xref: /linux/drivers/gpu/drm/nouveau/nvkm/subdev/mmu/vmm.c (revision 23c996fc2bc1978a02c64eddb90b4ab5d309c8df)
1 /*
2  * Copyright 2017 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #define NVKM_VMM_LEVELS_MAX 5
23 #include "vmm.h"
24 
25 #include <subdev/fb.h>
26 
27 static void
28 nvkm_vmm_pt_del(struct nvkm_vmm_pt **ppgt)
29 {
30 	struct nvkm_vmm_pt *pgt = *ppgt;
31 	if (pgt) {
32 		kvfree(pgt->pde);
33 		kfree(pgt);
34 		*ppgt = NULL;
35 	}
36 }
37 
38 
39 static struct nvkm_vmm_pt *
40 nvkm_vmm_pt_new(const struct nvkm_vmm_desc *desc, bool sparse,
41 		const struct nvkm_vmm_page *page)
42 {
43 	const u32 pten = 1 << desc->bits;
44 	struct nvkm_vmm_pt *pgt;
45 	u32 lpte = 0;
46 
47 	if (desc->type > PGT) {
48 		if (desc->type == SPT) {
49 			const struct nvkm_vmm_desc *pair = page[-1].desc;
50 			lpte = pten >> (desc->bits - pair->bits);
51 		} else {
52 			lpte = pten;
53 		}
54 	}
55 
56 	if (!(pgt = kzalloc(sizeof(*pgt) + lpte, GFP_KERNEL)))
57 		return NULL;
58 	pgt->page = page ? page->shift : 0;
59 	pgt->sparse = sparse;
60 
61 	if (desc->type == PGD) {
62 		pgt->pde = kvcalloc(pten, sizeof(*pgt->pde), GFP_KERNEL);
63 		if (!pgt->pde) {
64 			kfree(pgt);
65 			return NULL;
66 		}
67 	}
68 
69 	return pgt;
70 }
71 
72 struct nvkm_vmm_iter {
73 	const struct nvkm_vmm_page *page;
74 	const struct nvkm_vmm_desc *desc;
75 	struct nvkm_vmm *vmm;
76 	u64 cnt;
77 	u16 max, lvl;
78 	u32 pte[NVKM_VMM_LEVELS_MAX];
79 	struct nvkm_vmm_pt *pt[NVKM_VMM_LEVELS_MAX];
80 	int flush;
81 };
82 
83 #ifdef CONFIG_NOUVEAU_DEBUG_MMU
84 static const char *
85 nvkm_vmm_desc_type(const struct nvkm_vmm_desc *desc)
86 {
87 	switch (desc->type) {
88 	case PGD: return "PGD";
89 	case PGT: return "PGT";
90 	case SPT: return "SPT";
91 	case LPT: return "LPT";
92 	default:
93 		return "UNKNOWN";
94 	}
95 }
96 
97 static void
98 nvkm_vmm_trace(struct nvkm_vmm_iter *it, char *buf)
99 {
100 	int lvl;
101 	for (lvl = it->max; lvl >= 0; lvl--) {
102 		if (lvl >= it->lvl)
103 			buf += sprintf(buf,  "%05x:", it->pte[lvl]);
104 		else
105 			buf += sprintf(buf, "xxxxx:");
106 	}
107 }
108 
109 #define TRA(i,f,a...) do {                                                     \
110 	char _buf[NVKM_VMM_LEVELS_MAX * 7];                                    \
111 	struct nvkm_vmm_iter *_it = (i);                                       \
112 	nvkm_vmm_trace(_it, _buf);                                             \
113 	VMM_TRACE(_it->vmm, "%s "f, _buf, ##a);                                \
114 } while(0)
115 #else
116 #define TRA(i,f,a...)
117 #endif
118 
119 static inline void
120 nvkm_vmm_flush_mark(struct nvkm_vmm_iter *it)
121 {
122 	it->flush = min(it->flush, it->max - it->lvl);
123 }
124 
125 static inline void
126 nvkm_vmm_flush(struct nvkm_vmm_iter *it)
127 {
128 	if (it->flush != NVKM_VMM_LEVELS_MAX) {
129 		if (it->vmm->func->flush) {
130 			TRA(it, "flush: %d", it->flush);
131 			it->vmm->func->flush(it->vmm, it->flush);
132 		}
133 		it->flush = NVKM_VMM_LEVELS_MAX;
134 	}
135 }
136 
137 static void
138 nvkm_vmm_unref_pdes(struct nvkm_vmm_iter *it)
139 {
140 	const struct nvkm_vmm_desc *desc = it->desc;
141 	const int type = desc[it->lvl].type == SPT;
142 	struct nvkm_vmm_pt *pgd = it->pt[it->lvl + 1];
143 	struct nvkm_vmm_pt *pgt = it->pt[it->lvl];
144 	struct nvkm_mmu_pt *pt = pgt->pt[type];
145 	struct nvkm_vmm *vmm = it->vmm;
146 	u32 pdei = it->pte[it->lvl + 1];
147 
148 	/* Recurse up the tree, unreferencing/destroying unneeded PDs. */
149 	it->lvl++;
150 	if (--pgd->refs[0]) {
151 		const struct nvkm_vmm_desc_func *func = desc[it->lvl].func;
152 		/* PD has other valid PDEs, so we need a proper update. */
153 		TRA(it, "PDE unmap %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
154 		pgt->pt[type] = NULL;
155 		if (!pgt->refs[!type]) {
156 			/* PDE no longer required. */
157 			if (pgd->pt[0]) {
158 				if (pgt->sparse) {
159 					func->sparse(vmm, pgd->pt[0], pdei, 1);
160 					pgd->pde[pdei] = NVKM_VMM_PDE_SPARSE;
161 				} else {
162 					func->unmap(vmm, pgd->pt[0], pdei, 1);
163 					pgd->pde[pdei] = NULL;
164 				}
165 			} else {
166 				/* Special handling for Tesla-class GPUs,
167 				 * where there's no central PD, but each
168 				 * instance has its own embedded PD.
169 				 */
170 				func->pde(vmm, pgd, pdei);
171 				pgd->pde[pdei] = NULL;
172 			}
173 		} else {
174 			/* PDE was pointing at dual-PTs and we're removing
175 			 * one of them, leaving the other in place.
176 			 */
177 			func->pde(vmm, pgd, pdei);
178 		}
179 
180 		/* GPU may have cached the PTs, flush before freeing. */
181 		nvkm_vmm_flush_mark(it);
182 		nvkm_vmm_flush(it);
183 	} else {
184 		/* PD has no valid PDEs left, so we can just destroy it. */
185 		nvkm_vmm_unref_pdes(it);
186 	}
187 
188 	/* Destroy PD/PT. */
189 	TRA(it, "PDE free %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
190 	nvkm_mmu_ptc_put(vmm->mmu, vmm->bootstrapped, &pt);
191 	if (!pgt->refs[!type])
192 		nvkm_vmm_pt_del(&pgt);
193 	it->lvl--;
194 }
195 
196 static void
197 nvkm_vmm_unref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
198 		     const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
199 {
200 	const struct nvkm_vmm_desc *pair = it->page[-1].desc;
201 	const u32 sptb = desc->bits - pair->bits;
202 	const u32 sptn = 1 << sptb;
203 	struct nvkm_vmm *vmm = it->vmm;
204 	u32 spti = ptei & (sptn - 1), lpti, pteb;
205 
206 	/* Determine how many SPTEs are being touched under each LPTE,
207 	 * and drop reference counts.
208 	 */
209 	for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
210 		const u32 pten = min(sptn - spti, ptes);
211 		pgt->pte[lpti] -= pten;
212 		ptes -= pten;
213 	}
214 
215 	/* We're done here if there's no corresponding LPT. */
216 	if (!pgt->refs[0])
217 		return;
218 
219 	for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
220 		/* Skip over any LPTEs that still have valid SPTEs. */
221 		if (pgt->pte[pteb] & NVKM_VMM_PTE_SPTES) {
222 			for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
223 				if (!(pgt->pte[ptei] & NVKM_VMM_PTE_SPTES))
224 					break;
225 			}
226 			continue;
227 		}
228 
229 		/* As there's no more non-UNMAPPED SPTEs left in the range
230 		 * covered by a number of LPTEs, the LPTEs once again take
231 		 * control over their address range.
232 		 *
233 		 * Determine how many LPTEs need to transition state.
234 		 */
235 		pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
236 		for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
237 			if (pgt->pte[ptei] & NVKM_VMM_PTE_SPTES)
238 				break;
239 			pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
240 		}
241 
242 		if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
243 			TRA(it, "LPTE %05x: U -> S %d PTEs", pteb, ptes);
244 			pair->func->sparse(vmm, pgt->pt[0], pteb, ptes);
245 		} else
246 		if (pair->func->invalid) {
247 			/* If the MMU supports it, restore the LPTE to the
248 			 * INVALID state to tell the MMU there is no point
249 			 * trying to fetch the corresponding SPTEs.
250 			 */
251 			TRA(it, "LPTE %05x: U -> I %d PTEs", pteb, ptes);
252 			pair->func->invalid(vmm, pgt->pt[0], pteb, ptes);
253 		}
254 	}
255 }
256 
257 static bool
258 nvkm_vmm_unref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
259 {
260 	const struct nvkm_vmm_desc *desc = it->desc;
261 	const int type = desc->type == SPT;
262 	struct nvkm_vmm_pt *pgt = it->pt[0];
263 	bool dma;
264 
265 	if (pfn) {
266 		/* Need to clear PTE valid bits before we dma_unmap_page(). */
267 		dma = desc->func->pfn_clear(it->vmm, pgt->pt[type], ptei, ptes);
268 		if (dma) {
269 			/* GPU may have cached the PT, flush before unmap. */
270 			nvkm_vmm_flush_mark(it);
271 			nvkm_vmm_flush(it);
272 			desc->func->pfn_unmap(it->vmm, pgt->pt[type], ptei, ptes);
273 		}
274 	}
275 
276 	/* Drop PTE references. */
277 	pgt->refs[type] -= ptes;
278 
279 	/* Dual-PTs need special handling, unless PDE becoming invalid. */
280 	if (desc->type == SPT && (pgt->refs[0] || pgt->refs[1]))
281 		nvkm_vmm_unref_sptes(it, pgt, desc, ptei, ptes);
282 
283 	/* PT no longer needed? Destroy it. */
284 	if (!pgt->refs[type]) {
285 		it->lvl++;
286 		TRA(it, "%s empty", nvkm_vmm_desc_type(desc));
287 		it->lvl--;
288 		nvkm_vmm_unref_pdes(it);
289 		return false; /* PTE writes for unmap() not necessary. */
290 	}
291 
292 	return true;
293 }
294 
295 static void
296 nvkm_vmm_ref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
297 		   const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
298 {
299 	const struct nvkm_vmm_desc *pair = it->page[-1].desc;
300 	const u32 sptb = desc->bits - pair->bits;
301 	const u32 sptn = 1 << sptb;
302 	struct nvkm_vmm *vmm = it->vmm;
303 	u32 spti = ptei & (sptn - 1), lpti, pteb;
304 
305 	/* Determine how many SPTEs are being touched under each LPTE,
306 	 * and increase reference counts.
307 	 */
308 	for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
309 		const u32 pten = min(sptn - spti, ptes);
310 		pgt->pte[lpti] += pten;
311 		ptes -= pten;
312 	}
313 
314 	/* We're done here if there's no corresponding LPT. */
315 	if (!pgt->refs[0])
316 		return;
317 
318 	for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
319 		/* Skip over any LPTEs that already have valid SPTEs. */
320 		if (pgt->pte[pteb] & NVKM_VMM_PTE_VALID) {
321 			for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
322 				if (!(pgt->pte[ptei] & NVKM_VMM_PTE_VALID))
323 					break;
324 			}
325 			continue;
326 		}
327 
328 		/* As there are now non-UNMAPPED SPTEs in the range covered
329 		 * by a number of LPTEs, we need to transfer control of the
330 		 * address range to the SPTEs.
331 		 *
332 		 * Determine how many LPTEs need to transition state.
333 		 */
334 		pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
335 		for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
336 			if (pgt->pte[ptei] & NVKM_VMM_PTE_VALID)
337 				break;
338 			pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
339 		}
340 
341 		if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
342 			const u32 spti = pteb * sptn;
343 			const u32 sptc = ptes * sptn;
344 			/* The entire LPTE is marked as sparse, we need
345 			 * to make sure that the SPTEs are too.
346 			 */
347 			TRA(it, "SPTE %05x: U -> S %d PTEs", spti, sptc);
348 			desc->func->sparse(vmm, pgt->pt[1], spti, sptc);
349 			/* Sparse LPTEs prevent SPTEs from being accessed. */
350 			TRA(it, "LPTE %05x: S -> U %d PTEs", pteb, ptes);
351 			pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
352 		} else
353 		if (pair->func->invalid) {
354 			/* MMU supports blocking SPTEs by marking an LPTE
355 			 * as INVALID.  We need to reverse that here.
356 			 */
357 			TRA(it, "LPTE %05x: I -> U %d PTEs", pteb, ptes);
358 			pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
359 		}
360 	}
361 }
362 
363 static bool
364 nvkm_vmm_ref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
365 {
366 	const struct nvkm_vmm_desc *desc = it->desc;
367 	const int type = desc->type == SPT;
368 	struct nvkm_vmm_pt *pgt = it->pt[0];
369 
370 	/* Take PTE references. */
371 	pgt->refs[type] += ptes;
372 
373 	/* Dual-PTs need special handling. */
374 	if (desc->type == SPT)
375 		nvkm_vmm_ref_sptes(it, pgt, desc, ptei, ptes);
376 
377 	return true;
378 }
379 
380 static void
381 nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc *desc,
382 		     struct nvkm_vmm_pt *pgt, u32 ptei, u32 ptes)
383 {
384 	if (desc->type == PGD) {
385 		while (ptes--)
386 			pgt->pde[ptei++] = NVKM_VMM_PDE_SPARSE;
387 	} else
388 	if (desc->type == LPT) {
389 		memset(&pgt->pte[ptei], NVKM_VMM_PTE_SPARSE, ptes);
390 	}
391 }
392 
393 static bool
394 nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
395 {
396 	struct nvkm_vmm_pt *pt = it->pt[0];
397 	if (it->desc->type == PGD)
398 		memset(&pt->pde[ptei], 0x00, sizeof(pt->pde[0]) * ptes);
399 	else
400 	if (it->desc->type == LPT)
401 		memset(&pt->pte[ptei], 0x00, sizeof(pt->pte[0]) * ptes);
402 	return nvkm_vmm_unref_ptes(it, pfn, ptei, ptes);
403 }
404 
405 static bool
406 nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
407 {
408 	nvkm_vmm_sparse_ptes(it->desc, it->pt[0], ptei, ptes);
409 	return nvkm_vmm_ref_ptes(it, pfn, ptei, ptes);
410 }
411 
412 static bool
413 nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
414 {
415 	const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
416 	const int type = desc->type == SPT;
417 	struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
418 	const bool zero = !pgt->sparse && !desc->func->invalid;
419 	struct nvkm_vmm *vmm = it->vmm;
420 	struct nvkm_mmu *mmu = vmm->mmu;
421 	struct nvkm_mmu_pt *pt;
422 	u32 pten = 1 << desc->bits;
423 	u32 pteb, ptei, ptes;
424 	u32 size = desc->size * pten;
425 
426 	pgd->refs[0]++;
427 
428 	pgt->pt[type] = nvkm_mmu_ptc_get(mmu, size, desc->align, zero);
429 	if (!pgt->pt[type]) {
430 		it->lvl--;
431 		nvkm_vmm_unref_pdes(it);
432 		return false;
433 	}
434 
435 	if (zero)
436 		goto done;
437 
438 	pt = pgt->pt[type];
439 
440 	if (desc->type == LPT && pgt->refs[1]) {
441 		/* SPT already exists covering the same range as this LPT,
442 		 * which means we need to be careful that any LPTEs which
443 		 * overlap valid SPTEs are unmapped as opposed to invalid
444 		 * or sparse, which would prevent the MMU from looking at
445 		 * the SPTEs on some GPUs.
446 		 */
447 		for (ptei = pteb = 0; ptei < pten; pteb = ptei) {
448 			bool spte = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
449 			for (ptes = 1, ptei++; ptei < pten; ptes++, ptei++) {
450 				bool next = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
451 				if (spte != next)
452 					break;
453 			}
454 
455 			if (!spte) {
456 				if (pgt->sparse)
457 					desc->func->sparse(vmm, pt, pteb, ptes);
458 				else
459 					desc->func->invalid(vmm, pt, pteb, ptes);
460 				memset(&pgt->pte[pteb], 0x00, ptes);
461 			} else {
462 				desc->func->unmap(vmm, pt, pteb, ptes);
463 				while (ptes--)
464 					pgt->pte[pteb++] |= NVKM_VMM_PTE_VALID;
465 			}
466 		}
467 	} else {
468 		if (pgt->sparse) {
469 			nvkm_vmm_sparse_ptes(desc, pgt, 0, pten);
470 			desc->func->sparse(vmm, pt, 0, pten);
471 		} else {
472 			desc->func->invalid(vmm, pt, 0, pten);
473 		}
474 	}
475 
476 done:
477 	TRA(it, "PDE write %s", nvkm_vmm_desc_type(desc));
478 	it->desc[it->lvl].func->pde(it->vmm, pgd, pdei);
479 	nvkm_vmm_flush_mark(it);
480 	return true;
481 }
482 
483 static bool
484 nvkm_vmm_ref_swpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
485 {
486 	const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
487 	struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
488 
489 	pgt = nvkm_vmm_pt_new(desc, NVKM_VMM_PDE_SPARSED(pgt), it->page);
490 	if (!pgt) {
491 		if (!pgd->refs[0])
492 			nvkm_vmm_unref_pdes(it);
493 		return false;
494 	}
495 
496 	pgd->pde[pdei] = pgt;
497 	return true;
498 }
499 
500 static inline u64
501 nvkm_vmm_iter(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
502 	      u64 addr, u64 size, const char *name, bool ref, bool pfn,
503 	      bool (*REF_PTES)(struct nvkm_vmm_iter *, bool pfn, u32, u32),
504 	      nvkm_vmm_pte_func MAP_PTES, struct nvkm_vmm_map *map,
505 	      nvkm_vmm_pxe_func CLR_PTES)
506 {
507 	const struct nvkm_vmm_desc *desc = page->desc;
508 	struct nvkm_vmm_iter it;
509 	u64 bits = addr >> page->shift;
510 
511 	it.page = page;
512 	it.desc = desc;
513 	it.vmm = vmm;
514 	it.cnt = size >> page->shift;
515 	it.flush = NVKM_VMM_LEVELS_MAX;
516 
517 	/* Deconstruct address into PTE indices for each mapping level. */
518 	for (it.lvl = 0; desc[it.lvl].bits; it.lvl++) {
519 		it.pte[it.lvl] = bits & ((1 << desc[it.lvl].bits) - 1);
520 		bits >>= desc[it.lvl].bits;
521 	}
522 	it.max = --it.lvl;
523 	it.pt[it.max] = vmm->pd;
524 
525 	it.lvl = 0;
526 	TRA(&it, "%s: %016llx %016llx %d %lld PTEs", name,
527 	         addr, size, page->shift, it.cnt);
528 	it.lvl = it.max;
529 
530 	/* Depth-first traversal of page tables. */
531 	while (it.cnt) {
532 		struct nvkm_vmm_pt *pgt = it.pt[it.lvl];
533 		const int type = desc->type == SPT;
534 		const u32 pten = 1 << desc->bits;
535 		const u32 ptei = it.pte[0];
536 		const u32 ptes = min_t(u64, it.cnt, pten - ptei);
537 
538 		/* Walk down the tree, finding page tables for each level. */
539 		for (; it.lvl; it.lvl--) {
540 			const u32 pdei = it.pte[it.lvl];
541 			struct nvkm_vmm_pt *pgd = pgt;
542 
543 			/* Software PT. */
544 			if (ref && NVKM_VMM_PDE_INVALID(pgd->pde[pdei])) {
545 				if (!nvkm_vmm_ref_swpt(&it, pgd, pdei))
546 					goto fail;
547 			}
548 			it.pt[it.lvl - 1] = pgt = pgd->pde[pdei];
549 
550 			/* Hardware PT.
551 			 *
552 			 * This is a separate step from above due to GF100 and
553 			 * newer having dual page tables at some levels, which
554 			 * are refcounted independently.
555 			 */
556 			if (ref && !pgt->refs[desc[it.lvl - 1].type == SPT]) {
557 				if (!nvkm_vmm_ref_hwpt(&it, pgd, pdei))
558 					goto fail;
559 			}
560 		}
561 
562 		/* Handle PTE updates. */
563 		if (!REF_PTES || REF_PTES(&it, pfn, ptei, ptes)) {
564 			struct nvkm_mmu_pt *pt = pgt->pt[type];
565 			if (MAP_PTES || CLR_PTES) {
566 				if (MAP_PTES)
567 					MAP_PTES(vmm, pt, ptei, ptes, map);
568 				else
569 					CLR_PTES(vmm, pt, ptei, ptes);
570 				nvkm_vmm_flush_mark(&it);
571 			}
572 		}
573 
574 		/* Walk back up the tree to the next position. */
575 		it.pte[it.lvl] += ptes;
576 		it.cnt -= ptes;
577 		if (it.cnt) {
578 			while (it.pte[it.lvl] == (1 << desc[it.lvl].bits)) {
579 				it.pte[it.lvl++] = 0;
580 				it.pte[it.lvl]++;
581 			}
582 		}
583 	}
584 
585 	nvkm_vmm_flush(&it);
586 	return ~0ULL;
587 
588 fail:
589 	/* Reconstruct the failure address so the caller is able to
590 	 * reverse any partially completed operations.
591 	 */
592 	addr = it.pte[it.max--];
593 	do {
594 		addr  = addr << desc[it.max].bits;
595 		addr |= it.pte[it.max];
596 	} while (it.max--);
597 
598 	return addr << page->shift;
599 }
600 
601 static void
602 nvkm_vmm_ptes_sparse_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
603 			 u64 addr, u64 size)
604 {
605 	nvkm_vmm_iter(vmm, page, addr, size, "sparse unref", false, false,
606 		      nvkm_vmm_sparse_unref_ptes, NULL, NULL,
607 		      page->desc->func->invalid ?
608 		      page->desc->func->invalid : page->desc->func->unmap);
609 }
610 
611 static int
612 nvkm_vmm_ptes_sparse_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
613 			 u64 addr, u64 size)
614 {
615 	if ((page->type & NVKM_VMM_PAGE_SPARSE)) {
616 		u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "sparse ref",
617 					 true, false, nvkm_vmm_sparse_ref_ptes,
618 					 NULL, NULL, page->desc->func->sparse);
619 		if (fail != ~0ULL) {
620 			if ((size = fail - addr))
621 				nvkm_vmm_ptes_sparse_put(vmm, page, addr, size);
622 			return -ENOMEM;
623 		}
624 		return 0;
625 	}
626 	return -EINVAL;
627 }
628 
629 static int
630 nvkm_vmm_ptes_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref)
631 {
632 	const struct nvkm_vmm_page *page = vmm->func->page;
633 	int m = 0, i;
634 	u64 start = addr;
635 	u64 block;
636 
637 	while (size) {
638 		/* Limit maximum page size based on remaining size. */
639 		while (size < (1ULL << page[m].shift))
640 			m++;
641 		i = m;
642 
643 		/* Find largest page size suitable for alignment. */
644 		while (!IS_ALIGNED(addr, 1ULL << page[i].shift))
645 			i++;
646 
647 		/* Determine number of PTEs at this page size. */
648 		if (i != m) {
649 			/* Limited to alignment boundary of next page size. */
650 			u64 next = 1ULL << page[i - 1].shift;
651 			u64 part = ALIGN(addr, next) - addr;
652 			if (size - part >= next)
653 				block = (part >> page[i].shift) << page[i].shift;
654 			else
655 				block = (size >> page[i].shift) << page[i].shift;
656 		} else {
657 			block = (size >> page[i].shift) << page[i].shift;
658 		}
659 
660 		/* Perform operation. */
661 		if (ref) {
662 			int ret = nvkm_vmm_ptes_sparse_get(vmm, &page[i], addr, block);
663 			if (ret) {
664 				if ((size = addr - start))
665 					nvkm_vmm_ptes_sparse(vmm, start, size, false);
666 				return ret;
667 			}
668 		} else {
669 			nvkm_vmm_ptes_sparse_put(vmm, &page[i], addr, block);
670 		}
671 
672 		size -= block;
673 		addr += block;
674 	}
675 
676 	return 0;
677 }
678 
679 static void
680 nvkm_vmm_ptes_unmap(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
681 		    u64 addr, u64 size, bool sparse, bool pfn)
682 {
683 	const struct nvkm_vmm_desc_func *func = page->desc->func;
684 
685 	mutex_lock(&vmm->mutex.map);
686 	nvkm_vmm_iter(vmm, page, addr, size, "unmap", false, pfn,
687 		      NULL, NULL, NULL,
688 		      sparse ? func->sparse : func->invalid ? func->invalid :
689 							      func->unmap);
690 	mutex_unlock(&vmm->mutex.map);
691 }
692 
693 static void
694 nvkm_vmm_ptes_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
695 		  u64 addr, u64 size, struct nvkm_vmm_map *map,
696 		  nvkm_vmm_pte_func func)
697 {
698 	mutex_lock(&vmm->mutex.map);
699 	nvkm_vmm_iter(vmm, page, addr, size, "map", false, false,
700 		      NULL, func, map, NULL);
701 	mutex_unlock(&vmm->mutex.map);
702 }
703 
704 static void
705 nvkm_vmm_ptes_put_locked(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
706 			 u64 addr, u64 size)
707 {
708 	nvkm_vmm_iter(vmm, page, addr, size, "unref", false, false,
709 		      nvkm_vmm_unref_ptes, NULL, NULL, NULL);
710 }
711 
712 static void
713 nvkm_vmm_ptes_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
714 		  u64 addr, u64 size)
715 {
716 	mutex_lock(&vmm->mutex.ref);
717 	nvkm_vmm_ptes_put_locked(vmm, page, addr, size);
718 	mutex_unlock(&vmm->mutex.ref);
719 }
720 
721 static int
722 nvkm_vmm_ptes_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
723 		  u64 addr, u64 size)
724 {
725 	u64 fail;
726 
727 	mutex_lock(&vmm->mutex.ref);
728 	fail = nvkm_vmm_iter(vmm, page, addr, size, "ref", true, false,
729 			     nvkm_vmm_ref_ptes, NULL, NULL, NULL);
730 	if (fail != ~0ULL) {
731 		if (fail != addr)
732 			nvkm_vmm_ptes_put_locked(vmm, page, addr, fail - addr);
733 		mutex_unlock(&vmm->mutex.ref);
734 		return -ENOMEM;
735 	}
736 	mutex_unlock(&vmm->mutex.ref);
737 	return 0;
738 }
739 
740 static void
741 __nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
742 			  u64 addr, u64 size, bool sparse, bool pfn)
743 {
744 	const struct nvkm_vmm_desc_func *func = page->desc->func;
745 
746 	nvkm_vmm_iter(vmm, page, addr, size, "unmap + unref",
747 		      false, pfn, nvkm_vmm_unref_ptes, NULL, NULL,
748 		      sparse ? func->sparse : func->invalid ? func->invalid :
749 							      func->unmap);
750 }
751 
752 static void
753 nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
754 			u64 addr, u64 size, bool sparse, bool pfn)
755 {
756 	if (vmm->managed.raw) {
757 		nvkm_vmm_ptes_unmap(vmm, page, addr, size, sparse, pfn);
758 		nvkm_vmm_ptes_put(vmm, page, addr, size);
759 	} else {
760 		__nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, sparse, pfn);
761 	}
762 }
763 
764 static int
765 __nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
766 			u64 addr, u64 size, struct nvkm_vmm_map *map,
767 			nvkm_vmm_pte_func func)
768 {
769 	u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref + map", true,
770 				 false, nvkm_vmm_ref_ptes, func, map, NULL);
771 	if (fail != ~0ULL) {
772 		if ((size = fail - addr))
773 			nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, false, false);
774 		return -ENOMEM;
775 	}
776 	return 0;
777 }
778 
779 static int
780 nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
781 		      u64 addr, u64 size, struct nvkm_vmm_map *map,
782 		      nvkm_vmm_pte_func func)
783 {
784 	int ret;
785 
786 	if (vmm->managed.raw) {
787 		ret = nvkm_vmm_ptes_get(vmm, page, addr, size);
788 		if (ret)
789 			return ret;
790 
791 		nvkm_vmm_ptes_map(vmm, page, addr, size, map, func);
792 
793 		return 0;
794 	} else {
795 		return __nvkm_vmm_ptes_get_map(vmm, page, addr, size, map, func);
796 	}
797 }
798 
799 struct nvkm_vma *
800 nvkm_vma_new(u64 addr, u64 size)
801 {
802 	struct nvkm_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
803 	if (vma) {
804 		vma->addr = addr;
805 		vma->size = size;
806 		vma->page = NVKM_VMA_PAGE_NONE;
807 		vma->refd = NVKM_VMA_PAGE_NONE;
808 	}
809 	return vma;
810 }
811 
812 struct nvkm_vma *
813 nvkm_vma_tail(struct nvkm_vma *vma, u64 tail)
814 {
815 	struct nvkm_vma *new;
816 
817 	BUG_ON(vma->size == tail);
818 
819 	if (!(new = nvkm_vma_new(vma->addr + (vma->size - tail), tail)))
820 		return NULL;
821 	vma->size -= tail;
822 
823 	new->mapref = vma->mapref;
824 	new->sparse = vma->sparse;
825 	new->page = vma->page;
826 	new->refd = vma->refd;
827 	new->used = vma->used;
828 	new->part = vma->part;
829 	new->busy = vma->busy;
830 	new->mapped = vma->mapped;
831 	list_add(&new->head, &vma->head);
832 	return new;
833 }
834 
835 static inline void
836 nvkm_vmm_free_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
837 {
838 	rb_erase(&vma->tree, &vmm->free);
839 }
840 
841 static inline void
842 nvkm_vmm_free_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
843 {
844 	nvkm_vmm_free_remove(vmm, vma);
845 	list_del(&vma->head);
846 	kfree(vma);
847 }
848 
849 static void
850 nvkm_vmm_free_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
851 {
852 	struct rb_node **ptr = &vmm->free.rb_node;
853 	struct rb_node *parent = NULL;
854 
855 	while (*ptr) {
856 		struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
857 		parent = *ptr;
858 		if (vma->size < this->size)
859 			ptr = &parent->rb_left;
860 		else
861 		if (vma->size > this->size)
862 			ptr = &parent->rb_right;
863 		else
864 		if (vma->addr < this->addr)
865 			ptr = &parent->rb_left;
866 		else
867 		if (vma->addr > this->addr)
868 			ptr = &parent->rb_right;
869 		else
870 			BUG();
871 	}
872 
873 	rb_link_node(&vma->tree, parent, ptr);
874 	rb_insert_color(&vma->tree, &vmm->free);
875 }
876 
877 static inline void
878 nvkm_vmm_node_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
879 {
880 	rb_erase(&vma->tree, &vmm->root);
881 }
882 
883 static inline void
884 nvkm_vmm_node_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
885 {
886 	nvkm_vmm_node_remove(vmm, vma);
887 	list_del(&vma->head);
888 	kfree(vma);
889 }
890 
891 static void
892 nvkm_vmm_node_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
893 {
894 	struct rb_node **ptr = &vmm->root.rb_node;
895 	struct rb_node *parent = NULL;
896 
897 	while (*ptr) {
898 		struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
899 		parent = *ptr;
900 		if (vma->addr < this->addr)
901 			ptr = &parent->rb_left;
902 		else
903 		if (vma->addr > this->addr)
904 			ptr = &parent->rb_right;
905 		else
906 			BUG();
907 	}
908 
909 	rb_link_node(&vma->tree, parent, ptr);
910 	rb_insert_color(&vma->tree, &vmm->root);
911 }
912 
913 struct nvkm_vma *
914 nvkm_vmm_node_search(struct nvkm_vmm *vmm, u64 addr)
915 {
916 	struct rb_node *node = vmm->root.rb_node;
917 	while (node) {
918 		struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
919 		if (addr < vma->addr)
920 			node = node->rb_left;
921 		else
922 		if (addr >= vma->addr + vma->size)
923 			node = node->rb_right;
924 		else
925 			return vma;
926 	}
927 	return NULL;
928 }
929 
930 #define node(root, dir) (((root)->head.dir == &vmm->list) ? NULL :             \
931 	list_entry((root)->head.dir, struct nvkm_vma, head))
932 
933 static struct nvkm_vma *
934 nvkm_vmm_node_merge(struct nvkm_vmm *vmm, struct nvkm_vma *prev,
935 		    struct nvkm_vma *vma, struct nvkm_vma *next, u64 size)
936 {
937 	if (next) {
938 		if (vma->size == size) {
939 			vma->size += next->size;
940 			nvkm_vmm_node_delete(vmm, next);
941 			if (prev) {
942 				prev->size += vma->size;
943 				nvkm_vmm_node_delete(vmm, vma);
944 				return prev;
945 			}
946 			return vma;
947 		}
948 		BUG_ON(prev);
949 
950 		nvkm_vmm_node_remove(vmm, next);
951 		vma->size -= size;
952 		next->addr -= size;
953 		next->size += size;
954 		nvkm_vmm_node_insert(vmm, next);
955 		return next;
956 	}
957 
958 	if (prev) {
959 		if (vma->size != size) {
960 			nvkm_vmm_node_remove(vmm, vma);
961 			prev->size += size;
962 			vma->addr += size;
963 			vma->size -= size;
964 			nvkm_vmm_node_insert(vmm, vma);
965 		} else {
966 			prev->size += vma->size;
967 			nvkm_vmm_node_delete(vmm, vma);
968 		}
969 		return prev;
970 	}
971 
972 	return vma;
973 }
974 
975 struct nvkm_vma *
976 nvkm_vmm_node_split(struct nvkm_vmm *vmm,
977 		    struct nvkm_vma *vma, u64 addr, u64 size)
978 {
979 	struct nvkm_vma *prev = NULL;
980 
981 	if (vma->addr != addr) {
982 		prev = vma;
983 		if (!(vma = nvkm_vma_tail(vma, vma->size + vma->addr - addr)))
984 			return NULL;
985 		vma->part = true;
986 		nvkm_vmm_node_insert(vmm, vma);
987 	}
988 
989 	if (vma->size != size) {
990 		struct nvkm_vma *tmp;
991 		if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
992 			nvkm_vmm_node_merge(vmm, prev, vma, NULL, vma->size);
993 			return NULL;
994 		}
995 		tmp->part = true;
996 		nvkm_vmm_node_insert(vmm, tmp);
997 	}
998 
999 	return vma;
1000 }
1001 
1002 static void
1003 nvkm_vma_dump(struct nvkm_vma *vma)
1004 {
1005 	printk(KERN_ERR "%016llx %016llx %c%c%c%c%c%c%c%c %p\n",
1006 	       vma->addr, (u64)vma->size,
1007 	       vma->used ? '-' : 'F',
1008 	       vma->mapref ? 'R' : '-',
1009 	       vma->sparse ? 'S' : '-',
1010 	       vma->page != NVKM_VMA_PAGE_NONE ? '0' + vma->page : '-',
1011 	       vma->refd != NVKM_VMA_PAGE_NONE ? '0' + vma->refd : '-',
1012 	       vma->part ? 'P' : '-',
1013 	       vma->busy ? 'B' : '-',
1014 	       vma->mapped ? 'M' : '-',
1015 	       vma->memory);
1016 }
1017 
1018 static void
1019 nvkm_vmm_dump(struct nvkm_vmm *vmm)
1020 {
1021 	struct nvkm_vma *vma;
1022 	list_for_each_entry(vma, &vmm->list, head) {
1023 		nvkm_vma_dump(vma);
1024 	}
1025 }
1026 
1027 static void
1028 nvkm_vmm_dtor(struct nvkm_vmm *vmm)
1029 {
1030 	struct nvkm_vma *vma;
1031 	struct rb_node *node;
1032 
1033 	if (vmm->rm.client.gsp) {
1034 		nvkm_gsp_rm_free(&vmm->rm.object);
1035 		nvkm_gsp_device_dtor(&vmm->rm.device);
1036 		nvkm_gsp_client_dtor(&vmm->rm.client);
1037 		nvkm_vmm_put(vmm, &vmm->rm.rsvd);
1038 	}
1039 
1040 	if (0)
1041 		nvkm_vmm_dump(vmm);
1042 
1043 	while ((node = rb_first(&vmm->root))) {
1044 		struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
1045 		nvkm_vmm_put(vmm, &vma);
1046 	}
1047 
1048 	if (vmm->bootstrapped) {
1049 		const struct nvkm_vmm_page *page = vmm->func->page;
1050 		const u64 limit = vmm->limit - vmm->start;
1051 
1052 		while (page[1].shift)
1053 			page++;
1054 
1055 		nvkm_mmu_ptc_dump(vmm->mmu);
1056 		nvkm_vmm_ptes_put(vmm, page, vmm->start, limit);
1057 	}
1058 
1059 	vma = list_first_entry(&vmm->list, typeof(*vma), head);
1060 	list_del(&vma->head);
1061 	kfree(vma);
1062 	WARN_ON(!list_empty(&vmm->list));
1063 
1064 	if (vmm->nullp) {
1065 		dma_free_coherent(vmm->mmu->subdev.device->dev, 16 * 1024,
1066 				  vmm->nullp, vmm->null);
1067 	}
1068 
1069 	if (vmm->pd) {
1070 		nvkm_mmu_ptc_put(vmm->mmu, true, &vmm->pd->pt[0]);
1071 		nvkm_vmm_pt_del(&vmm->pd);
1072 	}
1073 }
1074 
1075 static int
1076 nvkm_vmm_ctor_managed(struct nvkm_vmm *vmm, u64 addr, u64 size)
1077 {
1078 	struct nvkm_vma *vma;
1079 	if (!(vma = nvkm_vma_new(addr, size)))
1080 		return -ENOMEM;
1081 	vma->mapref = true;
1082 	vma->sparse = false;
1083 	vma->used = true;
1084 	nvkm_vmm_node_insert(vmm, vma);
1085 	list_add_tail(&vma->head, &vmm->list);
1086 	return 0;
1087 }
1088 
1089 static int
1090 nvkm_vmm_ctor(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
1091 	      u32 pd_header, bool managed, u64 addr, u64 size,
1092 	      struct lock_class_key *key, const char *name,
1093 	      struct nvkm_vmm *vmm)
1094 {
1095 	static struct lock_class_key _key;
1096 	const struct nvkm_vmm_page *page = func->page;
1097 	const struct nvkm_vmm_desc *desc;
1098 	struct nvkm_vma *vma;
1099 	int levels, bits = 0, ret;
1100 
1101 	vmm->func = func;
1102 	vmm->mmu = mmu;
1103 	vmm->name = name;
1104 	vmm->debug = mmu->subdev.debug;
1105 	kref_init(&vmm->kref);
1106 
1107 	__mutex_init(&vmm->mutex.vmm, "&vmm->mutex.vmm", key ? key : &_key);
1108 	mutex_init(&vmm->mutex.ref);
1109 	mutex_init(&vmm->mutex.map);
1110 
1111 	/* Locate the smallest page size supported by the backend, it will
1112 	 * have the deepest nesting of page tables.
1113 	 */
1114 	while (page[1].shift)
1115 		page++;
1116 
1117 	/* Locate the structure that describes the layout of the top-level
1118 	 * page table, and determine the number of valid bits in a virtual
1119 	 * address.
1120 	 */
1121 	for (levels = 0, desc = page->desc; desc->bits; desc++, levels++)
1122 		bits += desc->bits;
1123 	bits += page->shift;
1124 	desc--;
1125 
1126 	if (WARN_ON(levels > NVKM_VMM_LEVELS_MAX))
1127 		return -EINVAL;
1128 
1129 	/* Allocate top-level page table. */
1130 	vmm->pd = nvkm_vmm_pt_new(desc, false, NULL);
1131 	if (!vmm->pd)
1132 		return -ENOMEM;
1133 	vmm->pd->refs[0] = 1;
1134 	INIT_LIST_HEAD(&vmm->join);
1135 
1136 	/* ... and the GPU storage for it, except on Tesla-class GPUs that
1137 	 * have the PD embedded in the instance structure.
1138 	 */
1139 	if (desc->size) {
1140 		const u32 size = pd_header + desc->size * (1 << desc->bits);
1141 		vmm->pd->pt[0] = nvkm_mmu_ptc_get(mmu, size, desc->align, true);
1142 		if (!vmm->pd->pt[0])
1143 			return -ENOMEM;
1144 	}
1145 
1146 	/* Initialise address-space MM. */
1147 	INIT_LIST_HEAD(&vmm->list);
1148 	vmm->free = RB_ROOT;
1149 	vmm->root = RB_ROOT;
1150 
1151 	if (managed) {
1152 		/* Address-space will be managed by the client for the most
1153 		 * part, except for a specified area where NVKM allocations
1154 		 * are allowed to be placed.
1155 		 */
1156 		vmm->start = 0;
1157 		vmm->limit = 1ULL << bits;
1158 		if (addr + size < addr || addr + size > vmm->limit)
1159 			return -EINVAL;
1160 
1161 		/* Client-managed area before the NVKM-managed area. */
1162 		if (addr && (ret = nvkm_vmm_ctor_managed(vmm, 0, addr)))
1163 			return ret;
1164 
1165 		vmm->managed.p.addr = 0;
1166 		vmm->managed.p.size = addr;
1167 
1168 		/* NVKM-managed area. */
1169 		if (size) {
1170 			if (!(vma = nvkm_vma_new(addr, size)))
1171 				return -ENOMEM;
1172 			nvkm_vmm_free_insert(vmm, vma);
1173 			list_add_tail(&vma->head, &vmm->list);
1174 		}
1175 
1176 		/* Client-managed area after the NVKM-managed area. */
1177 		addr = addr + size;
1178 		size = vmm->limit - addr;
1179 		if (size && (ret = nvkm_vmm_ctor_managed(vmm, addr, size)))
1180 			return ret;
1181 
1182 		vmm->managed.n.addr = addr;
1183 		vmm->managed.n.size = size;
1184 	} else {
1185 		/* Address-space fully managed by NVKM, requiring calls to
1186 		 * nvkm_vmm_get()/nvkm_vmm_put() to allocate address-space.
1187 		 */
1188 		vmm->start = addr;
1189 		vmm->limit = size ? (addr + size) : (1ULL << bits);
1190 		if (vmm->start > vmm->limit || vmm->limit > (1ULL << bits))
1191 			return -EINVAL;
1192 
1193 		if (!(vma = nvkm_vma_new(vmm->start, vmm->limit - vmm->start)))
1194 			return -ENOMEM;
1195 
1196 		nvkm_vmm_free_insert(vmm, vma);
1197 		list_add(&vma->head, &vmm->list);
1198 	}
1199 
1200 	return 0;
1201 }
1202 
1203 int
1204 nvkm_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
1205 	      u32 hdr, bool managed, u64 addr, u64 size,
1206 	      struct lock_class_key *key, const char *name,
1207 	      struct nvkm_vmm **pvmm)
1208 {
1209 	if (!(*pvmm = kzalloc(sizeof(**pvmm), GFP_KERNEL)))
1210 		return -ENOMEM;
1211 	return nvkm_vmm_ctor(func, mmu, hdr, managed, addr, size, key, name, *pvmm);
1212 }
1213 
1214 static struct nvkm_vma *
1215 nvkm_vmm_pfn_split_merge(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1216 			 u64 addr, u64 size, u8 page, bool map)
1217 {
1218 	struct nvkm_vma *prev = NULL;
1219 	struct nvkm_vma *next = NULL;
1220 
1221 	if (vma->addr == addr && vma->part && (prev = node(vma, prev))) {
1222 		if (prev->memory || prev->mapped != map)
1223 			prev = NULL;
1224 	}
1225 
1226 	if (vma->addr + vma->size == addr + size && (next = node(vma, next))) {
1227 		if (!next->part ||
1228 		    next->memory || next->mapped != map)
1229 			next = NULL;
1230 	}
1231 
1232 	if (prev || next)
1233 		return nvkm_vmm_node_merge(vmm, prev, vma, next, size);
1234 	return nvkm_vmm_node_split(vmm, vma, addr, size);
1235 }
1236 
1237 int
1238 nvkm_vmm_pfn_unmap(struct nvkm_vmm *vmm, u64 addr, u64 size)
1239 {
1240 	struct nvkm_vma *vma = nvkm_vmm_node_search(vmm, addr);
1241 	struct nvkm_vma *next;
1242 	u64 limit = addr + size;
1243 	u64 start = addr;
1244 
1245 	if (!vma)
1246 		return -EINVAL;
1247 
1248 	do {
1249 		if (!vma->mapped || vma->memory)
1250 			continue;
1251 
1252 		size = min(limit - start, vma->size - (start - vma->addr));
1253 
1254 		nvkm_vmm_ptes_unmap_put(vmm, &vmm->func->page[vma->refd],
1255 					start, size, false, true);
1256 
1257 		next = nvkm_vmm_pfn_split_merge(vmm, vma, start, size, 0, false);
1258 		if (!WARN_ON(!next)) {
1259 			vma = next;
1260 			vma->refd = NVKM_VMA_PAGE_NONE;
1261 			vma->mapped = false;
1262 		}
1263 	} while ((vma = node(vma, next)) && (start = vma->addr) < limit);
1264 
1265 	return 0;
1266 }
1267 
1268 /*TODO:
1269  * - Avoid PT readback (for dma_unmap etc), this might end up being dealt
1270  *   with inside HMM, which would be a lot nicer for us to deal with.
1271  * - Support for systems without a 4KiB page size.
1272  */
1273 int
1274 nvkm_vmm_pfn_map(struct nvkm_vmm *vmm, u8 shift, u64 addr, u64 size, u64 *pfn)
1275 {
1276 	const struct nvkm_vmm_page *page = vmm->func->page;
1277 	struct nvkm_vma *vma, *tmp;
1278 	u64 limit = addr + size;
1279 	u64 start = addr;
1280 	int pm = size >> shift;
1281 	int pi = 0;
1282 
1283 	/* Only support mapping where the page size of the incoming page
1284 	 * array matches a page size available for direct mapping.
1285 	 */
1286 	while (page->shift && (page->shift != shift ||
1287 	       page->desc->func->pfn == NULL))
1288 		page++;
1289 
1290 	if (!page->shift || !IS_ALIGNED(addr, 1ULL << shift) ||
1291 			    !IS_ALIGNED(size, 1ULL << shift) ||
1292 	    addr + size < addr || addr + size > vmm->limit) {
1293 		VMM_DEBUG(vmm, "paged map %d %d %016llx %016llx\n",
1294 			  shift, page->shift, addr, size);
1295 		return -EINVAL;
1296 	}
1297 
1298 	if (!(vma = nvkm_vmm_node_search(vmm, addr)))
1299 		return -ENOENT;
1300 
1301 	do {
1302 		bool map = !!(pfn[pi] & NVKM_VMM_PFN_V);
1303 		bool mapped = vma->mapped;
1304 		u64 size = limit - start;
1305 		u64 addr = start;
1306 		int pn, ret = 0;
1307 
1308 		/* Narrow the operation window to cover a single action (page
1309 		 * should be mapped or not) within a single VMA.
1310 		 */
1311 		for (pn = 0; pi + pn < pm; pn++) {
1312 			if (map != !!(pfn[pi + pn] & NVKM_VMM_PFN_V))
1313 				break;
1314 		}
1315 		size = min_t(u64, size, pn << page->shift);
1316 		size = min_t(u64, size, vma->size + vma->addr - addr);
1317 
1318 		/* Reject any operation to unmanaged regions, and areas that
1319 		 * have nvkm_memory objects mapped in them already.
1320 		 */
1321 		if (!vma->mapref || vma->memory) {
1322 			ret = -EINVAL;
1323 			goto next;
1324 		}
1325 
1326 		/* In order to both properly refcount GPU page tables, and
1327 		 * prevent "normal" mappings and these direct mappings from
1328 		 * interfering with each other, we need to track contiguous
1329 		 * ranges that have been mapped with this interface.
1330 		 *
1331 		 * Here we attempt to either split an existing VMA so we're
1332 		 * able to flag the region as either unmapped/mapped, or to
1333 		 * merge with adjacent VMAs that are already compatible.
1334 		 *
1335 		 * If the region is already compatible, nothing is required.
1336 		 */
1337 		if (map != mapped) {
1338 			tmp = nvkm_vmm_pfn_split_merge(vmm, vma, addr, size,
1339 						       page -
1340 						       vmm->func->page, map);
1341 			if (WARN_ON(!tmp)) {
1342 				ret = -ENOMEM;
1343 				goto next;
1344 			}
1345 
1346 			if ((tmp->mapped = map))
1347 				tmp->refd = page - vmm->func->page;
1348 			else
1349 				tmp->refd = NVKM_VMA_PAGE_NONE;
1350 			vma = tmp;
1351 		}
1352 
1353 		/* Update HW page tables. */
1354 		if (map) {
1355 			struct nvkm_vmm_map args;
1356 			args.page = page;
1357 			args.pfn = &pfn[pi];
1358 
1359 			if (!mapped) {
1360 				ret = nvkm_vmm_ptes_get_map(vmm, page, addr,
1361 							    size, &args, page->
1362 							    desc->func->pfn);
1363 			} else {
1364 				nvkm_vmm_ptes_map(vmm, page, addr, size, &args,
1365 						  page->desc->func->pfn);
1366 			}
1367 		} else {
1368 			if (mapped) {
1369 				nvkm_vmm_ptes_unmap_put(vmm, page, addr, size,
1370 							false, true);
1371 			}
1372 		}
1373 
1374 next:
1375 		/* Iterate to next operation. */
1376 		if (vma->addr + vma->size == addr + size)
1377 			vma = node(vma, next);
1378 		start += size;
1379 
1380 		if (ret) {
1381 			/* Failure is signalled by clearing the valid bit on
1382 			 * any PFN that couldn't be modified as requested.
1383 			 */
1384 			while (size) {
1385 				pfn[pi++] = NVKM_VMM_PFN_NONE;
1386 				size -= 1 << page->shift;
1387 			}
1388 		} else {
1389 			pi += size >> page->shift;
1390 		}
1391 	} while (vma && start < limit);
1392 
1393 	return 0;
1394 }
1395 
1396 void
1397 nvkm_vmm_unmap_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1398 {
1399 	struct nvkm_vma *prev = NULL;
1400 	struct nvkm_vma *next;
1401 
1402 	nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
1403 	nvkm_memory_unref(&vma->memory);
1404 	vma->mapped = false;
1405 
1406 	if (vma->part && (prev = node(vma, prev)) && prev->mapped)
1407 		prev = NULL;
1408 	if ((next = node(vma, next)) && (!next->part || next->mapped))
1409 		next = NULL;
1410 	nvkm_vmm_node_merge(vmm, prev, vma, next, vma->size);
1411 }
1412 
1413 void
1414 nvkm_vmm_unmap_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma, bool pfn)
1415 {
1416 	const struct nvkm_vmm_page *page = &vmm->func->page[vma->refd];
1417 
1418 	if (vma->mapref) {
1419 		nvkm_vmm_ptes_unmap_put(vmm, page, vma->addr, vma->size, vma->sparse, pfn);
1420 		vma->refd = NVKM_VMA_PAGE_NONE;
1421 	} else {
1422 		nvkm_vmm_ptes_unmap(vmm, page, vma->addr, vma->size, vma->sparse, pfn);
1423 	}
1424 
1425 	nvkm_vmm_unmap_region(vmm, vma);
1426 }
1427 
1428 void
1429 nvkm_vmm_unmap(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1430 {
1431 	if (vma->memory) {
1432 		mutex_lock(&vmm->mutex.vmm);
1433 		nvkm_vmm_unmap_locked(vmm, vma, false);
1434 		mutex_unlock(&vmm->mutex.vmm);
1435 	}
1436 }
1437 
1438 static int
1439 nvkm_vmm_map_valid(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1440 		   void *argv, u32 argc, struct nvkm_vmm_map *map)
1441 {
1442 	switch (nvkm_memory_target(map->memory)) {
1443 	case NVKM_MEM_TARGET_VRAM:
1444 		if (!(map->page->type & NVKM_VMM_PAGE_VRAM)) {
1445 			VMM_DEBUG(vmm, "%d !VRAM", map->page->shift);
1446 			return -EINVAL;
1447 		}
1448 		break;
1449 	case NVKM_MEM_TARGET_HOST:
1450 	case NVKM_MEM_TARGET_NCOH:
1451 		if (!(map->page->type & NVKM_VMM_PAGE_HOST)) {
1452 			VMM_DEBUG(vmm, "%d !HOST", map->page->shift);
1453 			return -EINVAL;
1454 		}
1455 		break;
1456 	default:
1457 		WARN_ON(1);
1458 		return -ENOSYS;
1459 	}
1460 
1461 	if (!IS_ALIGNED(     vma->addr, 1ULL << map->page->shift) ||
1462 	    !IS_ALIGNED((u64)vma->size, 1ULL << map->page->shift) ||
1463 	    !IS_ALIGNED(   map->offset, 1ULL << map->page->shift) ||
1464 	    nvkm_memory_page(map->memory) < map->page->shift) {
1465 		VMM_DEBUG(vmm, "alignment %016llx %016llx %016llx %d %d",
1466 		    vma->addr, (u64)vma->size, map->offset, map->page->shift,
1467 		    nvkm_memory_page(map->memory));
1468 		return -EINVAL;
1469 	}
1470 
1471 	return vmm->func->valid(vmm, argv, argc, map);
1472 }
1473 
1474 static int
1475 nvkm_vmm_map_choose(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1476 		    void *argv, u32 argc, struct nvkm_vmm_map *map)
1477 {
1478 	for (map->page = vmm->func->page; map->page->shift; map->page++) {
1479 		VMM_DEBUG(vmm, "trying %d", map->page->shift);
1480 		if (!nvkm_vmm_map_valid(vmm, vma, argv, argc, map))
1481 			return 0;
1482 	}
1483 	return -EINVAL;
1484 }
1485 
1486 static int
1487 nvkm_vmm_map_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1488 		    void *argv, u32 argc, struct nvkm_vmm_map *map)
1489 {
1490 	nvkm_vmm_pte_func func;
1491 	int ret;
1492 
1493 	map->no_comp = vma->no_comp;
1494 
1495 	/* Make sure we won't overrun the end of the memory object. */
1496 	if (unlikely(nvkm_memory_size(map->memory) < map->offset + vma->size)) {
1497 		VMM_DEBUG(vmm, "overrun %016llx %016llx %016llx",
1498 			  nvkm_memory_size(map->memory),
1499 			  map->offset, (u64)vma->size);
1500 		return -EINVAL;
1501 	}
1502 
1503 	/* Check remaining arguments for validity. */
1504 	if (vma->page == NVKM_VMA_PAGE_NONE &&
1505 	    vma->refd == NVKM_VMA_PAGE_NONE) {
1506 		/* Find the largest page size we can perform the mapping at. */
1507 		const u32 debug = vmm->debug;
1508 		vmm->debug = 0;
1509 		ret = nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
1510 		vmm->debug = debug;
1511 		if (ret) {
1512 			VMM_DEBUG(vmm, "invalid at any page size");
1513 			nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
1514 			return -EINVAL;
1515 		}
1516 	} else {
1517 		/* Page size of the VMA is already pre-determined. */
1518 		if (vma->refd != NVKM_VMA_PAGE_NONE)
1519 			map->page = &vmm->func->page[vma->refd];
1520 		else
1521 			map->page = &vmm->func->page[vma->page];
1522 
1523 		ret = nvkm_vmm_map_valid(vmm, vma, argv, argc, map);
1524 		if (ret) {
1525 			VMM_DEBUG(vmm, "invalid %d\n", ret);
1526 			return ret;
1527 		}
1528 	}
1529 
1530 	/* Deal with the 'offset' argument, and fetch the backend function. */
1531 	map->off = map->offset;
1532 	if (map->mem) {
1533 		for (; map->off; map->mem = map->mem->next) {
1534 			u64 size = (u64)map->mem->length << NVKM_RAM_MM_SHIFT;
1535 			if (size > map->off)
1536 				break;
1537 			map->off -= size;
1538 		}
1539 		func = map->page->desc->func->mem;
1540 	} else
1541 	if (map->sgl) {
1542 		for (; map->off; map->sgl = sg_next(map->sgl)) {
1543 			u64 size = sg_dma_len(map->sgl);
1544 			if (size > map->off)
1545 				break;
1546 			map->off -= size;
1547 		}
1548 		func = map->page->desc->func->sgl;
1549 	} else {
1550 		map->dma += map->offset >> PAGE_SHIFT;
1551 		map->off  = map->offset & PAGE_MASK;
1552 		func = map->page->desc->func->dma;
1553 	}
1554 
1555 	/* Perform the map. */
1556 	if (vma->refd == NVKM_VMA_PAGE_NONE) {
1557 		ret = nvkm_vmm_ptes_get_map(vmm, map->page, vma->addr, vma->size, map, func);
1558 		if (ret)
1559 			return ret;
1560 
1561 		vma->refd = map->page - vmm->func->page;
1562 	} else {
1563 		nvkm_vmm_ptes_map(vmm, map->page, vma->addr, vma->size, map, func);
1564 	}
1565 
1566 	nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
1567 	nvkm_memory_unref(&vma->memory);
1568 	vma->memory = nvkm_memory_ref(map->memory);
1569 	vma->mapped = true;
1570 	vma->tags = map->tags;
1571 	return 0;
1572 }
1573 
1574 int
1575 nvkm_vmm_map(struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc,
1576 	     struct nvkm_vmm_map *map)
1577 {
1578 	int ret;
1579 
1580 	if (nvkm_vmm_in_managed_range(vmm, vma->addr, vma->size) &&
1581 	    vmm->managed.raw)
1582 		return nvkm_vmm_map_locked(vmm, vma, argv, argc, map);
1583 
1584 	mutex_lock(&vmm->mutex.vmm);
1585 	ret = nvkm_vmm_map_locked(vmm, vma, argv, argc, map);
1586 	vma->busy = false;
1587 	mutex_unlock(&vmm->mutex.vmm);
1588 	return ret;
1589 }
1590 
1591 static void
1592 nvkm_vmm_put_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1593 {
1594 	struct nvkm_vma *prev, *next;
1595 
1596 	if ((prev = node(vma, prev)) && !prev->used) {
1597 		vma->addr  = prev->addr;
1598 		vma->size += prev->size;
1599 		nvkm_vmm_free_delete(vmm, prev);
1600 	}
1601 
1602 	if ((next = node(vma, next)) && !next->used) {
1603 		vma->size += next->size;
1604 		nvkm_vmm_free_delete(vmm, next);
1605 	}
1606 
1607 	nvkm_vmm_free_insert(vmm, vma);
1608 }
1609 
1610 void
1611 nvkm_vmm_put_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1612 {
1613 	const struct nvkm_vmm_page *page = vmm->func->page;
1614 	struct nvkm_vma *next = vma;
1615 
1616 	BUG_ON(vma->part);
1617 
1618 	if (vma->mapref || !vma->sparse) {
1619 		do {
1620 			const bool mem = next->memory != NULL;
1621 			const bool map = next->mapped;
1622 			const u8  refd = next->refd;
1623 			const u64 addr = next->addr;
1624 			u64 size = next->size;
1625 
1626 			/* Merge regions that are in the same state. */
1627 			while ((next = node(next, next)) && next->part &&
1628 			       (next->mapped == map) &&
1629 			       (next->memory != NULL) == mem &&
1630 			       (next->refd == refd))
1631 				size += next->size;
1632 
1633 			if (map) {
1634 				/* Region(s) are mapped, merge the unmap
1635 				 * and dereference into a single walk of
1636 				 * the page tree.
1637 				 */
1638 				nvkm_vmm_ptes_unmap_put(vmm, &page[refd], addr,
1639 							size, vma->sparse,
1640 							!mem);
1641 			} else
1642 			if (refd != NVKM_VMA_PAGE_NONE) {
1643 				/* Drop allocation-time PTE references. */
1644 				nvkm_vmm_ptes_put(vmm, &page[refd], addr, size);
1645 			}
1646 		} while (next && next->part);
1647 	}
1648 
1649 	/* Merge any mapped regions that were split from the initial
1650 	 * address-space allocation back into the allocated VMA, and
1651 	 * release memory/compression resources.
1652 	 */
1653 	next = vma;
1654 	do {
1655 		if (next->mapped)
1656 			nvkm_vmm_unmap_region(vmm, next);
1657 	} while ((next = node(vma, next)) && next->part);
1658 
1659 	if (vma->sparse && !vma->mapref) {
1660 		/* Sparse region that was allocated with a fixed page size,
1661 		 * meaning all relevant PTEs were referenced once when the
1662 		 * region was allocated, and remained that way, regardless
1663 		 * of whether memory was mapped into it afterwards.
1664 		 *
1665 		 * The process of unmapping, unsparsing, and dereferencing
1666 		 * PTEs can be done in a single page tree walk.
1667 		 */
1668 		nvkm_vmm_ptes_sparse_put(vmm, &page[vma->refd], vma->addr, vma->size);
1669 	} else
1670 	if (vma->sparse) {
1671 		/* Sparse region that wasn't allocated with a fixed page size,
1672 		 * PTE references were taken both at allocation time (to make
1673 		 * the GPU see the region as sparse), and when mapping memory
1674 		 * into the region.
1675 		 *
1676 		 * The latter was handled above, and the remaining references
1677 		 * are dealt with here.
1678 		 */
1679 		nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, false);
1680 	}
1681 
1682 	/* Remove VMA from the list of allocated nodes. */
1683 	nvkm_vmm_node_remove(vmm, vma);
1684 
1685 	/* Merge VMA back into the free list. */
1686 	vma->page = NVKM_VMA_PAGE_NONE;
1687 	vma->refd = NVKM_VMA_PAGE_NONE;
1688 	vma->used = false;
1689 	nvkm_vmm_put_region(vmm, vma);
1690 }
1691 
1692 void
1693 nvkm_vmm_put(struct nvkm_vmm *vmm, struct nvkm_vma **pvma)
1694 {
1695 	struct nvkm_vma *vma = *pvma;
1696 	if (vma) {
1697 		mutex_lock(&vmm->mutex.vmm);
1698 		nvkm_vmm_put_locked(vmm, vma);
1699 		mutex_unlock(&vmm->mutex.vmm);
1700 		*pvma = NULL;
1701 	}
1702 }
1703 
1704 int
1705 nvkm_vmm_get_locked(struct nvkm_vmm *vmm, bool getref, bool mapref, bool sparse,
1706 		    u8 shift, u8 align, u64 size, struct nvkm_vma **pvma)
1707 {
1708 	const struct nvkm_vmm_page *page = &vmm->func->page[NVKM_VMA_PAGE_NONE];
1709 	struct rb_node *node = NULL, *temp;
1710 	struct nvkm_vma *vma = NULL, *tmp;
1711 	u64 addr, tail;
1712 	int ret;
1713 
1714 	VMM_TRACE(vmm, "getref %d mapref %d sparse %d "
1715 		       "shift: %d align: %d size: %016llx",
1716 		  getref, mapref, sparse, shift, align, size);
1717 
1718 	/* Zero-sized, or lazily-allocated sparse VMAs, make no sense. */
1719 	if (unlikely(!size || (!getref && !mapref && sparse))) {
1720 		VMM_DEBUG(vmm, "args %016llx %d %d %d",
1721 			  size, getref, mapref, sparse);
1722 		return -EINVAL;
1723 	}
1724 
1725 	/* Tesla-class GPUs can only select page size per-PDE, which means
1726 	 * we're required to know the mapping granularity up-front to find
1727 	 * a suitable region of address-space.
1728 	 *
1729 	 * The same goes if we're requesting up-front allocation of PTES.
1730 	 */
1731 	if (unlikely((getref || vmm->func->page_block) && !shift)) {
1732 		VMM_DEBUG(vmm, "page size required: %d %016llx",
1733 			  getref, vmm->func->page_block);
1734 		return -EINVAL;
1735 	}
1736 
1737 	/* If a specific page size was requested, determine its index and
1738 	 * make sure the requested size is a multiple of the page size.
1739 	 */
1740 	if (shift) {
1741 		for (page = vmm->func->page; page->shift; page++) {
1742 			if (shift == page->shift)
1743 				break;
1744 		}
1745 
1746 		if (!page->shift || !IS_ALIGNED(size, 1ULL << page->shift)) {
1747 			VMM_DEBUG(vmm, "page %d %016llx", shift, size);
1748 			return -EINVAL;
1749 		}
1750 		align = max_t(u8, align, shift);
1751 	} else {
1752 		align = max_t(u8, align, 12);
1753 	}
1754 
1755 	/* Locate smallest block that can possibly satisfy the allocation. */
1756 	temp = vmm->free.rb_node;
1757 	while (temp) {
1758 		struct nvkm_vma *this = rb_entry(temp, typeof(*this), tree);
1759 		if (this->size < size) {
1760 			temp = temp->rb_right;
1761 		} else {
1762 			node = temp;
1763 			temp = temp->rb_left;
1764 		}
1765 	}
1766 
1767 	if (unlikely(!node))
1768 		return -ENOSPC;
1769 
1770 	/* Take into account alignment restrictions, trying larger blocks
1771 	 * in turn until we find a suitable free block.
1772 	 */
1773 	do {
1774 		struct nvkm_vma *this = rb_entry(node, typeof(*this), tree);
1775 		struct nvkm_vma *prev = node(this, prev);
1776 		struct nvkm_vma *next = node(this, next);
1777 		const int p = page - vmm->func->page;
1778 
1779 		addr = this->addr;
1780 		if (vmm->func->page_block && prev && prev->page != p)
1781 			addr = ALIGN(addr, vmm->func->page_block);
1782 		addr = ALIGN(addr, 1ULL << align);
1783 
1784 		tail = this->addr + this->size;
1785 		if (vmm->func->page_block && next && next->page != p)
1786 			tail = ALIGN_DOWN(tail, vmm->func->page_block);
1787 
1788 		if (addr <= tail && tail - addr >= size) {
1789 			nvkm_vmm_free_remove(vmm, this);
1790 			vma = this;
1791 			break;
1792 		}
1793 	} while ((node = rb_next(node)));
1794 
1795 	if (unlikely(!vma))
1796 		return -ENOSPC;
1797 
1798 	/* If the VMA we found isn't already exactly the requested size,
1799 	 * it needs to be split, and the remaining free blocks returned.
1800 	 */
1801 	if (addr != vma->addr) {
1802 		if (!(tmp = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) {
1803 			nvkm_vmm_put_region(vmm, vma);
1804 			return -ENOMEM;
1805 		}
1806 		nvkm_vmm_free_insert(vmm, vma);
1807 		vma = tmp;
1808 	}
1809 
1810 	if (size != vma->size) {
1811 		if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
1812 			nvkm_vmm_put_region(vmm, vma);
1813 			return -ENOMEM;
1814 		}
1815 		nvkm_vmm_free_insert(vmm, tmp);
1816 	}
1817 
1818 	/* Pre-allocate page tables and/or setup sparse mappings. */
1819 	if (sparse && getref)
1820 		ret = nvkm_vmm_ptes_sparse_get(vmm, page, vma->addr, vma->size);
1821 	else if (sparse)
1822 		ret = nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, true);
1823 	else if (getref)
1824 		ret = nvkm_vmm_ptes_get(vmm, page, vma->addr, vma->size);
1825 	else
1826 		ret = 0;
1827 	if (ret) {
1828 		nvkm_vmm_put_region(vmm, vma);
1829 		return ret;
1830 	}
1831 
1832 	vma->mapref = mapref && !getref;
1833 	vma->sparse = sparse;
1834 	vma->page = page - vmm->func->page;
1835 	vma->refd = getref ? vma->page : NVKM_VMA_PAGE_NONE;
1836 	vma->used = true;
1837 	nvkm_vmm_node_insert(vmm, vma);
1838 	*pvma = vma;
1839 	return 0;
1840 }
1841 
1842 int
1843 nvkm_vmm_get(struct nvkm_vmm *vmm, u8 page, u64 size, struct nvkm_vma **pvma)
1844 {
1845 	int ret;
1846 	mutex_lock(&vmm->mutex.vmm);
1847 	ret = nvkm_vmm_get_locked(vmm, false, true, false, page, 0, size, pvma);
1848 	mutex_unlock(&vmm->mutex.vmm);
1849 	return ret;
1850 }
1851 
1852 void
1853 nvkm_vmm_raw_unmap(struct nvkm_vmm *vmm, u64 addr, u64 size,
1854 		   bool sparse, u8 refd)
1855 {
1856 	const struct nvkm_vmm_page *page = &vmm->func->page[refd];
1857 
1858 	nvkm_vmm_ptes_unmap(vmm, page, addr, size, sparse, false);
1859 }
1860 
1861 void
1862 nvkm_vmm_raw_put(struct nvkm_vmm *vmm, u64 addr, u64 size, u8 refd)
1863 {
1864 	const struct nvkm_vmm_page *page = vmm->func->page;
1865 
1866 	nvkm_vmm_ptes_put(vmm, &page[refd], addr, size);
1867 }
1868 
1869 int
1870 nvkm_vmm_raw_get(struct nvkm_vmm *vmm, u64 addr, u64 size, u8 refd)
1871 {
1872 	const struct nvkm_vmm_page *page = vmm->func->page;
1873 
1874 	if (unlikely(!size))
1875 		return -EINVAL;
1876 
1877 	return nvkm_vmm_ptes_get(vmm, &page[refd], addr, size);
1878 }
1879 
1880 int
1881 nvkm_vmm_raw_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref)
1882 {
1883 	int ret;
1884 
1885 	mutex_lock(&vmm->mutex.ref);
1886 	ret = nvkm_vmm_ptes_sparse(vmm, addr, size, ref);
1887 	mutex_unlock(&vmm->mutex.ref);
1888 
1889 	return ret;
1890 }
1891 
1892 void
1893 nvkm_vmm_part(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
1894 {
1895 	if (inst && vmm && vmm->func->part) {
1896 		mutex_lock(&vmm->mutex.vmm);
1897 		vmm->func->part(vmm, inst);
1898 		mutex_unlock(&vmm->mutex.vmm);
1899 	}
1900 }
1901 
1902 int
1903 nvkm_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
1904 {
1905 	int ret = 0;
1906 	if (vmm->func->join) {
1907 		mutex_lock(&vmm->mutex.vmm);
1908 		ret = vmm->func->join(vmm, inst);
1909 		mutex_unlock(&vmm->mutex.vmm);
1910 	}
1911 	return ret;
1912 }
1913 
1914 static bool
1915 nvkm_vmm_boot_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
1916 {
1917 	const struct nvkm_vmm_desc *desc = it->desc;
1918 	const int type = desc->type == SPT;
1919 	nvkm_memory_boot(it->pt[0]->pt[type]->memory, it->vmm);
1920 	return false;
1921 }
1922 
1923 int
1924 nvkm_vmm_boot(struct nvkm_vmm *vmm)
1925 {
1926 	const struct nvkm_vmm_page *page = vmm->func->page;
1927 	const u64 limit = vmm->limit - vmm->start;
1928 	int ret;
1929 
1930 	while (page[1].shift)
1931 		page++;
1932 
1933 	ret = nvkm_vmm_ptes_get(vmm, page, vmm->start, limit);
1934 	if (ret)
1935 		return ret;
1936 
1937 	nvkm_vmm_iter(vmm, page, vmm->start, limit, "bootstrap", false, false,
1938 		      nvkm_vmm_boot_ptes, NULL, NULL, NULL);
1939 	vmm->bootstrapped = true;
1940 	return 0;
1941 }
1942 
1943 static void
1944 nvkm_vmm_del(struct kref *kref)
1945 {
1946 	struct nvkm_vmm *vmm = container_of(kref, typeof(*vmm), kref);
1947 	nvkm_vmm_dtor(vmm);
1948 	kfree(vmm);
1949 }
1950 
1951 void
1952 nvkm_vmm_unref(struct nvkm_vmm **pvmm)
1953 {
1954 	struct nvkm_vmm *vmm = *pvmm;
1955 	if (vmm) {
1956 		kref_put(&vmm->kref, nvkm_vmm_del);
1957 		*pvmm = NULL;
1958 	}
1959 }
1960 
1961 struct nvkm_vmm *
1962 nvkm_vmm_ref(struct nvkm_vmm *vmm)
1963 {
1964 	if (vmm)
1965 		kref_get(&vmm->kref);
1966 	return vmm;
1967 }
1968 
1969 int
1970 nvkm_vmm_new(struct nvkm_device *device, u64 addr, u64 size, void *argv,
1971 	     u32 argc, struct lock_class_key *key, const char *name,
1972 	     struct nvkm_vmm **pvmm)
1973 {
1974 	struct nvkm_mmu *mmu = device->mmu;
1975 	struct nvkm_vmm *vmm = NULL;
1976 	int ret;
1977 	ret = mmu->func->vmm.ctor(mmu, false, addr, size, argv, argc,
1978 				  key, name, &vmm);
1979 	if (ret)
1980 		nvkm_vmm_unref(&vmm);
1981 	*pvmm = vmm;
1982 	return ret;
1983 }
1984