1 /* 2 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 20 * DEALINGS IN THE SOFTWARE. 21 */ 22 23 /* 24 * GK20A does not have dedicated video memory, and to accurately represent this 25 * fact Nouveau will not create a RAM device for it. Therefore its instmem 26 * implementation must be done directly on top of system memory, while providing 27 * coherent read and write operations. 28 * 29 * Instmem can be allocated through two means: 30 * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory 31 * pages contiguous to the GPU. This is the preferred way. 32 * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically 33 * contiguous memory. 34 * 35 * In both cases CPU read and writes are performed using PRAMIN (i.e. using the 36 * GPU path) to ensure these operations are coherent for the GPU. This allows us 37 * to use more "relaxed" allocation parameters when using the DMA API, since we 38 * never need a kernel mapping. 39 */ 40 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) 41 #include "priv.h" 42 43 #include <core/memory.h> 44 #include <core/mm.h> 45 #include <core/tegra.h> 46 #include <subdev/fb.h> 47 48 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory) 49 50 struct gk20a_instobj { 51 struct nvkm_memory memory; 52 struct gk20a_instmem *imem; 53 struct nvkm_mem mem; 54 }; 55 56 /* 57 * Used for objects allocated using the DMA API 58 */ 59 struct gk20a_instobj_dma { 60 struct gk20a_instobj base; 61 62 void *cpuaddr; 63 dma_addr_t handle; 64 struct nvkm_mm_node r; 65 }; 66 67 /* 68 * Used for objects flattened using the IOMMU API 69 */ 70 struct gk20a_instobj_iommu { 71 struct gk20a_instobj base; 72 73 /* array of base.mem->size pages */ 74 struct page *pages[]; 75 }; 76 77 struct gk20a_instmem { 78 struct nvkm_instmem base; 79 unsigned long lock_flags; 80 spinlock_t lock; 81 u64 addr; 82 83 /* Only used if IOMMU if present */ 84 struct mutex *mm_mutex; 85 struct nvkm_mm *mm; 86 struct iommu_domain *domain; 87 unsigned long iommu_pgshift; 88 89 /* Only used by DMA API */ 90 struct dma_attrs attrs; 91 }; 92 93 static enum nvkm_memory_target 94 gk20a_instobj_target(struct nvkm_memory *memory) 95 { 96 return NVKM_MEM_TARGET_HOST; 97 } 98 99 static u64 100 gk20a_instobj_addr(struct nvkm_memory *memory) 101 { 102 return gk20a_instobj(memory)->mem.offset; 103 104 } 105 106 static u64 107 gk20a_instobj_size(struct nvkm_memory *memory) 108 { 109 return (u64)gk20a_instobj(memory)->mem.size << 12; 110 } 111 112 static void __iomem * 113 gk20a_instobj_acquire(struct nvkm_memory *memory) 114 { 115 struct gk20a_instmem *imem = gk20a_instobj(memory)->imem; 116 unsigned long flags; 117 spin_lock_irqsave(&imem->lock, flags); 118 imem->lock_flags = flags; 119 return NULL; 120 } 121 122 static void 123 gk20a_instobj_release(struct nvkm_memory *memory) 124 { 125 struct gk20a_instmem *imem = gk20a_instobj(memory)->imem; 126 spin_unlock_irqrestore(&imem->lock, imem->lock_flags); 127 } 128 129 /* 130 * Use PRAMIN to read/write data and avoid coherency issues. 131 * PRAMIN uses the GPU path and ensures data will always be coherent. 132 * 133 * A dynamic mapping based solution would be desirable in the future, but 134 * the issue remains of how to maintain coherency efficiently. On ARM it is 135 * not easy (if possible at all?) to create uncached temporary mappings. 136 */ 137 138 static u32 139 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) 140 { 141 struct gk20a_instobj *node = gk20a_instobj(memory); 142 struct gk20a_instmem *imem = node->imem; 143 struct nvkm_device *device = imem->base.subdev.device; 144 u64 base = (node->mem.offset + offset) & 0xffffff00000ULL; 145 u64 addr = (node->mem.offset + offset) & 0x000000fffffULL; 146 u32 data; 147 148 if (unlikely(imem->addr != base)) { 149 nvkm_wr32(device, 0x001700, base >> 16); 150 imem->addr = base; 151 } 152 data = nvkm_rd32(device, 0x700000 + addr); 153 return data; 154 } 155 156 static void 157 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) 158 { 159 struct gk20a_instobj *node = gk20a_instobj(memory); 160 struct gk20a_instmem *imem = node->imem; 161 struct nvkm_device *device = imem->base.subdev.device; 162 u64 base = (node->mem.offset + offset) & 0xffffff00000ULL; 163 u64 addr = (node->mem.offset + offset) & 0x000000fffffULL; 164 165 if (unlikely(imem->addr != base)) { 166 nvkm_wr32(device, 0x001700, base >> 16); 167 imem->addr = base; 168 } 169 nvkm_wr32(device, 0x700000 + addr, data); 170 } 171 172 static void 173 gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset) 174 { 175 struct gk20a_instobj *node = gk20a_instobj(memory); 176 nvkm_vm_map_at(vma, offset, &node->mem); 177 } 178 179 static void 180 gk20a_instobj_dtor_dma(struct gk20a_instobj *_node) 181 { 182 struct gk20a_instobj_dma *node = (void *)_node; 183 struct gk20a_instmem *imem = _node->imem; 184 struct device *dev = imem->base.subdev.device->dev; 185 186 if (unlikely(!node->cpuaddr)) 187 return; 188 189 dma_free_attrs(dev, _node->mem.size << PAGE_SHIFT, node->cpuaddr, 190 node->handle, &imem->attrs); 191 } 192 193 static void 194 gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node) 195 { 196 struct gk20a_instobj_iommu *node = (void *)_node; 197 struct gk20a_instmem *imem = _node->imem; 198 struct nvkm_mm_node *r; 199 int i; 200 201 if (unlikely(list_empty(&_node->mem.regions))) 202 return; 203 204 r = list_first_entry(&_node->mem.regions, struct nvkm_mm_node, 205 rl_entry); 206 207 /* clear bit 34 to unmap pages */ 208 r->offset &= ~BIT(34 - imem->iommu_pgshift); 209 210 /* Unmap pages from GPU address space and free them */ 211 for (i = 0; i < _node->mem.size; i++) { 212 iommu_unmap(imem->domain, 213 (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); 214 __free_page(node->pages[i]); 215 } 216 217 /* Release area from GPU address space */ 218 mutex_lock(imem->mm_mutex); 219 nvkm_mm_free(imem->mm, &r); 220 mutex_unlock(imem->mm_mutex); 221 } 222 223 static void * 224 gk20a_instobj_dtor(struct nvkm_memory *memory) 225 { 226 struct gk20a_instobj *node = gk20a_instobj(memory); 227 struct gk20a_instmem *imem = node->imem; 228 229 if (imem->domain) 230 gk20a_instobj_dtor_iommu(node); 231 else 232 gk20a_instobj_dtor_dma(node); 233 234 return node; 235 } 236 237 static const struct nvkm_memory_func 238 gk20a_instobj_func = { 239 .dtor = gk20a_instobj_dtor, 240 .target = gk20a_instobj_target, 241 .addr = gk20a_instobj_addr, 242 .size = gk20a_instobj_size, 243 .acquire = gk20a_instobj_acquire, 244 .release = gk20a_instobj_release, 245 .rd32 = gk20a_instobj_rd32, 246 .wr32 = gk20a_instobj_wr32, 247 .map = gk20a_instobj_map, 248 }; 249 250 static int 251 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align, 252 struct gk20a_instobj **_node) 253 { 254 struct gk20a_instobj_dma *node; 255 struct nvkm_subdev *subdev = &imem->base.subdev; 256 struct device *dev = subdev->device->dev; 257 258 if (!(node = kzalloc(sizeof(*node), GFP_KERNEL))) 259 return -ENOMEM; 260 *_node = &node->base; 261 262 node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, 263 &node->handle, GFP_KERNEL, 264 &imem->attrs); 265 if (!node->cpuaddr) { 266 nvkm_error(subdev, "cannot allocate DMA memory\n"); 267 return -ENOMEM; 268 } 269 270 /* alignment check */ 271 if (unlikely(node->handle & (align - 1))) 272 nvkm_warn(subdev, 273 "memory not aligned as requested: %pad (0x%x)\n", 274 &node->handle, align); 275 276 /* present memory for being mapped using small pages */ 277 node->r.type = 12; 278 node->r.offset = node->handle >> 12; 279 node->r.length = (npages << PAGE_SHIFT) >> 12; 280 281 node->base.mem.offset = node->handle; 282 283 INIT_LIST_HEAD(&node->base.mem.regions); 284 list_add_tail(&node->r.rl_entry, &node->base.mem.regions); 285 286 return 0; 287 } 288 289 static int 290 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, 291 struct gk20a_instobj **_node) 292 { 293 struct gk20a_instobj_iommu *node; 294 struct nvkm_subdev *subdev = &imem->base.subdev; 295 struct nvkm_mm_node *r; 296 int ret; 297 int i; 298 299 if (!(node = kzalloc(sizeof(*node) + 300 sizeof( node->pages[0]) * npages, GFP_KERNEL))) 301 return -ENOMEM; 302 *_node = &node->base; 303 304 /* Allocate backing memory */ 305 for (i = 0; i < npages; i++) { 306 struct page *p = alloc_page(GFP_KERNEL); 307 308 if (p == NULL) { 309 ret = -ENOMEM; 310 goto free_pages; 311 } 312 node->pages[i] = p; 313 } 314 315 mutex_lock(imem->mm_mutex); 316 /* Reserve area from GPU address space */ 317 ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages, 318 align >> imem->iommu_pgshift, &r); 319 mutex_unlock(imem->mm_mutex); 320 if (ret) { 321 nvkm_error(subdev, "virtual space is full!\n"); 322 goto free_pages; 323 } 324 325 /* Map into GPU address space */ 326 for (i = 0; i < npages; i++) { 327 struct page *p = node->pages[i]; 328 u32 offset = (r->offset + i) << imem->iommu_pgshift; 329 330 ret = iommu_map(imem->domain, offset, page_to_phys(p), 331 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); 332 if (ret < 0) { 333 nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); 334 335 while (i-- > 0) { 336 offset -= PAGE_SIZE; 337 iommu_unmap(imem->domain, offset, PAGE_SIZE); 338 } 339 goto release_area; 340 } 341 } 342 343 /* Bit 34 tells that an address is to be resolved through the IOMMU */ 344 r->offset |= BIT(34 - imem->iommu_pgshift); 345 346 node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift; 347 348 INIT_LIST_HEAD(&node->base.mem.regions); 349 list_add_tail(&r->rl_entry, &node->base.mem.regions); 350 351 return 0; 352 353 release_area: 354 mutex_lock(imem->mm_mutex); 355 nvkm_mm_free(imem->mm, &r); 356 mutex_unlock(imem->mm_mutex); 357 358 free_pages: 359 for (i = 0; i < npages && node->pages[i] != NULL; i++) 360 __free_page(node->pages[i]); 361 362 return ret; 363 } 364 365 static int 366 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, 367 struct nvkm_memory **pmemory) 368 { 369 struct gk20a_instmem *imem = gk20a_instmem(base); 370 struct gk20a_instobj *node = NULL; 371 struct nvkm_subdev *subdev = &imem->base.subdev; 372 int ret; 373 374 nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, 375 imem->domain ? "IOMMU" : "DMA", size, align); 376 377 /* Round size and align to page bounds */ 378 size = max(roundup(size, PAGE_SIZE), PAGE_SIZE); 379 align = max(roundup(align, PAGE_SIZE), PAGE_SIZE); 380 381 if (imem->domain) 382 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT, 383 align, &node); 384 else 385 ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT, 386 align, &node); 387 *pmemory = node ? &node->memory : NULL; 388 if (ret) 389 return ret; 390 391 nvkm_memory_ctor(&gk20a_instobj_func, &node->memory); 392 node->imem = imem; 393 394 /* present memory for being mapped using small pages */ 395 node->mem.size = size >> 12; 396 node->mem.memtype = 0; 397 node->mem.page_shift = 12; 398 399 nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", 400 size, align, node->mem.offset); 401 402 return 0; 403 } 404 405 static void 406 gk20a_instmem_fini(struct nvkm_instmem *base) 407 { 408 gk20a_instmem(base)->addr = ~0ULL; 409 } 410 411 static const struct nvkm_instmem_func 412 gk20a_instmem = { 413 .fini = gk20a_instmem_fini, 414 .memory_new = gk20a_instobj_new, 415 .persistent = true, 416 .zero = false, 417 }; 418 419 int 420 gk20a_instmem_new(struct nvkm_device *device, int index, 421 struct nvkm_instmem **pimem) 422 { 423 struct nvkm_device_tegra *tdev = device->func->tegra(device); 424 struct gk20a_instmem *imem; 425 426 if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL))) 427 return -ENOMEM; 428 nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base); 429 spin_lock_init(&imem->lock); 430 *pimem = &imem->base; 431 432 if (tdev->iommu.domain) { 433 imem->domain = tdev->iommu.domain; 434 imem->mm = &tdev->iommu.mm; 435 imem->iommu_pgshift = tdev->iommu.pgshift; 436 imem->mm_mutex = &tdev->iommu.mutex; 437 438 nvkm_info(&imem->base.subdev, "using IOMMU\n"); 439 } else { 440 init_dma_attrs(&imem->attrs); 441 /* 442 * We will access instmem through PRAMIN and thus do not need a 443 * consistent CPU pointer or kernel mapping 444 */ 445 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs); 446 dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs); 447 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs); 448 dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs); 449 450 nvkm_info(&imem->base.subdev, "using DMA API\n"); 451 } 452 453 return 0; 454 } 455