, vma, next, size); 1227 return nvkm_vmm_node_split(vmm, vma, addr, size); 1228 } 1229 1230 int 1231 nvkm_vmm_pfn_unmap(struct nvkm_vmm *vmm, u64 addr, u64 size) 1232 { 1233 struct nvkm_vma *vma = nvkm_vmm_node_search(vmm, addr); 1234 struct nvkm_vma *next; 1235 u64 limit = addr + size; 1236 u64 start = addr; 1237 1238 if (!vma) 1239 return -EINVAL; 1240 1241 do { 1242 if (!vma->mapped || vma->memory) 1243 continue; 1244 1245 size = min(limit - start, vma->size - (start - vma->addr)); 1246 1247 nvkm_vmm_ptes_unmap_put(vmm, &vmm->func->page[vma->refd], 1248 start, size, false, true); 1249 1250 next = nvkm_vmm_pfn_split_merge(vmm, vma, start, size, 0, false); 1251 if (!WARN_ON(!next)) { 1252 vma = next; 1253 vma->refd = NVKM_VMA_PAGE_NONE; 1254 vma->mapped = false; 1255 } 1256 } while ((vma = node(vma, next)) && (start = vma->addr) < limit); 1257 1258 return 0; 1259 } 1260 1261 /*TODO: 1262 * - Avoid PT readback (for dma_unmap etc), this might end up being dealt 1263 * with inside HMM, which would be a lot nicer for us to deal with. 1264 * - Support for systems without a 4KiB page size. 1265 */ 1266 int 1267 nvkm_vmm_pfn_map(struct nvkm_vmm *vmm, u8 shift, u64 addr, u64 size, u64 *pfn) 1268 { 1269 const struct nvkm_vmm_page *page = vmm->func->page; 1270 struct nvkm_vma *vma, *tmp; 1271 u64 limit = addr + size; 1272 u64 start = addr; 1273 int pm = size >> shift; 1274 int pi = 0; 1275 1276 /* Only support mapping where the page size of the incoming page 1277 * array matches a page size available for direct mapping. 1278 */ 1279 while (page->shift && (page->shift != shift || 1280 page->desc->func->pfn == NULL)) 1281 page++; 1282 1283 if (!page->shift || !IS_ALIGNED(addr, 1ULL << shift) || 1284 !IS_ALIGNED(size, 1ULL << shift) || 1285 addr + size < addr || addr + size > vmm->limit) { 1286 VMM_DEBUG(vmm, "paged map %d %d %016llx %016llx\n", 1287 shift, page->shift, addr, size); 1288 return -EINVAL; 1289 } 1290 1291 if (!(vma = nvkm_vmm_node_search(vmm, addr))) 1292 return -ENOENT; 1293 1294 do { 1295 bool map = !!(pfn[pi] & NVKM_VMM_PFN_V); 1296 bool mapped = vma->mapped; 1297 u64 size = limit - start; 1298 u64 addr = start; 1299 int pn, ret = 0; 1300 1301 /* Narrow the operation window to cover a single action (page 1302 * should be mapped or not) within a single VMA. 1303 */ 1304 for (pn = 0; pi + pn < pm; pn++) { 1305 if (map != !!(pfn[pi + pn] & NVKM_VMM_PFN_V)) 1306 break; 1307 } 1308 size = min_t(u64, size, pn << page->shift); 1309 size = min_t(u64, size, vma->size + vma->addr - addr); 1310 1311 /* Reject any operation to unmanaged regions, and areas that 1312 * have nvkm_memory objects mapped in them already. 1313 */ 1314 if (!vma->mapref || vma->memory) { 1315 ret = -EINVAL; 1316 goto next; 1317 } 1318 1319 /* In order to both properly refcount GPU page tables, and 1320 * prevent "normal" mappings and these direct mappings from 1321 * interfering with each other, we need to track contiguous 1322 * ranges that have been mapped with this interface. 1323 * 1324 * Here we attempt to either split an existing VMA so we're 1325 * able to flag the region as either unmapped/mapped, or to 1326 * merge with adjacent VMAs that are already compatible. 1327 * 1328 * If the region is already compatible, nothing is required. 1329 */ 1330 if (map != mapped) { 1331 tmp = nvkm_vmm_pfn_split_merge(vmm, vma, addr, size, 1332 page - 1333 vmm->func->page, map); 1334 if (WARN_ON(!tmp)) { 1335 ret = -ENOMEM; 1336 goto next; 1337 } 1338 1339 if ((tmp->mapped = map)) 1340 tmp->refd = page - vmm->func->page; 1341 else 1342 tmp->refd = NVKM_VMA_PAGE_NONE; 1343 vma = tmp; 1344 } 1345 1346 /* Update HW page tables. */ 1347 if (map) { 1348 struct nvkm_vmm_map args; 1349 args.page = page; 1350 args.pfn = &pfn[pi]; 1351 1352 if (!mapped) { 1353 ret = nvkm_vmm_ptes_get_map(vmm, page, addr, 1354 size, &args, page-> 1355 desc->func->pfn); 1356 } else { 1357 nvkm_vmm_ptes_map(vmm, page, addr, size, &args, 1358 page->desc->func->pfn); 1359 } 1360 } else { 1361 if (mapped) { 1362 nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, 1363 false, true); 1364 } 1365 } 1366 1367 next: 1368 /* Iterate to next operation. */ 1369 if (vma->addr + vma->size == addr + size) 1370 vma = node(vma, next); 1371 start += size; 1372 1373 if (ret) { 1374 /* Failure is signalled by clearing the valid bit on 1375 * any PFN that couldn't be modified as requested. 1376 */ 1377 while (size) { 1378 pfn[pi++] = NVKM_VMM_PFN_NONE; 1379 size -= 1 << page->shift; 1380 } 1381 } else { 1382 pi += size >> page->shift; 1383 } 1384 } while (vma && start < limit); 1385 1386 return 0; 1387 } 1388 1389 void 1390 nvkm_vmm_unmap_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 1391 { 1392 struct nvkm_vma *prev = NULL; 1393 struct nvkm_vma *next; 1394 1395 nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags); 1396 nvkm_memory_unref(&vma->memory); 1397 vma->mapped = false; 1398 1399 if (vma->part && (prev = node(vma, prev)) && prev->mapped) 1400 prev = NULL; 1401 if ((next = node(vma, next)) && (!next->part || next->mapped)) 1402 next = NULL; 1403 nvkm_vmm_node_merge(vmm, prev, vma, next, vma->size); 1404 } 1405 1406 void 1407 nvkm_vmm_unmap_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma, bool pfn) 1408 { 1409 const struct nvkm_vmm_page *page = &vmm->func->page[vma->refd]; 1410 1411 if (vma->mapref) { 1412 nvkm_vmm_ptes_unmap_put(vmm, page, vma->addr, vma->size, vma->sparse, pfn); 1413 vma->refd = NVKM_VMA_PAGE_NONE; 1414 } else { 1415 nvkm_vmm_ptes_unmap(vmm, page, vma->addr, vma->size, vma->sparse, pfn); 1416 } 1417 1418 nvkm_vmm_unmap_region(vmm, vma); 1419 } 1420 1421 void 1422 nvkm_vmm_unmap(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 1423 { 1424 if (vma->memory) { 1425 mutex_lock(&vmm->mutex.vmm); 1426 nvkm_vmm_unmap_locked(vmm, vma, false); 1427 mutex_unlock(&vmm->mutex.vmm); 1428 } 1429 } 1430 1431 static int 1432 nvkm_vmm_map_valid(struct nvkm_vmm *vmm, struct nvkm_vma *vma, 1433 void *argv, u32 argc, struct nvkm_vmm_map *map) 1434 { 1435 switch (nvkm_memory_target(map->memory)) { 1436 case NVKM_MEM_TARGET_VRAM: 1437 if (!(map->page->type & NVKM_VMM_PAGE_VRAM)) { 1438 VMM_DEBUG(vmm, "%d !VRAM", map->page->shift); 1439 return -EINVAL; 1440 } 1441 break; 1442 case NVKM_MEM_TARGET_HOST: 1443 case NVKM_MEM_TARGET_NCOH: 1444 if (!(map->page->type & NVKM_VMM_PAGE_HOST)) { 1445 VMM_DEBUG(vmm, "%d !HOST", map->page->shift); 1446 return -EINVAL; 1447 } 1448 break; 1449 default: 1450 WARN_ON(1); 1451 return -ENOSYS; 1452 } 1453 1454 if (!IS_ALIGNED( vma->addr, 1ULL << map->page->shift) || 1455 !IS_ALIGNED((u64)vma->size, 1ULL << map->page->shift) || 1456 !IS_ALIGNED( map->offset, 1ULL << map->page->shift) || 1457 nvkm_memory_page(map->memory) < map->page->shift) { 1458 VMM_DEBUG(vmm, "alignment %016llx %016llx %016llx %d %d", 1459 vma->addr, (u64)vma->size, map->offset, map->page->shift, 1460 nvkm_memory_page(map->memory)); 1461 return -EINVAL; 1462 } 1463 1464 return vmm->func->valid(vmm, argv, argc, map); 1465 } 1466 1467 static int 1468 nvkm_vmm_map_choose(struct nvkm_vmm *vmm, struct nvkm_vma *vma, 1469 void *argv, u32 argc, struct nvkm_vmm_map *map) 1470 { 1471 for (map->page = vmm->func->page; map->page->shift; map->page++) { 1472 VMM_DEBUG(vmm, "trying %d", map->page->shift); 1473 if (!nvkm_vmm_map_valid(vmm, vma, argv, argc, map)) 1474 return 0; 1475 } 1476 return -EINVAL; 1477 } 1478 1479 static int 1480 nvkm_vmm_map_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma, 1481 void *argv, u32 argc, struct nvkm_vmm_map *map) 1482 { 1483 nvkm_vmm_pte_func func; 1484 int ret; 1485 1486 map->no_comp = vma->no_comp; 1487 1488 /* Make sure we won't overrun the end of the memory object. */ 1489 if (unlikely(nvkm_memory_size(map->memory) < map->offset + vma->size)) { 1490 VMM_DEBUG(vmm, "overrun %016llx %016llx %016llx", 1491 nvkm_memory_size(map->memory), 1492 map->offset, (u64)vma->size); 1493 return -EINVAL; 1494 } 1495 1496 /* Check remaining arguments for validity. */ 1497 if (vma->page == NVKM_VMA_PAGE_NONE && 1498 vma->refd == NVKM_VMA_PAGE_NONE) { 1499 /* Find the largest page size we can perform the mapping at. */ 1500 const u32 debug = vmm->debug; 1501 vmm->debug = 0; 1502 ret = nvkm_vmm_map_choose(vmm, vma, argv, argc, map); 1503 vmm->debug = debug; 1504 if (ret) { 1505 VMM_DEBUG(vmm, "invalid at any page size"); 1506 nvkm_vmm_map_choose(vmm, vma, argv, argc, map); 1507 return -EINVAL; 1508 } 1509 } else { 1510 /* Page size of the VMA is already pre-determined. */ 1511 if (vma->refd != NVKM_VMA_PAGE_NONE) 1512 map->page = &vmm->func->page[vma->refd]; 1513 else 1514 map->page = &vmm->func->page[vma->page]; 1515 1516 ret = nvkm_vmm_map_valid(vmm, vma, argv, argc, map); 1517 if (ret) { 1518 VMM_DEBUG(vmm, "invalid %d\n", ret); 1519 return ret; 1520 } 1521 } 1522 1523 /* Deal with the 'offset' argument, and fetch the backend function. */ 1524 map->off = map->offset; 1525 if (map->mem) { 1526 for (; map->off; map->mem = map->mem->next) { 1527 u64 size = (u64)map->mem->length << NVKM_RAM_MM_SHIFT; 1528 if (size > map->off) 1529 break; 1530 map->off -= size; 1531 } 1532 func = map->page->desc->func->mem; 1533 } else 1534 if (map->sgl) { 1535 for (; map->off; map->sgl = sg_next(map->sgl)) { 1536 u64 size = sg_dma_len(map->sgl); 1537 if (size > map->off) 1538 break; 1539 map->off -= size; 1540 } 1541 func = map->page->desc->func->sgl; 1542 } else { 1543 map->dma += map->offset >> PAGE_SHIFT; 1544 map->off = map->offset & PAGE_MASK; 1545 func = map->page->desc->func->dma; 1546 } 1547 1548 /* Perform the map. */ 1549 if (vma->refd == NVKM_VMA_PAGE_NONE) { 1550 ret = nvkm_vmm_ptes_get_map(vmm, map->page, vma->addr, vma->size, map, func); 1551 if (ret) 1552 return ret; 1553 1554 vma->refd = map->page - vmm->func->page; 1555 } else { 1556 nvkm_vmm_ptes_map(vmm, map->page, vma->addr, vma->size, map, func); 1557 } 1558 1559 nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags); 1560 nvkm_memory_unref(&vma->memory); 1561 vma->memory = nvkm_memory_ref(map->memory); 1562 vma->mapped = true; 1563 vma->tags = map->tags; 1564 return 0; 1565 } 1566 1567 int 1568 nvkm_vmm_map(struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc, 1569 struct nvkm_vmm_map *map) 1570 { 1571 int ret; 1572 1573 if (nvkm_vmm_in_managed_range(vmm, vma->addr, vma->size) && 1574 vmm->managed.raw) 1575 return nvkm_vmm_map_locked(vmm, vma, argv, argc, map); 1576 1577 mutex_lock(&vmm->mutex.vmm); 1578 ret = nvkm_vmm_map_locked(vmm, vma, argv, argc, map); 1579 vma->busy = false; 1580 mutex_unlock(&vmm->mutex.vmm); 1581 return ret; 1582 } 1583 1584 static void 1585 nvkm_vmm_put_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 1586 { 1587 struct nvkm_vma *prev, *next; 1588 1589 if ((prev = node(vma, prev)) && !prev->used) { 1590 vma->addr = prev->addr; 1591 vma->size += prev->size; 1592 nvkm_vmm_free_delete(vmm, prev); 1593 } 1594 1595 if ((next = node(vma, next)) && !next->used) { 1596 vma->size += next->size; 1597 nvkm_vmm_free_delete(vmm, next); 1598 } 1599 1600 nvkm_vmm_free_insert(vmm, vma); 1601 } 1602 1603 void 1604 nvkm_vmm_put_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma) 1605 { 1606 const struct nvkm_vmm_page *page = vmm->func->page; 1607 struct nvkm_vma *next = vma; 1608 1609 BUG_ON(vma->part); 1610 1611 if (vma->mapref || !vma->sparse) { 1612 do { 1613 const bool mem = next->memory != NULL; 1614 const bool map = next->mapped; 1615 const u8 refd = next->refd; 1616 const u64 addr = next->addr; 1617 u64 size = next->size; 1618 1619 /* Merge regions that are in the same state. */ 1620 while ((next = node(next, next)) && next->part && 1621 (next->mapped == map) && 1622 (next->memory != NULL) == mem && 1623 (next->refd == refd)) 1624 size += next->size; 1625 1626 if (map) { 1627 /* Region(s) are mapped, merge the unmap 1628 * and dereference into a single walk of 1629 * the page tree. 1630 */ 1631 nvkm_vmm_ptes_unmap_put(vmm, &page[refd], addr, 1632 size, vma->sparse, 1633 !mem); 1634 } else 1635 if (refd != NVKM_VMA_PAGE_NONE) { 1636 /* Drop allocation-time PTE references. */ 1637 nvkm_vmm_ptes_put(vmm, &page[refd], addr, size); 1638 } 1639 } while (next && next->part); 1640 } 1641 1642 /* Merge any mapped regions that were split from the initial 1643 * address-space allocation back into the allocated VMA, and 1644 * release memory/compression resources. 1645 */ 1646 next = vma; 1647 do { 1648 if (next->mapped) 1649 nvkm_vmm_unmap_region(vmm, next); 1650 } while ((next = node(vma, next)) && next->part); 1651 1652 if (vma->sparse && !vma->mapref) { 1653 /* Sparse region that was allocated with a fixed page size, 1654 * meaning all relevant PTEs were referenced once when the 1655 * region was allocated, and remained that way, regardless 1656 * of whether memory was mapped into it afterwards. 1657 * 1658 * The process of unmapping, unsparsing, and dereferencing 1659 * PTEs can be done in a single page tree walk. 1660 */ 1661 nvkm_vmm_ptes_sparse_put(vmm, &page[vma->refd], vma->addr, vma->size); 1662 } else 1663 if (vma->sparse) { 1664 /* Sparse region that wasn't allocated with a fixed page size, 1665 * PTE references were taken both at allocation time (to make 1666 * the GPU see the region as sparse), and when mapping memory 1667 * into the region. 1668 * 1669 * The latter was handled above, and the remaining references 1670 * are dealt with here. 1671 */ 1672 nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, false); 1673 } 1674 1675 /* Remove VMA from the list of allocated nodes. */ 1676 nvkm_vmm_node_remove(vmm, vma); 1677 1678 /* Merge VMA back into the free list. */ 1679 vma->page = NVKM_VMA_PAGE_NONE; 1680 vma->refd = NVKM_VMA_PAGE_NONE; 1681 vma->used = false; 1682 nvkm_vmm_put_region(vmm, vma); 1683 } 1684 1685 void 1686 nvkm_vmm_put(struct nvkm_vmm *vmm, struct nvkm_vma **pvma) 1687 { 1688 struct nvkm_vma *vma = *pvma; 1689 if (vma) { 1690 mutex_lock(&vmm->mutex.vmm); 1691 nvkm_vmm_put_locked(vmm, vma); 1692 mutex_unlock(&vmm->mutex.vmm); 1693 *pvma = NULL; 1694 } 1695 } 1696 1697 int 1698 nvkm_vmm_get_locked(struct nvkm_vmm *vmm, bool getref, bool mapref, bool sparse, 1699 u8 shift, u8 align, u64 size, struct nvkm_vma **pvma) 1700 { 1701 const struct nvkm_vmm_page *page = &vmm->func->page[NVKM_VMA_PAGE_NONE]; 1702 struct rb_node *node = NULL, *temp; 1703 struct nvkm_vma *vma = NULL, *tmp; 1704 u64 addr, tail; 1705 int ret; 1706 1707 VMM_TRACE(vmm, "getref %d mapref %d sparse %d " 1708 "shift: %d align: %d size: %016llx", 1709 getref, mapref, sparse, shift, align, size); 1710 1711 /* Zero-sized, or lazily-allocated sparse VMAs, make no sense. */ 1712 if (unlikely(!size || (!getref && !mapref && sparse))) { 1713 VMM_DEBUG(vmm, "args %016llx %d %d %d", 1714 size, getref, mapref, sparse); 1715 return -EINVAL; 1716 } 1717 1718 /* Tesla-class GPUs can only select page size per-PDE, which means 1719 * we're required to know the mapping granularity up-front to find 1720 * a suitable region of address-space. 1721 * 1722 * The same goes if we're requesting up-front allocation of PTES. 1723 */ 1724 if (unlikely((getref || vmm->func->page_block) && !shift)) { 1725 VMM_DEBUG(vmm, "page size required: %d %016llx", 1726 getref, vmm->func->page_block); 1727 return -EINVAL; 1728 } 1729 1730 /* If a specific page size was requested, determine its index and 1731 * make sure the requested size is a multiple of the page size. 1732 */ 1733 if (shift) { 1734 for (page = vmm->func->page; page->shift; page++) { 1735 if (shift == page->shift) 1736 break; 1737 } 1738 1739 if (!page->shift || !IS_ALIGNED(size, 1ULL << page->shift)) { 1740 VMM_DEBUG(vmm, "page %d %016llx", shift, size); 1741 return -EINVAL; 1742 } 1743 align = max_t(u8, align, shift); 1744 } else { 1745 align = max_t(u8, align, 12); 1746 } 1747 1748 /* Locate smallest block that can possibly satisfy the allocation. */ 1749 temp = vmm->free.rb_node; 1750 while (temp) { 1751 struct nvkm_vma *this = rb_entry(temp, typeof(*this), tree); 1752 if (this->size < size) { 1753 temp = temp->rb_right; 1754 } else { 1755 node = temp; 1756 temp = temp->rb_left; 1757 } 1758 } 1759 1760 if (unlikely(!node)) 1761 return -ENOSPC; 1762 1763 /* Take into account alignment restrictions, trying larger blocks 1764 * in turn until we find a suitable free block. 1765 */ 1766 do { 1767 struct nvkm_vma *this = rb_entry(node, typeof(*this), tree); 1768 struct nvkm_vma *prev = node(this, prev); 1769 struct nvkm_vma *next = node(this, next); 1770 const int p = page - vmm->func->page; 1771 1772 addr = this->addr; 1773 if (vmm->func->page_block && prev && prev->page != p) 1774 addr = ALIGN(addr, vmm->func->page_block); 1775 addr = ALIGN(addr, 1ULL << align); 1776 1777 tail = this->addr + this->size; 1778 if (vmm->func->page_block && next && next->page != p) 1779 tail = ALIGN_DOWN(tail, vmm->func->page_block); 1780 1781 if (addr <= tail && tail - addr >= size) { 1782 nvkm_vmm_free_remove(vmm, this); 1783 vma = this; 1784 break; 1785 } 1786 } while ((node = rb_next(node))); 1787 1788 if (unlikely(!vma)) 1789 return -ENOSPC; 1790 1791 /* If the VMA we found isn't already exactly the requested size, 1792 * it needs to be split, and the remaining free blocks returned. 1793 */ 1794 if (addr != vma->addr) { 1795 if (!(tmp = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) { 1796 nvkm_vmm_put_region(vmm, vma); 1797 return -ENOMEM; 1798 } 1799 nvkm_vmm_free_insert(vmm, vma); 1800 vma = tmp; 1801 } 1802 1803 if (size != vma->size) { 1804 if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) { 1805 nvkm_vmm_put_region(vmm, vma); 1806 return -ENOMEM; 1807 } 1808 nvkm_vmm_free_insert(vmm, tmp); 1809 } 1810 1811 /* Pre-allocate page tables and/or setup sparse mappings. */ 1812 if (sparse && getref) 1813 ret = nvkm_vmm_ptes_sparse_get(vmm, page, vma->addr, vma->size); 1814 else if (sparse) 1815 ret = nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, true); 1816 else if (getref) 1817 ret = nvkm_vmm_ptes_get(vmm, page, vma->addr, vma->size); 1818 else 1819 ret = 0; 1820 if (ret) { 1821 nvkm_vmm_put_region(vmm, vma); 1822 return ret; 1823 } 1824 1825 vma->mapref = mapref && !getref; 1826 vma->sparse = sparse; 1827 vma->page = page - vmm->func->page; 1828 vma->refd = getref ? vma->page : NVKM_VMA_PAGE_NONE; 1829 vma->used = true; 1830 nvkm_vmm_node_insert(vmm, vma); 1831 *pvma = vma; 1832 return 0; 1833 } 1834 1835 int 1836 nvkm_vmm_get(struct nvkm_vmm *vmm, u8 page, u64 size, struct nvkm_vma **pvma) 1837 { 1838 int ret; 1839 mutex_lock(&vmm->mutex.vmm); 1840 ret = nvkm_vmm_get_locked(vmm, false, true, false, page, 0, size, pvma); 1841 mutex_unlock(&vmm->mutex.vmm); 1842 return ret; 1843 } 1844 1845 void 1846 nvkm_vmm_raw_unmap(struct nvkm_vmm *vmm, u64 addr, u64 size, 1847 bool sparse, u8 refd) 1848 { 1849 const struct nvkm_vmm_page *page = &vmm->func->page[refd]; 1850 1851 nvkm_vmm_ptes_unmap(vmm, page, addr, size, sparse, false); 1852 } 1853 1854 void 1855 nvkm_vmm_raw_put(struct nvkm_vmm *vmm, u64 addr, u64 size, u8 refd) 1856 { 1857 const struct nvkm_vmm_page *page = vmm->func->page; 1858 1859 nvkm_vmm_ptes_put(vmm, &page[refd], addr, size); 1860 } 1861 1862 int 1863 nvkm_vmm_raw_get(struct nvkm_vmm *vmm, u64 addr, u64 size, u8 refd) 1864 { 1865 const struct nvkm_vmm_page *page = vmm->func->page; 1866 1867 if (unlikely(!size)) 1868 return -EINVAL; 1869 1870 return nvkm_vmm_ptes_get(vmm, &page[refd], addr, size); 1871 } 1872 1873 int 1874 nvkm_vmm_raw_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref) 1875 { 1876 int ret; 1877 1878 mutex_lock(&vmm->mutex.ref); 1879 ret = nvkm_vmm_ptes_sparse(vmm, addr, size, ref); 1880 mutex_unlock(&vmm->mutex.ref); 1881 1882 return ret; 1883 } 1884 1885 void 1886 nvkm_vmm_part(struct nvkm_vmm *vmm, struct nvkm_memory *inst) 1887 { 1888 if (inst && vmm && vmm->func->part) { 1889 mutex_lock(&vmm->mutex.vmm); 1890 vmm->func->part(vmm, inst); 1891 mutex_unlock(&vmm->mutex.vmm); 1892 } 1893 } 1894 1895 int 1896 nvkm_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst) 1897 { 1898 int ret = 0; 1899 if (vmm->func->join) { 1900 mutex_lock(&vmm->mutex.vmm); 1901 ret = vmm->func->join(vmm, inst); 1902 mutex_unlock(&vmm->mutex.vmm); 1903 } 1904 return ret; 1905 } 1906 1907 static bool 1908 nvkm_vmm_boot_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes) 1909 { 1910 const struct nvkm_vmm_desc *desc = it->desc; 1911 const int type = desc->type == SPT; 1912 nvkm_memory_boot(it->pt[0]->pt[type]->memory, it->vmm); 1913 return false; 1914 } 1915 1916 int 1917 nvkm_vmm_boot(struct nvkm_vmm *vmm) 1918 { 1919 const struct nvkm_vmm_page *page = vmm->func->page; 1920 const u64 limit = vmm->limit - vmm->start; 1921 int ret; 1922 1923 while (page[1].shift) 1924 page++; 1925 1926 ret = nvkm_vmm_ptes_get(vmm, page, vmm->start, limit); 1927 if (ret) 1928 return ret; 1929 1930 nvkm_vmm_iter(vmm, page, vmm->start, limit, "bootstrap", false, false, 1931 nvkm_vmm_boot_ptes, NULL, NULL, NULL); 1932 vmm->bootstrapped = true; 1933 return 0; 1934 } 1935 1936 static void 1937 nvkm_vmm_del(struct kref *kref) 1938 { 1939 struct nvkm_vmm *vmm = container_of(kref, typeof(*vmm), kref); 1940 nvkm_vmm_dtor(vmm); 1941 kfree(vmm); 1942 } 1943 1944 void 1945 nvkm_vmm_unref(struct nvkm_vmm **pvmm) 1946 { 1947 struct nvkm_vmm *vmm = *pvmm; 1948 if (vmm) { 1949 kref_put(&vmm->kref, nvkm_vmm_del); 1950 *pvmm = NULL; 1951 } 1952 } 1953 1954 struct nvkm_vmm * 1955 nvkm_vmm_ref(struct nvkm_vmm *vmm) 1956 { 1957 if (vmm) 1958 kref_get(&vmm->kref); 1959 return vmm; 1960 } 1961 1962 int 1963 nvkm_vmm_new(struct nvkm_device *device, u64 addr, u64 size, void *argv, 1964 u32 argc, struct lock_class_key *key, const char *name, 1965 struct nvkm_vmm **pvmm) 1966 { 1967 struct nvkm_mmu *mmu = device->mmu; 1968 struct nvkm_vmm *vmm = NULL; 1969 int ret; 1970 ret = mmu->func->vmm.ctor(mmu, false, addr, size, argv, argc, 1971 key, name, &vmm); 1972 if (ret) 1973 nvkm_vmm_unref(&vmm); 1974 *pvmm = vmm; 1975 return ret; 1976 } 1977