1 /* 2 * Copyright 2012 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 * Roy Spliet 24 */ 25 #define gt215_clk(p) container_of((p), struct gt215_clk, base) 26 #include "gt215.h" 27 #include "pll.h" 28 29 #include <engine/fifo.h> 30 #include <subdev/bios.h> 31 #include <subdev/bios/pll.h> 32 #include <subdev/timer.h> 33 34 struct gt215_clk { 35 struct nvkm_clk base; 36 struct gt215_clk_info eng[nv_clk_src_max]; 37 }; 38 39 static u32 read_clk(struct gt215_clk *, int, bool); 40 static u32 read_pll(struct gt215_clk *, int, u32); 41 42 static u32 43 read_vco(struct gt215_clk *clk, int idx) 44 { 45 struct nvkm_device *device = clk->base.subdev.device; 46 u32 sctl = nvkm_rd32(device, 0x4120 + (idx * 4)); 47 48 switch (sctl & 0x00000030) { 49 case 0x00000000: 50 return device->crystal; 51 case 0x00000020: 52 return read_pll(clk, 0x41, 0x00e820); 53 case 0x00000030: 54 return read_pll(clk, 0x42, 0x00e8a0); 55 default: 56 return 0; 57 } 58 } 59 60 static u32 61 read_clk(struct gt215_clk *clk, int idx, bool ignore_en) 62 { 63 struct nvkm_device *device = clk->base.subdev.device; 64 u32 sctl, sdiv, sclk; 65 66 /* refclk for the 0xe8xx plls is a fixed frequency */ 67 if (idx >= 0x40) { 68 if (device->chipset == 0xaf) { 69 /* no joke.. seriously.. sigh.. */ 70 return nvkm_rd32(device, 0x00471c) * 1000; 71 } 72 73 return device->crystal; 74 } 75 76 sctl = nvkm_rd32(device, 0x4120 + (idx * 4)); 77 if (!ignore_en && !(sctl & 0x00000100)) 78 return 0; 79 80 /* out_alt */ 81 if (sctl & 0x00000400) 82 return 108000; 83 84 /* vco_out */ 85 switch (sctl & 0x00003000) { 86 case 0x00000000: 87 if (!(sctl & 0x00000200)) 88 return device->crystal; 89 return 0; 90 case 0x00002000: 91 if (sctl & 0x00000040) 92 return 108000; 93 return 100000; 94 case 0x00003000: 95 /* vco_enable */ 96 if (!(sctl & 0x00000001)) 97 return 0; 98 99 sclk = read_vco(clk, idx); 100 sdiv = ((sctl & 0x003f0000) >> 16) + 2; 101 return (sclk * 2) / sdiv; 102 default: 103 return 0; 104 } 105 } 106 107 static u32 108 read_pll(struct gt215_clk *clk, int idx, u32 pll) 109 { 110 struct nvkm_device *device = clk->base.subdev.device; 111 u32 ctrl = nvkm_rd32(device, pll + 0); 112 u32 sclk = 0, P = 1, N = 1, M = 1; 113 114 if (!(ctrl & 0x00000008)) { 115 if (ctrl & 0x00000001) { 116 u32 coef = nvkm_rd32(device, pll + 4); 117 M = (coef & 0x000000ff) >> 0; 118 N = (coef & 0x0000ff00) >> 8; 119 P = (coef & 0x003f0000) >> 16; 120 121 /* no post-divider on these.. 122 * XXX: it looks more like two post-"dividers" that 123 * cross each other out in the default RPLL config */ 124 if ((pll & 0x00ff00) == 0x00e800) 125 P = 1; 126 127 sclk = read_clk(clk, 0x00 + idx, false); 128 } 129 } else { 130 sclk = read_clk(clk, 0x10 + idx, false); 131 } 132 133 if (M * P) 134 return sclk * N / (M * P); 135 136 return 0; 137 } 138 139 static int 140 gt215_clk_read(struct nvkm_clk *base, enum nv_clk_src src) 141 { 142 struct gt215_clk *clk = gt215_clk(base); 143 struct nvkm_subdev *subdev = &clk->base.subdev; 144 struct nvkm_device *device = subdev->device; 145 u32 hsrc; 146 147 switch (src) { 148 case nv_clk_src_crystal: 149 return device->crystal; 150 case nv_clk_src_core: 151 case nv_clk_src_core_intm: 152 return read_pll(clk, 0x00, 0x4200); 153 case nv_clk_src_shader: 154 return read_pll(clk, 0x01, 0x4220); 155 case nv_clk_src_mem: 156 return read_pll(clk, 0x02, 0x4000); 157 case nv_clk_src_disp: 158 return read_clk(clk, 0x20, false); 159 case nv_clk_src_vdec: 160 return read_clk(clk, 0x21, false); 161 case nv_clk_src_pmu: 162 return read_clk(clk, 0x25, false); 163 case nv_clk_src_host: 164 hsrc = (nvkm_rd32(device, 0xc040) & 0x30000000) >> 28; 165 switch (hsrc) { 166 case 0: 167 return read_clk(clk, 0x1d, false); 168 case 2: 169 case 3: 170 return 277000; 171 default: 172 nvkm_error(subdev, "unknown HOST clock source %d\n", hsrc); 173 return -EINVAL; 174 } 175 default: 176 nvkm_error(subdev, "invalid clock source %d\n", src); 177 return -EINVAL; 178 } 179 180 return 0; 181 } 182 183 static int 184 gt215_clk_info(struct nvkm_clk *base, int idx, u32 khz, 185 struct gt215_clk_info *info) 186 { 187 struct gt215_clk *clk = gt215_clk(base); 188 u32 oclk, sclk, sdiv; 189 s32 diff; 190 191 info->clk = 0; 192 193 switch (khz) { 194 case 27000: 195 info->clk = 0x00000100; 196 return khz; 197 case 100000: 198 info->clk = 0x00002100; 199 return khz; 200 case 108000: 201 info->clk = 0x00002140; 202 return khz; 203 default: 204 sclk = read_vco(clk, idx); 205 sdiv = min((sclk * 2) / khz, (u32)65); 206 oclk = (sclk * 2) / sdiv; 207 diff = ((khz + 3000) - oclk); 208 209 /* When imprecise, play it safe and aim for a clock lower than 210 * desired rather than higher */ 211 if (diff < 0) { 212 sdiv++; 213 oclk = (sclk * 2) / sdiv; 214 } 215 216 /* divider can go as low as 2, limited here because NVIDIA 217 * and the VBIOS on my NVA8 seem to prefer using the PLL 218 * for 810MHz - is there a good reason? 219 * XXX: PLLs with refclk 810MHz? */ 220 if (sdiv > 4) { 221 info->clk = (((sdiv - 2) << 16) | 0x00003100); 222 return oclk; 223 } 224 225 break; 226 } 227 228 return -ERANGE; 229 } 230 231 int 232 gt215_pll_info(struct nvkm_clk *base, int idx, u32 pll, u32 khz, 233 struct gt215_clk_info *info) 234 { 235 struct gt215_clk *clk = gt215_clk(base); 236 struct nvkm_subdev *subdev = &clk->base.subdev; 237 struct nvbios_pll limits; 238 int P, N, M, diff; 239 int ret; 240 241 info->pll = 0; 242 243 /* If we can get a within [-2, 3) MHz of a divider, we'll disable the 244 * PLL and use the divider instead. */ 245 ret = gt215_clk_info(&clk->base, idx, khz, info); 246 diff = khz - ret; 247 if (!pll || (diff >= -2000 && diff < 3000)) { 248 goto out; 249 } 250 251 /* Try with PLL */ 252 ret = nvbios_pll_parse(subdev->device->bios, pll, &limits); 253 if (ret) 254 return ret; 255 256 ret = gt215_clk_info(&clk->base, idx - 0x10, limits.refclk, info); 257 if (ret != limits.refclk) 258 return -EINVAL; 259 260 ret = gt215_pll_calc(subdev, &limits, khz, &N, NULL, &M, &P); 261 if (ret >= 0) { 262 info->pll = (P << 16) | (N << 8) | M; 263 } 264 265 out: 266 info->fb_delay = max(((khz + 7566) / 15133), (u32) 18); 267 return ret ? ret : -ERANGE; 268 } 269 270 static int 271 calc_clk(struct gt215_clk *clk, struct nvkm_cstate *cstate, 272 int idx, u32 pll, int dom) 273 { 274 int ret = gt215_pll_info(&clk->base, idx, pll, cstate->domain[dom], 275 &clk->eng[dom]); 276 if (ret >= 0) 277 return 0; 278 return ret; 279 } 280 281 static int 282 calc_host(struct gt215_clk *clk, struct nvkm_cstate *cstate) 283 { 284 int ret = 0; 285 u32 kHz = cstate->domain[nv_clk_src_host]; 286 struct gt215_clk_info *info = &clk->eng[nv_clk_src_host]; 287 288 if (kHz == 277000) { 289 info->clk = 0; 290 info->host_out = NVA3_HOST_277; 291 return 0; 292 } 293 294 info->host_out = NVA3_HOST_CLK; 295 296 ret = gt215_clk_info(&clk->base, 0x1d, kHz, info); 297 if (ret >= 0) 298 return 0; 299 300 return ret; 301 } 302 303 int 304 gt215_clk_pre(struct nvkm_clk *clk, unsigned long *flags) 305 { 306 struct nvkm_device *device = clk->subdev.device; 307 struct nvkm_fifo *fifo = device->fifo; 308 309 /* halt and idle execution engines */ 310 nvkm_mask(device, 0x020060, 0x00070000, 0x00000000); 311 nvkm_mask(device, 0x002504, 0x00000001, 0x00000001); 312 /* Wait until the interrupt handler is finished */ 313 if (nvkm_msec(device, 2000, 314 if (!nvkm_rd32(device, 0x000100)) 315 break; 316 ) < 0) 317 return -EBUSY; 318 319 if (fifo) 320 nvkm_fifo_pause(fifo, flags); 321 322 if (nvkm_msec(device, 2000, 323 if (nvkm_rd32(device, 0x002504) & 0x00000010) 324 break; 325 ) < 0) 326 return -EIO; 327 328 if (nvkm_msec(device, 2000, 329 u32 tmp = nvkm_rd32(device, 0x00251c) & 0x0000003f; 330 if (tmp == 0x0000003f) 331 break; 332 ) < 0) 333 return -EIO; 334 335 return 0; 336 } 337 338 void 339 gt215_clk_post(struct nvkm_clk *clk, unsigned long *flags) 340 { 341 struct nvkm_device *device = clk->subdev.device; 342 struct nvkm_fifo *fifo = device->fifo; 343 344 if (fifo && flags) 345 nvkm_fifo_start(fifo, flags); 346 347 nvkm_mask(device, 0x002504, 0x00000001, 0x00000000); 348 nvkm_mask(device, 0x020060, 0x00070000, 0x00040000); 349 } 350 351 static void 352 disable_clk_src(struct gt215_clk *clk, u32 src) 353 { 354 struct nvkm_device *device = clk->base.subdev.device; 355 nvkm_mask(device, src, 0x00000100, 0x00000000); 356 nvkm_mask(device, src, 0x00000001, 0x00000000); 357 } 358 359 static void 360 prog_pll(struct gt215_clk *clk, int idx, u32 pll, int dom) 361 { 362 struct gt215_clk_info *info = &clk->eng[dom]; 363 struct nvkm_device *device = clk->base.subdev.device; 364 const u32 src0 = 0x004120 + (idx * 4); 365 const u32 src1 = 0x004160 + (idx * 4); 366 const u32 ctrl = pll + 0; 367 const u32 coef = pll + 4; 368 u32 bypass; 369 370 if (info->pll) { 371 /* Always start from a non-PLL clock */ 372 bypass = nvkm_rd32(device, ctrl) & 0x00000008; 373 if (!bypass) { 374 nvkm_mask(device, src1, 0x00000101, 0x00000101); 375 nvkm_mask(device, ctrl, 0x00000008, 0x00000008); 376 udelay(20); 377 } 378 379 nvkm_mask(device, src0, 0x003f3141, 0x00000101 | info->clk); 380 nvkm_wr32(device, coef, info->pll); 381 nvkm_mask(device, ctrl, 0x00000015, 0x00000015); 382 nvkm_mask(device, ctrl, 0x00000010, 0x00000000); 383 if (nvkm_msec(device, 2000, 384 if (nvkm_rd32(device, ctrl) & 0x00020000) 385 break; 386 ) < 0) { 387 nvkm_mask(device, ctrl, 0x00000010, 0x00000010); 388 nvkm_mask(device, src0, 0x00000101, 0x00000000); 389 return; 390 } 391 nvkm_mask(device, ctrl, 0x00000010, 0x00000010); 392 nvkm_mask(device, ctrl, 0x00000008, 0x00000000); 393 disable_clk_src(clk, src1); 394 } else { 395 nvkm_mask(device, src1, 0x003f3141, 0x00000101 | info->clk); 396 nvkm_mask(device, ctrl, 0x00000018, 0x00000018); 397 udelay(20); 398 nvkm_mask(device, ctrl, 0x00000001, 0x00000000); 399 disable_clk_src(clk, src0); 400 } 401 } 402 403 static void 404 prog_clk(struct gt215_clk *clk, int idx, int dom) 405 { 406 struct gt215_clk_info *info = &clk->eng[dom]; 407 struct nvkm_device *device = clk->base.subdev.device; 408 nvkm_mask(device, 0x004120 + (idx * 4), 0x003f3141, 0x00000101 | info->clk); 409 } 410 411 static void 412 prog_host(struct gt215_clk *clk) 413 { 414 struct gt215_clk_info *info = &clk->eng[nv_clk_src_host]; 415 struct nvkm_device *device = clk->base.subdev.device; 416 u32 hsrc = (nvkm_rd32(device, 0xc040)); 417 418 switch (info->host_out) { 419 case NVA3_HOST_277: 420 if ((hsrc & 0x30000000) == 0) { 421 nvkm_wr32(device, 0xc040, hsrc | 0x20000000); 422 disable_clk_src(clk, 0x4194); 423 } 424 break; 425 case NVA3_HOST_CLK: 426 prog_clk(clk, 0x1d, nv_clk_src_host); 427 if ((hsrc & 0x30000000) >= 0x20000000) { 428 nvkm_wr32(device, 0xc040, hsrc & ~0x30000000); 429 } 430 break; 431 default: 432 break; 433 } 434 435 /* This seems to be a clock gating factor on idle, always set to 64 */ 436 nvkm_wr32(device, 0xc044, 0x3e); 437 } 438 439 static void 440 prog_core(struct gt215_clk *clk, int dom) 441 { 442 struct gt215_clk_info *info = &clk->eng[dom]; 443 struct nvkm_device *device = clk->base.subdev.device; 444 u32 fb_delay = nvkm_rd32(device, 0x10002c); 445 446 if (fb_delay < info->fb_delay) 447 nvkm_wr32(device, 0x10002c, info->fb_delay); 448 449 prog_pll(clk, 0x00, 0x004200, dom); 450 451 if (fb_delay > info->fb_delay) 452 nvkm_wr32(device, 0x10002c, info->fb_delay); 453 } 454 455 static int 456 gt215_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) 457 { 458 struct gt215_clk *clk = gt215_clk(base); 459 struct gt215_clk_info *core = &clk->eng[nv_clk_src_core]; 460 int ret; 461 462 if ((ret = calc_clk(clk, cstate, 0x10, 0x4200, nv_clk_src_core)) || 463 (ret = calc_clk(clk, cstate, 0x11, 0x4220, nv_clk_src_shader)) || 464 (ret = calc_clk(clk, cstate, 0x20, 0x0000, nv_clk_src_disp)) || 465 (ret = calc_clk(clk, cstate, 0x21, 0x0000, nv_clk_src_vdec)) || 466 (ret = calc_host(clk, cstate))) 467 return ret; 468 469 /* XXX: Should be reading the highest bit in the VBIOS clock to decide 470 * whether to use a PLL or not... but using a PLL defeats the purpose */ 471 if (core->pll) { 472 ret = gt215_clk_info(&clk->base, 0x10, 473 cstate->domain[nv_clk_src_core_intm], 474 &clk->eng[nv_clk_src_core_intm]); 475 if (ret < 0) 476 return ret; 477 } 478 479 return 0; 480 } 481 482 static int 483 gt215_clk_prog(struct nvkm_clk *base) 484 { 485 struct gt215_clk *clk = gt215_clk(base); 486 struct gt215_clk_info *core = &clk->eng[nv_clk_src_core]; 487 int ret = 0; 488 unsigned long flags; 489 unsigned long *f = &flags; 490 491 ret = gt215_clk_pre(&clk->base, f); 492 if (ret) 493 goto out; 494 495 if (core->pll) 496 prog_core(clk, nv_clk_src_core_intm); 497 498 prog_core(clk, nv_clk_src_core); 499 prog_pll(clk, 0x01, 0x004220, nv_clk_src_shader); 500 prog_clk(clk, 0x20, nv_clk_src_disp); 501 prog_clk(clk, 0x21, nv_clk_src_vdec); 502 prog_host(clk); 503 504 out: 505 if (ret == -EBUSY) 506 f = NULL; 507 508 gt215_clk_post(&clk->base, f); 509 return ret; 510 } 511 512 static void 513 gt215_clk_tidy(struct nvkm_clk *base) 514 { 515 } 516 517 static const struct nvkm_clk_func 518 gt215_clk = { 519 .read = gt215_clk_read, 520 .calc = gt215_clk_calc, 521 .prog = gt215_clk_prog, 522 .tidy = gt215_clk_tidy, 523 .domains = { 524 { nv_clk_src_crystal , 0xff }, 525 { nv_clk_src_core , 0x00, 0, "core", 1000 }, 526 { nv_clk_src_shader , 0x01, 0, "shader", 1000 }, 527 { nv_clk_src_mem , 0x02, 0, "memory", 1000 }, 528 { nv_clk_src_vdec , 0x03 }, 529 { nv_clk_src_disp , 0x04 }, 530 { nv_clk_src_host , 0x05 }, 531 { nv_clk_src_core_intm, 0x06 }, 532 { nv_clk_src_max } 533 } 534 }; 535 536 int 537 gt215_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk) 538 { 539 struct gt215_clk *clk; 540 541 if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL))) 542 return -ENOMEM; 543 *pclk = &clk->base; 544 545 return nvkm_clk_ctor(>215_clk, device, index, true, &clk->base); 546 } 547