1 /* 2 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 20 * DEALINGS IN THE SOFTWARE. 21 */ 22 23 /* 24 * GK20A does not have dedicated video memory, and to accurately represent this 25 * fact Nouveau will not create a RAM device for it. Therefore its instmem 26 * implementation must be done directly on top of system memory, while 27 * preserving coherency for read and write operations. 28 * 29 * Instmem can be allocated through two means: 30 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory 31 * pages contiguous to the GPU. This is the preferred way. 32 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically 33 * contiguous memory. 34 * 35 * In both cases CPU read and writes are performed by creating a write-combined 36 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To 37 * be conservative we do this every time we acquire or release an instobj, but 38 * ideally L2 management should be handled at a higher level. 39 * 40 * To improve performance, CPU mappings are not removed upon instobj release. 41 * Instead they are placed into a LRU list to be recycled when the mapped space 42 * goes beyond a certain threshold. At the moment this limit is 1MB. 43 */ 44 #include "priv.h" 45 46 #include <core/memory.h> 47 #include <core/mm.h> 48 #include <core/tegra.h> 49 #include <subdev/fb.h> 50 #include <subdev/ltc.h> 51 52 struct gk20a_instobj { 53 struct nvkm_memory memory; 54 struct nvkm_mem mem; 55 struct gk20a_instmem *imem; 56 57 /* CPU mapping */ 58 u32 *vaddr; 59 struct list_head vaddr_node; 60 }; 61 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory) 62 63 /* 64 * Used for objects allocated using the DMA API 65 */ 66 struct gk20a_instobj_dma { 67 struct gk20a_instobj base; 68 69 u32 *cpuaddr; 70 dma_addr_t handle; 71 struct nvkm_mm_node r; 72 }; 73 #define gk20a_instobj_dma(p) \ 74 container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base) 75 76 /* 77 * Used for objects flattened using the IOMMU API 78 */ 79 struct gk20a_instobj_iommu { 80 struct gk20a_instobj base; 81 82 /* will point to the higher half of pages */ 83 dma_addr_t *dma_addrs; 84 /* array of base.mem->size pages (+ dma_addr_ts) */ 85 struct page *pages[]; 86 }; 87 #define gk20a_instobj_iommu(p) \ 88 container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base) 89 90 struct gk20a_instmem { 91 struct nvkm_instmem base; 92 93 /* protects vaddr_* and gk20a_instobj::vaddr* */ 94 spinlock_t lock; 95 96 /* CPU mappings LRU */ 97 unsigned int vaddr_use; 98 unsigned int vaddr_max; 99 struct list_head vaddr_lru; 100 101 /* Only used if IOMMU if present */ 102 struct mutex *mm_mutex; 103 struct nvkm_mm *mm; 104 struct iommu_domain *domain; 105 unsigned long iommu_pgshift; 106 u16 iommu_bit; 107 108 /* Only used by DMA API */ 109 struct dma_attrs attrs; 110 111 void __iomem * (*cpu_map)(struct nvkm_memory *); 112 }; 113 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) 114 115 static enum nvkm_memory_target 116 gk20a_instobj_target(struct nvkm_memory *memory) 117 { 118 return NVKM_MEM_TARGET_HOST; 119 } 120 121 static u64 122 gk20a_instobj_addr(struct nvkm_memory *memory) 123 { 124 return gk20a_instobj(memory)->mem.offset; 125 } 126 127 static u64 128 gk20a_instobj_size(struct nvkm_memory *memory) 129 { 130 return (u64)gk20a_instobj(memory)->mem.size << 12; 131 } 132 133 static void __iomem * 134 gk20a_instobj_cpu_map_dma(struct nvkm_memory *memory) 135 { 136 struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory); 137 struct device *dev = node->base.imem->base.subdev.device->dev; 138 int npages = nvkm_memory_size(memory) >> 12; 139 struct page *pages[npages]; 140 int i; 141 142 /* phys_to_page does not exist on all platforms... */ 143 pages[0] = pfn_to_page(dma_to_phys(dev, node->handle) >> PAGE_SHIFT); 144 for (i = 1; i < npages; i++) 145 pages[i] = pages[0] + i; 146 147 return vmap(pages, npages, VM_MAP, pgprot_writecombine(PAGE_KERNEL)); 148 } 149 150 static void __iomem * 151 gk20a_instobj_cpu_map_iommu(struct nvkm_memory *memory) 152 { 153 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 154 int npages = nvkm_memory_size(memory) >> 12; 155 156 return vmap(node->pages, npages, VM_MAP, 157 pgprot_writecombine(PAGE_KERNEL)); 158 } 159 160 /* 161 * Must be called while holding gk20a_instmem_lock 162 */ 163 static void 164 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size) 165 { 166 while (imem->vaddr_use + size > imem->vaddr_max) { 167 struct gk20a_instobj *obj; 168 169 /* no candidate that can be unmapped, abort... */ 170 if (list_empty(&imem->vaddr_lru)) 171 break; 172 173 obj = list_first_entry(&imem->vaddr_lru, struct gk20a_instobj, 174 vaddr_node); 175 list_del(&obj->vaddr_node); 176 vunmap(obj->vaddr); 177 obj->vaddr = NULL; 178 imem->vaddr_use -= nvkm_memory_size(&obj->memory); 179 nvkm_debug(&imem->base.subdev, "(GC) vaddr used: %x/%x\n", 180 imem->vaddr_use, imem->vaddr_max); 181 182 } 183 } 184 185 static void __iomem * 186 gk20a_instobj_acquire(struct nvkm_memory *memory) 187 { 188 struct gk20a_instobj *node = gk20a_instobj(memory); 189 struct gk20a_instmem *imem = node->imem; 190 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 191 const u64 size = nvkm_memory_size(memory); 192 unsigned long flags; 193 194 nvkm_ltc_flush(ltc); 195 196 spin_lock_irqsave(&imem->lock, flags); 197 198 if (node->vaddr) { 199 /* remove us from the LRU list since we cannot be unmapped */ 200 list_del(&node->vaddr_node); 201 202 goto out; 203 } 204 205 /* try to free some address space if we reached the limit */ 206 gk20a_instmem_vaddr_gc(imem, size); 207 208 node->vaddr = imem->cpu_map(memory); 209 210 if (!node->vaddr) { 211 nvkm_error(&imem->base.subdev, "cannot map instobj - " 212 "this is not going to end well...\n"); 213 goto out; 214 } 215 216 imem->vaddr_use += size; 217 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", 218 imem->vaddr_use, imem->vaddr_max); 219 220 out: 221 spin_unlock_irqrestore(&imem->lock, flags); 222 223 return node->vaddr; 224 } 225 226 static void 227 gk20a_instobj_release(struct nvkm_memory *memory) 228 { 229 struct gk20a_instobj *node = gk20a_instobj(memory); 230 struct gk20a_instmem *imem = node->imem; 231 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 232 unsigned long flags; 233 234 spin_lock_irqsave(&imem->lock, flags); 235 236 /* add ourselves to the LRU list so our CPU mapping can be freed */ 237 list_add_tail(&node->vaddr_node, &imem->vaddr_lru); 238 239 spin_unlock_irqrestore(&imem->lock, flags); 240 241 wmb(); 242 nvkm_ltc_invalidate(ltc); 243 } 244 245 static u32 246 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) 247 { 248 struct gk20a_instobj *node = gk20a_instobj(memory); 249 250 return node->vaddr[offset / 4]; 251 } 252 253 static void 254 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) 255 { 256 struct gk20a_instobj *node = gk20a_instobj(memory); 257 258 node->vaddr[offset / 4] = data; 259 } 260 261 static void 262 gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset) 263 { 264 struct gk20a_instobj *node = gk20a_instobj(memory); 265 266 nvkm_vm_map_at(vma, offset, &node->mem); 267 } 268 269 /* 270 * Clear the CPU mapping of an instobj if it exists 271 */ 272 static void 273 gk20a_instobj_dtor(struct gk20a_instobj *node) 274 { 275 struct gk20a_instmem *imem = node->imem; 276 struct gk20a_instobj *obj; 277 unsigned long flags; 278 279 spin_lock_irqsave(&imem->lock, flags); 280 281 if (!node->vaddr) 282 goto out; 283 284 list_for_each_entry(obj, &imem->vaddr_lru, vaddr_node) { 285 if (obj == node) { 286 list_del(&obj->vaddr_node); 287 break; 288 } 289 } 290 vunmap(node->vaddr); 291 node->vaddr = NULL; 292 imem->vaddr_use -= nvkm_memory_size(&node->memory); 293 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", 294 imem->vaddr_use, imem->vaddr_max); 295 296 out: 297 spin_unlock_irqrestore(&imem->lock, flags); 298 } 299 300 static void * 301 gk20a_instobj_dtor_dma(struct nvkm_memory *memory) 302 { 303 struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory); 304 struct gk20a_instmem *imem = node->base.imem; 305 struct device *dev = imem->base.subdev.device->dev; 306 307 gk20a_instobj_dtor(&node->base); 308 309 if (unlikely(!node->cpuaddr)) 310 goto out; 311 312 dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->cpuaddr, 313 node->handle, &imem->attrs); 314 315 out: 316 return node; 317 } 318 319 static void * 320 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory) 321 { 322 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 323 struct gk20a_instmem *imem = node->base.imem; 324 struct device *dev = imem->base.subdev.device->dev; 325 struct nvkm_mm_node *r; 326 int i; 327 328 gk20a_instobj_dtor(&node->base); 329 330 if (unlikely(list_empty(&node->base.mem.regions))) 331 goto out; 332 333 r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node, 334 rl_entry); 335 336 /* clear IOMMU bit to unmap pages */ 337 r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift); 338 339 /* Unmap pages from GPU address space and free them */ 340 for (i = 0; i < node->base.mem.size; i++) { 341 iommu_unmap(imem->domain, 342 (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); 343 dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE, 344 DMA_BIDIRECTIONAL); 345 __free_page(node->pages[i]); 346 } 347 348 /* Release area from GPU address space */ 349 mutex_lock(imem->mm_mutex); 350 nvkm_mm_free(imem->mm, &r); 351 mutex_unlock(imem->mm_mutex); 352 353 out: 354 return node; 355 } 356 357 static const struct nvkm_memory_func 358 gk20a_instobj_func_dma = { 359 .dtor = gk20a_instobj_dtor_dma, 360 .target = gk20a_instobj_target, 361 .addr = gk20a_instobj_addr, 362 .size = gk20a_instobj_size, 363 .acquire = gk20a_instobj_acquire, 364 .release = gk20a_instobj_release, 365 .rd32 = gk20a_instobj_rd32, 366 .wr32 = gk20a_instobj_wr32, 367 .map = gk20a_instobj_map, 368 }; 369 370 static const struct nvkm_memory_func 371 gk20a_instobj_func_iommu = { 372 .dtor = gk20a_instobj_dtor_iommu, 373 .target = gk20a_instobj_target, 374 .addr = gk20a_instobj_addr, 375 .size = gk20a_instobj_size, 376 .acquire = gk20a_instobj_acquire, 377 .release = gk20a_instobj_release, 378 .rd32 = gk20a_instobj_rd32, 379 .wr32 = gk20a_instobj_wr32, 380 .map = gk20a_instobj_map, 381 }; 382 383 static int 384 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align, 385 struct gk20a_instobj **_node) 386 { 387 struct gk20a_instobj_dma *node; 388 struct nvkm_subdev *subdev = &imem->base.subdev; 389 struct device *dev = subdev->device->dev; 390 391 if (!(node = kzalloc(sizeof(*node), GFP_KERNEL))) 392 return -ENOMEM; 393 *_node = &node->base; 394 395 nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory); 396 397 node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, 398 &node->handle, GFP_KERNEL, 399 &imem->attrs); 400 if (!node->cpuaddr) { 401 nvkm_error(subdev, "cannot allocate DMA memory\n"); 402 return -ENOMEM; 403 } 404 405 /* alignment check */ 406 if (unlikely(node->handle & (align - 1))) 407 nvkm_warn(subdev, 408 "memory not aligned as requested: %pad (0x%x)\n", 409 &node->handle, align); 410 411 /* present memory for being mapped using small pages */ 412 node->r.type = 12; 413 node->r.offset = node->handle >> 12; 414 node->r.length = (npages << PAGE_SHIFT) >> 12; 415 416 node->base.mem.offset = node->handle; 417 418 INIT_LIST_HEAD(&node->base.mem.regions); 419 list_add_tail(&node->r.rl_entry, &node->base.mem.regions); 420 421 return 0; 422 } 423 424 static int 425 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, 426 struct gk20a_instobj **_node) 427 { 428 struct gk20a_instobj_iommu *node; 429 struct nvkm_subdev *subdev = &imem->base.subdev; 430 struct device *dev = subdev->device->dev; 431 struct nvkm_mm_node *r; 432 int ret; 433 int i; 434 435 /* 436 * despite their variable size, instmem allocations are small enough 437 * (< 1 page) to be handled by kzalloc 438 */ 439 if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) + 440 sizeof(*node->dma_addrs)) * npages), GFP_KERNEL))) 441 return -ENOMEM; 442 *_node = &node->base; 443 node->dma_addrs = (void *)(node->pages + npages); 444 445 nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory); 446 447 /* Allocate backing memory */ 448 for (i = 0; i < npages; i++) { 449 struct page *p = alloc_page(GFP_KERNEL); 450 dma_addr_t dma_adr; 451 452 if (p == NULL) { 453 ret = -ENOMEM; 454 goto free_pages; 455 } 456 node->pages[i] = p; 457 dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 458 if (dma_mapping_error(dev, dma_adr)) { 459 nvkm_error(subdev, "DMA mapping error!\n"); 460 ret = -ENOMEM; 461 goto free_pages; 462 } 463 node->dma_addrs[i] = dma_adr; 464 } 465 466 mutex_lock(imem->mm_mutex); 467 /* Reserve area from GPU address space */ 468 ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages, 469 align >> imem->iommu_pgshift, &r); 470 mutex_unlock(imem->mm_mutex); 471 if (ret) { 472 nvkm_error(subdev, "IOMMU space is full!\n"); 473 goto free_pages; 474 } 475 476 /* Map into GPU address space */ 477 for (i = 0; i < npages; i++) { 478 u32 offset = (r->offset + i) << imem->iommu_pgshift; 479 480 ret = iommu_map(imem->domain, offset, node->dma_addrs[i], 481 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); 482 if (ret < 0) { 483 nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); 484 485 while (i-- > 0) { 486 offset -= PAGE_SIZE; 487 iommu_unmap(imem->domain, offset, PAGE_SIZE); 488 } 489 goto release_area; 490 } 491 } 492 493 /* IOMMU bit tells that an address is to be resolved through the IOMMU */ 494 r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift); 495 496 node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift; 497 498 INIT_LIST_HEAD(&node->base.mem.regions); 499 list_add_tail(&r->rl_entry, &node->base.mem.regions); 500 501 return 0; 502 503 release_area: 504 mutex_lock(imem->mm_mutex); 505 nvkm_mm_free(imem->mm, &r); 506 mutex_unlock(imem->mm_mutex); 507 508 free_pages: 509 for (i = 0; i < npages && node->pages[i] != NULL; i++) { 510 dma_addr_t dma_addr = node->dma_addrs[i]; 511 if (dma_addr) 512 dma_unmap_page(dev, dma_addr, PAGE_SIZE, 513 DMA_BIDIRECTIONAL); 514 __free_page(node->pages[i]); 515 } 516 517 return ret; 518 } 519 520 static int 521 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, 522 struct nvkm_memory **pmemory) 523 { 524 struct gk20a_instmem *imem = gk20a_instmem(base); 525 struct nvkm_subdev *subdev = &imem->base.subdev; 526 struct gk20a_instobj *node = NULL; 527 int ret; 528 529 nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, 530 imem->domain ? "IOMMU" : "DMA", size, align); 531 532 /* Round size and align to page bounds */ 533 size = max(roundup(size, PAGE_SIZE), PAGE_SIZE); 534 align = max(roundup(align, PAGE_SIZE), PAGE_SIZE); 535 536 if (imem->domain) 537 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT, 538 align, &node); 539 else 540 ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT, 541 align, &node); 542 *pmemory = node ? &node->memory : NULL; 543 if (ret) 544 return ret; 545 546 node->imem = imem; 547 548 /* present memory for being mapped using small pages */ 549 node->mem.size = size >> 12; 550 node->mem.memtype = 0; 551 node->mem.page_shift = 12; 552 553 nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", 554 size, align, node->mem.offset); 555 556 return 0; 557 } 558 559 static void * 560 gk20a_instmem_dtor(struct nvkm_instmem *base) 561 { 562 struct gk20a_instmem *imem = gk20a_instmem(base); 563 564 /* perform some sanity checks... */ 565 if (!list_empty(&imem->vaddr_lru)) 566 nvkm_warn(&base->subdev, "instobj LRU not empty!\n"); 567 568 if (imem->vaddr_use != 0) 569 nvkm_warn(&base->subdev, "instobj vmap area not empty! " 570 "0x%x bytes still mapped\n", imem->vaddr_use); 571 572 return imem; 573 } 574 575 static const struct nvkm_instmem_func 576 gk20a_instmem = { 577 .dtor = gk20a_instmem_dtor, 578 .memory_new = gk20a_instobj_new, 579 .persistent = true, 580 .zero = false, 581 }; 582 583 int 584 gk20a_instmem_new(struct nvkm_device *device, int index, 585 struct nvkm_instmem **pimem) 586 { 587 struct nvkm_device_tegra *tdev = device->func->tegra(device); 588 struct gk20a_instmem *imem; 589 590 if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL))) 591 return -ENOMEM; 592 nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base); 593 spin_lock_init(&imem->lock); 594 *pimem = &imem->base; 595 596 /* do not allow more than 1MB of CPU-mapped instmem */ 597 imem->vaddr_use = 0; 598 imem->vaddr_max = 0x100000; 599 INIT_LIST_HEAD(&imem->vaddr_lru); 600 601 if (tdev->iommu.domain) { 602 imem->mm_mutex = &tdev->iommu.mutex; 603 imem->mm = &tdev->iommu.mm; 604 imem->domain = tdev->iommu.domain; 605 imem->iommu_pgshift = tdev->iommu.pgshift; 606 imem->cpu_map = gk20a_instobj_cpu_map_iommu; 607 imem->iommu_bit = tdev->func->iommu_bit; 608 609 nvkm_info(&imem->base.subdev, "using IOMMU\n"); 610 } else { 611 init_dma_attrs(&imem->attrs); 612 /* We will access the memory through our own mapping */ 613 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs); 614 dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs); 615 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs); 616 dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs); 617 imem->cpu_map = gk20a_instobj_cpu_map_dma; 618 619 nvkm_info(&imem->base.subdev, "using DMA API\n"); 620 } 621 622 return 0; 623 } 624