xref: /linux/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c (revision e0a37f85fc95e3f2550446316bc4a27d00d75993)
1 /*
2  * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22 
23 /*
24  * GK20A does not have dedicated video memory, and to accurately represent this
25  * fact Nouveau will not create a RAM device for it. Therefore its instmem
26  * implementation must be done directly on top of system memory, while
27  * preserving coherency for read and write operations.
28  *
29  * Instmem can be allocated through two means:
30  * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
31  *    pages contiguous to the GPU. This is the preferred way.
32  * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
33  *    contiguous memory.
34  *
35  * In both cases CPU read and writes are performed by creating a write-combined
36  * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
37  * be conservative we do this every time we acquire or release an instobj, but
38  * ideally L2 management should be handled at a higher level.
39  *
40  * To improve performance, CPU mappings are not removed upon instobj release.
41  * Instead they are placed into a LRU list to be recycled when the mapped space
42  * goes beyond a certain threshold. At the moment this limit is 1MB.
43  */
44 #include "priv.h"
45 
46 #include <core/memory.h>
47 #include <core/mm.h>
48 #include <core/tegra.h>
49 #include <subdev/fb.h>
50 #include <subdev/ltc.h>
51 
52 struct gk20a_instobj {
53 	struct nvkm_memory memory;
54 	struct nvkm_mem mem;
55 	struct gk20a_instmem *imem;
56 
57 	/* CPU mapping */
58 	u32 *vaddr;
59 	struct list_head vaddr_node;
60 };
61 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
62 
63 /*
64  * Used for objects allocated using the DMA API
65  */
66 struct gk20a_instobj_dma {
67 	struct gk20a_instobj base;
68 
69 	u32 *cpuaddr;
70 	dma_addr_t handle;
71 	struct nvkm_mm_node r;
72 };
73 #define gk20a_instobj_dma(p) \
74 	container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
75 
76 /*
77  * Used for objects flattened using the IOMMU API
78  */
79 struct gk20a_instobj_iommu {
80 	struct gk20a_instobj base;
81 
82 	/* will point to the higher half of pages */
83 	dma_addr_t *dma_addrs;
84 	/* array of base.mem->size pages (+ dma_addr_ts) */
85 	struct page *pages[];
86 };
87 #define gk20a_instobj_iommu(p) \
88 	container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
89 
90 struct gk20a_instmem {
91 	struct nvkm_instmem base;
92 
93 	/* protects vaddr_* and gk20a_instobj::vaddr* */
94 	spinlock_t lock;
95 
96 	/* CPU mappings LRU */
97 	unsigned int vaddr_use;
98 	unsigned int vaddr_max;
99 	struct list_head vaddr_lru;
100 
101 	/* Only used if IOMMU if present */
102 	struct mutex *mm_mutex;
103 	struct nvkm_mm *mm;
104 	struct iommu_domain *domain;
105 	unsigned long iommu_pgshift;
106 	u16 iommu_bit;
107 
108 	/* Only used by DMA API */
109 	struct dma_attrs attrs;
110 
111 	void __iomem * (*cpu_map)(struct nvkm_memory *);
112 };
113 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
114 
115 static enum nvkm_memory_target
116 gk20a_instobj_target(struct nvkm_memory *memory)
117 {
118 	return NVKM_MEM_TARGET_HOST;
119 }
120 
121 static u64
122 gk20a_instobj_addr(struct nvkm_memory *memory)
123 {
124 	return gk20a_instobj(memory)->mem.offset;
125 }
126 
127 static u64
128 gk20a_instobj_size(struct nvkm_memory *memory)
129 {
130 	return (u64)gk20a_instobj(memory)->mem.size << 12;
131 }
132 
133 static void __iomem *
134 gk20a_instobj_cpu_map_dma(struct nvkm_memory *memory)
135 {
136 	struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
137 	struct device *dev = node->base.imem->base.subdev.device->dev;
138 	int npages = nvkm_memory_size(memory) >> 12;
139 	struct page *pages[npages];
140 	int i;
141 
142 	/* phys_to_page does not exist on all platforms... */
143 	pages[0] = pfn_to_page(dma_to_phys(dev, node->handle) >> PAGE_SHIFT);
144 	for (i = 1; i < npages; i++)
145 		pages[i] = pages[0] + i;
146 
147 	return vmap(pages, npages, VM_MAP, pgprot_writecombine(PAGE_KERNEL));
148 }
149 
150 static void __iomem *
151 gk20a_instobj_cpu_map_iommu(struct nvkm_memory *memory)
152 {
153 	struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
154 	int npages = nvkm_memory_size(memory) >> 12;
155 
156 	return vmap(node->pages, npages, VM_MAP,
157 		    pgprot_writecombine(PAGE_KERNEL));
158 }
159 
160 /*
161  * Must be called while holding gk20a_instmem_lock
162  */
163 static void
164 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
165 {
166 	while (imem->vaddr_use + size > imem->vaddr_max) {
167 		struct gk20a_instobj *obj;
168 
169 		/* no candidate that can be unmapped, abort... */
170 		if (list_empty(&imem->vaddr_lru))
171 			break;
172 
173 		obj = list_first_entry(&imem->vaddr_lru, struct gk20a_instobj,
174 				       vaddr_node);
175 		list_del(&obj->vaddr_node);
176 		vunmap(obj->vaddr);
177 		obj->vaddr = NULL;
178 		imem->vaddr_use -= nvkm_memory_size(&obj->memory);
179 		nvkm_debug(&imem->base.subdev, "(GC) vaddr used: %x/%x\n",
180 			   imem->vaddr_use, imem->vaddr_max);
181 
182 	}
183 }
184 
185 static void __iomem *
186 gk20a_instobj_acquire(struct nvkm_memory *memory)
187 {
188 	struct gk20a_instobj *node = gk20a_instobj(memory);
189 	struct gk20a_instmem *imem = node->imem;
190 	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
191 	const u64 size = nvkm_memory_size(memory);
192 	unsigned long flags;
193 
194 	nvkm_ltc_flush(ltc);
195 
196 	spin_lock_irqsave(&imem->lock, flags);
197 
198 	if (node->vaddr) {
199 		/* remove us from the LRU list since we cannot be unmapped */
200 		list_del(&node->vaddr_node);
201 
202 		goto out;
203 	}
204 
205 	/* try to free some address space if we reached the limit */
206 	gk20a_instmem_vaddr_gc(imem, size);
207 
208 	node->vaddr = imem->cpu_map(memory);
209 
210 	if (!node->vaddr) {
211 		nvkm_error(&imem->base.subdev, "cannot map instobj - "
212 			   "this is not going to end well...\n");
213 		goto out;
214 	}
215 
216 	imem->vaddr_use += size;
217 	nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
218 		   imem->vaddr_use, imem->vaddr_max);
219 
220 out:
221 	spin_unlock_irqrestore(&imem->lock, flags);
222 
223 	return node->vaddr;
224 }
225 
226 static void
227 gk20a_instobj_release(struct nvkm_memory *memory)
228 {
229 	struct gk20a_instobj *node = gk20a_instobj(memory);
230 	struct gk20a_instmem *imem = node->imem;
231 	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
232 	unsigned long flags;
233 
234 	spin_lock_irqsave(&imem->lock, flags);
235 
236 	/* add ourselves to the LRU list so our CPU mapping can be freed */
237 	list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
238 
239 	spin_unlock_irqrestore(&imem->lock, flags);
240 
241 	wmb();
242 	nvkm_ltc_invalidate(ltc);
243 }
244 
245 static u32
246 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
247 {
248 	struct gk20a_instobj *node = gk20a_instobj(memory);
249 
250 	return node->vaddr[offset / 4];
251 }
252 
253 static void
254 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
255 {
256 	struct gk20a_instobj *node = gk20a_instobj(memory);
257 
258 	node->vaddr[offset / 4] = data;
259 }
260 
261 static void
262 gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
263 {
264 	struct gk20a_instobj *node = gk20a_instobj(memory);
265 
266 	nvkm_vm_map_at(vma, offset, &node->mem);
267 }
268 
269 /*
270  * Clear the CPU mapping of an instobj if it exists
271  */
272 static void
273 gk20a_instobj_dtor(struct gk20a_instobj *node)
274 {
275 	struct gk20a_instmem *imem = node->imem;
276 	struct gk20a_instobj *obj;
277 	unsigned long flags;
278 
279 	spin_lock_irqsave(&imem->lock, flags);
280 
281 	if (!node->vaddr)
282 		goto out;
283 
284 	list_for_each_entry(obj, &imem->vaddr_lru, vaddr_node) {
285 		if (obj == node) {
286 			list_del(&obj->vaddr_node);
287 			break;
288 		}
289 	}
290 	vunmap(node->vaddr);
291 	node->vaddr = NULL;
292 	imem->vaddr_use -= nvkm_memory_size(&node->memory);
293 	nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
294 		   imem->vaddr_use, imem->vaddr_max);
295 
296 out:
297 	spin_unlock_irqrestore(&imem->lock, flags);
298 }
299 
300 static void *
301 gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
302 {
303 	struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
304 	struct gk20a_instmem *imem = node->base.imem;
305 	struct device *dev = imem->base.subdev.device->dev;
306 
307 	gk20a_instobj_dtor(&node->base);
308 
309 	if (unlikely(!node->cpuaddr))
310 		goto out;
311 
312 	dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->cpuaddr,
313 		       node->handle, &imem->attrs);
314 
315 out:
316 	return node;
317 }
318 
319 static void *
320 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
321 {
322 	struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
323 	struct gk20a_instmem *imem = node->base.imem;
324 	struct device *dev = imem->base.subdev.device->dev;
325 	struct nvkm_mm_node *r;
326 	int i;
327 
328 	gk20a_instobj_dtor(&node->base);
329 
330 	if (unlikely(list_empty(&node->base.mem.regions)))
331 		goto out;
332 
333 	r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node,
334 			     rl_entry);
335 
336 	/* clear IOMMU bit to unmap pages */
337 	r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
338 
339 	/* Unmap pages from GPU address space and free them */
340 	for (i = 0; i < node->base.mem.size; i++) {
341 		iommu_unmap(imem->domain,
342 			    (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
343 		dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
344 			       DMA_BIDIRECTIONAL);
345 		__free_page(node->pages[i]);
346 	}
347 
348 	/* Release area from GPU address space */
349 	mutex_lock(imem->mm_mutex);
350 	nvkm_mm_free(imem->mm, &r);
351 	mutex_unlock(imem->mm_mutex);
352 
353 out:
354 	return node;
355 }
356 
357 static const struct nvkm_memory_func
358 gk20a_instobj_func_dma = {
359 	.dtor = gk20a_instobj_dtor_dma,
360 	.target = gk20a_instobj_target,
361 	.addr = gk20a_instobj_addr,
362 	.size = gk20a_instobj_size,
363 	.acquire = gk20a_instobj_acquire,
364 	.release = gk20a_instobj_release,
365 	.rd32 = gk20a_instobj_rd32,
366 	.wr32 = gk20a_instobj_wr32,
367 	.map = gk20a_instobj_map,
368 };
369 
370 static const struct nvkm_memory_func
371 gk20a_instobj_func_iommu = {
372 	.dtor = gk20a_instobj_dtor_iommu,
373 	.target = gk20a_instobj_target,
374 	.addr = gk20a_instobj_addr,
375 	.size = gk20a_instobj_size,
376 	.acquire = gk20a_instobj_acquire,
377 	.release = gk20a_instobj_release,
378 	.rd32 = gk20a_instobj_rd32,
379 	.wr32 = gk20a_instobj_wr32,
380 	.map = gk20a_instobj_map,
381 };
382 
383 static int
384 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
385 		       struct gk20a_instobj **_node)
386 {
387 	struct gk20a_instobj_dma *node;
388 	struct nvkm_subdev *subdev = &imem->base.subdev;
389 	struct device *dev = subdev->device->dev;
390 
391 	if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
392 		return -ENOMEM;
393 	*_node = &node->base;
394 
395 	nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
396 
397 	node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
398 					&node->handle, GFP_KERNEL,
399 					&imem->attrs);
400 	if (!node->cpuaddr) {
401 		nvkm_error(subdev, "cannot allocate DMA memory\n");
402 		return -ENOMEM;
403 	}
404 
405 	/* alignment check */
406 	if (unlikely(node->handle & (align - 1)))
407 		nvkm_warn(subdev,
408 			  "memory not aligned as requested: %pad (0x%x)\n",
409 			  &node->handle, align);
410 
411 	/* present memory for being mapped using small pages */
412 	node->r.type = 12;
413 	node->r.offset = node->handle >> 12;
414 	node->r.length = (npages << PAGE_SHIFT) >> 12;
415 
416 	node->base.mem.offset = node->handle;
417 
418 	INIT_LIST_HEAD(&node->base.mem.regions);
419 	list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
420 
421 	return 0;
422 }
423 
424 static int
425 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
426 			 struct gk20a_instobj **_node)
427 {
428 	struct gk20a_instobj_iommu *node;
429 	struct nvkm_subdev *subdev = &imem->base.subdev;
430 	struct device *dev = subdev->device->dev;
431 	struct nvkm_mm_node *r;
432 	int ret;
433 	int i;
434 
435 	/*
436 	 * despite their variable size, instmem allocations are small enough
437 	 * (< 1 page) to be handled by kzalloc
438 	 */
439 	if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
440 			     sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
441 		return -ENOMEM;
442 	*_node = &node->base;
443 	node->dma_addrs = (void *)(node->pages + npages);
444 
445 	nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
446 
447 	/* Allocate backing memory */
448 	for (i = 0; i < npages; i++) {
449 		struct page *p = alloc_page(GFP_KERNEL);
450 		dma_addr_t dma_adr;
451 
452 		if (p == NULL) {
453 			ret = -ENOMEM;
454 			goto free_pages;
455 		}
456 		node->pages[i] = p;
457 		dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
458 		if (dma_mapping_error(dev, dma_adr)) {
459 			nvkm_error(subdev, "DMA mapping error!\n");
460 			ret = -ENOMEM;
461 			goto free_pages;
462 		}
463 		node->dma_addrs[i] = dma_adr;
464 	}
465 
466 	mutex_lock(imem->mm_mutex);
467 	/* Reserve area from GPU address space */
468 	ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
469 			   align >> imem->iommu_pgshift, &r);
470 	mutex_unlock(imem->mm_mutex);
471 	if (ret) {
472 		nvkm_error(subdev, "IOMMU space is full!\n");
473 		goto free_pages;
474 	}
475 
476 	/* Map into GPU address space */
477 	for (i = 0; i < npages; i++) {
478 		u32 offset = (r->offset + i) << imem->iommu_pgshift;
479 
480 		ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
481 				PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
482 		if (ret < 0) {
483 			nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
484 
485 			while (i-- > 0) {
486 				offset -= PAGE_SIZE;
487 				iommu_unmap(imem->domain, offset, PAGE_SIZE);
488 			}
489 			goto release_area;
490 		}
491 	}
492 
493 	/* IOMMU bit tells that an address is to be resolved through the IOMMU */
494 	r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
495 
496 	node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
497 
498 	INIT_LIST_HEAD(&node->base.mem.regions);
499 	list_add_tail(&r->rl_entry, &node->base.mem.regions);
500 
501 	return 0;
502 
503 release_area:
504 	mutex_lock(imem->mm_mutex);
505 	nvkm_mm_free(imem->mm, &r);
506 	mutex_unlock(imem->mm_mutex);
507 
508 free_pages:
509 	for (i = 0; i < npages && node->pages[i] != NULL; i++) {
510 		dma_addr_t dma_addr = node->dma_addrs[i];
511 		if (dma_addr)
512 			dma_unmap_page(dev, dma_addr, PAGE_SIZE,
513 				       DMA_BIDIRECTIONAL);
514 		__free_page(node->pages[i]);
515 	}
516 
517 	return ret;
518 }
519 
520 static int
521 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
522 		  struct nvkm_memory **pmemory)
523 {
524 	struct gk20a_instmem *imem = gk20a_instmem(base);
525 	struct nvkm_subdev *subdev = &imem->base.subdev;
526 	struct gk20a_instobj *node = NULL;
527 	int ret;
528 
529 	nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
530 		   imem->domain ? "IOMMU" : "DMA", size, align);
531 
532 	/* Round size and align to page bounds */
533 	size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
534 	align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
535 
536 	if (imem->domain)
537 		ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
538 					       align, &node);
539 	else
540 		ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
541 					     align, &node);
542 	*pmemory = node ? &node->memory : NULL;
543 	if (ret)
544 		return ret;
545 
546 	node->imem = imem;
547 
548 	/* present memory for being mapped using small pages */
549 	node->mem.size = size >> 12;
550 	node->mem.memtype = 0;
551 	node->mem.page_shift = 12;
552 
553 	nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
554 		   size, align, node->mem.offset);
555 
556 	return 0;
557 }
558 
559 static void *
560 gk20a_instmem_dtor(struct nvkm_instmem *base)
561 {
562 	struct gk20a_instmem *imem = gk20a_instmem(base);
563 
564 	/* perform some sanity checks... */
565 	if (!list_empty(&imem->vaddr_lru))
566 		nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
567 
568 	if (imem->vaddr_use != 0)
569 		nvkm_warn(&base->subdev, "instobj vmap area not empty! "
570 			  "0x%x bytes still mapped\n", imem->vaddr_use);
571 
572 	return imem;
573 }
574 
575 static const struct nvkm_instmem_func
576 gk20a_instmem = {
577 	.dtor = gk20a_instmem_dtor,
578 	.memory_new = gk20a_instobj_new,
579 	.persistent = true,
580 	.zero = false,
581 };
582 
583 int
584 gk20a_instmem_new(struct nvkm_device *device, int index,
585 		  struct nvkm_instmem **pimem)
586 {
587 	struct nvkm_device_tegra *tdev = device->func->tegra(device);
588 	struct gk20a_instmem *imem;
589 
590 	if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
591 		return -ENOMEM;
592 	nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
593 	spin_lock_init(&imem->lock);
594 	*pimem = &imem->base;
595 
596 	/* do not allow more than 1MB of CPU-mapped instmem */
597 	imem->vaddr_use = 0;
598 	imem->vaddr_max = 0x100000;
599 	INIT_LIST_HEAD(&imem->vaddr_lru);
600 
601 	if (tdev->iommu.domain) {
602 		imem->mm_mutex = &tdev->iommu.mutex;
603 		imem->mm = &tdev->iommu.mm;
604 		imem->domain = tdev->iommu.domain;
605 		imem->iommu_pgshift = tdev->iommu.pgshift;
606 		imem->cpu_map = gk20a_instobj_cpu_map_iommu;
607 		imem->iommu_bit = tdev->func->iommu_bit;
608 
609 		nvkm_info(&imem->base.subdev, "using IOMMU\n");
610 	} else {
611 		init_dma_attrs(&imem->attrs);
612 		/* We will access the memory through our own mapping */
613 		dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
614 		dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
615 		dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
616 		dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
617 		imem->cpu_map = gk20a_instobj_cpu_map_dma;
618 
619 		nvkm_info(&imem->base.subdev, "using DMA API\n");
620 	}
621 
622 	return 0;
623 }
624