1 /* 2 * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 20 * DEALINGS IN THE SOFTWARE. 21 * 22 * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c 23 * 24 */ 25 #include <subdev/clk.h> 26 #include <subdev/timer.h> 27 28 #include <core/device.h> 29 30 #ifdef __KERNEL__ 31 #include <nouveau_platform.h> 32 #endif 33 34 #define MHZ (1000 * 1000) 35 36 #define MASK(w) ((1 << w) - 1) 37 38 #define SYS_GPCPLL_CFG_BASE 0x00137000 39 #define GPC_BCASE_GPCPLL_CFG_BASE 0x00132800 40 41 #define GPCPLL_CFG (SYS_GPCPLL_CFG_BASE + 0) 42 #define GPCPLL_CFG_ENABLE BIT(0) 43 #define GPCPLL_CFG_IDDQ BIT(1) 44 #define GPCPLL_CFG_LOCK_DET_OFF BIT(4) 45 #define GPCPLL_CFG_LOCK BIT(17) 46 47 #define GPCPLL_COEFF (SYS_GPCPLL_CFG_BASE + 4) 48 #define GPCPLL_COEFF_M_SHIFT 0 49 #define GPCPLL_COEFF_M_WIDTH 8 50 #define GPCPLL_COEFF_N_SHIFT 8 51 #define GPCPLL_COEFF_N_WIDTH 8 52 #define GPCPLL_COEFF_P_SHIFT 16 53 #define GPCPLL_COEFF_P_WIDTH 6 54 55 #define GPCPLL_CFG2 (SYS_GPCPLL_CFG_BASE + 0xc) 56 #define GPCPLL_CFG2_SETUP2_SHIFT 16 57 #define GPCPLL_CFG2_PLL_STEPA_SHIFT 24 58 59 #define GPCPLL_CFG3 (SYS_GPCPLL_CFG_BASE + 0x18) 60 #define GPCPLL_CFG3_PLL_STEPB_SHIFT 16 61 62 #define GPCPLL_NDIV_SLOWDOWN (SYS_GPCPLL_CFG_BASE + 0x1c) 63 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT 0 64 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT 8 65 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT 16 66 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT 22 67 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT 31 68 69 #define SEL_VCO (SYS_GPCPLL_CFG_BASE + 0x100) 70 #define SEL_VCO_GPC2CLK_OUT_SHIFT 0 71 72 #define GPC2CLK_OUT (SYS_GPCPLL_CFG_BASE + 0x250) 73 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1 74 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31 75 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE 1 76 #define GPC2CLK_OUT_VCODIV_WIDTH 6 77 #define GPC2CLK_OUT_VCODIV_SHIFT 8 78 #define GPC2CLK_OUT_VCODIV1 0 79 #define GPC2CLK_OUT_VCODIV_MASK (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \ 80 GPC2CLK_OUT_VCODIV_SHIFT) 81 #define GPC2CLK_OUT_BYPDIV_WIDTH 6 82 #define GPC2CLK_OUT_BYPDIV_SHIFT 0 83 #define GPC2CLK_OUT_BYPDIV31 0x3c 84 #define GPC2CLK_OUT_INIT_MASK ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \ 85 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\ 86 | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\ 87 | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT)) 88 #define GPC2CLK_OUT_INIT_VAL ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \ 89 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \ 90 | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \ 91 | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT)) 92 93 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0) 94 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT 24 95 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \ 96 (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT) 97 98 static const u8 pl_to_div[] = { 99 /* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */ 100 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32, 101 }; 102 103 /* All frequencies in Mhz */ 104 struct gk20a_clk_pllg_params { 105 u32 min_vco, max_vco; 106 u32 min_u, max_u; 107 u32 min_m, max_m; 108 u32 min_n, max_n; 109 u32 min_pl, max_pl; 110 }; 111 112 static const struct gk20a_clk_pllg_params gk20a_pllg_params = { 113 .min_vco = 1000, .max_vco = 2064, 114 .min_u = 12, .max_u = 38, 115 .min_m = 1, .max_m = 255, 116 .min_n = 8, .max_n = 255, 117 .min_pl = 1, .max_pl = 32, 118 }; 119 120 struct gk20a_clk_priv { 121 struct nvkm_clk base; 122 const struct gk20a_clk_pllg_params *params; 123 u32 m, n, pl; 124 u32 parent_rate; 125 }; 126 #define to_gk20a_clk(base) container_of(base, struct gk20a_clk_priv, base) 127 128 static void 129 gk20a_pllg_read_mnp(struct gk20a_clk_priv *priv) 130 { 131 u32 val; 132 133 val = nv_rd32(priv, GPCPLL_COEFF); 134 priv->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); 135 priv->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH); 136 priv->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); 137 } 138 139 static u32 140 gk20a_pllg_calc_rate(struct gk20a_clk_priv *priv) 141 { 142 u32 rate; 143 u32 divider; 144 145 rate = priv->parent_rate * priv->n; 146 divider = priv->m * pl_to_div[priv->pl]; 147 do_div(rate, divider); 148 149 return rate / 2; 150 } 151 152 static int 153 gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate) 154 { 155 u32 target_clk_f, ref_clk_f, target_freq; 156 u32 min_vco_f, max_vco_f; 157 u32 low_pl, high_pl, best_pl; 158 u32 target_vco_f, vco_f; 159 u32 best_m, best_n; 160 u32 u_f; 161 u32 m, n, n2; 162 u32 delta, lwv, best_delta = ~0; 163 u32 pl; 164 165 target_clk_f = rate * 2 / MHZ; 166 ref_clk_f = priv->parent_rate / MHZ; 167 168 max_vco_f = priv->params->max_vco; 169 min_vco_f = priv->params->min_vco; 170 best_m = priv->params->max_m; 171 best_n = priv->params->min_n; 172 best_pl = priv->params->min_pl; 173 174 target_vco_f = target_clk_f + target_clk_f / 50; 175 if (max_vco_f < target_vco_f) 176 max_vco_f = target_vco_f; 177 178 /* min_pl <= high_pl <= max_pl */ 179 high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f; 180 high_pl = min(high_pl, priv->params->max_pl); 181 high_pl = max(high_pl, priv->params->min_pl); 182 183 /* min_pl <= low_pl <= max_pl */ 184 low_pl = min_vco_f / target_vco_f; 185 low_pl = min(low_pl, priv->params->max_pl); 186 low_pl = max(low_pl, priv->params->min_pl); 187 188 /* Find Indices of high_pl and low_pl */ 189 for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) { 190 if (pl_to_div[pl] >= low_pl) { 191 low_pl = pl; 192 break; 193 } 194 } 195 for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) { 196 if (pl_to_div[pl] >= high_pl) { 197 high_pl = pl; 198 break; 199 } 200 } 201 202 nv_debug(priv, "low_PL %d(div%d), high_PL %d(div%d)", low_pl, 203 pl_to_div[low_pl], high_pl, pl_to_div[high_pl]); 204 205 /* Select lowest possible VCO */ 206 for (pl = low_pl; pl <= high_pl; pl++) { 207 target_vco_f = target_clk_f * pl_to_div[pl]; 208 for (m = priv->params->min_m; m <= priv->params->max_m; m++) { 209 u_f = ref_clk_f / m; 210 211 if (u_f < priv->params->min_u) 212 break; 213 if (u_f > priv->params->max_u) 214 continue; 215 216 n = (target_vco_f * m) / ref_clk_f; 217 n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f; 218 219 if (n > priv->params->max_n) 220 break; 221 222 for (; n <= n2; n++) { 223 if (n < priv->params->min_n) 224 continue; 225 if (n > priv->params->max_n) 226 break; 227 228 vco_f = ref_clk_f * n / m; 229 230 if (vco_f >= min_vco_f && vco_f <= max_vco_f) { 231 lwv = (vco_f + (pl_to_div[pl] / 2)) 232 / pl_to_div[pl]; 233 delta = abs(lwv - target_clk_f); 234 235 if (delta < best_delta) { 236 best_delta = delta; 237 best_m = m; 238 best_n = n; 239 best_pl = pl; 240 241 if (best_delta == 0) 242 goto found_match; 243 } 244 } 245 } 246 } 247 } 248 249 found_match: 250 WARN_ON(best_delta == ~0); 251 252 if (best_delta != 0) 253 nv_debug(priv, "no best match for target @ %dMHz on gpc_pll", 254 target_clk_f); 255 256 priv->m = best_m; 257 priv->n = best_n; 258 priv->pl = best_pl; 259 260 target_freq = gk20a_pllg_calc_rate(priv) / MHZ; 261 262 nv_debug(priv, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n", 263 target_freq, priv->m, priv->n, priv->pl, pl_to_div[priv->pl]); 264 return 0; 265 } 266 267 static int 268 gk20a_pllg_slide(struct gk20a_clk_priv *priv, u32 n) 269 { 270 u32 val; 271 int ramp_timeout; 272 273 /* get old coefficients */ 274 val = nv_rd32(priv, GPCPLL_COEFF); 275 /* do nothing if NDIV is the same */ 276 if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH))) 277 return 0; 278 279 /* setup */ 280 nv_mask(priv, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT, 281 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT); 282 nv_mask(priv, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT, 283 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT); 284 285 /* pll slowdown mode */ 286 nv_mask(priv, GPCPLL_NDIV_SLOWDOWN, 287 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT), 288 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT)); 289 290 /* new ndiv ready for ramp */ 291 val = nv_rd32(priv, GPCPLL_COEFF); 292 val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT); 293 val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT; 294 udelay(1); 295 nv_wr32(priv, GPCPLL_COEFF, val); 296 297 /* dynamic ramp to new ndiv */ 298 val = nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN); 299 val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT; 300 udelay(1); 301 nv_wr32(priv, GPCPLL_NDIV_SLOWDOWN, val); 302 303 for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) { 304 udelay(1); 305 val = nv_rd32(priv, GPC_BCAST_NDIV_SLOWDOWN_DEBUG); 306 if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) 307 break; 308 } 309 310 /* exit slowdown mode */ 311 nv_mask(priv, GPCPLL_NDIV_SLOWDOWN, 312 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) | 313 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0); 314 nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN); 315 316 if (ramp_timeout <= 0) { 317 nv_error(priv, "gpcpll dynamic ramp timeout\n"); 318 return -ETIMEDOUT; 319 } 320 321 return 0; 322 } 323 324 static void 325 _gk20a_pllg_enable(struct gk20a_clk_priv *priv) 326 { 327 nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE); 328 nv_rd32(priv, GPCPLL_CFG); 329 } 330 331 static void 332 _gk20a_pllg_disable(struct gk20a_clk_priv *priv) 333 { 334 nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0); 335 nv_rd32(priv, GPCPLL_CFG); 336 } 337 338 static int 339 _gk20a_pllg_program_mnp(struct gk20a_clk_priv *priv, bool allow_slide) 340 { 341 u32 val, cfg; 342 u32 m_old, pl_old, n_lo; 343 344 /* get old coefficients */ 345 val = nv_rd32(priv, GPCPLL_COEFF); 346 m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); 347 pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); 348 349 /* do NDIV slide if there is no change in M and PL */ 350 cfg = nv_rd32(priv, GPCPLL_CFG); 351 if (allow_slide && priv->m == m_old && priv->pl == pl_old && 352 (cfg & GPCPLL_CFG_ENABLE)) { 353 return gk20a_pllg_slide(priv, priv->n); 354 } 355 356 /* slide down to NDIV_LO */ 357 n_lo = DIV_ROUND_UP(m_old * priv->params->min_vco, 358 priv->parent_rate / MHZ); 359 if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) { 360 int ret = gk20a_pllg_slide(priv, n_lo); 361 362 if (ret) 363 return ret; 364 } 365 366 /* split FO-to-bypass jump in halfs by setting out divider 1:2 */ 367 nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, 368 0x2 << GPC2CLK_OUT_VCODIV_SHIFT); 369 370 /* put PLL in bypass before programming it */ 371 val = nv_rd32(priv, SEL_VCO); 372 val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); 373 udelay(2); 374 nv_wr32(priv, SEL_VCO, val); 375 376 /* get out from IDDQ */ 377 val = nv_rd32(priv, GPCPLL_CFG); 378 if (val & GPCPLL_CFG_IDDQ) { 379 val &= ~GPCPLL_CFG_IDDQ; 380 nv_wr32(priv, GPCPLL_CFG, val); 381 nv_rd32(priv, GPCPLL_CFG); 382 udelay(2); 383 } 384 385 _gk20a_pllg_disable(priv); 386 387 nv_debug(priv, "%s: m=%d n=%d pl=%d\n", __func__, priv->m, priv->n, 388 priv->pl); 389 390 n_lo = DIV_ROUND_UP(priv->m * priv->params->min_vco, 391 priv->parent_rate / MHZ); 392 val = priv->m << GPCPLL_COEFF_M_SHIFT; 393 val |= (allow_slide ? n_lo : priv->n) << GPCPLL_COEFF_N_SHIFT; 394 val |= priv->pl << GPCPLL_COEFF_P_SHIFT; 395 nv_wr32(priv, GPCPLL_COEFF, val); 396 397 _gk20a_pllg_enable(priv); 398 399 val = nv_rd32(priv, GPCPLL_CFG); 400 if (val & GPCPLL_CFG_LOCK_DET_OFF) { 401 val &= ~GPCPLL_CFG_LOCK_DET_OFF; 402 nv_wr32(priv, GPCPLL_CFG, val); 403 } 404 405 if (!nvkm_timer_wait_eq(priv, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK, 406 GPCPLL_CFG_LOCK)) { 407 nv_error(priv, "%s: timeout waiting for pllg lock\n", __func__); 408 return -ETIMEDOUT; 409 } 410 411 /* switch to VCO mode */ 412 nv_mask(priv, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); 413 414 /* restore out divider 1:1 */ 415 val = nv_rd32(priv, GPC2CLK_OUT); 416 val &= ~GPC2CLK_OUT_VCODIV_MASK; 417 udelay(2); 418 nv_wr32(priv, GPC2CLK_OUT, val); 419 420 /* slide up to new NDIV */ 421 return allow_slide ? gk20a_pllg_slide(priv, priv->n) : 0; 422 } 423 424 static int 425 gk20a_pllg_program_mnp(struct gk20a_clk_priv *priv) 426 { 427 int err; 428 429 err = _gk20a_pllg_program_mnp(priv, true); 430 if (err) 431 err = _gk20a_pllg_program_mnp(priv, false); 432 433 return err; 434 } 435 436 static void 437 gk20a_pllg_disable(struct gk20a_clk_priv *priv) 438 { 439 u32 val; 440 441 /* slide to VCO min */ 442 val = nv_rd32(priv, GPCPLL_CFG); 443 if (val & GPCPLL_CFG_ENABLE) { 444 u32 coeff, m, n_lo; 445 446 coeff = nv_rd32(priv, GPCPLL_COEFF); 447 m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); 448 n_lo = DIV_ROUND_UP(m * priv->params->min_vco, 449 priv->parent_rate / MHZ); 450 gk20a_pllg_slide(priv, n_lo); 451 } 452 453 /* put PLL in bypass before disabling it */ 454 nv_mask(priv, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0); 455 456 _gk20a_pllg_disable(priv); 457 } 458 459 #define GK20A_CLK_GPC_MDIV 1000 460 461 static struct nvkm_domain 462 gk20a_domains[] = { 463 { nv_clk_src_crystal, 0xff }, 464 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, 465 { nv_clk_src_max } 466 }; 467 468 static struct nvkm_pstate 469 gk20a_pstates[] = { 470 { 471 .base = { 472 .domain[nv_clk_src_gpc] = 72000, 473 .voltage = 0, 474 }, 475 }, 476 { 477 .base = { 478 .domain[nv_clk_src_gpc] = 108000, 479 .voltage = 1, 480 }, 481 }, 482 { 483 .base = { 484 .domain[nv_clk_src_gpc] = 180000, 485 .voltage = 2, 486 }, 487 }, 488 { 489 .base = { 490 .domain[nv_clk_src_gpc] = 252000, 491 .voltage = 3, 492 }, 493 }, 494 { 495 .base = { 496 .domain[nv_clk_src_gpc] = 324000, 497 .voltage = 4, 498 }, 499 }, 500 { 501 .base = { 502 .domain[nv_clk_src_gpc] = 396000, 503 .voltage = 5, 504 }, 505 }, 506 { 507 .base = { 508 .domain[nv_clk_src_gpc] = 468000, 509 .voltage = 6, 510 }, 511 }, 512 { 513 .base = { 514 .domain[nv_clk_src_gpc] = 540000, 515 .voltage = 7, 516 }, 517 }, 518 { 519 .base = { 520 .domain[nv_clk_src_gpc] = 612000, 521 .voltage = 8, 522 }, 523 }, 524 { 525 .base = { 526 .domain[nv_clk_src_gpc] = 648000, 527 .voltage = 9, 528 }, 529 }, 530 { 531 .base = { 532 .domain[nv_clk_src_gpc] = 684000, 533 .voltage = 10, 534 }, 535 }, 536 { 537 .base = { 538 .domain[nv_clk_src_gpc] = 708000, 539 .voltage = 11, 540 }, 541 }, 542 { 543 .base = { 544 .domain[nv_clk_src_gpc] = 756000, 545 .voltage = 12, 546 }, 547 }, 548 { 549 .base = { 550 .domain[nv_clk_src_gpc] = 804000, 551 .voltage = 13, 552 }, 553 }, 554 { 555 .base = { 556 .domain[nv_clk_src_gpc] = 852000, 557 .voltage = 14, 558 }, 559 }, 560 }; 561 562 static int 563 gk20a_clk_read(struct nvkm_clk *clk, enum nv_clk_src src) 564 { 565 struct gk20a_clk_priv *priv = (void *)clk; 566 567 switch (src) { 568 case nv_clk_src_crystal: 569 return nv_device(clk)->crystal; 570 case nv_clk_src_gpc: 571 gk20a_pllg_read_mnp(priv); 572 return gk20a_pllg_calc_rate(priv) / GK20A_CLK_GPC_MDIV; 573 default: 574 nv_error(clk, "invalid clock source %d\n", src); 575 return -EINVAL; 576 } 577 } 578 579 static int 580 gk20a_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate) 581 { 582 struct gk20a_clk_priv *priv = (void *)clk; 583 584 return gk20a_pllg_calc_mnp(priv, cstate->domain[nv_clk_src_gpc] * 585 GK20A_CLK_GPC_MDIV); 586 } 587 588 static int 589 gk20a_clk_prog(struct nvkm_clk *clk) 590 { 591 struct gk20a_clk_priv *priv = (void *)clk; 592 593 return gk20a_pllg_program_mnp(priv); 594 } 595 596 static void 597 gk20a_clk_tidy(struct nvkm_clk *clk) 598 { 599 } 600 601 static int 602 gk20a_clk_fini(struct nvkm_object *object, bool suspend) 603 { 604 struct gk20a_clk_priv *priv = (void *)object; 605 int ret; 606 607 ret = nvkm_clk_fini(&priv->base, false); 608 609 gk20a_pllg_disable(priv); 610 611 return ret; 612 } 613 614 static int 615 gk20a_clk_init(struct nvkm_object *object) 616 { 617 struct gk20a_clk_priv *priv = (void *)object; 618 int ret; 619 620 nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL); 621 622 ret = nvkm_clk_init(&priv->base); 623 if (ret) 624 return ret; 625 626 ret = gk20a_clk_prog(&priv->base); 627 if (ret) { 628 nv_error(priv, "cannot initialize clock\n"); 629 return ret; 630 } 631 632 return 0; 633 } 634 635 static int 636 gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine, 637 struct nvkm_oclass *oclass, void *data, u32 size, 638 struct nvkm_object **pobject) 639 { 640 struct gk20a_clk_priv *priv; 641 struct nouveau_platform_device *plat; 642 int ret; 643 int i; 644 645 /* Finish initializing the pstates */ 646 for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) { 647 INIT_LIST_HEAD(&gk20a_pstates[i].list); 648 gk20a_pstates[i].pstate = i + 1; 649 } 650 651 ret = nvkm_clk_create(parent, engine, oclass, gk20a_domains, 652 gk20a_pstates, ARRAY_SIZE(gk20a_pstates), 653 true, &priv); 654 *pobject = nv_object(priv); 655 if (ret) 656 return ret; 657 658 priv->params = &gk20a_pllg_params; 659 660 plat = nv_device_to_platform(nv_device(parent)); 661 priv->parent_rate = clk_get_rate(plat->gpu->clk); 662 nv_info(priv, "parent clock rate: %d Mhz\n", priv->parent_rate / MHZ); 663 664 priv->base.read = gk20a_clk_read; 665 priv->base.calc = gk20a_clk_calc; 666 priv->base.prog = gk20a_clk_prog; 667 priv->base.tidy = gk20a_clk_tidy; 668 return 0; 669 } 670 671 struct nvkm_oclass 672 gk20a_clk_oclass = { 673 .handle = NV_SUBDEV(CLK, 0xea), 674 .ofuncs = &(struct nvkm_ofuncs) { 675 .ctor = gk20a_clk_ctor, 676 .dtor = _nvkm_subdev_dtor, 677 .init = gk20a_clk_init, 678 .fini = gk20a_clk_fini, 679 }, 680 }; 681