xref: /linux/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22 
23 /*
24  * GK20A does not have dedicated video memory, and to accurately represent this
25  * fact Nouveau will not create a RAM device for it. Therefore its instmem
26  * implementation must be done directly on top of system memory, while providing
27  * coherent read and write operations.
28  *
29  * Instmem can be allocated through two means:
30  * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory
31  *    pages contiguous to the GPU. This is the preferred way.
32  * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically
33  *    contiguous memory.
34  *
35  * In both cases CPU read and writes are performed using PRAMIN (i.e. using the
36  * GPU path) to ensure these operations are coherent for the GPU. This allows us
37  * to use more "relaxed" allocation parameters when using the DMA API, since we
38  * never need a kernel mapping.
39  */
40 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
41 #include "priv.h"
42 
43 #include <core/memory.h>
44 #include <core/mm.h>
45 #include <core/tegra.h>
46 #include <subdev/fb.h>
47 
48 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
49 
50 struct gk20a_instobj {
51 	struct nvkm_memory memory;
52 	struct gk20a_instmem *imem;
53 	struct nvkm_mem mem;
54 };
55 
56 /*
57  * Used for objects allocated using the DMA API
58  */
59 struct gk20a_instobj_dma {
60 	struct gk20a_instobj base;
61 
62 	void *cpuaddr;
63 	dma_addr_t handle;
64 	struct nvkm_mm_node r;
65 };
66 
67 /*
68  * Used for objects flattened using the IOMMU API
69  */
70 struct gk20a_instobj_iommu {
71 	struct gk20a_instobj base;
72 
73 	/* array of base.mem->size pages */
74 	struct page *pages[];
75 };
76 
77 struct gk20a_instmem {
78 	struct nvkm_instmem base;
79 	unsigned long lock_flags;
80 	spinlock_t lock;
81 	u64 addr;
82 
83 	/* Only used if IOMMU if present */
84 	struct mutex *mm_mutex;
85 	struct nvkm_mm *mm;
86 	struct iommu_domain *domain;
87 	unsigned long iommu_pgshift;
88 
89 	/* Only used by DMA API */
90 	struct dma_attrs attrs;
91 };
92 
93 static enum nvkm_memory_target
94 gk20a_instobj_target(struct nvkm_memory *memory)
95 {
96 	return NVKM_MEM_TARGET_HOST;
97 }
98 
99 static u64
100 gk20a_instobj_addr(struct nvkm_memory *memory)
101 {
102 	return gk20a_instobj(memory)->mem.offset;
103 
104 }
105 
106 static u64
107 gk20a_instobj_size(struct nvkm_memory *memory)
108 {
109 	return (u64)gk20a_instobj(memory)->mem.size << 12;
110 }
111 
112 static void __iomem *
113 gk20a_instobj_acquire(struct nvkm_memory *memory)
114 {
115 	struct gk20a_instmem *imem = gk20a_instobj(memory)->imem;
116 	unsigned long flags;
117 	spin_lock_irqsave(&imem->lock, flags);
118 	imem->lock_flags = flags;
119 	return NULL;
120 }
121 
122 static void
123 gk20a_instobj_release(struct nvkm_memory *memory)
124 {
125 	struct gk20a_instmem *imem = gk20a_instobj(memory)->imem;
126 	spin_unlock_irqrestore(&imem->lock, imem->lock_flags);
127 }
128 
129 /*
130  * Use PRAMIN to read/write data and avoid coherency issues.
131  * PRAMIN uses the GPU path and ensures data will always be coherent.
132  *
133  * A dynamic mapping based solution would be desirable in the future, but
134  * the issue remains of how to maintain coherency efficiently. On ARM it is
135  * not easy (if possible at all?) to create uncached temporary mappings.
136  */
137 
138 static u32
139 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
140 {
141 	struct gk20a_instobj *node = gk20a_instobj(memory);
142 	struct gk20a_instmem *imem = node->imem;
143 	struct nvkm_device *device = imem->base.subdev.device;
144 	u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
145 	u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
146 	u32 data;
147 
148 	if (unlikely(imem->addr != base)) {
149 		nvkm_wr32(device, 0x001700, base >> 16);
150 		imem->addr = base;
151 	}
152 	data = nvkm_rd32(device, 0x700000 + addr);
153 	return data;
154 }
155 
156 static void
157 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
158 {
159 	struct gk20a_instobj *node = gk20a_instobj(memory);
160 	struct gk20a_instmem *imem = node->imem;
161 	struct nvkm_device *device = imem->base.subdev.device;
162 	u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
163 	u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
164 
165 	if (unlikely(imem->addr != base)) {
166 		nvkm_wr32(device, 0x001700, base >> 16);
167 		imem->addr = base;
168 	}
169 	nvkm_wr32(device, 0x700000 + addr, data);
170 }
171 
172 static void
173 gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
174 {
175 	struct gk20a_instobj *node = gk20a_instobj(memory);
176 	nvkm_vm_map_at(vma, offset, &node->mem);
177 }
178 
179 static void
180 gk20a_instobj_dtor_dma(struct gk20a_instobj *_node)
181 {
182 	struct gk20a_instobj_dma *node = (void *)_node;
183 	struct gk20a_instmem *imem = _node->imem;
184 	struct device *dev = imem->base.subdev.device->dev;
185 
186 	if (unlikely(!node->cpuaddr))
187 		return;
188 
189 	dma_free_attrs(dev, _node->mem.size << PAGE_SHIFT, node->cpuaddr,
190 		       node->handle, &imem->attrs);
191 }
192 
193 static void
194 gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node)
195 {
196 	struct gk20a_instobj_iommu *node = (void *)_node;
197 	struct gk20a_instmem *imem = _node->imem;
198 	struct nvkm_mm_node *r;
199 	int i;
200 
201 	if (unlikely(list_empty(&_node->mem.regions)))
202 		return;
203 
204 	r = list_first_entry(&_node->mem.regions, struct nvkm_mm_node,
205 			     rl_entry);
206 
207 	/* clear bit 34 to unmap pages */
208 	r->offset &= ~BIT(34 - imem->iommu_pgshift);
209 
210 	/* Unmap pages from GPU address space and free them */
211 	for (i = 0; i < _node->mem.size; i++) {
212 		iommu_unmap(imem->domain,
213 			    (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
214 		__free_page(node->pages[i]);
215 	}
216 
217 	/* Release area from GPU address space */
218 	mutex_lock(imem->mm_mutex);
219 	nvkm_mm_free(imem->mm, &r);
220 	mutex_unlock(imem->mm_mutex);
221 }
222 
223 static void *
224 gk20a_instobj_dtor(struct nvkm_memory *memory)
225 {
226 	struct gk20a_instobj *node = gk20a_instobj(memory);
227 	struct gk20a_instmem *imem = node->imem;
228 
229 	if (imem->domain)
230 		gk20a_instobj_dtor_iommu(node);
231 	else
232 		gk20a_instobj_dtor_dma(node);
233 
234 	return node;
235 }
236 
237 static const struct nvkm_memory_func
238 gk20a_instobj_func = {
239 	.dtor = gk20a_instobj_dtor,
240 	.target = gk20a_instobj_target,
241 	.addr = gk20a_instobj_addr,
242 	.size = gk20a_instobj_size,
243 	.acquire = gk20a_instobj_acquire,
244 	.release = gk20a_instobj_release,
245 	.rd32 = gk20a_instobj_rd32,
246 	.wr32 = gk20a_instobj_wr32,
247 	.map = gk20a_instobj_map,
248 };
249 
250 static int
251 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
252 		       struct gk20a_instobj **_node)
253 {
254 	struct gk20a_instobj_dma *node;
255 	struct nvkm_subdev *subdev = &imem->base.subdev;
256 	struct device *dev = subdev->device->dev;
257 
258 	if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
259 		return -ENOMEM;
260 	*_node = &node->base;
261 
262 	node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
263 					&node->handle, GFP_KERNEL,
264 					&imem->attrs);
265 	if (!node->cpuaddr) {
266 		nvkm_error(subdev, "cannot allocate DMA memory\n");
267 		return -ENOMEM;
268 	}
269 
270 	/* alignment check */
271 	if (unlikely(node->handle & (align - 1)))
272 		nvkm_warn(subdev,
273 			  "memory not aligned as requested: %pad (0x%x)\n",
274 			  &node->handle, align);
275 
276 	/* present memory for being mapped using small pages */
277 	node->r.type = 12;
278 	node->r.offset = node->handle >> 12;
279 	node->r.length = (npages << PAGE_SHIFT) >> 12;
280 
281 	node->base.mem.offset = node->handle;
282 
283 	INIT_LIST_HEAD(&node->base.mem.regions);
284 	list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
285 
286 	return 0;
287 }
288 
289 static int
290 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
291 			 struct gk20a_instobj **_node)
292 {
293 	struct gk20a_instobj_iommu *node;
294 	struct nvkm_subdev *subdev = &imem->base.subdev;
295 	struct nvkm_mm_node *r;
296 	int ret;
297 	int i;
298 
299 	if (!(node = kzalloc(sizeof(*node) +
300 			     sizeof( node->pages[0]) * npages, GFP_KERNEL)))
301 		return -ENOMEM;
302 	*_node = &node->base;
303 
304 	/* Allocate backing memory */
305 	for (i = 0; i < npages; i++) {
306 		struct page *p = alloc_page(GFP_KERNEL);
307 
308 		if (p == NULL) {
309 			ret = -ENOMEM;
310 			goto free_pages;
311 		}
312 		node->pages[i] = p;
313 	}
314 
315 	mutex_lock(imem->mm_mutex);
316 	/* Reserve area from GPU address space */
317 	ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
318 			   align >> imem->iommu_pgshift, &r);
319 	mutex_unlock(imem->mm_mutex);
320 	if (ret) {
321 		nvkm_error(subdev, "virtual space is full!\n");
322 		goto free_pages;
323 	}
324 
325 	/* Map into GPU address space */
326 	for (i = 0; i < npages; i++) {
327 		struct page *p = node->pages[i];
328 		u32 offset = (r->offset + i) << imem->iommu_pgshift;
329 
330 		ret = iommu_map(imem->domain, offset, page_to_phys(p),
331 				PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
332 		if (ret < 0) {
333 			nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
334 
335 			while (i-- > 0) {
336 				offset -= PAGE_SIZE;
337 				iommu_unmap(imem->domain, offset, PAGE_SIZE);
338 			}
339 			goto release_area;
340 		}
341 	}
342 
343 	/* Bit 34 tells that an address is to be resolved through the IOMMU */
344 	r->offset |= BIT(34 - imem->iommu_pgshift);
345 
346 	node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
347 
348 	INIT_LIST_HEAD(&node->base.mem.regions);
349 	list_add_tail(&r->rl_entry, &node->base.mem.regions);
350 
351 	return 0;
352 
353 release_area:
354 	mutex_lock(imem->mm_mutex);
355 	nvkm_mm_free(imem->mm, &r);
356 	mutex_unlock(imem->mm_mutex);
357 
358 free_pages:
359 	for (i = 0; i < npages && node->pages[i] != NULL; i++)
360 		__free_page(node->pages[i]);
361 
362 	return ret;
363 }
364 
365 static int
366 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
367 		  struct nvkm_memory **pmemory)
368 {
369 	struct gk20a_instmem *imem = gk20a_instmem(base);
370 	struct gk20a_instobj *node = NULL;
371 	struct nvkm_subdev *subdev = &imem->base.subdev;
372 	int ret;
373 
374 	nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
375 		   imem->domain ? "IOMMU" : "DMA", size, align);
376 
377 	/* Round size and align to page bounds */
378 	size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
379 	align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
380 
381 	if (imem->domain)
382 		ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
383 					       align, &node);
384 	else
385 		ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
386 					     align, &node);
387 	*pmemory = node ? &node->memory : NULL;
388 	if (ret)
389 		return ret;
390 
391 	nvkm_memory_ctor(&gk20a_instobj_func, &node->memory);
392 	node->imem = imem;
393 
394 	/* present memory for being mapped using small pages */
395 	node->mem.size = size >> 12;
396 	node->mem.memtype = 0;
397 	node->mem.page_shift = 12;
398 
399 	nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
400 		   size, align, node->mem.offset);
401 
402 	return 0;
403 }
404 
405 static void
406 gk20a_instmem_fini(struct nvkm_instmem *base)
407 {
408 	gk20a_instmem(base)->addr = ~0ULL;
409 }
410 
411 static const struct nvkm_instmem_func
412 gk20a_instmem = {
413 	.fini = gk20a_instmem_fini,
414 	.memory_new = gk20a_instobj_new,
415 	.persistent = true,
416 	.zero = false,
417 };
418 
419 int
420 gk20a_instmem_new(struct nvkm_device *device, int index,
421 		  struct nvkm_instmem **pimem)
422 {
423 	struct nvkm_device_tegra *tdev = device->func->tegra(device);
424 	struct gk20a_instmem *imem;
425 
426 	if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
427 		return -ENOMEM;
428 	nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
429 	spin_lock_init(&imem->lock);
430 	*pimem = &imem->base;
431 
432 	if (tdev->iommu.domain) {
433 		imem->domain = tdev->iommu.domain;
434 		imem->mm = &tdev->iommu.mm;
435 		imem->iommu_pgshift = tdev->iommu.pgshift;
436 		imem->mm_mutex = &tdev->iommu.mutex;
437 
438 		nvkm_info(&imem->base.subdev, "using IOMMU\n");
439 	} else {
440 		init_dma_attrs(&imem->attrs);
441 		/*
442 		 * We will access instmem through PRAMIN and thus do not need a
443 		 * consistent CPU pointer or kernel mapping
444 		 */
445 		dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
446 		dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
447 		dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
448 		dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
449 
450 		nvkm_info(&imem->base.subdev, "using DMA API\n");
451 	}
452 
453 	return 0;
454 }
455