1 /* 2 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 20 * DEALINGS IN THE SOFTWARE. 21 */ 22 23 /* 24 * GK20A does not have dedicated video memory, and to accurately represent this 25 * fact Nouveau will not create a RAM device for it. Therefore its instmem 26 * implementation must be done directly on top of system memory, while 27 * preserving coherency for read and write operations. 28 * 29 * Instmem can be allocated through two means: 30 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory 31 * pages contiguous to the GPU. This is the preferred way. 32 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically 33 * contiguous memory. 34 * 35 * In both cases CPU read and writes are performed by creating a write-combined 36 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To 37 * be conservative we do this every time we acquire or release an instobj, but 38 * ideally L2 management should be handled at a higher level. 39 * 40 * To improve performance, CPU mappings are not removed upon instobj release. 41 * Instead they are placed into a LRU list to be recycled when the mapped space 42 * goes beyond a certain threshold. At the moment this limit is 1MB. 43 */ 44 #include "priv.h" 45 46 #include <core/memory.h> 47 #include <core/tegra.h> 48 #include <subdev/ltc.h> 49 #include <subdev/mmu.h> 50 51 struct gk20a_instobj { 52 struct nvkm_instobj base; 53 struct nvkm_mm_node *mn; 54 struct gk20a_instmem *imem; 55 56 /* CPU mapping */ 57 u32 *vaddr; 58 }; 59 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, base.memory) 60 61 /* 62 * Used for objects allocated using the DMA API 63 */ 64 struct gk20a_instobj_dma { 65 struct gk20a_instobj base; 66 67 dma_addr_t handle; 68 struct nvkm_mm_node r; 69 }; 70 #define gk20a_instobj_dma(p) \ 71 container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base) 72 73 /* 74 * Used for objects flattened using the IOMMU API 75 */ 76 struct gk20a_instobj_iommu { 77 struct gk20a_instobj base; 78 79 /* to link into gk20a_instmem::vaddr_lru */ 80 struct list_head vaddr_node; 81 /* how many clients are using vaddr? */ 82 u32 use_cpt; 83 84 /* will point to the higher half of pages */ 85 dma_addr_t *dma_addrs; 86 /* array of base.mem->size pages (+ dma_addr_ts) */ 87 struct page *pages[]; 88 }; 89 #define gk20a_instobj_iommu(p) \ 90 container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base) 91 92 struct gk20a_instmem { 93 struct nvkm_instmem base; 94 95 /* protects vaddr_* and gk20a_instobj::vaddr* */ 96 struct mutex lock; 97 98 /* CPU mappings LRU */ 99 unsigned int vaddr_use; 100 unsigned int vaddr_max; 101 struct list_head vaddr_lru; 102 103 /* Only used if IOMMU if present */ 104 struct mutex *mm_mutex; 105 struct nvkm_mm *mm; 106 struct iommu_domain *domain; 107 unsigned long iommu_pgshift; 108 u16 iommu_bit; 109 110 /* Only used by DMA API */ 111 unsigned long attrs; 112 }; 113 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) 114 115 static enum nvkm_memory_target 116 gk20a_instobj_target(struct nvkm_memory *memory) 117 { 118 return NVKM_MEM_TARGET_NCOH; 119 } 120 121 static u8 122 gk20a_instobj_page(struct nvkm_memory *memory) 123 { 124 return 12; 125 } 126 127 static u64 128 gk20a_instobj_addr(struct nvkm_memory *memory) 129 { 130 return (u64)gk20a_instobj(memory)->mn->offset << 12; 131 } 132 133 static u64 134 gk20a_instobj_size(struct nvkm_memory *memory) 135 { 136 return (u64)gk20a_instobj(memory)->mn->length << 12; 137 } 138 139 /* 140 * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held. 141 */ 142 static void 143 gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj) 144 { 145 struct gk20a_instmem *imem = obj->base.imem; 146 /* there should not be any user left... */ 147 WARN_ON(obj->use_cpt); 148 list_del(&obj->vaddr_node); 149 vunmap(obj->base.vaddr); 150 obj->base.vaddr = NULL; 151 imem->vaddr_use -= nvkm_memory_size(&obj->base.base.memory); 152 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use, 153 imem->vaddr_max); 154 } 155 156 /* 157 * Must be called while holding gk20a_instmem::lock 158 */ 159 static void 160 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size) 161 { 162 while (imem->vaddr_use + size > imem->vaddr_max) { 163 /* no candidate that can be unmapped, abort... */ 164 if (list_empty(&imem->vaddr_lru)) 165 break; 166 167 gk20a_instobj_iommu_recycle_vaddr( 168 list_first_entry(&imem->vaddr_lru, 169 struct gk20a_instobj_iommu, vaddr_node)); 170 } 171 } 172 173 static void __iomem * 174 gk20a_instobj_acquire_dma(struct nvkm_memory *memory) 175 { 176 struct gk20a_instobj *node = gk20a_instobj(memory); 177 struct gk20a_instmem *imem = node->imem; 178 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 179 180 nvkm_ltc_flush(ltc); 181 182 return node->vaddr; 183 } 184 185 static void __iomem * 186 gk20a_instobj_acquire_iommu(struct nvkm_memory *memory) 187 { 188 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 189 struct gk20a_instmem *imem = node->base.imem; 190 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 191 const u64 size = nvkm_memory_size(memory); 192 193 nvkm_ltc_flush(ltc); 194 195 mutex_lock(&imem->lock); 196 197 if (node->base.vaddr) { 198 if (!node->use_cpt) { 199 /* remove from LRU list since mapping in use again */ 200 list_del(&node->vaddr_node); 201 } 202 goto out; 203 } 204 205 /* try to free some address space if we reached the limit */ 206 gk20a_instmem_vaddr_gc(imem, size); 207 208 /* map the pages */ 209 node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP, 210 pgprot_writecombine(PAGE_KERNEL)); 211 if (!node->base.vaddr) { 212 nvkm_error(&imem->base.subdev, "cannot map instobj - " 213 "this is not going to end well...\n"); 214 goto out; 215 } 216 217 imem->vaddr_use += size; 218 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", 219 imem->vaddr_use, imem->vaddr_max); 220 221 out: 222 node->use_cpt++; 223 mutex_unlock(&imem->lock); 224 225 return node->base.vaddr; 226 } 227 228 static void 229 gk20a_instobj_release_dma(struct nvkm_memory *memory) 230 { 231 struct gk20a_instobj *node = gk20a_instobj(memory); 232 struct gk20a_instmem *imem = node->imem; 233 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 234 235 /* in case we got a write-combined mapping */ 236 wmb(); 237 nvkm_ltc_invalidate(ltc); 238 } 239 240 static void 241 gk20a_instobj_release_iommu(struct nvkm_memory *memory) 242 { 243 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 244 struct gk20a_instmem *imem = node->base.imem; 245 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 246 247 mutex_lock(&imem->lock); 248 249 /* we should at least have one user to release... */ 250 if (WARN_ON(node->use_cpt == 0)) 251 goto out; 252 253 /* add unused objs to the LRU list to recycle their mapping */ 254 if (--node->use_cpt == 0) 255 list_add_tail(&node->vaddr_node, &imem->vaddr_lru); 256 257 out: 258 mutex_unlock(&imem->lock); 259 260 wmb(); 261 nvkm_ltc_invalidate(ltc); 262 } 263 264 static u32 265 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) 266 { 267 struct gk20a_instobj *node = gk20a_instobj(memory); 268 269 return node->vaddr[offset / 4]; 270 } 271 272 static void 273 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) 274 { 275 struct gk20a_instobj *node = gk20a_instobj(memory); 276 277 node->vaddr[offset / 4] = data; 278 } 279 280 static int 281 gk20a_instobj_map(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm, 282 struct nvkm_vma *vma, void *argv, u32 argc) 283 { 284 struct gk20a_instobj *node = gk20a_instobj(memory); 285 struct nvkm_vmm_map map = { 286 .memory = &node->base.memory, 287 .offset = offset, 288 .mem = node->mn, 289 }; 290 291 return nvkm_vmm_map(vmm, vma, argv, argc, &map); 292 } 293 294 static void * 295 gk20a_instobj_dtor_dma(struct nvkm_memory *memory) 296 { 297 struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory); 298 struct gk20a_instmem *imem = node->base.imem; 299 struct device *dev = imem->base.subdev.device->dev; 300 301 if (unlikely(!node->base.vaddr)) 302 goto out; 303 304 dma_free_attrs(dev, (u64)node->base.mn->length << PAGE_SHIFT, 305 node->base.vaddr, node->handle, imem->attrs); 306 307 out: 308 return node; 309 } 310 311 static void * 312 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory) 313 { 314 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 315 struct gk20a_instmem *imem = node->base.imem; 316 struct device *dev = imem->base.subdev.device->dev; 317 struct nvkm_mm_node *r = node->base.mn; 318 int i; 319 320 if (unlikely(!r)) 321 goto out; 322 323 mutex_lock(&imem->lock); 324 325 /* vaddr has already been recycled */ 326 if (node->base.vaddr) 327 gk20a_instobj_iommu_recycle_vaddr(node); 328 329 mutex_unlock(&imem->lock); 330 331 /* clear IOMMU bit to unmap pages */ 332 r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift); 333 334 /* Unmap pages from GPU address space and free them */ 335 for (i = 0; i < node->base.mn->length; i++) { 336 iommu_unmap(imem->domain, 337 (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); 338 dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE, 339 DMA_BIDIRECTIONAL); 340 __free_page(node->pages[i]); 341 } 342 343 /* Release area from GPU address space */ 344 mutex_lock(imem->mm_mutex); 345 nvkm_mm_free(imem->mm, &r); 346 mutex_unlock(imem->mm_mutex); 347 348 out: 349 return node; 350 } 351 352 static const struct nvkm_memory_func 353 gk20a_instobj_func_dma = { 354 .dtor = gk20a_instobj_dtor_dma, 355 .target = gk20a_instobj_target, 356 .page = gk20a_instobj_page, 357 .addr = gk20a_instobj_addr, 358 .size = gk20a_instobj_size, 359 .acquire = gk20a_instobj_acquire_dma, 360 .release = gk20a_instobj_release_dma, 361 .map = gk20a_instobj_map, 362 }; 363 364 static const struct nvkm_memory_func 365 gk20a_instobj_func_iommu = { 366 .dtor = gk20a_instobj_dtor_iommu, 367 .target = gk20a_instobj_target, 368 .page = gk20a_instobj_page, 369 .addr = gk20a_instobj_addr, 370 .size = gk20a_instobj_size, 371 .acquire = gk20a_instobj_acquire_iommu, 372 .release = gk20a_instobj_release_iommu, 373 .map = gk20a_instobj_map, 374 }; 375 376 static const struct nvkm_memory_ptrs 377 gk20a_instobj_ptrs = { 378 .rd32 = gk20a_instobj_rd32, 379 .wr32 = gk20a_instobj_wr32, 380 }; 381 382 static int 383 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align, 384 struct gk20a_instobj **_node) 385 { 386 struct gk20a_instobj_dma *node; 387 struct nvkm_subdev *subdev = &imem->base.subdev; 388 struct device *dev = subdev->device->dev; 389 390 if (!(node = kzalloc(sizeof(*node), GFP_KERNEL))) 391 return -ENOMEM; 392 *_node = &node->base; 393 394 nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.base.memory); 395 node->base.base.memory.ptrs = &gk20a_instobj_ptrs; 396 397 node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, 398 &node->handle, GFP_KERNEL, 399 imem->attrs); 400 if (!node->base.vaddr) { 401 nvkm_error(subdev, "cannot allocate DMA memory\n"); 402 return -ENOMEM; 403 } 404 405 /* alignment check */ 406 if (unlikely(node->handle & (align - 1))) 407 nvkm_warn(subdev, 408 "memory not aligned as requested: %pad (0x%x)\n", 409 &node->handle, align); 410 411 /* present memory for being mapped using small pages */ 412 node->r.type = 12; 413 node->r.offset = node->handle >> 12; 414 node->r.length = (npages << PAGE_SHIFT) >> 12; 415 416 node->base.mn = &node->r; 417 return 0; 418 } 419 420 static int 421 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, 422 struct gk20a_instobj **_node) 423 { 424 struct gk20a_instobj_iommu *node; 425 struct nvkm_subdev *subdev = &imem->base.subdev; 426 struct device *dev = subdev->device->dev; 427 struct nvkm_mm_node *r; 428 int ret; 429 int i; 430 431 /* 432 * despite their variable size, instmem allocations are small enough 433 * (< 1 page) to be handled by kzalloc 434 */ 435 if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) + 436 sizeof(*node->dma_addrs)) * npages), GFP_KERNEL))) 437 return -ENOMEM; 438 *_node = &node->base; 439 node->dma_addrs = (void *)(node->pages + npages); 440 441 nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.base.memory); 442 node->base.base.memory.ptrs = &gk20a_instobj_ptrs; 443 444 /* Allocate backing memory */ 445 for (i = 0; i < npages; i++) { 446 struct page *p = alloc_page(GFP_KERNEL); 447 dma_addr_t dma_adr; 448 449 if (p == NULL) { 450 ret = -ENOMEM; 451 goto free_pages; 452 } 453 node->pages[i] = p; 454 dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 455 if (dma_mapping_error(dev, dma_adr)) { 456 nvkm_error(subdev, "DMA mapping error!\n"); 457 ret = -ENOMEM; 458 goto free_pages; 459 } 460 node->dma_addrs[i] = dma_adr; 461 } 462 463 mutex_lock(imem->mm_mutex); 464 /* Reserve area from GPU address space */ 465 ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages, 466 align >> imem->iommu_pgshift, &r); 467 mutex_unlock(imem->mm_mutex); 468 if (ret) { 469 nvkm_error(subdev, "IOMMU space is full!\n"); 470 goto free_pages; 471 } 472 473 /* Map into GPU address space */ 474 for (i = 0; i < npages; i++) { 475 u32 offset = (r->offset + i) << imem->iommu_pgshift; 476 477 ret = iommu_map(imem->domain, offset, node->dma_addrs[i], 478 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE, 479 GFP_KERNEL); 480 if (ret < 0) { 481 nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); 482 483 while (i-- > 0) { 484 offset -= PAGE_SIZE; 485 iommu_unmap(imem->domain, offset, PAGE_SIZE); 486 } 487 goto release_area; 488 } 489 } 490 491 /* IOMMU bit tells that an address is to be resolved through the IOMMU */ 492 r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift); 493 494 node->base.mn = r; 495 return 0; 496 497 release_area: 498 mutex_lock(imem->mm_mutex); 499 nvkm_mm_free(imem->mm, &r); 500 mutex_unlock(imem->mm_mutex); 501 502 free_pages: 503 for (i = 0; i < npages && node->pages[i] != NULL; i++) { 504 dma_addr_t dma_addr = node->dma_addrs[i]; 505 if (dma_addr) 506 dma_unmap_page(dev, dma_addr, PAGE_SIZE, 507 DMA_BIDIRECTIONAL); 508 __free_page(node->pages[i]); 509 } 510 511 return ret; 512 } 513 514 static int 515 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, 516 struct nvkm_memory **pmemory) 517 { 518 struct gk20a_instmem *imem = gk20a_instmem(base); 519 struct nvkm_subdev *subdev = &imem->base.subdev; 520 struct gk20a_instobj *node = NULL; 521 int ret; 522 523 nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, 524 imem->domain ? "IOMMU" : "DMA", size, align); 525 526 /* Round size and align to page bounds */ 527 size = max(roundup(size, PAGE_SIZE), PAGE_SIZE); 528 align = max(roundup(align, PAGE_SIZE), PAGE_SIZE); 529 530 if (imem->domain) 531 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT, 532 align, &node); 533 else 534 ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT, 535 align, &node); 536 *pmemory = node ? &node->base.memory : NULL; 537 if (ret) 538 return ret; 539 540 node->imem = imem; 541 542 nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", 543 size, align, (u64)node->mn->offset << 12); 544 545 return 0; 546 } 547 548 static void * 549 gk20a_instmem_dtor(struct nvkm_instmem *base) 550 { 551 struct gk20a_instmem *imem = gk20a_instmem(base); 552 553 /* perform some sanity checks... */ 554 if (!list_empty(&imem->vaddr_lru)) 555 nvkm_warn(&base->subdev, "instobj LRU not empty!\n"); 556 557 if (imem->vaddr_use != 0) 558 nvkm_warn(&base->subdev, "instobj vmap area not empty! " 559 "0x%x bytes still mapped\n", imem->vaddr_use); 560 561 return imem; 562 } 563 564 static const struct nvkm_instmem_func 565 gk20a_instmem = { 566 .dtor = gk20a_instmem_dtor, 567 .suspend = nv04_instmem_suspend, 568 .resume = nv04_instmem_resume, 569 .memory_new = gk20a_instobj_new, 570 .zero = false, 571 }; 572 573 int 574 gk20a_instmem_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, 575 struct nvkm_instmem **pimem) 576 { 577 struct nvkm_device_tegra *tdev = device->func->tegra(device); 578 struct gk20a_instmem *imem; 579 580 if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL))) 581 return -ENOMEM; 582 nvkm_instmem_ctor(&gk20a_instmem, device, type, inst, &imem->base); 583 mutex_init(&imem->lock); 584 *pimem = &imem->base; 585 586 /* do not allow more than 1MB of CPU-mapped instmem */ 587 imem->vaddr_use = 0; 588 imem->vaddr_max = 0x100000; 589 INIT_LIST_HEAD(&imem->vaddr_lru); 590 591 if (tdev->iommu.domain) { 592 imem->mm_mutex = &tdev->iommu.mutex; 593 imem->mm = &tdev->iommu.mm; 594 imem->domain = tdev->iommu.domain; 595 imem->iommu_pgshift = tdev->iommu.pgshift; 596 imem->iommu_bit = tdev->func->iommu_bit; 597 598 nvkm_info(&imem->base.subdev, "using IOMMU\n"); 599 } else { 600 imem->attrs = DMA_ATTR_WEAK_ORDERING | 601 DMA_ATTR_WRITE_COMBINE; 602 603 nvkm_info(&imem->base.subdev, "using DMA API\n"); 604 } 605 606 return 0; 607 } 608