xref: /linux/drivers/gpu/drm/nouveau/nvkm/subdev/gsp/r535.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 /*
2  * Copyright 2023 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "priv.h"
23 
24 #include <core/pci.h>
25 #include <subdev/timer.h>
26 #include <subdev/vfn.h>
27 #include <engine/fifo/chan.h>
28 #include <engine/sec2.h>
29 
30 #include <nvfw/fw.h>
31 
32 #include <nvrm/nvtypes.h>
33 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0000.h>
34 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0005.h>
35 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0080.h>
36 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl2080.h>
37 #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080event.h>
38 #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080gpu.h>
39 #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080internal.h>
40 #include <nvrm/535.113.01/common/sdk/nvidia/inc/nvos.h>
41 #include <nvrm/535.113.01/common/shared/msgq/inc/msgq/msgq_priv.h>
42 #include <nvrm/535.113.01/common/uproc/os/common/include/libos_init_args.h>
43 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/gsp/gsp_fw_sr_meta.h>
44 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/gsp/gsp_fw_wpr_meta.h>
45 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/rmRiscvUcode.h>
46 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/rmgspseq.h>
47 #include <nvrm/535.113.01/nvidia/generated/g_allclasses.h>
48 #include <nvrm/535.113.01/nvidia/generated/g_os_nvoc.h>
49 #include <nvrm/535.113.01/nvidia/generated/g_rpc-structures.h>
50 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_fw_heap.h>
51 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_init_args.h>
52 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_static_config.h>
53 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/intr/engine_idx.h>
54 #include <nvrm/535.113.01/nvidia/kernel/inc/vgpu/rpc_global_enums.h>
55 
56 #include <linux/acpi.h>
57 
58 #define GSP_MSG_MIN_SIZE GSP_PAGE_SIZE
59 #define GSP_MSG_MAX_SIZE GSP_PAGE_MIN_SIZE * 16
60 
61 struct r535_gsp_msg {
62 	u8 auth_tag_buffer[16];
63 	u8 aad_buffer[16];
64 	u32 checksum;
65 	u32 sequence;
66 	u32 elem_count;
67 	u32 pad;
68 	u8  data[];
69 };
70 
71 #define GSP_MSG_HDR_SIZE offsetof(struct r535_gsp_msg, data)
72 
73 static int
74 r535_rpc_status_to_errno(uint32_t rpc_status)
75 {
76 	switch (rpc_status) {
77 	case 0x55: /* NV_ERR_NOT_READY */
78 	case 0x66: /* NV_ERR_TIMEOUT_RETRY */
79 		return -EAGAIN;
80 	case 0x51: /* NV_ERR_NO_MEMORY */
81 		return -ENOMEM;
82 	default:
83 		return -EINVAL;
84 	}
85 }
86 
87 static void *
88 r535_gsp_msgq_wait(struct nvkm_gsp *gsp, u32 repc, u32 *prepc, int *ptime)
89 {
90 	struct r535_gsp_msg *mqe;
91 	u32 size, rptr = *gsp->msgq.rptr;
92 	int used;
93 	u8 *msg;
94 	u32 len;
95 
96 	size = DIV_ROUND_UP(GSP_MSG_HDR_SIZE + repc, GSP_PAGE_SIZE);
97 	if (WARN_ON(!size || size >= gsp->msgq.cnt))
98 		return ERR_PTR(-EINVAL);
99 
100 	do {
101 		u32 wptr = *gsp->msgq.wptr;
102 
103 		used = wptr + gsp->msgq.cnt - rptr;
104 		if (used >= gsp->msgq.cnt)
105 			used -= gsp->msgq.cnt;
106 		if (used >= size)
107 			break;
108 
109 		usleep_range(1, 2);
110 	} while (--(*ptime));
111 
112 	if (WARN_ON(!*ptime))
113 		return ERR_PTR(-ETIMEDOUT);
114 
115 	mqe = (void *)((u8 *)gsp->shm.msgq.ptr + 0x1000 + rptr * 0x1000);
116 
117 	if (prepc) {
118 		*prepc = (used * GSP_PAGE_SIZE) - sizeof(*mqe);
119 		return mqe->data;
120 	}
121 
122 	msg = kvmalloc(repc, GFP_KERNEL);
123 	if (!msg)
124 		return ERR_PTR(-ENOMEM);
125 
126 	len = ((gsp->msgq.cnt - rptr) * GSP_PAGE_SIZE) - sizeof(*mqe);
127 	len = min_t(u32, repc, len);
128 	memcpy(msg, mqe->data, len);
129 
130 	rptr += DIV_ROUND_UP(len, GSP_PAGE_SIZE);
131 	if (rptr == gsp->msgq.cnt)
132 		rptr = 0;
133 
134 	repc -= len;
135 
136 	if (repc) {
137 		mqe = (void *)((u8 *)gsp->shm.msgq.ptr + 0x1000 + 0 * 0x1000);
138 		memcpy(msg + len, mqe, repc);
139 
140 		rptr += DIV_ROUND_UP(repc, GSP_PAGE_SIZE);
141 	}
142 
143 	mb();
144 	(*gsp->msgq.rptr) = rptr;
145 	return msg;
146 }
147 
148 static void *
149 r535_gsp_msgq_recv(struct nvkm_gsp *gsp, u32 repc, int *ptime)
150 {
151 	return r535_gsp_msgq_wait(gsp, repc, NULL, ptime);
152 }
153 
154 static int
155 r535_gsp_cmdq_push(struct nvkm_gsp *gsp, void *argv)
156 {
157 	struct r535_gsp_msg *cmd = container_of(argv, typeof(*cmd), data);
158 	struct r535_gsp_msg *cqe;
159 	u32 argc = cmd->checksum;
160 	u64 *ptr = (void *)cmd;
161 	u64 *end;
162 	u64 csum = 0;
163 	int free, time = 1000000;
164 	u32 wptr, size;
165 	u32 off = 0;
166 
167 	argc = ALIGN(GSP_MSG_HDR_SIZE + argc, GSP_PAGE_SIZE);
168 
169 	end = (u64 *)((char *)ptr + argc);
170 	cmd->pad = 0;
171 	cmd->checksum = 0;
172 	cmd->sequence = gsp->cmdq.seq++;
173 	cmd->elem_count = DIV_ROUND_UP(argc, 0x1000);
174 
175 	while (ptr < end)
176 		csum ^= *ptr++;
177 
178 	cmd->checksum = upper_32_bits(csum) ^ lower_32_bits(csum);
179 
180 	wptr = *gsp->cmdq.wptr;
181 	do {
182 		do {
183 			free = *gsp->cmdq.rptr + gsp->cmdq.cnt - wptr - 1;
184 			if (free >= gsp->cmdq.cnt)
185 				free -= gsp->cmdq.cnt;
186 			if (free >= 1)
187 				break;
188 
189 			usleep_range(1, 2);
190 		} while(--time);
191 
192 		if (WARN_ON(!time)) {
193 			kvfree(cmd);
194 			return -ETIMEDOUT;
195 		}
196 
197 		cqe = (void *)((u8 *)gsp->shm.cmdq.ptr + 0x1000 + wptr * 0x1000);
198 		size = min_t(u32, argc, (gsp->cmdq.cnt - wptr) * GSP_PAGE_SIZE);
199 		memcpy(cqe, (u8 *)cmd + off, size);
200 
201 		wptr += DIV_ROUND_UP(size, 0x1000);
202 		if (wptr == gsp->cmdq.cnt)
203 			wptr = 0;
204 
205 		off  += size;
206 		argc -= size;
207 	} while(argc);
208 
209 	nvkm_trace(&gsp->subdev, "cmdq: wptr %d\n", wptr);
210 	wmb();
211 	(*gsp->cmdq.wptr) = wptr;
212 	mb();
213 
214 	nvkm_falcon_wr32(&gsp->falcon, 0xc00, 0x00000000);
215 
216 	kvfree(cmd);
217 	return 0;
218 }
219 
220 static void *
221 r535_gsp_cmdq_get(struct nvkm_gsp *gsp, u32 argc)
222 {
223 	struct r535_gsp_msg *cmd;
224 	u32 size = GSP_MSG_HDR_SIZE + argc;
225 
226 	size = ALIGN(size, GSP_MSG_MIN_SIZE);
227 	cmd = kvzalloc(size, GFP_KERNEL);
228 	if (!cmd)
229 		return ERR_PTR(-ENOMEM);
230 
231 	cmd->checksum = argc;
232 	return cmd->data;
233 }
234 
235 struct nvfw_gsp_rpc {
236 	u32 header_version;
237 	u32 signature;
238 	u32 length;
239 	u32 function;
240 	u32 rpc_result;
241 	u32 rpc_result_private;
242 	u32 sequence;
243 	union {
244 		u32 spare;
245 		u32 cpuRmGfid;
246 	};
247 	u8  data[];
248 };
249 
250 static void
251 r535_gsp_msg_done(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg)
252 {
253 	kvfree(msg);
254 }
255 
256 static void
257 r535_gsp_msg_dump(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg, int lvl)
258 {
259 	if (gsp->subdev.debug >= lvl) {
260 		nvkm_printk__(&gsp->subdev, lvl, info,
261 			      "msg fn:%d len:0x%x/0x%zx res:0x%x resp:0x%x\n",
262 			      msg->function, msg->length, msg->length - sizeof(*msg),
263 			      msg->rpc_result, msg->rpc_result_private);
264 		print_hex_dump(KERN_INFO, "msg: ", DUMP_PREFIX_OFFSET, 16, 1,
265 			       msg->data, msg->length - sizeof(*msg), true);
266 	}
267 }
268 
269 static struct nvfw_gsp_rpc *
270 r535_gsp_msg_recv(struct nvkm_gsp *gsp, int fn, u32 repc)
271 {
272 	struct nvkm_subdev *subdev = &gsp->subdev;
273 	struct nvfw_gsp_rpc *msg;
274 	int time = 4000000, i;
275 	u32 size;
276 
277 retry:
278 	msg = r535_gsp_msgq_wait(gsp, sizeof(*msg), &size, &time);
279 	if (IS_ERR_OR_NULL(msg))
280 		return msg;
281 
282 	msg = r535_gsp_msgq_recv(gsp, msg->length, &time);
283 	if (IS_ERR_OR_NULL(msg))
284 		return msg;
285 
286 	if (msg->rpc_result) {
287 		r535_gsp_msg_dump(gsp, msg, NV_DBG_ERROR);
288 		r535_gsp_msg_done(gsp, msg);
289 		return ERR_PTR(-EINVAL);
290 	}
291 
292 	r535_gsp_msg_dump(gsp, msg, NV_DBG_TRACE);
293 
294 	if (fn && msg->function == fn) {
295 		if (repc) {
296 			if (msg->length < sizeof(*msg) + repc) {
297 				nvkm_error(subdev, "msg len %d < %zd\n",
298 					   msg->length, sizeof(*msg) + repc);
299 				r535_gsp_msg_dump(gsp, msg, NV_DBG_ERROR);
300 				r535_gsp_msg_done(gsp, msg);
301 				return ERR_PTR(-EIO);
302 			}
303 
304 			return msg;
305 		}
306 
307 		r535_gsp_msg_done(gsp, msg);
308 		return NULL;
309 	}
310 
311 	for (i = 0; i < gsp->msgq.ntfy_nr; i++) {
312 		struct nvkm_gsp_msgq_ntfy *ntfy = &gsp->msgq.ntfy[i];
313 
314 		if (ntfy->fn == msg->function) {
315 			if (ntfy->func)
316 				ntfy->func(ntfy->priv, ntfy->fn, msg->data, msg->length - sizeof(*msg));
317 			break;
318 		}
319 	}
320 
321 	if (i == gsp->msgq.ntfy_nr)
322 		r535_gsp_msg_dump(gsp, msg, NV_DBG_WARN);
323 
324 	r535_gsp_msg_done(gsp, msg);
325 	if (fn)
326 		goto retry;
327 
328 	if (*gsp->msgq.rptr != *gsp->msgq.wptr)
329 		goto retry;
330 
331 	return NULL;
332 }
333 
334 static int
335 r535_gsp_msg_ntfy_add(struct nvkm_gsp *gsp, u32 fn, nvkm_gsp_msg_ntfy_func func, void *priv)
336 {
337 	int ret = 0;
338 
339 	mutex_lock(&gsp->msgq.mutex);
340 	if (WARN_ON(gsp->msgq.ntfy_nr >= ARRAY_SIZE(gsp->msgq.ntfy))) {
341 		ret = -ENOSPC;
342 	} else {
343 		gsp->msgq.ntfy[gsp->msgq.ntfy_nr].fn = fn;
344 		gsp->msgq.ntfy[gsp->msgq.ntfy_nr].func = func;
345 		gsp->msgq.ntfy[gsp->msgq.ntfy_nr].priv = priv;
346 		gsp->msgq.ntfy_nr++;
347 	}
348 	mutex_unlock(&gsp->msgq.mutex);
349 	return ret;
350 }
351 
352 static int
353 r535_gsp_rpc_poll(struct nvkm_gsp *gsp, u32 fn)
354 {
355 	void *repv;
356 
357 	mutex_lock(&gsp->cmdq.mutex);
358 	repv = r535_gsp_msg_recv(gsp, fn, 0);
359 	mutex_unlock(&gsp->cmdq.mutex);
360 	if (IS_ERR(repv))
361 		return PTR_ERR(repv);
362 
363 	return 0;
364 }
365 
366 static void *
367 r535_gsp_rpc_send(struct nvkm_gsp *gsp, void *argv, bool wait, u32 repc)
368 {
369 	struct nvfw_gsp_rpc *rpc = container_of(argv, typeof(*rpc), data);
370 	struct nvfw_gsp_rpc *msg;
371 	u32 fn = rpc->function;
372 	void *repv = NULL;
373 	int ret;
374 
375 	if (gsp->subdev.debug >= NV_DBG_TRACE) {
376 		nvkm_trace(&gsp->subdev, "rpc fn:%d len:0x%x/0x%zx\n", rpc->function,
377 			   rpc->length, rpc->length - sizeof(*rpc));
378 		print_hex_dump(KERN_INFO, "rpc: ", DUMP_PREFIX_OFFSET, 16, 1,
379 			       rpc->data, rpc->length - sizeof(*rpc), true);
380 	}
381 
382 	ret = r535_gsp_cmdq_push(gsp, rpc);
383 	if (ret)
384 		return ERR_PTR(ret);
385 
386 	if (wait) {
387 		msg = r535_gsp_msg_recv(gsp, fn, repc);
388 		if (!IS_ERR_OR_NULL(msg))
389 			repv = msg->data;
390 		else
391 			repv = msg;
392 	}
393 
394 	return repv;
395 }
396 
397 static void
398 r535_gsp_event_dtor(struct nvkm_gsp_event *event)
399 {
400 	struct nvkm_gsp_device *device = event->device;
401 	struct nvkm_gsp_client *client = device->object.client;
402 	struct nvkm_gsp *gsp = client->gsp;
403 
404 	mutex_lock(&gsp->client_id.mutex);
405 	if (event->func) {
406 		list_del(&event->head);
407 		event->func = NULL;
408 	}
409 	mutex_unlock(&gsp->client_id.mutex);
410 
411 	nvkm_gsp_rm_free(&event->object);
412 	event->device = NULL;
413 }
414 
415 static int
416 r535_gsp_device_event_get(struct nvkm_gsp_event *event)
417 {
418 	struct nvkm_gsp_device *device = event->device;
419 	NV2080_CTRL_EVENT_SET_NOTIFICATION_PARAMS *ctrl;
420 
421 	ctrl = nvkm_gsp_rm_ctrl_get(&device->subdevice,
422 				    NV2080_CTRL_CMD_EVENT_SET_NOTIFICATION, sizeof(*ctrl));
423 	if (IS_ERR(ctrl))
424 		return PTR_ERR(ctrl);
425 
426 	ctrl->event = event->id;
427 	ctrl->action = NV2080_CTRL_EVENT_SET_NOTIFICATION_ACTION_REPEAT;
428 	return nvkm_gsp_rm_ctrl_wr(&device->subdevice, ctrl);
429 }
430 
431 static int
432 r535_gsp_device_event_ctor(struct nvkm_gsp_device *device, u32 handle, u32 id,
433 			   nvkm_gsp_event_func func, struct nvkm_gsp_event *event)
434 {
435 	struct nvkm_gsp_client *client = device->object.client;
436 	struct nvkm_gsp *gsp = client->gsp;
437 	NV0005_ALLOC_PARAMETERS *args;
438 	int ret;
439 
440 	args = nvkm_gsp_rm_alloc_get(&device->subdevice, handle,
441 				     NV01_EVENT_KERNEL_CALLBACK_EX, sizeof(*args),
442 				     &event->object);
443 	if (IS_ERR(args))
444 		return PTR_ERR(args);
445 
446 	args->hParentClient = client->object.handle;
447 	args->hSrcResource = 0;
448 	args->hClass = NV01_EVENT_KERNEL_CALLBACK_EX;
449 	args->notifyIndex = NV01_EVENT_CLIENT_RM | id;
450 	args->data = NULL;
451 
452 	ret = nvkm_gsp_rm_alloc_wr(&event->object, args);
453 	if (ret)
454 		return ret;
455 
456 	event->device = device;
457 	event->id = id;
458 
459 	ret = r535_gsp_device_event_get(event);
460 	if (ret) {
461 		nvkm_gsp_event_dtor(event);
462 		return ret;
463 	}
464 
465 	mutex_lock(&gsp->client_id.mutex);
466 	event->func = func;
467 	list_add(&event->head, &client->events);
468 	mutex_unlock(&gsp->client_id.mutex);
469 	return 0;
470 }
471 
472 static void
473 r535_gsp_device_dtor(struct nvkm_gsp_device *device)
474 {
475 	nvkm_gsp_rm_free(&device->subdevice);
476 	nvkm_gsp_rm_free(&device->object);
477 }
478 
479 static int
480 r535_gsp_subdevice_ctor(struct nvkm_gsp_device *device)
481 {
482 	NV2080_ALLOC_PARAMETERS *args;
483 
484 	return nvkm_gsp_rm_alloc(&device->object, 0x5d1d0000, NV20_SUBDEVICE_0, sizeof(*args),
485 				 &device->subdevice);
486 }
487 
488 static int
489 r535_gsp_device_ctor(struct nvkm_gsp_client *client, struct nvkm_gsp_device *device)
490 {
491 	NV0080_ALLOC_PARAMETERS *args;
492 	int ret;
493 
494 	args = nvkm_gsp_rm_alloc_get(&client->object, 0xde1d0000, NV01_DEVICE_0, sizeof(*args),
495 				     &device->object);
496 	if (IS_ERR(args))
497 		return PTR_ERR(args);
498 
499 	args->hClientShare = client->object.handle;
500 
501 	ret = nvkm_gsp_rm_alloc_wr(&device->object, args);
502 	if (ret)
503 		return ret;
504 
505 	ret = r535_gsp_subdevice_ctor(device);
506 	if (ret)
507 		nvkm_gsp_rm_free(&device->object);
508 
509 	return ret;
510 }
511 
512 static void
513 r535_gsp_client_dtor(struct nvkm_gsp_client *client)
514 {
515 	struct nvkm_gsp *gsp = client->gsp;
516 
517 	nvkm_gsp_rm_free(&client->object);
518 
519 	mutex_lock(&gsp->client_id.mutex);
520 	idr_remove(&gsp->client_id.idr, client->object.handle & 0xffff);
521 	mutex_unlock(&gsp->client_id.mutex);
522 
523 	client->gsp = NULL;
524 }
525 
526 static int
527 r535_gsp_client_ctor(struct nvkm_gsp *gsp, struct nvkm_gsp_client *client)
528 {
529 	NV0000_ALLOC_PARAMETERS *args;
530 	int ret;
531 
532 	mutex_lock(&gsp->client_id.mutex);
533 	ret = idr_alloc(&gsp->client_id.idr, client, 0, 0xffff + 1, GFP_KERNEL);
534 	mutex_unlock(&gsp->client_id.mutex);
535 	if (ret < 0)
536 		return ret;
537 
538 	client->gsp = gsp;
539 	client->object.client = client;
540 	INIT_LIST_HEAD(&client->events);
541 
542 	args = nvkm_gsp_rm_alloc_get(&client->object, 0xc1d00000 | ret, NV01_ROOT, sizeof(*args),
543 				     &client->object);
544 	if (IS_ERR(args)) {
545 		r535_gsp_client_dtor(client);
546 		return ret;
547 	}
548 
549 	args->hClient = client->object.handle;
550 	args->processID = ~0;
551 
552 	ret = nvkm_gsp_rm_alloc_wr(&client->object, args);
553 	if (ret) {
554 		r535_gsp_client_dtor(client);
555 		return ret;
556 	}
557 
558 	return 0;
559 }
560 
561 static int
562 r535_gsp_rpc_rm_free(struct nvkm_gsp_object *object)
563 {
564 	struct nvkm_gsp_client *client = object->client;
565 	struct nvkm_gsp *gsp = client->gsp;
566 	rpc_free_v03_00 *rpc;
567 
568 	nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x free\n",
569 		   client->object.handle, object->handle);
570 
571 	rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_FREE, sizeof(*rpc));
572 	if (WARN_ON(IS_ERR_OR_NULL(rpc)))
573 		return -EIO;
574 
575 	rpc->params.hRoot = client->object.handle;
576 	rpc->params.hObjectParent = 0;
577 	rpc->params.hObjectOld = object->handle;
578 	return nvkm_gsp_rpc_wr(gsp, rpc, true);
579 }
580 
581 static void
582 r535_gsp_rpc_rm_alloc_done(struct nvkm_gsp_object *object, void *repv)
583 {
584 	rpc_gsp_rm_alloc_v03_00 *rpc = container_of(repv, typeof(*rpc), params);
585 
586 	nvkm_gsp_rpc_done(object->client->gsp, rpc);
587 }
588 
589 static void *
590 r535_gsp_rpc_rm_alloc_push(struct nvkm_gsp_object *object, void *argv, u32 repc)
591 {
592 	rpc_gsp_rm_alloc_v03_00 *rpc = container_of(argv, typeof(*rpc), params);
593 	struct nvkm_gsp *gsp = object->client->gsp;
594 	void *ret;
595 
596 	rpc = nvkm_gsp_rpc_push(gsp, rpc, true, sizeof(*rpc) + repc);
597 	if (IS_ERR_OR_NULL(rpc))
598 		return rpc;
599 
600 	if (rpc->status) {
601 		ret = ERR_PTR(r535_rpc_status_to_errno(rpc->status));
602 		if (PTR_ERR(ret) != -EAGAIN)
603 			nvkm_error(&gsp->subdev, "RM_ALLOC: 0x%x\n", rpc->status);
604 	} else {
605 		ret = repc ? rpc->params : NULL;
606 	}
607 
608 	nvkm_gsp_rpc_done(gsp, rpc);
609 
610 	return ret;
611 }
612 
613 static void *
614 r535_gsp_rpc_rm_alloc_get(struct nvkm_gsp_object *object, u32 oclass, u32 argc)
615 {
616 	struct nvkm_gsp_client *client = object->client;
617 	struct nvkm_gsp *gsp = client->gsp;
618 	rpc_gsp_rm_alloc_v03_00 *rpc;
619 
620 	nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x new obj:0x%08x cls:0x%08x argc:%d\n",
621 		   client->object.handle, object->parent->handle, object->handle, oclass, argc);
622 
623 	rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_RM_ALLOC, sizeof(*rpc) + argc);
624 	if (IS_ERR(rpc))
625 		return rpc;
626 
627 	rpc->hClient = client->object.handle;
628 	rpc->hParent = object->parent->handle;
629 	rpc->hObject = object->handle;
630 	rpc->hClass = oclass;
631 	rpc->status = 0;
632 	rpc->paramsSize = argc;
633 	return rpc->params;
634 }
635 
636 static void
637 r535_gsp_rpc_rm_ctrl_done(struct nvkm_gsp_object *object, void *repv)
638 {
639 	rpc_gsp_rm_control_v03_00 *rpc = container_of(repv, typeof(*rpc), params);
640 
641 	if (!repv)
642 		return;
643 	nvkm_gsp_rpc_done(object->client->gsp, rpc);
644 }
645 
646 static int
647 r535_gsp_rpc_rm_ctrl_push(struct nvkm_gsp_object *object, void **argv, u32 repc)
648 {
649 	rpc_gsp_rm_control_v03_00 *rpc = container_of((*argv), typeof(*rpc), params);
650 	struct nvkm_gsp *gsp = object->client->gsp;
651 	int ret = 0;
652 
653 	rpc = nvkm_gsp_rpc_push(gsp, rpc, true, repc);
654 	if (IS_ERR_OR_NULL(rpc)) {
655 		*argv = NULL;
656 		return PTR_ERR(rpc);
657 	}
658 
659 	if (rpc->status) {
660 		ret = r535_rpc_status_to_errno(rpc->status);
661 		if (ret != -EAGAIN)
662 			nvkm_error(&gsp->subdev, "cli:0x%08x obj:0x%08x ctrl cmd:0x%08x failed: 0x%08x\n",
663 				   object->client->object.handle, object->handle, rpc->cmd, rpc->status);
664 	}
665 
666 	if (repc)
667 		*argv = rpc->params;
668 	else
669 		nvkm_gsp_rpc_done(gsp, rpc);
670 
671 	return ret;
672 }
673 
674 static void *
675 r535_gsp_rpc_rm_ctrl_get(struct nvkm_gsp_object *object, u32 cmd, u32 argc)
676 {
677 	struct nvkm_gsp_client *client = object->client;
678 	struct nvkm_gsp *gsp = client->gsp;
679 	rpc_gsp_rm_control_v03_00 *rpc;
680 
681 	nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x ctrl cmd:0x%08x argc:%d\n",
682 		   client->object.handle, object->handle, cmd, argc);
683 
684 	rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_RM_CONTROL, sizeof(*rpc) + argc);
685 	if (IS_ERR(rpc))
686 		return rpc;
687 
688 	rpc->hClient    = client->object.handle;
689 	rpc->hObject    = object->handle;
690 	rpc->cmd	= cmd;
691 	rpc->status     = 0;
692 	rpc->paramsSize = argc;
693 	return rpc->params;
694 }
695 
696 static void
697 r535_gsp_rpc_done(struct nvkm_gsp *gsp, void *repv)
698 {
699 	struct nvfw_gsp_rpc *rpc = container_of(repv, typeof(*rpc), data);
700 
701 	r535_gsp_msg_done(gsp, rpc);
702 }
703 
704 static void *
705 r535_gsp_rpc_get(struct nvkm_gsp *gsp, u32 fn, u32 argc)
706 {
707 	struct nvfw_gsp_rpc *rpc;
708 
709 	rpc = r535_gsp_cmdq_get(gsp, ALIGN(sizeof(*rpc) + argc, sizeof(u64)));
710 	if (IS_ERR(rpc))
711 		return ERR_CAST(rpc);
712 
713 	rpc->header_version = 0x03000000;
714 	rpc->signature = ('C' << 24) | ('P' << 16) | ('R' << 8) | 'V';
715 	rpc->function = fn;
716 	rpc->rpc_result = 0xffffffff;
717 	rpc->rpc_result_private = 0xffffffff;
718 	rpc->length = sizeof(*rpc) + argc;
719 	return rpc->data;
720 }
721 
722 static void *
723 r535_gsp_rpc_push(struct nvkm_gsp *gsp, void *argv, bool wait, u32 repc)
724 {
725 	struct nvfw_gsp_rpc *rpc = container_of(argv, typeof(*rpc), data);
726 	struct r535_gsp_msg *cmd = container_of((void *)rpc, typeof(*cmd), data);
727 	const u32 max_msg_size = (16 * 0x1000) - sizeof(struct r535_gsp_msg);
728 	const u32 max_rpc_size = max_msg_size - sizeof(*rpc);
729 	u32 rpc_size = rpc->length - sizeof(*rpc);
730 	void *repv;
731 
732 	mutex_lock(&gsp->cmdq.mutex);
733 	if (rpc_size > max_rpc_size) {
734 		const u32 fn = rpc->function;
735 
736 		/* Adjust length, and send initial RPC. */
737 		rpc->length = sizeof(*rpc) + max_rpc_size;
738 		cmd->checksum = rpc->length;
739 
740 		repv = r535_gsp_rpc_send(gsp, argv, false, 0);
741 		if (IS_ERR(repv))
742 			goto done;
743 
744 		argv += max_rpc_size;
745 		rpc_size -= max_rpc_size;
746 
747 		/* Remaining chunks sent as CONTINUATION_RECORD RPCs. */
748 		while (rpc_size) {
749 			u32 size = min(rpc_size, max_rpc_size);
750 			void *next;
751 
752 			next = r535_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_CONTINUATION_RECORD, size);
753 			if (IS_ERR(next)) {
754 				repv = next;
755 				goto done;
756 			}
757 
758 			memcpy(next, argv, size);
759 
760 			repv = r535_gsp_rpc_send(gsp, next, false, 0);
761 			if (IS_ERR(repv))
762 				goto done;
763 
764 			argv += size;
765 			rpc_size -= size;
766 		}
767 
768 		/* Wait for reply. */
769 		if (wait) {
770 			rpc = r535_gsp_msg_recv(gsp, fn, repc);
771 			if (!IS_ERR_OR_NULL(rpc))
772 				repv = rpc->data;
773 			else
774 				repv = rpc;
775 		} else {
776 			repv = NULL;
777 		}
778 	} else {
779 		repv = r535_gsp_rpc_send(gsp, argv, wait, repc);
780 	}
781 
782 done:
783 	mutex_unlock(&gsp->cmdq.mutex);
784 	return repv;
785 }
786 
787 const struct nvkm_gsp_rm
788 r535_gsp_rm = {
789 	.rpc_get = r535_gsp_rpc_get,
790 	.rpc_push = r535_gsp_rpc_push,
791 	.rpc_done = r535_gsp_rpc_done,
792 
793 	.rm_ctrl_get = r535_gsp_rpc_rm_ctrl_get,
794 	.rm_ctrl_push = r535_gsp_rpc_rm_ctrl_push,
795 	.rm_ctrl_done = r535_gsp_rpc_rm_ctrl_done,
796 
797 	.rm_alloc_get = r535_gsp_rpc_rm_alloc_get,
798 	.rm_alloc_push = r535_gsp_rpc_rm_alloc_push,
799 	.rm_alloc_done = r535_gsp_rpc_rm_alloc_done,
800 
801 	.rm_free = r535_gsp_rpc_rm_free,
802 
803 	.client_ctor = r535_gsp_client_ctor,
804 	.client_dtor = r535_gsp_client_dtor,
805 
806 	.device_ctor = r535_gsp_device_ctor,
807 	.device_dtor = r535_gsp_device_dtor,
808 
809 	.event_ctor = r535_gsp_device_event_ctor,
810 	.event_dtor = r535_gsp_event_dtor,
811 };
812 
813 static void
814 r535_gsp_msgq_work(struct work_struct *work)
815 {
816 	struct nvkm_gsp *gsp = container_of(work, typeof(*gsp), msgq.work);
817 
818 	mutex_lock(&gsp->cmdq.mutex);
819 	if (*gsp->msgq.rptr != *gsp->msgq.wptr)
820 		r535_gsp_msg_recv(gsp, 0, 0);
821 	mutex_unlock(&gsp->cmdq.mutex);
822 }
823 
824 static irqreturn_t
825 r535_gsp_intr(struct nvkm_inth *inth)
826 {
827 	struct nvkm_gsp *gsp = container_of(inth, typeof(*gsp), subdev.inth);
828 	struct nvkm_subdev *subdev = &gsp->subdev;
829 	u32 intr = nvkm_falcon_rd32(&gsp->falcon, 0x0008);
830 	u32 inte = nvkm_falcon_rd32(&gsp->falcon, gsp->falcon.func->addr2 +
831 						  gsp->falcon.func->riscv_irqmask);
832 	u32 stat = intr & inte;
833 
834 	if (!stat) {
835 		nvkm_debug(subdev, "inte %08x %08x\n", intr, inte);
836 		return IRQ_NONE;
837 	}
838 
839 	if (stat & 0x00000040) {
840 		nvkm_falcon_wr32(&gsp->falcon, 0x004, 0x00000040);
841 		schedule_work(&gsp->msgq.work);
842 		stat &= ~0x00000040;
843 	}
844 
845 	if (stat) {
846 		nvkm_error(subdev, "intr %08x\n", stat);
847 		nvkm_falcon_wr32(&gsp->falcon, 0x014, stat);
848 		nvkm_falcon_wr32(&gsp->falcon, 0x004, stat);
849 	}
850 
851 	nvkm_falcon_intr_retrigger(&gsp->falcon);
852 	return IRQ_HANDLED;
853 }
854 
855 static int
856 r535_gsp_intr_get_table(struct nvkm_gsp *gsp)
857 {
858 	NV2080_CTRL_INTERNAL_INTR_GET_KERNEL_TABLE_PARAMS *ctrl;
859 	int ret = 0;
860 
861 	ctrl = nvkm_gsp_rm_ctrl_get(&gsp->internal.device.subdevice,
862 				    NV2080_CTRL_CMD_INTERNAL_INTR_GET_KERNEL_TABLE, sizeof(*ctrl));
863 	if (IS_ERR(ctrl))
864 		return PTR_ERR(ctrl);
865 
866 	ret = nvkm_gsp_rm_ctrl_push(&gsp->internal.device.subdevice, &ctrl, sizeof(*ctrl));
867 	if (WARN_ON(ret)) {
868 		nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl);
869 		return ret;
870 	}
871 
872 	for (unsigned i = 0; i < ctrl->tableLen; i++) {
873 		enum nvkm_subdev_type type;
874 		int inst;
875 
876 		nvkm_debug(&gsp->subdev,
877 			   "%2d: engineIdx %3d pmcIntrMask %08x stall %08x nonStall %08x\n", i,
878 			   ctrl->table[i].engineIdx, ctrl->table[i].pmcIntrMask,
879 			   ctrl->table[i].vectorStall, ctrl->table[i].vectorNonStall);
880 
881 		switch (ctrl->table[i].engineIdx) {
882 		case MC_ENGINE_IDX_GSP:
883 			type = NVKM_SUBDEV_GSP;
884 			inst = 0;
885 			break;
886 		case MC_ENGINE_IDX_DISP:
887 			type = NVKM_ENGINE_DISP;
888 			inst = 0;
889 			break;
890 		case MC_ENGINE_IDX_CE0 ... MC_ENGINE_IDX_CE9:
891 			type = NVKM_ENGINE_CE;
892 			inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_CE0;
893 			break;
894 		case MC_ENGINE_IDX_GR0:
895 			type = NVKM_ENGINE_GR;
896 			inst = 0;
897 			break;
898 		case MC_ENGINE_IDX_NVDEC0 ... MC_ENGINE_IDX_NVDEC7:
899 			type = NVKM_ENGINE_NVDEC;
900 			inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_NVDEC0;
901 			break;
902 		case MC_ENGINE_IDX_MSENC ... MC_ENGINE_IDX_MSENC2:
903 			type = NVKM_ENGINE_NVENC;
904 			inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_MSENC;
905 			break;
906 		case MC_ENGINE_IDX_NVJPEG0 ... MC_ENGINE_IDX_NVJPEG7:
907 			type = NVKM_ENGINE_NVJPG;
908 			inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_NVJPEG0;
909 			break;
910 		case MC_ENGINE_IDX_OFA0:
911 			type = NVKM_ENGINE_OFA;
912 			inst = 0;
913 			break;
914 		default:
915 			continue;
916 		}
917 
918 		if (WARN_ON(gsp->intr_nr == ARRAY_SIZE(gsp->intr))) {
919 			ret = -ENOSPC;
920 			break;
921 		}
922 
923 		gsp->intr[gsp->intr_nr].type = type;
924 		gsp->intr[gsp->intr_nr].inst = inst;
925 		gsp->intr[gsp->intr_nr].stall = ctrl->table[i].vectorStall;
926 		gsp->intr[gsp->intr_nr].nonstall = ctrl->table[i].vectorNonStall;
927 		gsp->intr_nr++;
928 	}
929 
930 	nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl);
931 	return ret;
932 }
933 
934 static int
935 r535_gsp_rpc_get_gsp_static_info(struct nvkm_gsp *gsp)
936 {
937 	GspStaticConfigInfo *rpc;
938 	int last_usable = -1;
939 
940 	rpc = nvkm_gsp_rpc_rd(gsp, NV_VGPU_MSG_FUNCTION_GET_GSP_STATIC_INFO, sizeof(*rpc));
941 	if (IS_ERR(rpc))
942 		return PTR_ERR(rpc);
943 
944 	gsp->internal.client.object.client = &gsp->internal.client;
945 	gsp->internal.client.object.parent = NULL;
946 	gsp->internal.client.object.handle = rpc->hInternalClient;
947 	gsp->internal.client.gsp = gsp;
948 
949 	gsp->internal.device.object.client = &gsp->internal.client;
950 	gsp->internal.device.object.parent = &gsp->internal.client.object;
951 	gsp->internal.device.object.handle = rpc->hInternalDevice;
952 
953 	gsp->internal.device.subdevice.client = &gsp->internal.client;
954 	gsp->internal.device.subdevice.parent = &gsp->internal.device.object;
955 	gsp->internal.device.subdevice.handle = rpc->hInternalSubdevice;
956 
957 	gsp->bar.rm_bar1_pdb = rpc->bar1PdeBase;
958 	gsp->bar.rm_bar2_pdb = rpc->bar2PdeBase;
959 
960 	for (int i = 0; i < rpc->fbRegionInfoParams.numFBRegions; i++) {
961 		NV2080_CTRL_CMD_FB_GET_FB_REGION_FB_REGION_INFO *reg =
962 			&rpc->fbRegionInfoParams.fbRegion[i];
963 
964 		nvkm_debug(&gsp->subdev, "fb region %d: "
965 			   "%016llx-%016llx rsvd:%016llx perf:%08x comp:%d iso:%d prot:%d\n", i,
966 			   reg->base, reg->limit, reg->reserved, reg->performance,
967 			   reg->supportCompressed, reg->supportISO, reg->bProtected);
968 
969 		if (!reg->reserved && !reg->bProtected) {
970 			if (reg->supportCompressed && reg->supportISO &&
971 			    !WARN_ON_ONCE(gsp->fb.region_nr >= ARRAY_SIZE(gsp->fb.region))) {
972 					const u64 size = (reg->limit + 1) - reg->base;
973 
974 					gsp->fb.region[gsp->fb.region_nr].addr = reg->base;
975 					gsp->fb.region[gsp->fb.region_nr].size = size;
976 					gsp->fb.region_nr++;
977 			}
978 
979 			last_usable = i;
980 		}
981 	}
982 
983 	if (last_usable >= 0) {
984 		u32 rsvd_base = rpc->fbRegionInfoParams.fbRegion[last_usable].limit + 1;
985 
986 		gsp->fb.rsvd_size = gsp->fb.heap.addr - rsvd_base;
987 	}
988 
989 	for (int gpc = 0; gpc < ARRAY_SIZE(rpc->tpcInfo); gpc++) {
990 		if (rpc->gpcInfo.gpcMask & BIT(gpc)) {
991 			gsp->gr.tpcs += hweight32(rpc->tpcInfo[gpc].tpcMask);
992 			gsp->gr.gpcs++;
993 		}
994 	}
995 
996 	nvkm_gsp_rpc_done(gsp, rpc);
997 	return 0;
998 }
999 
1000 static void
1001 nvkm_gsp_mem_dtor(struct nvkm_gsp *gsp, struct nvkm_gsp_mem *mem)
1002 {
1003 	if (mem->data) {
1004 		/*
1005 		 * Poison the buffer to catch any unexpected access from
1006 		 * GSP-RM if the buffer was prematurely freed.
1007 		 */
1008 		memset(mem->data, 0xFF, mem->size);
1009 
1010 		dma_free_coherent(gsp->subdev.device->dev, mem->size, mem->data, mem->addr);
1011 		memset(mem, 0, sizeof(*mem));
1012 	}
1013 }
1014 
1015 static int
1016 nvkm_gsp_mem_ctor(struct nvkm_gsp *gsp, size_t size, struct nvkm_gsp_mem *mem)
1017 {
1018 	mem->size = size;
1019 	mem->data = dma_alloc_coherent(gsp->subdev.device->dev, size, &mem->addr, GFP_KERNEL);
1020 	if (WARN_ON(!mem->data))
1021 		return -ENOMEM;
1022 
1023 	return 0;
1024 }
1025 
1026 static int
1027 r535_gsp_postinit(struct nvkm_gsp *gsp)
1028 {
1029 	struct nvkm_device *device = gsp->subdev.device;
1030 	int ret;
1031 
1032 	ret = r535_gsp_rpc_get_gsp_static_info(gsp);
1033 	if (WARN_ON(ret))
1034 		return ret;
1035 
1036 	INIT_WORK(&gsp->msgq.work, r535_gsp_msgq_work);
1037 
1038 	ret = r535_gsp_intr_get_table(gsp);
1039 	if (WARN_ON(ret))
1040 		return ret;
1041 
1042 	ret = nvkm_gsp_intr_stall(gsp, gsp->subdev.type, gsp->subdev.inst);
1043 	if (WARN_ON(ret < 0))
1044 		return ret;
1045 
1046 	ret = nvkm_inth_add(&device->vfn->intr, ret, NVKM_INTR_PRIO_NORMAL, &gsp->subdev,
1047 			    r535_gsp_intr, &gsp->subdev.inth);
1048 	if (WARN_ON(ret))
1049 		return ret;
1050 
1051 	nvkm_inth_allow(&gsp->subdev.inth);
1052 	nvkm_wr32(device, 0x110004, 0x00000040);
1053 
1054 	/* Release the DMA buffers that were needed only for boot and init */
1055 	nvkm_gsp_mem_dtor(gsp, &gsp->boot.fw);
1056 	nvkm_gsp_mem_dtor(gsp, &gsp->libos);
1057 
1058 	return ret;
1059 }
1060 
1061 static int
1062 r535_gsp_rpc_unloading_guest_driver(struct nvkm_gsp *gsp, bool suspend)
1063 {
1064 	rpc_unloading_guest_driver_v1F_07 *rpc;
1065 
1066 	rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_UNLOADING_GUEST_DRIVER, sizeof(*rpc));
1067 	if (IS_ERR(rpc))
1068 		return PTR_ERR(rpc);
1069 
1070 	if (suspend) {
1071 		rpc->bInPMTransition = 1;
1072 		rpc->bGc6Entering = 0;
1073 		rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3;
1074 	} else {
1075 		rpc->bInPMTransition = 0;
1076 		rpc->bGc6Entering = 0;
1077 		rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_0;
1078 	}
1079 
1080 	return nvkm_gsp_rpc_wr(gsp, rpc, true);
1081 }
1082 
1083 /* dword only */
1084 struct nv_gsp_registry_entries {
1085 	const char *name;
1086 	u32 value;
1087 };
1088 
1089 static const struct nv_gsp_registry_entries r535_registry_entries[] = {
1090 	{ "RMSecBusResetEnable", 1 },
1091 	{ "RMForcePcieConfigSave", 1 },
1092 };
1093 #define NV_GSP_REG_NUM_ENTRIES ARRAY_SIZE(r535_registry_entries)
1094 
1095 static int
1096 r535_gsp_rpc_set_registry(struct nvkm_gsp *gsp)
1097 {
1098 	PACKED_REGISTRY_TABLE *rpc;
1099 	char *strings;
1100 	int str_offset;
1101 	int i;
1102 	size_t rpc_size = struct_size(rpc, entries, NV_GSP_REG_NUM_ENTRIES);
1103 
1104 	/* add strings + null terminator */
1105 	for (i = 0; i < NV_GSP_REG_NUM_ENTRIES; i++)
1106 		rpc_size += strlen(r535_registry_entries[i].name) + 1;
1107 
1108 	rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_SET_REGISTRY, rpc_size);
1109 	if (IS_ERR(rpc))
1110 		return PTR_ERR(rpc);
1111 
1112 	rpc->numEntries = NV_GSP_REG_NUM_ENTRIES;
1113 
1114 	str_offset = offsetof(typeof(*rpc), entries[NV_GSP_REG_NUM_ENTRIES]);
1115 	strings = (char *)rpc + str_offset;
1116 	for (i = 0; i < NV_GSP_REG_NUM_ENTRIES; i++) {
1117 		int name_len = strlen(r535_registry_entries[i].name) + 1;
1118 
1119 		rpc->entries[i].nameOffset = str_offset;
1120 		rpc->entries[i].type = 1;
1121 		rpc->entries[i].data = r535_registry_entries[i].value;
1122 		rpc->entries[i].length = 4;
1123 		memcpy(strings, r535_registry_entries[i].name, name_len);
1124 		strings += name_len;
1125 		str_offset += name_len;
1126 	}
1127 	rpc->size = str_offset;
1128 
1129 	return nvkm_gsp_rpc_wr(gsp, rpc, false);
1130 }
1131 
1132 #if defined(CONFIG_ACPI) && defined(CONFIG_X86)
1133 static void
1134 r535_gsp_acpi_caps(acpi_handle handle, CAPS_METHOD_DATA *caps)
1135 {
1136 	const guid_t NVOP_DSM_GUID =
1137 		GUID_INIT(0xA486D8F8, 0x0BDA, 0x471B,
1138 			  0xA7, 0x2B, 0x60, 0x42, 0xA6, 0xB5, 0xBE, 0xE0);
1139 	u64 NVOP_DSM_REV = 0x00000100;
1140 	union acpi_object argv4 = {
1141 		.buffer.type    = ACPI_TYPE_BUFFER,
1142 		.buffer.length  = 4,
1143 		.buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL),
1144 	}, *obj;
1145 
1146 	caps->status = 0xffff;
1147 
1148 	if (!acpi_check_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, BIT_ULL(0x1a)))
1149 		return;
1150 
1151 	obj = acpi_evaluate_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, 0x1a, &argv4);
1152 	if (!obj)
1153 		return;
1154 
1155 	if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) ||
1156 	    WARN_ON(obj->buffer.length != 4))
1157 		return;
1158 
1159 	caps->status = 0;
1160 	caps->optimusCaps = *(u32 *)obj->buffer.pointer;
1161 
1162 	ACPI_FREE(obj);
1163 
1164 	kfree(argv4.buffer.pointer);
1165 }
1166 
1167 static void
1168 r535_gsp_acpi_jt(acpi_handle handle, JT_METHOD_DATA *jt)
1169 {
1170 	const guid_t JT_DSM_GUID =
1171 		GUID_INIT(0xCBECA351L, 0x067B, 0x4924,
1172 			  0x9C, 0xBD, 0xB4, 0x6B, 0x00, 0xB8, 0x6F, 0x34);
1173 	u64 JT_DSM_REV = 0x00000103;
1174 	u32 caps;
1175 	union acpi_object argv4 = {
1176 		.buffer.type    = ACPI_TYPE_BUFFER,
1177 		.buffer.length  = sizeof(caps),
1178 		.buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL),
1179 	}, *obj;
1180 
1181 	jt->status = 0xffff;
1182 
1183 	obj = acpi_evaluate_dsm(handle, &JT_DSM_GUID, JT_DSM_REV, 0x1, &argv4);
1184 	if (!obj)
1185 		return;
1186 
1187 	if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) ||
1188 	    WARN_ON(obj->buffer.length != 4))
1189 		return;
1190 
1191 	jt->status = 0;
1192 	jt->jtCaps = *(u32 *)obj->buffer.pointer;
1193 	jt->jtRevId = (jt->jtCaps & 0xfff00000) >> 20;
1194 	jt->bSBIOSCaps = 0;
1195 
1196 	ACPI_FREE(obj);
1197 
1198 	kfree(argv4.buffer.pointer);
1199 }
1200 
1201 static void
1202 r535_gsp_acpi_mux_id(acpi_handle handle, u32 id, MUX_METHOD_DATA_ELEMENT *mode,
1203 						 MUX_METHOD_DATA_ELEMENT *part)
1204 {
1205 	union acpi_object mux_arg = { ACPI_TYPE_INTEGER };
1206 	struct acpi_object_list input = { 1, &mux_arg };
1207 	acpi_handle iter = NULL, handle_mux = NULL;
1208 	acpi_status status;
1209 	unsigned long long value;
1210 
1211 	mode->status = 0xffff;
1212 	part->status = 0xffff;
1213 
1214 	do {
1215 		status = acpi_get_next_object(ACPI_TYPE_DEVICE, handle, iter, &iter);
1216 		if (ACPI_FAILURE(status) || !iter)
1217 			return;
1218 
1219 		status = acpi_evaluate_integer(iter, "_ADR", NULL, &value);
1220 		if (ACPI_FAILURE(status) || value != id)
1221 			continue;
1222 
1223 		handle_mux = iter;
1224 	} while (!handle_mux);
1225 
1226 	if (!handle_mux)
1227 		return;
1228 
1229 	/* I -think- 0 means "acquire" according to nvidia's driver source */
1230 	input.pointer->integer.type = ACPI_TYPE_INTEGER;
1231 	input.pointer->integer.value = 0;
1232 
1233 	status = acpi_evaluate_integer(handle_mux, "MXDM", &input, &value);
1234 	if (ACPI_SUCCESS(status)) {
1235 		mode->acpiId = id;
1236 		mode->mode   = value;
1237 		mode->status = 0;
1238 	}
1239 
1240 	status = acpi_evaluate_integer(handle_mux, "MXDS", &input, &value);
1241 	if (ACPI_SUCCESS(status)) {
1242 		part->acpiId = id;
1243 		part->mode   = value;
1244 		part->status = 0;
1245 	}
1246 }
1247 
1248 static void
1249 r535_gsp_acpi_mux(acpi_handle handle, DOD_METHOD_DATA *dod, MUX_METHOD_DATA *mux)
1250 {
1251 	mux->tableLen = dod->acpiIdListLen / sizeof(dod->acpiIdList[0]);
1252 
1253 	for (int i = 0; i < mux->tableLen; i++) {
1254 		r535_gsp_acpi_mux_id(handle, dod->acpiIdList[i], &mux->acpiIdMuxModeTable[i],
1255 								 &mux->acpiIdMuxPartTable[i]);
1256 	}
1257 }
1258 
1259 static void
1260 r535_gsp_acpi_dod(acpi_handle handle, DOD_METHOD_DATA *dod)
1261 {
1262 	acpi_status status;
1263 	struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
1264 	union acpi_object *_DOD;
1265 
1266 	dod->status = 0xffff;
1267 
1268 	status = acpi_evaluate_object(handle, "_DOD", NULL, &output);
1269 	if (ACPI_FAILURE(status))
1270 		return;
1271 
1272 	_DOD = output.pointer;
1273 
1274 	if (WARN_ON(_DOD->type != ACPI_TYPE_PACKAGE) ||
1275 	    WARN_ON(_DOD->package.count > ARRAY_SIZE(dod->acpiIdList)))
1276 		return;
1277 
1278 	for (int i = 0; i < _DOD->package.count; i++) {
1279 		if (WARN_ON(_DOD->package.elements[i].type != ACPI_TYPE_INTEGER))
1280 			return;
1281 
1282 		dod->acpiIdList[i] = _DOD->package.elements[i].integer.value;
1283 		dod->acpiIdListLen += sizeof(dod->acpiIdList[0]);
1284 	}
1285 
1286 	dod->status = 0;
1287 	kfree(output.pointer);
1288 }
1289 #endif
1290 
1291 static void
1292 r535_gsp_acpi_info(struct nvkm_gsp *gsp, ACPI_METHOD_DATA *acpi)
1293 {
1294 #if defined(CONFIG_ACPI) && defined(CONFIG_X86)
1295 	acpi_handle handle = ACPI_HANDLE(gsp->subdev.device->dev);
1296 
1297 	if (!handle)
1298 		return;
1299 
1300 	acpi->bValid = 1;
1301 
1302 	r535_gsp_acpi_dod(handle, &acpi->dodMethodData);
1303 	if (acpi->dodMethodData.status == 0)
1304 		r535_gsp_acpi_mux(handle, &acpi->dodMethodData, &acpi->muxMethodData);
1305 
1306 	r535_gsp_acpi_jt(handle, &acpi->jtMethodData);
1307 	r535_gsp_acpi_caps(handle, &acpi->capsMethodData);
1308 #endif
1309 }
1310 
1311 static int
1312 r535_gsp_rpc_set_system_info(struct nvkm_gsp *gsp)
1313 {
1314 	struct nvkm_device *device = gsp->subdev.device;
1315 	struct nvkm_device_pci *pdev = container_of(device, typeof(*pdev), device);
1316 	GspSystemInfo *info;
1317 
1318 	if (WARN_ON(device->type == NVKM_DEVICE_TEGRA))
1319 		return -ENOSYS;
1320 
1321 	info = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_SET_SYSTEM_INFO, sizeof(*info));
1322 	if (IS_ERR(info))
1323 		return PTR_ERR(info);
1324 
1325 	info->gpuPhysAddr = device->func->resource_addr(device, 0);
1326 	info->gpuPhysFbAddr = device->func->resource_addr(device, 1);
1327 	info->gpuPhysInstAddr = device->func->resource_addr(device, 3);
1328 	info->nvDomainBusDeviceFunc = pci_dev_id(pdev->pdev);
1329 	info->maxUserVa = TASK_SIZE;
1330 	info->pciConfigMirrorBase = 0x088000;
1331 	info->pciConfigMirrorSize = 0x001000;
1332 	r535_gsp_acpi_info(gsp, &info->acpiMethodData);
1333 
1334 	return nvkm_gsp_rpc_wr(gsp, info, false);
1335 }
1336 
1337 static int
1338 r535_gsp_msg_os_error_log(void *priv, u32 fn, void *repv, u32 repc)
1339 {
1340 	struct nvkm_gsp *gsp = priv;
1341 	struct nvkm_subdev *subdev = &gsp->subdev;
1342 	rpc_os_error_log_v17_00 *msg = repv;
1343 
1344 	if (WARN_ON(repc < sizeof(*msg)))
1345 		return -EINVAL;
1346 
1347 	nvkm_error(subdev, "Xid:%d %s\n", msg->exceptType, msg->errString);
1348 	return 0;
1349 }
1350 
1351 static int
1352 r535_gsp_msg_rc_triggered(void *priv, u32 fn, void *repv, u32 repc)
1353 {
1354 	rpc_rc_triggered_v17_02 *msg = repv;
1355 	struct nvkm_gsp *gsp = priv;
1356 	struct nvkm_subdev *subdev = &gsp->subdev;
1357 	struct nvkm_chan *chan;
1358 	unsigned long flags;
1359 
1360 	if (WARN_ON(repc < sizeof(*msg)))
1361 		return -EINVAL;
1362 
1363 	nvkm_error(subdev, "rc engn:%08x chid:%d type:%d scope:%d part:%d\n",
1364 		   msg->nv2080EngineType, msg->chid, msg->exceptType, msg->scope,
1365 		   msg->partitionAttributionId);
1366 
1367 	chan = nvkm_chan_get_chid(&subdev->device->fifo->engine, msg->chid / 8, &flags);
1368 	if (!chan) {
1369 		nvkm_error(subdev, "rc chid:%d not found!\n", msg->chid);
1370 		return 0;
1371 	}
1372 
1373 	nvkm_chan_error(chan, false);
1374 	nvkm_chan_put(&chan, flags);
1375 	return 0;
1376 }
1377 
1378 static int
1379 r535_gsp_msg_mmu_fault_queued(void *priv, u32 fn, void *repv, u32 repc)
1380 {
1381 	struct nvkm_gsp *gsp = priv;
1382 	struct nvkm_subdev *subdev = &gsp->subdev;
1383 
1384 	WARN_ON(repc != 0);
1385 
1386 	nvkm_error(subdev, "mmu fault queued\n");
1387 	return 0;
1388 }
1389 
1390 static int
1391 r535_gsp_msg_post_event(void *priv, u32 fn, void *repv, u32 repc)
1392 {
1393 	struct nvkm_gsp *gsp = priv;
1394 	struct nvkm_gsp_client *client;
1395 	struct nvkm_subdev *subdev = &gsp->subdev;
1396 	rpc_post_event_v17_00 *msg = repv;
1397 
1398 	if (WARN_ON(repc < sizeof(*msg)))
1399 		return -EINVAL;
1400 	if (WARN_ON(repc != sizeof(*msg) + msg->eventDataSize))
1401 		return -EINVAL;
1402 
1403 	nvkm_debug(subdev, "event: %08x %08x %d %08x %08x %d %d\n",
1404 		   msg->hClient, msg->hEvent, msg->notifyIndex, msg->data,
1405 		   msg->status, msg->eventDataSize, msg->bNotifyList);
1406 
1407 	mutex_lock(&gsp->client_id.mutex);
1408 	client = idr_find(&gsp->client_id.idr, msg->hClient & 0xffff);
1409 	if (client) {
1410 		struct nvkm_gsp_event *event;
1411 		bool handled = false;
1412 
1413 		list_for_each_entry(event, &client->events, head) {
1414 			if (event->object.handle == msg->hEvent) {
1415 				event->func(event, msg->eventData, msg->eventDataSize);
1416 				handled = true;
1417 			}
1418 		}
1419 
1420 		if (!handled) {
1421 			nvkm_error(subdev, "event: cid 0x%08x event 0x%08x not found!\n",
1422 				   msg->hClient, msg->hEvent);
1423 		}
1424 	} else {
1425 		nvkm_error(subdev, "event: cid 0x%08x not found!\n", msg->hClient);
1426 	}
1427 	mutex_unlock(&gsp->client_id.mutex);
1428 	return 0;
1429 }
1430 
1431 /**
1432  * r535_gsp_msg_run_cpu_sequencer() -- process I/O commands from the GSP
1433  * @priv: gsp pointer
1434  * @fn: function number (ignored)
1435  * @repv: pointer to libos print RPC
1436  * @repc: message size
1437  *
1438  * The GSP sequencer is a list of I/O commands that the GSP can send to
1439  * the driver to perform for various purposes.  The most common usage is to
1440  * perform a special mid-initialization reset.
1441  */
1442 static int
1443 r535_gsp_msg_run_cpu_sequencer(void *priv, u32 fn, void *repv, u32 repc)
1444 {
1445 	struct nvkm_gsp *gsp = priv;
1446 	struct nvkm_subdev *subdev = &gsp->subdev;
1447 	struct nvkm_device *device = subdev->device;
1448 	rpc_run_cpu_sequencer_v17_00 *seq = repv;
1449 	int ptr = 0, ret;
1450 
1451 	nvkm_debug(subdev, "seq: %08x %08x\n", seq->bufferSizeDWord, seq->cmdIndex);
1452 
1453 	while (ptr < seq->cmdIndex) {
1454 		GSP_SEQUENCER_BUFFER_CMD *cmd = (void *)&seq->commandBuffer[ptr];
1455 
1456 		ptr += 1;
1457 		ptr += GSP_SEQUENCER_PAYLOAD_SIZE_DWORDS(cmd->opCode);
1458 
1459 		switch (cmd->opCode) {
1460 		case GSP_SEQ_BUF_OPCODE_REG_WRITE: {
1461 			u32 addr = cmd->payload.regWrite.addr;
1462 			u32 data = cmd->payload.regWrite.val;
1463 
1464 			nvkm_trace(subdev, "seq wr32 %06x %08x\n", addr, data);
1465 			nvkm_wr32(device, addr, data);
1466 		}
1467 			break;
1468 		case GSP_SEQ_BUF_OPCODE_REG_MODIFY: {
1469 			u32 addr = cmd->payload.regModify.addr;
1470 			u32 mask = cmd->payload.regModify.mask;
1471 			u32 data = cmd->payload.regModify.val;
1472 
1473 			nvkm_trace(subdev, "seq mask %06x %08x %08x\n", addr, mask, data);
1474 			nvkm_mask(device, addr, mask, data);
1475 		}
1476 			break;
1477 		case GSP_SEQ_BUF_OPCODE_REG_POLL: {
1478 			u32 addr = cmd->payload.regPoll.addr;
1479 			u32 mask = cmd->payload.regPoll.mask;
1480 			u32 data = cmd->payload.regPoll.val;
1481 			u32 usec = cmd->payload.regPoll.timeout ?: 4000000;
1482 			//u32 error = cmd->payload.regPoll.error;
1483 
1484 			nvkm_trace(subdev, "seq poll %06x %08x %08x %d\n", addr, mask, data, usec);
1485 			nvkm_rd32(device, addr);
1486 			nvkm_usec(device, usec,
1487 				if ((nvkm_rd32(device, addr) & mask) == data)
1488 					break;
1489 			);
1490 		}
1491 			break;
1492 		case GSP_SEQ_BUF_OPCODE_DELAY_US: {
1493 			u32 usec = cmd->payload.delayUs.val;
1494 
1495 			nvkm_trace(subdev, "seq usec %d\n", usec);
1496 			udelay(usec);
1497 		}
1498 			break;
1499 		case GSP_SEQ_BUF_OPCODE_REG_STORE: {
1500 			u32 addr = cmd->payload.regStore.addr;
1501 			u32 slot = cmd->payload.regStore.index;
1502 
1503 			seq->regSaveArea[slot] = nvkm_rd32(device, addr);
1504 			nvkm_trace(subdev, "seq save %08x -> %d: %08x\n", addr, slot,
1505 				   seq->regSaveArea[slot]);
1506 		}
1507 			break;
1508 		case GSP_SEQ_BUF_OPCODE_CORE_RESET:
1509 			nvkm_trace(subdev, "seq core reset\n");
1510 			nvkm_falcon_reset(&gsp->falcon);
1511 			nvkm_falcon_mask(&gsp->falcon, 0x624, 0x00000080, 0x00000080);
1512 			nvkm_falcon_wr32(&gsp->falcon, 0x10c, 0x00000000);
1513 			break;
1514 		case GSP_SEQ_BUF_OPCODE_CORE_START:
1515 			nvkm_trace(subdev, "seq core start\n");
1516 			if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000040)
1517 				nvkm_falcon_wr32(&gsp->falcon, 0x130, 0x00000002);
1518 			else
1519 				nvkm_falcon_wr32(&gsp->falcon, 0x100, 0x00000002);
1520 			break;
1521 		case GSP_SEQ_BUF_OPCODE_CORE_WAIT_FOR_HALT:
1522 			nvkm_trace(subdev, "seq core wait halt\n");
1523 			nvkm_msec(device, 2000,
1524 				if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000010)
1525 					break;
1526 			);
1527 			break;
1528 		case GSP_SEQ_BUF_OPCODE_CORE_RESUME: {
1529 			struct nvkm_sec2 *sec2 = device->sec2;
1530 			u32 mbox0;
1531 
1532 			nvkm_trace(subdev, "seq core resume\n");
1533 
1534 			ret = gsp->func->reset(gsp);
1535 			if (WARN_ON(ret))
1536 				return ret;
1537 
1538 			nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr));
1539 			nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr));
1540 
1541 			nvkm_falcon_start(&sec2->falcon);
1542 
1543 			if (nvkm_msec(device, 2000,
1544 				if (nvkm_rd32(device, 0x1180f8) & 0x04000000)
1545 					break;
1546 			) < 0)
1547 				return -ETIMEDOUT;
1548 
1549 			mbox0 = nvkm_falcon_rd32(&sec2->falcon, 0x040);
1550 			if (WARN_ON(mbox0)) {
1551 				nvkm_error(&gsp->subdev, "seq core resume sec2: 0x%x\n", mbox0);
1552 				return -EIO;
1553 			}
1554 
1555 			nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version);
1556 
1557 			if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon)))
1558 				return -EIO;
1559 		}
1560 			break;
1561 		default:
1562 			nvkm_error(subdev, "unknown sequencer opcode %08x\n", cmd->opCode);
1563 			return -EINVAL;
1564 		}
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static int
1571 r535_gsp_booter_unload(struct nvkm_gsp *gsp, u32 mbox0, u32 mbox1)
1572 {
1573 	struct nvkm_subdev *subdev = &gsp->subdev;
1574 	struct nvkm_device *device = subdev->device;
1575 	u32 wpr2_hi;
1576 	int ret;
1577 
1578 	wpr2_hi = nvkm_rd32(device, 0x1fa828);
1579 	if (!wpr2_hi) {
1580 		nvkm_debug(subdev, "WPR2 not set - skipping booter unload\n");
1581 		return 0;
1582 	}
1583 
1584 	ret = nvkm_falcon_fw_boot(&gsp->booter.unload, &gsp->subdev, true, &mbox0, &mbox1, 0, 0);
1585 	if (WARN_ON(ret))
1586 		return ret;
1587 
1588 	wpr2_hi = nvkm_rd32(device, 0x1fa828);
1589 	if (WARN_ON(wpr2_hi))
1590 		return -EIO;
1591 
1592 	return 0;
1593 }
1594 
1595 static int
1596 r535_gsp_booter_load(struct nvkm_gsp *gsp, u32 mbox0, u32 mbox1)
1597 {
1598 	int ret;
1599 
1600 	ret = nvkm_falcon_fw_boot(&gsp->booter.load, &gsp->subdev, true, &mbox0, &mbox1, 0, 0);
1601 	if (ret)
1602 		return ret;
1603 
1604 	nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version);
1605 
1606 	if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon)))
1607 		return -EIO;
1608 
1609 	return 0;
1610 }
1611 
1612 static int
1613 r535_gsp_wpr_meta_init(struct nvkm_gsp *gsp)
1614 {
1615 	GspFwWprMeta *meta;
1616 	int ret;
1617 
1618 	ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->wpr_meta);
1619 	if (ret)
1620 		return ret;
1621 
1622 	meta = gsp->wpr_meta.data;
1623 
1624 	meta->magic = GSP_FW_WPR_META_MAGIC;
1625 	meta->revision = GSP_FW_WPR_META_REVISION;
1626 
1627 	meta->sysmemAddrOfRadix3Elf = gsp->radix3.lvl0.addr;
1628 	meta->sizeOfRadix3Elf = gsp->fb.wpr2.elf.size;
1629 
1630 	meta->sysmemAddrOfBootloader = gsp->boot.fw.addr;
1631 	meta->sizeOfBootloader = gsp->boot.fw.size;
1632 	meta->bootloaderCodeOffset = gsp->boot.code_offset;
1633 	meta->bootloaderDataOffset = gsp->boot.data_offset;
1634 	meta->bootloaderManifestOffset = gsp->boot.manifest_offset;
1635 
1636 	meta->sysmemAddrOfSignature = gsp->sig.addr;
1637 	meta->sizeOfSignature = gsp->sig.size;
1638 
1639 	meta->gspFwRsvdStart = gsp->fb.heap.addr;
1640 	meta->nonWprHeapOffset = gsp->fb.heap.addr;
1641 	meta->nonWprHeapSize = gsp->fb.heap.size;
1642 	meta->gspFwWprStart = gsp->fb.wpr2.addr;
1643 	meta->gspFwHeapOffset = gsp->fb.wpr2.heap.addr;
1644 	meta->gspFwHeapSize = gsp->fb.wpr2.heap.size;
1645 	meta->gspFwOffset = gsp->fb.wpr2.elf.addr;
1646 	meta->bootBinOffset = gsp->fb.wpr2.boot.addr;
1647 	meta->frtsOffset = gsp->fb.wpr2.frts.addr;
1648 	meta->frtsSize = gsp->fb.wpr2.frts.size;
1649 	meta->gspFwWprEnd = ALIGN_DOWN(gsp->fb.bios.vga_workspace.addr, 0x20000);
1650 	meta->fbSize = gsp->fb.size;
1651 	meta->vgaWorkspaceOffset = gsp->fb.bios.vga_workspace.addr;
1652 	meta->vgaWorkspaceSize = gsp->fb.bios.vga_workspace.size;
1653 	meta->bootCount = 0;
1654 	meta->partitionRpcAddr = 0;
1655 	meta->partitionRpcRequestOffset = 0;
1656 	meta->partitionRpcReplyOffset = 0;
1657 	meta->verified = 0;
1658 	return 0;
1659 }
1660 
1661 static int
1662 r535_gsp_shared_init(struct nvkm_gsp *gsp)
1663 {
1664 	struct {
1665 		msgqTxHeader tx;
1666 		msgqRxHeader rx;
1667 	} *cmdq, *msgq;
1668 	int ret, i;
1669 
1670 	gsp->shm.cmdq.size = 0x40000;
1671 	gsp->shm.msgq.size = 0x40000;
1672 
1673 	gsp->shm.ptes.nr  = (gsp->shm.cmdq.size + gsp->shm.msgq.size) >> GSP_PAGE_SHIFT;
1674 	gsp->shm.ptes.nr += DIV_ROUND_UP(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE);
1675 	gsp->shm.ptes.size = ALIGN(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE);
1676 
1677 	ret = nvkm_gsp_mem_ctor(gsp, gsp->shm.ptes.size +
1678 				     gsp->shm.cmdq.size +
1679 				     gsp->shm.msgq.size,
1680 				&gsp->shm.mem);
1681 	if (ret)
1682 		return ret;
1683 
1684 	gsp->shm.ptes.ptr = gsp->shm.mem.data;
1685 	gsp->shm.cmdq.ptr = (u8 *)gsp->shm.ptes.ptr + gsp->shm.ptes.size;
1686 	gsp->shm.msgq.ptr = (u8 *)gsp->shm.cmdq.ptr + gsp->shm.cmdq.size;
1687 
1688 	for (i = 0; i < gsp->shm.ptes.nr; i++)
1689 		gsp->shm.ptes.ptr[i] = gsp->shm.mem.addr + (i << GSP_PAGE_SHIFT);
1690 
1691 	cmdq = gsp->shm.cmdq.ptr;
1692 	cmdq->tx.version = 0;
1693 	cmdq->tx.size = gsp->shm.cmdq.size;
1694 	cmdq->tx.entryOff = GSP_PAGE_SIZE;
1695 	cmdq->tx.msgSize = GSP_PAGE_SIZE;
1696 	cmdq->tx.msgCount = (cmdq->tx.size - cmdq->tx.entryOff) / cmdq->tx.msgSize;
1697 	cmdq->tx.writePtr = 0;
1698 	cmdq->tx.flags = 1;
1699 	cmdq->tx.rxHdrOff = offsetof(typeof(*cmdq), rx.readPtr);
1700 
1701 	msgq = gsp->shm.msgq.ptr;
1702 
1703 	gsp->cmdq.cnt = cmdq->tx.msgCount;
1704 	gsp->cmdq.wptr = &cmdq->tx.writePtr;
1705 	gsp->cmdq.rptr = &msgq->rx.readPtr;
1706 	gsp->msgq.cnt = cmdq->tx.msgCount;
1707 	gsp->msgq.wptr = &msgq->tx.writePtr;
1708 	gsp->msgq.rptr = &cmdq->rx.readPtr;
1709 	return 0;
1710 }
1711 
1712 static int
1713 r535_gsp_rmargs_init(struct nvkm_gsp *gsp, bool resume)
1714 {
1715 	GSP_ARGUMENTS_CACHED *args;
1716 	int ret;
1717 
1718 	if (!resume) {
1719 		ret = r535_gsp_shared_init(gsp);
1720 		if (ret)
1721 			return ret;
1722 
1723 		ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->rmargs);
1724 		if (ret)
1725 			return ret;
1726 	}
1727 
1728 	args = gsp->rmargs.data;
1729 	args->messageQueueInitArguments.sharedMemPhysAddr = gsp->shm.mem.addr;
1730 	args->messageQueueInitArguments.pageTableEntryCount = gsp->shm.ptes.nr;
1731 	args->messageQueueInitArguments.cmdQueueOffset =
1732 		(u8 *)gsp->shm.cmdq.ptr - (u8 *)gsp->shm.mem.data;
1733 	args->messageQueueInitArguments.statQueueOffset =
1734 		(u8 *)gsp->shm.msgq.ptr - (u8 *)gsp->shm.mem.data;
1735 
1736 	if (!resume) {
1737 		args->srInitArguments.oldLevel = 0;
1738 		args->srInitArguments.flags = 0;
1739 		args->srInitArguments.bInPMTransition = 0;
1740 	} else {
1741 		args->srInitArguments.oldLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3;
1742 		args->srInitArguments.flags = 0;
1743 		args->srInitArguments.bInPMTransition = 1;
1744 	}
1745 
1746 	return 0;
1747 }
1748 
1749 static inline u64
1750 r535_gsp_libos_id8(const char *name)
1751 {
1752 	u64 id = 0;
1753 
1754 	for (int i = 0; i < sizeof(id) && *name; i++, name++)
1755 		id = (id << 8) | *name;
1756 
1757 	return id;
1758 }
1759 
1760 /**
1761  * create_pte_array() - creates a PTE array of a physically contiguous buffer
1762  * @ptes: pointer to the array
1763  * @addr: base address of physically contiguous buffer (GSP_PAGE_SIZE aligned)
1764  * @size: size of the buffer
1765  *
1766  * GSP-RM sometimes expects physically-contiguous buffers to have an array of
1767  * "PTEs" for each page in that buffer.  Although in theory that allows for
1768  * the buffer to be physically discontiguous, GSP-RM does not currently
1769  * support that.
1770  *
1771  * In this case, the PTEs are DMA addresses of each page of the buffer.  Since
1772  * the buffer is physically contiguous, calculating all the PTEs is simple
1773  * math.
1774  *
1775  * See memdescGetPhysAddrsForGpu()
1776  */
1777 static void create_pte_array(u64 *ptes, dma_addr_t addr, size_t size)
1778 {
1779 	unsigned int num_pages = DIV_ROUND_UP_ULL(size, GSP_PAGE_SIZE);
1780 	unsigned int i;
1781 
1782 	for (i = 0; i < num_pages; i++)
1783 		ptes[i] = (u64)addr + (i << GSP_PAGE_SHIFT);
1784 }
1785 
1786 /**
1787  * r535_gsp_libos_init() -- create the libos arguments structure
1788  * @gsp: gsp pointer
1789  *
1790  * The logging buffers are byte queues that contain encoded printf-like
1791  * messages from GSP-RM.  They need to be decoded by a special application
1792  * that can parse the buffers.
1793  *
1794  * The 'loginit' buffer contains logs from early GSP-RM init and
1795  * exception dumps.  The 'logrm' buffer contains the subsequent logs. Both are
1796  * written to directly by GSP-RM and can be any multiple of GSP_PAGE_SIZE.
1797  *
1798  * The physical address map for the log buffer is stored in the buffer
1799  * itself, starting with offset 1. Offset 0 contains the "put" pointer.
1800  *
1801  * The GSP only understands 4K pages (GSP_PAGE_SIZE), so even if the kernel is
1802  * configured for a larger page size (e.g. 64K pages), we need to give
1803  * the GSP an array of 4K pages. Fortunately, since the buffer is
1804  * physically contiguous, it's simple math to calculate the addresses.
1805  *
1806  * The buffers must be a multiple of GSP_PAGE_SIZE.  GSP-RM also currently
1807  * ignores the @kind field for LOGINIT, LOGINTR, and LOGRM, but expects the
1808  * buffers to be physically contiguous anyway.
1809  *
1810  * The memory allocated for the arguments must remain until the GSP sends the
1811  * init_done RPC.
1812  *
1813  * See _kgspInitLibosLoggingStructures (allocates memory for buffers)
1814  * See kgspSetupLibosInitArgs_IMPL (creates pLibosInitArgs[] array)
1815  */
1816 static int
1817 r535_gsp_libos_init(struct nvkm_gsp *gsp)
1818 {
1819 	LibosMemoryRegionInitArgument *args;
1820 	int ret;
1821 
1822 	ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->libos);
1823 	if (ret)
1824 		return ret;
1825 
1826 	args = gsp->libos.data;
1827 
1828 	ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->loginit);
1829 	if (ret)
1830 		return ret;
1831 
1832 	args[0].id8  = r535_gsp_libos_id8("LOGINIT");
1833 	args[0].pa   = gsp->loginit.addr;
1834 	args[0].size = gsp->loginit.size;
1835 	args[0].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
1836 	args[0].loc  = LIBOS_MEMORY_REGION_LOC_SYSMEM;
1837 	create_pte_array(gsp->loginit.data + sizeof(u64), gsp->loginit.addr, gsp->loginit.size);
1838 
1839 	ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logintr);
1840 	if (ret)
1841 		return ret;
1842 
1843 	args[1].id8  = r535_gsp_libos_id8("LOGINTR");
1844 	args[1].pa   = gsp->logintr.addr;
1845 	args[1].size = gsp->logintr.size;
1846 	args[1].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
1847 	args[1].loc  = LIBOS_MEMORY_REGION_LOC_SYSMEM;
1848 	create_pte_array(gsp->logintr.data + sizeof(u64), gsp->logintr.addr, gsp->logintr.size);
1849 
1850 	ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logrm);
1851 	if (ret)
1852 		return ret;
1853 
1854 	args[2].id8  = r535_gsp_libos_id8("LOGRM");
1855 	args[2].pa   = gsp->logrm.addr;
1856 	args[2].size = gsp->logrm.size;
1857 	args[2].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
1858 	args[2].loc  = LIBOS_MEMORY_REGION_LOC_SYSMEM;
1859 	create_pte_array(gsp->logrm.data + sizeof(u64), gsp->logrm.addr, gsp->logrm.size);
1860 
1861 	ret = r535_gsp_rmargs_init(gsp, false);
1862 	if (ret)
1863 		return ret;
1864 
1865 	args[3].id8  = r535_gsp_libos_id8("RMARGS");
1866 	args[3].pa   = gsp->rmargs.addr;
1867 	args[3].size = gsp->rmargs.size;
1868 	args[3].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
1869 	args[3].loc  = LIBOS_MEMORY_REGION_LOC_SYSMEM;
1870 	return 0;
1871 }
1872 
1873 void
1874 nvkm_gsp_sg_free(struct nvkm_device *device, struct sg_table *sgt)
1875 {
1876 	struct scatterlist *sgl;
1877 	int i;
1878 
1879 	dma_unmap_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0);
1880 
1881 	for_each_sgtable_sg(sgt, sgl, i) {
1882 		struct page *page = sg_page(sgl);
1883 
1884 		__free_page(page);
1885 	}
1886 
1887 	sg_free_table(sgt);
1888 }
1889 
1890 int
1891 nvkm_gsp_sg(struct nvkm_device *device, u64 size, struct sg_table *sgt)
1892 {
1893 	const u64 pages = DIV_ROUND_UP(size, PAGE_SIZE);
1894 	struct scatterlist *sgl;
1895 	int ret, i;
1896 
1897 	ret = sg_alloc_table(sgt, pages, GFP_KERNEL);
1898 	if (ret)
1899 		return ret;
1900 
1901 	for_each_sgtable_sg(sgt, sgl, i) {
1902 		struct page *page = alloc_page(GFP_KERNEL);
1903 
1904 		if (!page) {
1905 			nvkm_gsp_sg_free(device, sgt);
1906 			return -ENOMEM;
1907 		}
1908 
1909 		sg_set_page(sgl, page, PAGE_SIZE, 0);
1910 	}
1911 
1912 	ret = dma_map_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0);
1913 	if (ret)
1914 		nvkm_gsp_sg_free(device, sgt);
1915 
1916 	return ret;
1917 }
1918 
1919 static void
1920 nvkm_gsp_radix3_dtor(struct nvkm_gsp *gsp, struct nvkm_gsp_radix3 *rx3)
1921 {
1922 	nvkm_gsp_sg_free(gsp->subdev.device, &rx3->lvl2);
1923 	nvkm_gsp_mem_dtor(gsp, &rx3->lvl1);
1924 	nvkm_gsp_mem_dtor(gsp, &rx3->lvl0);
1925 }
1926 
1927 /**
1928  * nvkm_gsp_radix3_sg - build a radix3 table from a S/G list
1929  * @gsp: gsp pointer
1930  * @sgt: S/G list to traverse
1931  * @size: size of the image, in bytes
1932  * @rx3: radix3 array to update
1933  *
1934  * The GSP uses a three-level page table, called radix3, to map the firmware.
1935  * Each 64-bit "pointer" in the table is either the bus address of an entry in
1936  * the next table (for levels 0 and 1) or the bus address of the next page in
1937  * the GSP firmware image itself.
1938  *
1939  * Level 0 contains a single entry in one page that points to the first page
1940  * of level 1.
1941  *
1942  * Level 1, since it's also only one page in size, contains up to 512 entries,
1943  * one for each page in Level 2.
1944  *
1945  * Level 2 can be up to 512 pages in size, and each of those entries points to
1946  * the next page of the firmware image.  Since there can be up to 512*512
1947  * pages, that limits the size of the firmware to 512*512*GSP_PAGE_SIZE = 1GB.
1948  *
1949  * Internally, the GSP has its window into system memory, but the base
1950  * physical address of the aperture is not 0.  In fact, it varies depending on
1951  * the GPU architecture.  Since the GPU is a PCI device, this window is
1952  * accessed via DMA and is therefore bound by IOMMU translation.  The end
1953  * result is that GSP-RM must translate the bus addresses in the table to GSP
1954  * physical addresses.  All this should happen transparently.
1955  *
1956  * Returns 0 on success, or negative error code
1957  *
1958  * See kgspCreateRadix3_IMPL
1959  */
1960 static int
1961 nvkm_gsp_radix3_sg(struct nvkm_gsp *gsp, struct sg_table *sgt, u64 size,
1962 		   struct nvkm_gsp_radix3 *rx3)
1963 {
1964 	struct sg_dma_page_iter sg_dma_iter;
1965 	struct scatterlist *sg;
1966 	size_t bufsize;
1967 	u64 *pte;
1968 	int ret, i, page_idx = 0;
1969 
1970 	ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl0);
1971 	if (ret)
1972 		return ret;
1973 
1974 	ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl1);
1975 	if (ret)
1976 		goto lvl1_fail;
1977 
1978 	// Allocate level 2
1979 	bufsize = ALIGN((size / GSP_PAGE_SIZE) * sizeof(u64), GSP_PAGE_SIZE);
1980 	ret = nvkm_gsp_sg(gsp->subdev.device, bufsize, &rx3->lvl2);
1981 	if (ret)
1982 		goto lvl2_fail;
1983 
1984 	// Write the bus address of level 1 to level 0
1985 	pte = rx3->lvl0.data;
1986 	*pte = rx3->lvl1.addr;
1987 
1988 	// Write the bus address of each page in level 2 to level 1
1989 	pte = rx3->lvl1.data;
1990 	for_each_sgtable_dma_page(&rx3->lvl2, &sg_dma_iter, 0)
1991 		*pte++ = sg_page_iter_dma_address(&sg_dma_iter);
1992 
1993 	// Finally, write the bus address of each page in sgt to level 2
1994 	for_each_sgtable_sg(&rx3->lvl2, sg, i) {
1995 		void *sgl_end;
1996 
1997 		pte = sg_virt(sg);
1998 		sgl_end = (void *)pte + sg->length;
1999 
2000 		for_each_sgtable_dma_page(sgt, &sg_dma_iter, page_idx) {
2001 			*pte++ = sg_page_iter_dma_address(&sg_dma_iter);
2002 			page_idx++;
2003 
2004 			// Go to the next scatterlist for level 2 if we've reached the end
2005 			if ((void *)pte >= sgl_end)
2006 				break;
2007 		}
2008 	}
2009 
2010 	if (ret) {
2011 lvl2_fail:
2012 		nvkm_gsp_mem_dtor(gsp, &rx3->lvl1);
2013 lvl1_fail:
2014 		nvkm_gsp_mem_dtor(gsp, &rx3->lvl0);
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 int
2021 r535_gsp_fini(struct nvkm_gsp *gsp, bool suspend)
2022 {
2023 	u32 mbox0 = 0xff, mbox1 = 0xff;
2024 	int ret;
2025 
2026 	if (!gsp->running)
2027 		return 0;
2028 
2029 	if (suspend) {
2030 		GspFwWprMeta *meta = gsp->wpr_meta.data;
2031 		u64 len = meta->gspFwWprEnd - meta->gspFwWprStart;
2032 		GspFwSRMeta *sr;
2033 
2034 		ret = nvkm_gsp_sg(gsp->subdev.device, len, &gsp->sr.sgt);
2035 		if (ret)
2036 			return ret;
2037 
2038 		ret = nvkm_gsp_radix3_sg(gsp, &gsp->sr.sgt, len, &gsp->sr.radix3);
2039 		if (ret)
2040 			return ret;
2041 
2042 		ret = nvkm_gsp_mem_ctor(gsp, sizeof(*sr), &gsp->sr.meta);
2043 		if (ret)
2044 			return ret;
2045 
2046 		sr = gsp->sr.meta.data;
2047 		sr->magic = GSP_FW_SR_META_MAGIC;
2048 		sr->revision = GSP_FW_SR_META_REVISION;
2049 		sr->sysmemAddrOfSuspendResumeData = gsp->sr.radix3.lvl0.addr;
2050 		sr->sizeOfSuspendResumeData = len;
2051 
2052 		mbox0 = lower_32_bits(gsp->sr.meta.addr);
2053 		mbox1 = upper_32_bits(gsp->sr.meta.addr);
2054 	}
2055 
2056 	ret = r535_gsp_rpc_unloading_guest_driver(gsp, suspend);
2057 	if (WARN_ON(ret))
2058 		return ret;
2059 
2060 	nvkm_msec(gsp->subdev.device, 2000,
2061 		if (nvkm_falcon_rd32(&gsp->falcon, 0x040) & 0x80000000)
2062 			break;
2063 	);
2064 
2065 	nvkm_falcon_reset(&gsp->falcon);
2066 
2067 	ret = nvkm_gsp_fwsec_sb(gsp);
2068 	WARN_ON(ret);
2069 
2070 	ret = r535_gsp_booter_unload(gsp, mbox0, mbox1);
2071 	WARN_ON(ret);
2072 
2073 	gsp->running = false;
2074 	return 0;
2075 }
2076 
2077 int
2078 r535_gsp_init(struct nvkm_gsp *gsp)
2079 {
2080 	u32 mbox0, mbox1;
2081 	int ret;
2082 
2083 	if (!gsp->sr.meta.data) {
2084 		mbox0 = lower_32_bits(gsp->wpr_meta.addr);
2085 		mbox1 = upper_32_bits(gsp->wpr_meta.addr);
2086 	} else {
2087 		r535_gsp_rmargs_init(gsp, true);
2088 
2089 		mbox0 = lower_32_bits(gsp->sr.meta.addr);
2090 		mbox1 = upper_32_bits(gsp->sr.meta.addr);
2091 	}
2092 
2093 	/* Execute booter to handle (eventually...) booting GSP-RM. */
2094 	ret = r535_gsp_booter_load(gsp, mbox0, mbox1);
2095 	if (WARN_ON(ret))
2096 		goto done;
2097 
2098 	ret = r535_gsp_rpc_poll(gsp, NV_VGPU_MSG_EVENT_GSP_INIT_DONE);
2099 	if (ret)
2100 		goto done;
2101 
2102 	gsp->running = true;
2103 
2104 done:
2105 	if (gsp->sr.meta.data) {
2106 		nvkm_gsp_mem_dtor(gsp, &gsp->sr.meta);
2107 		nvkm_gsp_radix3_dtor(gsp, &gsp->sr.radix3);
2108 		nvkm_gsp_sg_free(gsp->subdev.device, &gsp->sr.sgt);
2109 		return ret;
2110 	}
2111 
2112 	if (ret == 0)
2113 		ret = r535_gsp_postinit(gsp);
2114 
2115 	return ret;
2116 }
2117 
2118 static int
2119 r535_gsp_rm_boot_ctor(struct nvkm_gsp *gsp)
2120 {
2121 	const struct firmware *fw = gsp->fws.bl;
2122 	const struct nvfw_bin_hdr *hdr;
2123 	RM_RISCV_UCODE_DESC *desc;
2124 	int ret;
2125 
2126 	hdr = nvfw_bin_hdr(&gsp->subdev, fw->data);
2127 	desc = (void *)fw->data + hdr->header_offset;
2128 
2129 	ret = nvkm_gsp_mem_ctor(gsp, hdr->data_size, &gsp->boot.fw);
2130 	if (ret)
2131 		return ret;
2132 
2133 	memcpy(gsp->boot.fw.data, fw->data + hdr->data_offset, hdr->data_size);
2134 
2135 	gsp->boot.code_offset = desc->monitorCodeOffset;
2136 	gsp->boot.data_offset = desc->monitorDataOffset;
2137 	gsp->boot.manifest_offset = desc->manifestOffset;
2138 	gsp->boot.app_version = desc->appVersion;
2139 	return 0;
2140 }
2141 
2142 static const struct nvkm_firmware_func
2143 r535_gsp_fw = {
2144 	.type = NVKM_FIRMWARE_IMG_SGT,
2145 };
2146 
2147 static int
2148 r535_gsp_elf_section(struct nvkm_gsp *gsp, const char *name, const u8 **pdata, u64 *psize)
2149 {
2150 	const u8 *img = gsp->fws.rm->data;
2151 	const struct elf64_hdr *ehdr = (const struct elf64_hdr *)img;
2152 	const struct elf64_shdr *shdr = (const struct elf64_shdr *)&img[ehdr->e_shoff];
2153 	const char *names = &img[shdr[ehdr->e_shstrndx].sh_offset];
2154 
2155 	for (int i = 0; i < ehdr->e_shnum; i++, shdr++) {
2156 		if (!strcmp(&names[shdr->sh_name], name)) {
2157 			*pdata = &img[shdr->sh_offset];
2158 			*psize = shdr->sh_size;
2159 			return 0;
2160 		}
2161 	}
2162 
2163 	nvkm_error(&gsp->subdev, "section '%s' not found\n", name);
2164 	return -ENOENT;
2165 }
2166 
2167 static void
2168 r535_gsp_dtor_fws(struct nvkm_gsp *gsp)
2169 {
2170 	nvkm_firmware_put(gsp->fws.bl);
2171 	gsp->fws.bl = NULL;
2172 	nvkm_firmware_put(gsp->fws.booter.unload);
2173 	gsp->fws.booter.unload = NULL;
2174 	nvkm_firmware_put(gsp->fws.booter.load);
2175 	gsp->fws.booter.load = NULL;
2176 	nvkm_firmware_put(gsp->fws.rm);
2177 	gsp->fws.rm = NULL;
2178 }
2179 
2180 void
2181 r535_gsp_dtor(struct nvkm_gsp *gsp)
2182 {
2183 	idr_destroy(&gsp->client_id.idr);
2184 	mutex_destroy(&gsp->client_id.mutex);
2185 
2186 	nvkm_gsp_radix3_dtor(gsp, &gsp->radix3);
2187 	nvkm_gsp_mem_dtor(gsp, &gsp->sig);
2188 	nvkm_firmware_dtor(&gsp->fw);
2189 
2190 	nvkm_falcon_fw_dtor(&gsp->booter.unload);
2191 	nvkm_falcon_fw_dtor(&gsp->booter.load);
2192 
2193 	mutex_destroy(&gsp->msgq.mutex);
2194 	mutex_destroy(&gsp->cmdq.mutex);
2195 
2196 	r535_gsp_dtor_fws(gsp);
2197 
2198 	nvkm_gsp_mem_dtor(gsp, &gsp->rmargs);
2199 	nvkm_gsp_mem_dtor(gsp, &gsp->wpr_meta);
2200 	nvkm_gsp_mem_dtor(gsp, &gsp->shm.mem);
2201 	nvkm_gsp_mem_dtor(gsp, &gsp->loginit);
2202 	nvkm_gsp_mem_dtor(gsp, &gsp->logintr);
2203 	nvkm_gsp_mem_dtor(gsp, &gsp->logrm);
2204 }
2205 
2206 int
2207 r535_gsp_oneinit(struct nvkm_gsp *gsp)
2208 {
2209 	struct nvkm_device *device = gsp->subdev.device;
2210 	const u8 *data;
2211 	u64 size;
2212 	int ret;
2213 
2214 	mutex_init(&gsp->cmdq.mutex);
2215 	mutex_init(&gsp->msgq.mutex);
2216 
2217 	ret = gsp->func->booter.ctor(gsp, "booter-load", gsp->fws.booter.load,
2218 				     &device->sec2->falcon, &gsp->booter.load);
2219 	if (ret)
2220 		return ret;
2221 
2222 	ret = gsp->func->booter.ctor(gsp, "booter-unload", gsp->fws.booter.unload,
2223 				     &device->sec2->falcon, &gsp->booter.unload);
2224 	if (ret)
2225 		return ret;
2226 
2227 	/* Load GSP firmware from ELF image into DMA-accessible memory. */
2228 	ret = r535_gsp_elf_section(gsp, ".fwimage", &data, &size);
2229 	if (ret)
2230 		return ret;
2231 
2232 	ret = nvkm_firmware_ctor(&r535_gsp_fw, "gsp-rm", device, data, size, &gsp->fw);
2233 	if (ret)
2234 		return ret;
2235 
2236 	/* Load relevant signature from ELF image. */
2237 	ret = r535_gsp_elf_section(gsp, gsp->func->sig_section, &data, &size);
2238 	if (ret)
2239 		return ret;
2240 
2241 	ret = nvkm_gsp_mem_ctor(gsp, ALIGN(size, 256), &gsp->sig);
2242 	if (ret)
2243 		return ret;
2244 
2245 	memcpy(gsp->sig.data, data, size);
2246 
2247 	/* Build radix3 page table for ELF image. */
2248 	ret = nvkm_gsp_radix3_sg(gsp, &gsp->fw.mem.sgt, gsp->fw.len, &gsp->radix3);
2249 	if (ret)
2250 		return ret;
2251 
2252 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_RUN_CPU_SEQUENCER,
2253 			      r535_gsp_msg_run_cpu_sequencer, gsp);
2254 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_POST_EVENT, r535_gsp_msg_post_event, gsp);
2255 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_RC_TRIGGERED,
2256 			      r535_gsp_msg_rc_triggered, gsp);
2257 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_MMU_FAULT_QUEUED,
2258 			      r535_gsp_msg_mmu_fault_queued, gsp);
2259 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_OS_ERROR_LOG, r535_gsp_msg_os_error_log, gsp);
2260 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_PERF_BRIDGELESS_INFO_UPDATE, NULL, NULL);
2261 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_UCODE_LIBOS_PRINT, NULL, NULL);
2262 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_SEND_USER_SHARED_DATA, NULL, NULL);
2263 	ret = r535_gsp_rm_boot_ctor(gsp);
2264 	if (ret)
2265 		return ret;
2266 
2267 	/* Release FW images - we've copied them to DMA buffers now. */
2268 	r535_gsp_dtor_fws(gsp);
2269 
2270 	/* Calculate FB layout. */
2271 	gsp->fb.wpr2.frts.size = 0x100000;
2272 	gsp->fb.wpr2.frts.addr = ALIGN_DOWN(gsp->fb.bios.addr, 0x20000) - gsp->fb.wpr2.frts.size;
2273 
2274 	gsp->fb.wpr2.boot.size = gsp->boot.fw.size;
2275 	gsp->fb.wpr2.boot.addr = ALIGN_DOWN(gsp->fb.wpr2.frts.addr - gsp->fb.wpr2.boot.size, 0x1000);
2276 
2277 	gsp->fb.wpr2.elf.size = gsp->fw.len;
2278 	gsp->fb.wpr2.elf.addr = ALIGN_DOWN(gsp->fb.wpr2.boot.addr - gsp->fb.wpr2.elf.size, 0x10000);
2279 
2280 	{
2281 		u32 fb_size_gb = DIV_ROUND_UP_ULL(gsp->fb.size, 1 << 30);
2282 
2283 		gsp->fb.wpr2.heap.size =
2284 			gsp->func->wpr_heap.os_carveout_size +
2285 			gsp->func->wpr_heap.base_size +
2286 			ALIGN(GSP_FW_HEAP_PARAM_SIZE_PER_GB_FB * fb_size_gb, 1 << 20) +
2287 			ALIGN(GSP_FW_HEAP_PARAM_CLIENT_ALLOC_SIZE, 1 << 20);
2288 
2289 		gsp->fb.wpr2.heap.size = max(gsp->fb.wpr2.heap.size, gsp->func->wpr_heap.min_size);
2290 	}
2291 
2292 	gsp->fb.wpr2.heap.addr = ALIGN_DOWN(gsp->fb.wpr2.elf.addr - gsp->fb.wpr2.heap.size, 0x100000);
2293 	gsp->fb.wpr2.heap.size = ALIGN_DOWN(gsp->fb.wpr2.elf.addr - gsp->fb.wpr2.heap.addr, 0x100000);
2294 
2295 	gsp->fb.wpr2.addr = ALIGN_DOWN(gsp->fb.wpr2.heap.addr - sizeof(GspFwWprMeta), 0x100000);
2296 	gsp->fb.wpr2.size = gsp->fb.wpr2.frts.addr + gsp->fb.wpr2.frts.size - gsp->fb.wpr2.addr;
2297 
2298 	gsp->fb.heap.size = 0x100000;
2299 	gsp->fb.heap.addr = gsp->fb.wpr2.addr - gsp->fb.heap.size;
2300 
2301 	ret = nvkm_gsp_fwsec_frts(gsp);
2302 	if (WARN_ON(ret))
2303 		return ret;
2304 
2305 	ret = r535_gsp_libos_init(gsp);
2306 	if (WARN_ON(ret))
2307 		return ret;
2308 
2309 	ret = r535_gsp_wpr_meta_init(gsp);
2310 	if (WARN_ON(ret))
2311 		return ret;
2312 
2313 	ret = r535_gsp_rpc_set_system_info(gsp);
2314 	if (WARN_ON(ret))
2315 		return ret;
2316 
2317 	ret = r535_gsp_rpc_set_registry(gsp);
2318 	if (WARN_ON(ret))
2319 		return ret;
2320 
2321 	/* Reset GSP into RISC-V mode. */
2322 	ret = gsp->func->reset(gsp);
2323 	if (WARN_ON(ret))
2324 		return ret;
2325 
2326 	nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr));
2327 	nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr));
2328 
2329 	mutex_init(&gsp->client_id.mutex);
2330 	idr_init(&gsp->client_id.idr);
2331 	return 0;
2332 }
2333 
2334 static int
2335 r535_gsp_load_fw(struct nvkm_gsp *gsp, const char *name, const char *ver,
2336 		 const struct firmware **pfw)
2337 {
2338 	char fwname[64];
2339 
2340 	snprintf(fwname, sizeof(fwname), "gsp/%s-%s", name, ver);
2341 	return nvkm_firmware_get(&gsp->subdev, fwname, 0, pfw);
2342 }
2343 
2344 int
2345 r535_gsp_load(struct nvkm_gsp *gsp, int ver, const struct nvkm_gsp_fwif *fwif)
2346 {
2347 	struct nvkm_subdev *subdev = &gsp->subdev;
2348 	int ret;
2349 	bool enable_gsp = fwif->enable;
2350 
2351 #if IS_ENABLED(CONFIG_DRM_NOUVEAU_GSP_DEFAULT)
2352 	enable_gsp = true;
2353 #endif
2354 	if (!nvkm_boolopt(subdev->device->cfgopt, "NvGspRm", enable_gsp))
2355 		return -EINVAL;
2356 
2357 	if ((ret = r535_gsp_load_fw(gsp, "gsp", fwif->ver, &gsp->fws.rm)) ||
2358 	    (ret = r535_gsp_load_fw(gsp, "booter_load", fwif->ver, &gsp->fws.booter.load)) ||
2359 	    (ret = r535_gsp_load_fw(gsp, "booter_unload", fwif->ver, &gsp->fws.booter.unload)) ||
2360 	    (ret = r535_gsp_load_fw(gsp, "bootloader", fwif->ver, &gsp->fws.bl))) {
2361 		r535_gsp_dtor_fws(gsp);
2362 		return ret;
2363 	}
2364 
2365 	return 0;
2366 }
2367 
2368 #define NVKM_GSP_FIRMWARE(chip)                                  \
2369 MODULE_FIRMWARE("nvidia/"#chip"/gsp/booter_load-535.113.01.bin");   \
2370 MODULE_FIRMWARE("nvidia/"#chip"/gsp/booter_unload-535.113.01.bin"); \
2371 MODULE_FIRMWARE("nvidia/"#chip"/gsp/bootloader-535.113.01.bin");    \
2372 MODULE_FIRMWARE("nvidia/"#chip"/gsp/gsp-535.113.01.bin")
2373 
2374 NVKM_GSP_FIRMWARE(tu102);
2375 NVKM_GSP_FIRMWARE(tu104);
2376 NVKM_GSP_FIRMWARE(tu106);
2377 
2378 NVKM_GSP_FIRMWARE(tu116);
2379 NVKM_GSP_FIRMWARE(tu117);
2380 
2381 NVKM_GSP_FIRMWARE(ga100);
2382 
2383 NVKM_GSP_FIRMWARE(ga102);
2384 NVKM_GSP_FIRMWARE(ga103);
2385 NVKM_GSP_FIRMWARE(ga104);
2386 NVKM_GSP_FIRMWARE(ga106);
2387 NVKM_GSP_FIRMWARE(ga107);
2388 
2389 NVKM_GSP_FIRMWARE(ad102);
2390 NVKM_GSP_FIRMWARE(ad103);
2391 NVKM_GSP_FIRMWARE(ad104);
2392 NVKM_GSP_FIRMWARE(ad106);
2393 NVKM_GSP_FIRMWARE(ad107);
2394