xref: /linux/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gf100.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #define gf100_clk(p) container_of((p), struct gf100_clk, base)
25 #include "priv.h"
26 #include "pll.h"
27 
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/timer.h>
31 
32 struct gf100_clk_info {
33 	u32 freq;
34 	u32 ssel;
35 	u32 mdiv;
36 	u32 dsrc;
37 	u32 ddiv;
38 	u32 coef;
39 };
40 
41 struct gf100_clk {
42 	struct nvkm_clk base;
43 	struct gf100_clk_info eng[16];
44 };
45 
46 static u32 read_div(struct gf100_clk *, int, u32, u32);
47 
48 static u32
49 read_vco(struct gf100_clk *clk, u32 dsrc)
50 {
51 	struct nvkm_device *device = clk->base.subdev.device;
52 	u32 ssrc = nvkm_rd32(device, dsrc);
53 	if (!(ssrc & 0x00000100))
54 		return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
55 	return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
56 }
57 
58 static u32
59 read_pll(struct gf100_clk *clk, u32 pll)
60 {
61 	struct nvkm_device *device = clk->base.subdev.device;
62 	u32 ctrl = nvkm_rd32(device, pll + 0x00);
63 	u32 coef = nvkm_rd32(device, pll + 0x04);
64 	u32 P = (coef & 0x003f0000) >> 16;
65 	u32 N = (coef & 0x0000ff00) >> 8;
66 	u32 M = (coef & 0x000000ff) >> 0;
67 	u32 sclk;
68 
69 	if (!(ctrl & 0x00000001))
70 		return 0;
71 
72 	switch (pll) {
73 	case 0x00e800:
74 	case 0x00e820:
75 		sclk = device->crystal;
76 		P = 1;
77 		break;
78 	case 0x132000:
79 		sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
80 		break;
81 	case 0x132020:
82 		sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
83 		break;
84 	case 0x137000:
85 	case 0x137020:
86 	case 0x137040:
87 	case 0x1370e0:
88 		sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
89 		break;
90 	default:
91 		return 0;
92 	}
93 
94 	return sclk * N / M / P;
95 }
96 
97 static u32
98 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
99 {
100 	struct nvkm_device *device = clk->base.subdev.device;
101 	u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
102 	u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
103 
104 	switch (ssrc & 0x00000003) {
105 	case 0:
106 		if ((ssrc & 0x00030000) != 0x00030000)
107 			return device->crystal;
108 		return 108000;
109 	case 2:
110 		return 100000;
111 	case 3:
112 		if (sctl & 0x80000000) {
113 			u32 sclk = read_vco(clk, dsrc + (doff * 4));
114 			u32 sdiv = (sctl & 0x0000003f) + 2;
115 			return (sclk * 2) / sdiv;
116 		}
117 
118 		return read_vco(clk, dsrc + (doff * 4));
119 	default:
120 		return 0;
121 	}
122 }
123 
124 static u32
125 read_clk(struct gf100_clk *clk, int idx)
126 {
127 	struct nvkm_device *device = clk->base.subdev.device;
128 	u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
129 	u32 ssel = nvkm_rd32(device, 0x137100);
130 	u32 sclk, sdiv;
131 
132 	if (ssel & (1 << idx)) {
133 		if (idx < 7)
134 			sclk = read_pll(clk, 0x137000 + (idx * 0x20));
135 		else
136 			sclk = read_pll(clk, 0x1370e0);
137 		sdiv = ((sctl & 0x00003f00) >> 8) + 2;
138 	} else {
139 		sclk = read_div(clk, idx, 0x137160, 0x1371d0);
140 		sdiv = ((sctl & 0x0000003f) >> 0) + 2;
141 	}
142 
143 	if (sctl & 0x80000000)
144 		return (sclk * 2) / sdiv;
145 
146 	return sclk;
147 }
148 
149 static int
150 gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
151 {
152 	struct gf100_clk *clk = gf100_clk(base);
153 	struct nvkm_subdev *subdev = &clk->base.subdev;
154 	struct nvkm_device *device = subdev->device;
155 
156 	switch (src) {
157 	case nv_clk_src_crystal:
158 		return device->crystal;
159 	case nv_clk_src_href:
160 		return 100000;
161 	case nv_clk_src_sppll0:
162 		return read_pll(clk, 0x00e800);
163 	case nv_clk_src_sppll1:
164 		return read_pll(clk, 0x00e820);
165 
166 	case nv_clk_src_mpllsrcref:
167 		return read_div(clk, 0, 0x137320, 0x137330);
168 	case nv_clk_src_mpllsrc:
169 		return read_pll(clk, 0x132020);
170 	case nv_clk_src_mpll:
171 		return read_pll(clk, 0x132000);
172 	case nv_clk_src_mdiv:
173 		return read_div(clk, 0, 0x137300, 0x137310);
174 	case nv_clk_src_mem:
175 		if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
176 			return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
177 		return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
178 
179 	case nv_clk_src_gpc:
180 		return read_clk(clk, 0x00);
181 	case nv_clk_src_rop:
182 		return read_clk(clk, 0x01);
183 	case nv_clk_src_hubk07:
184 		return read_clk(clk, 0x02);
185 	case nv_clk_src_hubk06:
186 		return read_clk(clk, 0x07);
187 	case nv_clk_src_hubk01:
188 		return read_clk(clk, 0x08);
189 	case nv_clk_src_copy:
190 		return read_clk(clk, 0x09);
191 	case nv_clk_src_pmu:
192 		return read_clk(clk, 0x0c);
193 	case nv_clk_src_vdec:
194 		return read_clk(clk, 0x0e);
195 	default:
196 		nvkm_error(subdev, "invalid clock source %d\n", src);
197 		return -EINVAL;
198 	}
199 }
200 
201 static u32
202 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
203 {
204 	u32 div = min((ref * 2) / freq, (u32)65);
205 	if (div < 2)
206 		div = 2;
207 
208 	*ddiv = div - 2;
209 	return (ref * 2) / div;
210 }
211 
212 static u32
213 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
214 {
215 	u32 sclk;
216 
217 	/* use one of the fixed frequencies if possible */
218 	*ddiv = 0x00000000;
219 	switch (freq) {
220 	case  27000:
221 	case 108000:
222 		*dsrc = 0x00000000;
223 		if (freq == 108000)
224 			*dsrc |= 0x00030000;
225 		return freq;
226 	case 100000:
227 		*dsrc = 0x00000002;
228 		return freq;
229 	default:
230 		*dsrc = 0x00000003;
231 		break;
232 	}
233 
234 	/* otherwise, calculate the closest divider */
235 	sclk = read_vco(clk, 0x137160 + (idx * 4));
236 	if (idx < 7)
237 		sclk = calc_div(clk, idx, sclk, freq, ddiv);
238 	return sclk;
239 }
240 
241 static u32
242 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
243 {
244 	struct nvkm_subdev *subdev = &clk->base.subdev;
245 	struct nvkm_bios *bios = subdev->device->bios;
246 	struct nvbios_pll limits;
247 	int N, M, P, ret;
248 
249 	ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
250 	if (ret)
251 		return 0;
252 
253 	limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
254 	if (!limits.refclk)
255 		return 0;
256 
257 	ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
258 	if (ret <= 0)
259 		return 0;
260 
261 	*coef = (P << 16) | (N << 8) | M;
262 	return ret;
263 }
264 
265 static int
266 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
267 {
268 	struct gf100_clk_info *info = &clk->eng[idx];
269 	u32 freq = cstate->domain[dom];
270 	u32 src0, div0, div1D, div1P = 0;
271 	u32 clk0, clk1 = 0;
272 
273 	/* invalid clock domain */
274 	if (!freq)
275 		return 0;
276 
277 	/* first possible path, using only dividers */
278 	clk0 = calc_src(clk, idx, freq, &src0, &div0);
279 	clk0 = calc_div(clk, idx, clk0, freq, &div1D);
280 
281 	/* see if we can get any closer using PLLs */
282 	if (clk0 != freq && (0x00004387 & (1 << idx))) {
283 		if (idx <= 7)
284 			clk1 = calc_pll(clk, idx, freq, &info->coef);
285 		else
286 			clk1 = cstate->domain[nv_clk_src_hubk06];
287 		clk1 = calc_div(clk, idx, clk1, freq, &div1P);
288 	}
289 
290 	/* select the method which gets closest to target freq */
291 	if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
292 		info->dsrc = src0;
293 		if (div0) {
294 			info->ddiv |= 0x80000000;
295 			info->ddiv |= div0 << 8;
296 			info->ddiv |= div0;
297 		}
298 		if (div1D) {
299 			info->mdiv |= 0x80000000;
300 			info->mdiv |= div1D;
301 		}
302 		info->ssel = info->coef = 0;
303 		info->freq = clk0;
304 	} else {
305 		if (div1P) {
306 			info->mdiv |= 0x80000000;
307 			info->mdiv |= div1P << 8;
308 		}
309 		info->ssel = (1 << idx);
310 		info->freq = clk1;
311 	}
312 
313 	return 0;
314 }
315 
316 static int
317 gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
318 {
319 	struct gf100_clk *clk = gf100_clk(base);
320 	int ret;
321 
322 	if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
323 	    (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
324 	    (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
325 	    (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
326 	    (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
327 	    (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
328 	    (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
329 	    (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
330 		return ret;
331 
332 	return 0;
333 }
334 
335 static void
336 gf100_clk_prog_0(struct gf100_clk *clk, int idx)
337 {
338 	struct gf100_clk_info *info = &clk->eng[idx];
339 	struct nvkm_device *device = clk->base.subdev.device;
340 	if (idx < 7 && !info->ssel) {
341 		nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
342 		nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
343 	}
344 }
345 
346 static void
347 gf100_clk_prog_1(struct gf100_clk *clk, int idx)
348 {
349 	struct nvkm_device *device = clk->base.subdev.device;
350 	nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
351 	nvkm_msec(device, 2000,
352 		if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
353 			break;
354 	);
355 }
356 
357 static void
358 gf100_clk_prog_2(struct gf100_clk *clk, int idx)
359 {
360 	struct gf100_clk_info *info = &clk->eng[idx];
361 	struct nvkm_device *device = clk->base.subdev.device;
362 	const u32 addr = 0x137000 + (idx * 0x20);
363 	if (idx <= 7) {
364 		nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
365 		nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
366 		if (info->coef) {
367 			nvkm_wr32(device, addr + 0x04, info->coef);
368 			nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
369 			nvkm_msec(device, 2000,
370 				if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
371 					break;
372 			);
373 			nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004);
374 		}
375 	}
376 }
377 
378 static void
379 gf100_clk_prog_3(struct gf100_clk *clk, int idx)
380 {
381 	struct gf100_clk_info *info = &clk->eng[idx];
382 	struct nvkm_device *device = clk->base.subdev.device;
383 	if (info->ssel) {
384 		nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
385 		nvkm_msec(device, 2000,
386 			u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
387 			if (tmp == info->ssel)
388 				break;
389 		);
390 	}
391 }
392 
393 static void
394 gf100_clk_prog_4(struct gf100_clk *clk, int idx)
395 {
396 	struct gf100_clk_info *info = &clk->eng[idx];
397 	struct nvkm_device *device = clk->base.subdev.device;
398 	nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
399 }
400 
401 static int
402 gf100_clk_prog(struct nvkm_clk *base)
403 {
404 	struct gf100_clk *clk = gf100_clk(base);
405 	struct {
406 		void (*exec)(struct gf100_clk *, int);
407 	} stage[] = {
408 		{ gf100_clk_prog_0 }, /* div programming */
409 		{ gf100_clk_prog_1 }, /* select div mode */
410 		{ gf100_clk_prog_2 }, /* (maybe) program pll */
411 		{ gf100_clk_prog_3 }, /* (maybe) select pll mode */
412 		{ gf100_clk_prog_4 }, /* final divider */
413 	};
414 	int i, j;
415 
416 	for (i = 0; i < ARRAY_SIZE(stage); i++) {
417 		for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
418 			if (!clk->eng[j].freq)
419 				continue;
420 			stage[i].exec(clk, j);
421 		}
422 	}
423 
424 	return 0;
425 }
426 
427 static void
428 gf100_clk_tidy(struct nvkm_clk *base)
429 {
430 	struct gf100_clk *clk = gf100_clk(base);
431 	memset(clk->eng, 0x00, sizeof(clk->eng));
432 }
433 
434 static const struct nvkm_clk_func
435 gf100_clk = {
436 	.read = gf100_clk_read,
437 	.calc = gf100_clk_calc,
438 	.prog = gf100_clk_prog,
439 	.tidy = gf100_clk_tidy,
440 	.domains = {
441 		{ nv_clk_src_crystal, 0xff },
442 		{ nv_clk_src_href   , 0xff },
443 		{ nv_clk_src_hubk06 , 0x00 },
444 		{ nv_clk_src_hubk01 , 0x01 },
445 		{ nv_clk_src_copy   , 0x02 },
446 		{ nv_clk_src_gpc    , 0x03, 0, "core", 2000 },
447 		{ nv_clk_src_rop    , 0x04 },
448 		{ nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
449 		{ nv_clk_src_vdec   , 0x06 },
450 		{ nv_clk_src_pmu    , 0x0a },
451 		{ nv_clk_src_hubk07 , 0x0b },
452 		{ nv_clk_src_max }
453 	}
454 };
455 
456 int
457 gf100_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
458 {
459 	struct gf100_clk *clk;
460 
461 	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
462 		return -ENOMEM;
463 	*pclk = &clk->base;
464 
465 	return nvkm_clk_ctor(&gf100_clk, device, index, false, &clk->base);
466 }
467