xref: /linux/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gt215.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  *          Roy Spliet
24  */
25 #define gt215_clk(p) container_of((p), struct gt215_clk, base)
26 #include "gt215.h"
27 #include "pll.h"
28 
29 #include <engine/fifo.h>
30 #include <subdev/bios.h>
31 #include <subdev/bios/pll.h>
32 #include <subdev/timer.h>
33 
34 struct gt215_clk {
35 	struct nvkm_clk base;
36 	struct gt215_clk_info eng[nv_clk_src_max];
37 };
38 
39 static u32 read_clk(struct gt215_clk *, int, bool);
40 static u32 read_pll(struct gt215_clk *, int, u32);
41 
42 static u32
43 read_vco(struct gt215_clk *clk, int idx)
44 {
45 	struct nvkm_device *device = clk->base.subdev.device;
46 	u32 sctl = nvkm_rd32(device, 0x4120 + (idx * 4));
47 
48 	switch (sctl & 0x00000030) {
49 	case 0x00000000:
50 		return device->crystal;
51 	case 0x00000020:
52 		return read_pll(clk, 0x41, 0x00e820);
53 	case 0x00000030:
54 		return read_pll(clk, 0x42, 0x00e8a0);
55 	default:
56 		return 0;
57 	}
58 }
59 
60 static u32
61 read_clk(struct gt215_clk *clk, int idx, bool ignore_en)
62 {
63 	struct nvkm_device *device = clk->base.subdev.device;
64 	u32 sctl, sdiv, sclk;
65 
66 	/* refclk for the 0xe8xx plls is a fixed frequency */
67 	if (idx >= 0x40) {
68 		if (device->chipset == 0xaf) {
69 			/* no joke.. seriously.. sigh.. */
70 			return nvkm_rd32(device, 0x00471c) * 1000;
71 		}
72 
73 		return device->crystal;
74 	}
75 
76 	sctl = nvkm_rd32(device, 0x4120 + (idx * 4));
77 	if (!ignore_en && !(sctl & 0x00000100))
78 		return 0;
79 
80 	/* out_alt */
81 	if (sctl & 0x00000400)
82 		return 108000;
83 
84 	/* vco_out */
85 	switch (sctl & 0x00003000) {
86 	case 0x00000000:
87 		if (!(sctl & 0x00000200))
88 			return device->crystal;
89 		return 0;
90 	case 0x00002000:
91 		if (sctl & 0x00000040)
92 			return 108000;
93 		return 100000;
94 	case 0x00003000:
95 		/* vco_enable */
96 		if (!(sctl & 0x00000001))
97 			return 0;
98 
99 		sclk = read_vco(clk, idx);
100 		sdiv = ((sctl & 0x003f0000) >> 16) + 2;
101 		return (sclk * 2) / sdiv;
102 	default:
103 		return 0;
104 	}
105 }
106 
107 static u32
108 read_pll(struct gt215_clk *clk, int idx, u32 pll)
109 {
110 	struct nvkm_device *device = clk->base.subdev.device;
111 	u32 ctrl = nvkm_rd32(device, pll + 0);
112 	u32 sclk = 0, P = 1, N = 1, M = 1;
113 
114 	if (!(ctrl & 0x00000008)) {
115 		if (ctrl & 0x00000001) {
116 			u32 coef = nvkm_rd32(device, pll + 4);
117 			M = (coef & 0x000000ff) >> 0;
118 			N = (coef & 0x0000ff00) >> 8;
119 			P = (coef & 0x003f0000) >> 16;
120 
121 			/* no post-divider on these..
122 			 * XXX: it looks more like two post-"dividers" that
123 			 * cross each other out in the default RPLL config */
124 			if ((pll & 0x00ff00) == 0x00e800)
125 				P = 1;
126 
127 			sclk = read_clk(clk, 0x00 + idx, false);
128 		}
129 	} else {
130 		sclk = read_clk(clk, 0x10 + idx, false);
131 	}
132 
133 	if (M * P)
134 		return sclk * N / (M * P);
135 
136 	return 0;
137 }
138 
139 static int
140 gt215_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
141 {
142 	struct gt215_clk *clk = gt215_clk(base);
143 	struct nvkm_subdev *subdev = &clk->base.subdev;
144 	struct nvkm_device *device = subdev->device;
145 	u32 hsrc;
146 
147 	switch (src) {
148 	case nv_clk_src_crystal:
149 		return device->crystal;
150 	case nv_clk_src_core:
151 	case nv_clk_src_core_intm:
152 		return read_pll(clk, 0x00, 0x4200);
153 	case nv_clk_src_shader:
154 		return read_pll(clk, 0x01, 0x4220);
155 	case nv_clk_src_mem:
156 		return read_pll(clk, 0x02, 0x4000);
157 	case nv_clk_src_disp:
158 		return read_clk(clk, 0x20, false);
159 	case nv_clk_src_vdec:
160 		return read_clk(clk, 0x21, false);
161 	case nv_clk_src_pmu:
162 		return read_clk(clk, 0x25, false);
163 	case nv_clk_src_host:
164 		hsrc = (nvkm_rd32(device, 0xc040) & 0x30000000) >> 28;
165 		switch (hsrc) {
166 		case 0:
167 			return read_clk(clk, 0x1d, false);
168 		case 2:
169 		case 3:
170 			return 277000;
171 		default:
172 			nvkm_error(subdev, "unknown HOST clock source %d\n", hsrc);
173 			return -EINVAL;
174 		}
175 	default:
176 		nvkm_error(subdev, "invalid clock source %d\n", src);
177 		return -EINVAL;
178 	}
179 
180 	return 0;
181 }
182 
183 int
184 gt215_clk_info(struct nvkm_clk *base, int idx, u32 khz,
185 	       struct gt215_clk_info *info)
186 {
187 	struct gt215_clk *clk = gt215_clk(base);
188 	u32 oclk, sclk, sdiv;
189 	s32 diff;
190 
191 	info->clk = 0;
192 
193 	switch (khz) {
194 	case 27000:
195 		info->clk = 0x00000100;
196 		return khz;
197 	case 100000:
198 		info->clk = 0x00002100;
199 		return khz;
200 	case 108000:
201 		info->clk = 0x00002140;
202 		return khz;
203 	default:
204 		sclk = read_vco(clk, idx);
205 		sdiv = min((sclk * 2) / khz, (u32)65);
206 		oclk = (sclk * 2) / sdiv;
207 		diff = ((khz + 3000) - oclk);
208 
209 		/* When imprecise, play it safe and aim for a clock lower than
210 		 * desired rather than higher */
211 		if (diff < 0) {
212 			sdiv++;
213 			oclk = (sclk * 2) / sdiv;
214 		}
215 
216 		/* divider can go as low as 2, limited here because NVIDIA
217 		 * and the VBIOS on my NVA8 seem to prefer using the PLL
218 		 * for 810MHz - is there a good reason?
219 		 * XXX: PLLs with refclk 810MHz?  */
220 		if (sdiv > 4) {
221 			info->clk = (((sdiv - 2) << 16) | 0x00003100);
222 			return oclk;
223 		}
224 
225 		break;
226 	}
227 
228 	return -ERANGE;
229 }
230 
231 int
232 gt215_pll_info(struct nvkm_clk *base, int idx, u32 pll, u32 khz,
233 	       struct gt215_clk_info *info)
234 {
235 	struct gt215_clk *clk = gt215_clk(base);
236 	struct nvkm_subdev *subdev = &clk->base.subdev;
237 	struct nvbios_pll limits;
238 	int P, N, M, diff;
239 	int ret;
240 
241 	info->pll = 0;
242 
243 	/* If we can get a within [-2, 3) MHz of a divider, we'll disable the
244 	 * PLL and use the divider instead. */
245 	ret = gt215_clk_info(&clk->base, idx, khz, info);
246 	diff = khz - ret;
247 	if (!pll || (diff >= -2000 && diff < 3000)) {
248 		goto out;
249 	}
250 
251 	/* Try with PLL */
252 	ret = nvbios_pll_parse(subdev->device->bios, pll, &limits);
253 	if (ret)
254 		return ret;
255 
256 	ret = gt215_clk_info(&clk->base, idx - 0x10, limits.refclk, info);
257 	if (ret != limits.refclk)
258 		return -EINVAL;
259 
260 	ret = gt215_pll_calc(subdev, &limits, khz, &N, NULL, &M, &P);
261 	if (ret >= 0) {
262 		info->pll = (P << 16) | (N << 8) | M;
263 	}
264 
265 out:
266 	info->fb_delay = max(((khz + 7566) / 15133), (u32) 18);
267 	return ret ? ret : -ERANGE;
268 }
269 
270 static int
271 calc_clk(struct gt215_clk *clk, struct nvkm_cstate *cstate,
272 	 int idx, u32 pll, int dom)
273 {
274 	int ret = gt215_pll_info(&clk->base, idx, pll, cstate->domain[dom],
275 				 &clk->eng[dom]);
276 	if (ret >= 0)
277 		return 0;
278 	return ret;
279 }
280 
281 static int
282 calc_host(struct gt215_clk *clk, struct nvkm_cstate *cstate)
283 {
284 	int ret = 0;
285 	u32 kHz = cstate->domain[nv_clk_src_host];
286 	struct gt215_clk_info *info = &clk->eng[nv_clk_src_host];
287 
288 	if (kHz == 277000) {
289 		info->clk = 0;
290 		info->host_out = NVA3_HOST_277;
291 		return 0;
292 	}
293 
294 	info->host_out = NVA3_HOST_CLK;
295 
296 	ret = gt215_clk_info(&clk->base, 0x1d, kHz, info);
297 	if (ret >= 0)
298 		return 0;
299 
300 	return ret;
301 }
302 
303 int
304 gt215_clk_pre(struct nvkm_clk *clk, unsigned long *flags)
305 {
306 	struct nvkm_device *device = clk->subdev.device;
307 	struct nvkm_fifo *fifo = device->fifo;
308 
309 	/* halt and idle execution engines */
310 	nvkm_mask(device, 0x020060, 0x00070000, 0x00000000);
311 	nvkm_mask(device, 0x002504, 0x00000001, 0x00000001);
312 	/* Wait until the interrupt handler is finished */
313 	if (nvkm_msec(device, 2000,
314 		if (!nvkm_rd32(device, 0x000100))
315 			break;
316 	) < 0)
317 		return -EBUSY;
318 
319 	if (fifo)
320 		nvkm_fifo_pause(fifo, flags);
321 
322 	if (nvkm_msec(device, 2000,
323 		if (nvkm_rd32(device, 0x002504) & 0x00000010)
324 			break;
325 	) < 0)
326 		return -EIO;
327 
328 	if (nvkm_msec(device, 2000,
329 		u32 tmp = nvkm_rd32(device, 0x00251c) & 0x0000003f;
330 		if (tmp == 0x0000003f)
331 			break;
332 	) < 0)
333 		return -EIO;
334 
335 	return 0;
336 }
337 
338 void
339 gt215_clk_post(struct nvkm_clk *clk, unsigned long *flags)
340 {
341 	struct nvkm_device *device = clk->subdev.device;
342 	struct nvkm_fifo *fifo = device->fifo;
343 
344 	if (fifo && flags)
345 		nvkm_fifo_start(fifo, flags);
346 
347 	nvkm_mask(device, 0x002504, 0x00000001, 0x00000000);
348 	nvkm_mask(device, 0x020060, 0x00070000, 0x00040000);
349 }
350 
351 static void
352 disable_clk_src(struct gt215_clk *clk, u32 src)
353 {
354 	struct nvkm_device *device = clk->base.subdev.device;
355 	nvkm_mask(device, src, 0x00000100, 0x00000000);
356 	nvkm_mask(device, src, 0x00000001, 0x00000000);
357 }
358 
359 static void
360 prog_pll(struct gt215_clk *clk, int idx, u32 pll, int dom)
361 {
362 	struct gt215_clk_info *info = &clk->eng[dom];
363 	struct nvkm_device *device = clk->base.subdev.device;
364 	const u32 src0 = 0x004120 + (idx * 4);
365 	const u32 src1 = 0x004160 + (idx * 4);
366 	const u32 ctrl = pll + 0;
367 	const u32 coef = pll + 4;
368 	u32 bypass;
369 
370 	if (info->pll) {
371 		/* Always start from a non-PLL clock */
372 		bypass = nvkm_rd32(device, ctrl)  & 0x00000008;
373 		if (!bypass) {
374 			nvkm_mask(device, src1, 0x00000101, 0x00000101);
375 			nvkm_mask(device, ctrl, 0x00000008, 0x00000008);
376 			udelay(20);
377 		}
378 
379 		nvkm_mask(device, src0, 0x003f3141, 0x00000101 | info->clk);
380 		nvkm_wr32(device, coef, info->pll);
381 		nvkm_mask(device, ctrl, 0x00000015, 0x00000015);
382 		nvkm_mask(device, ctrl, 0x00000010, 0x00000000);
383 		if (nvkm_msec(device, 2000,
384 			if (nvkm_rd32(device, ctrl) & 0x00020000)
385 				break;
386 		) < 0) {
387 			nvkm_mask(device, ctrl, 0x00000010, 0x00000010);
388 			nvkm_mask(device, src0, 0x00000101, 0x00000000);
389 			return;
390 		}
391 		nvkm_mask(device, ctrl, 0x00000010, 0x00000010);
392 		nvkm_mask(device, ctrl, 0x00000008, 0x00000000);
393 		disable_clk_src(clk, src1);
394 	} else {
395 		nvkm_mask(device, src1, 0x003f3141, 0x00000101 | info->clk);
396 		nvkm_mask(device, ctrl, 0x00000018, 0x00000018);
397 		udelay(20);
398 		nvkm_mask(device, ctrl, 0x00000001, 0x00000000);
399 		disable_clk_src(clk, src0);
400 	}
401 }
402 
403 static void
404 prog_clk(struct gt215_clk *clk, int idx, int dom)
405 {
406 	struct gt215_clk_info *info = &clk->eng[dom];
407 	struct nvkm_device *device = clk->base.subdev.device;
408 	nvkm_mask(device, 0x004120 + (idx * 4), 0x003f3141, 0x00000101 | info->clk);
409 }
410 
411 static void
412 prog_host(struct gt215_clk *clk)
413 {
414 	struct gt215_clk_info *info = &clk->eng[nv_clk_src_host];
415 	struct nvkm_device *device = clk->base.subdev.device;
416 	u32 hsrc = (nvkm_rd32(device, 0xc040));
417 
418 	switch (info->host_out) {
419 	case NVA3_HOST_277:
420 		if ((hsrc & 0x30000000) == 0) {
421 			nvkm_wr32(device, 0xc040, hsrc | 0x20000000);
422 			disable_clk_src(clk, 0x4194);
423 		}
424 		break;
425 	case NVA3_HOST_CLK:
426 		prog_clk(clk, 0x1d, nv_clk_src_host);
427 		if ((hsrc & 0x30000000) >= 0x20000000) {
428 			nvkm_wr32(device, 0xc040, hsrc & ~0x30000000);
429 		}
430 		break;
431 	default:
432 		break;
433 	}
434 
435 	/* This seems to be a clock gating factor on idle, always set to 64 */
436 	nvkm_wr32(device, 0xc044, 0x3e);
437 }
438 
439 static void
440 prog_core(struct gt215_clk *clk, int dom)
441 {
442 	struct gt215_clk_info *info = &clk->eng[dom];
443 	struct nvkm_device *device = clk->base.subdev.device;
444 	u32 fb_delay = nvkm_rd32(device, 0x10002c);
445 
446 	if (fb_delay < info->fb_delay)
447 		nvkm_wr32(device, 0x10002c, info->fb_delay);
448 
449 	prog_pll(clk, 0x00, 0x004200, dom);
450 
451 	if (fb_delay > info->fb_delay)
452 		nvkm_wr32(device, 0x10002c, info->fb_delay);
453 }
454 
455 static int
456 gt215_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
457 {
458 	struct gt215_clk *clk = gt215_clk(base);
459 	struct gt215_clk_info *core = &clk->eng[nv_clk_src_core];
460 	int ret;
461 
462 	if ((ret = calc_clk(clk, cstate, 0x10, 0x4200, nv_clk_src_core)) ||
463 	    (ret = calc_clk(clk, cstate, 0x11, 0x4220, nv_clk_src_shader)) ||
464 	    (ret = calc_clk(clk, cstate, 0x20, 0x0000, nv_clk_src_disp)) ||
465 	    (ret = calc_clk(clk, cstate, 0x21, 0x0000, nv_clk_src_vdec)) ||
466 	    (ret = calc_host(clk, cstate)))
467 		return ret;
468 
469 	/* XXX: Should be reading the highest bit in the VBIOS clock to decide
470 	 * whether to use a PLL or not... but using a PLL defeats the purpose */
471 	if (core->pll) {
472 		ret = gt215_clk_info(&clk->base, 0x10,
473 				     cstate->domain[nv_clk_src_core_intm],
474 				     &clk->eng[nv_clk_src_core_intm]);
475 		if (ret < 0)
476 			return ret;
477 	}
478 
479 	return 0;
480 }
481 
482 static int
483 gt215_clk_prog(struct nvkm_clk *base)
484 {
485 	struct gt215_clk *clk = gt215_clk(base);
486 	struct gt215_clk_info *core = &clk->eng[nv_clk_src_core];
487 	int ret = 0;
488 	unsigned long flags;
489 	unsigned long *f = &flags;
490 
491 	ret = gt215_clk_pre(&clk->base, f);
492 	if (ret)
493 		goto out;
494 
495 	if (core->pll)
496 		prog_core(clk, nv_clk_src_core_intm);
497 
498 	prog_core(clk,  nv_clk_src_core);
499 	prog_pll(clk, 0x01, 0x004220, nv_clk_src_shader);
500 	prog_clk(clk, 0x20, nv_clk_src_disp);
501 	prog_clk(clk, 0x21, nv_clk_src_vdec);
502 	prog_host(clk);
503 
504 out:
505 	if (ret == -EBUSY)
506 		f = NULL;
507 
508 	gt215_clk_post(&clk->base, f);
509 	return ret;
510 }
511 
512 static void
513 gt215_clk_tidy(struct nvkm_clk *base)
514 {
515 }
516 
517 static const struct nvkm_clk_func
518 gt215_clk = {
519 	.read = gt215_clk_read,
520 	.calc = gt215_clk_calc,
521 	.prog = gt215_clk_prog,
522 	.tidy = gt215_clk_tidy,
523 	.domains = {
524 		{ nv_clk_src_crystal  , 0xff },
525 		{ nv_clk_src_core     , 0x00, 0, "core", 1000 },
526 		{ nv_clk_src_shader   , 0x01, 0, "shader", 1000 },
527 		{ nv_clk_src_mem      , 0x02, 0, "memory", 1000 },
528 		{ nv_clk_src_vdec     , 0x03 },
529 		{ nv_clk_src_disp     , 0x04 },
530 		{ nv_clk_src_host     , 0x05 },
531 		{ nv_clk_src_core_intm, 0x06 },
532 		{ nv_clk_src_max }
533 	}
534 };
535 
536 int
537 gt215_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
538 {
539 	struct gt215_clk *clk;
540 
541 	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
542 		return -ENOMEM;
543 	*pclk = &clk->base;
544 
545 	return nvkm_clk_ctor(&gt215_clk, device, index, true, &clk->base);
546 }
547