xref: /linux/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gf100.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include <subdev/clk.h>
25 #include "pll.h"
26 
27 #include <core/device.h>
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/timer.h>
31 
32 struct gf100_clk_info {
33 	u32 freq;
34 	u32 ssel;
35 	u32 mdiv;
36 	u32 dsrc;
37 	u32 ddiv;
38 	u32 coef;
39 };
40 
41 struct gf100_clk_priv {
42 	struct nvkm_clk base;
43 	struct gf100_clk_info eng[16];
44 };
45 
46 static u32 read_div(struct gf100_clk_priv *, int, u32, u32);
47 
48 static u32
49 read_vco(struct gf100_clk_priv *priv, u32 dsrc)
50 {
51 	struct nvkm_clk *clk = &priv->base;
52 	u32 ssrc = nv_rd32(priv, dsrc);
53 	if (!(ssrc & 0x00000100))
54 		return clk->read(clk, nv_clk_src_sppll0);
55 	return clk->read(clk, nv_clk_src_sppll1);
56 }
57 
58 static u32
59 read_pll(struct gf100_clk_priv *priv, u32 pll)
60 {
61 	struct nvkm_clk *clk = &priv->base;
62 	u32 ctrl = nv_rd32(priv, pll + 0x00);
63 	u32 coef = nv_rd32(priv, pll + 0x04);
64 	u32 P = (coef & 0x003f0000) >> 16;
65 	u32 N = (coef & 0x0000ff00) >> 8;
66 	u32 M = (coef & 0x000000ff) >> 0;
67 	u32 sclk;
68 
69 	if (!(ctrl & 0x00000001))
70 		return 0;
71 
72 	switch (pll) {
73 	case 0x00e800:
74 	case 0x00e820:
75 		sclk = nv_device(priv)->crystal;
76 		P = 1;
77 		break;
78 	case 0x132000:
79 		sclk = clk->read(clk, nv_clk_src_mpllsrc);
80 		break;
81 	case 0x132020:
82 		sclk = clk->read(clk, nv_clk_src_mpllsrcref);
83 		break;
84 	case 0x137000:
85 	case 0x137020:
86 	case 0x137040:
87 	case 0x1370e0:
88 		sclk = read_div(priv, (pll & 0xff) / 0x20, 0x137120, 0x137140);
89 		break;
90 	default:
91 		return 0;
92 	}
93 
94 	return sclk * N / M / P;
95 }
96 
97 static u32
98 read_div(struct gf100_clk_priv *priv, int doff, u32 dsrc, u32 dctl)
99 {
100 	u32 ssrc = nv_rd32(priv, dsrc + (doff * 4));
101 	u32 sctl = nv_rd32(priv, dctl + (doff * 4));
102 
103 	switch (ssrc & 0x00000003) {
104 	case 0:
105 		if ((ssrc & 0x00030000) != 0x00030000)
106 			return nv_device(priv)->crystal;
107 		return 108000;
108 	case 2:
109 		return 100000;
110 	case 3:
111 		if (sctl & 0x80000000) {
112 			u32 sclk = read_vco(priv, dsrc + (doff * 4));
113 			u32 sdiv = (sctl & 0x0000003f) + 2;
114 			return (sclk * 2) / sdiv;
115 		}
116 
117 		return read_vco(priv, dsrc + (doff * 4));
118 	default:
119 		return 0;
120 	}
121 }
122 
123 static u32
124 read_clk(struct gf100_clk_priv *priv, int clk)
125 {
126 	u32 sctl = nv_rd32(priv, 0x137250 + (clk * 4));
127 	u32 ssel = nv_rd32(priv, 0x137100);
128 	u32 sclk, sdiv;
129 
130 	if (ssel & (1 << clk)) {
131 		if (clk < 7)
132 			sclk = read_pll(priv, 0x137000 + (clk * 0x20));
133 		else
134 			sclk = read_pll(priv, 0x1370e0);
135 		sdiv = ((sctl & 0x00003f00) >> 8) + 2;
136 	} else {
137 		sclk = read_div(priv, clk, 0x137160, 0x1371d0);
138 		sdiv = ((sctl & 0x0000003f) >> 0) + 2;
139 	}
140 
141 	if (sctl & 0x80000000)
142 		return (sclk * 2) / sdiv;
143 
144 	return sclk;
145 }
146 
147 static int
148 gf100_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
149 {
150 	struct nvkm_device *device = nv_device(clk);
151 	struct gf100_clk_priv *priv = (void *)clk;
152 
153 	switch (src) {
154 	case nv_clk_src_crystal:
155 		return device->crystal;
156 	case nv_clk_src_href:
157 		return 100000;
158 	case nv_clk_src_sppll0:
159 		return read_pll(priv, 0x00e800);
160 	case nv_clk_src_sppll1:
161 		return read_pll(priv, 0x00e820);
162 
163 	case nv_clk_src_mpllsrcref:
164 		return read_div(priv, 0, 0x137320, 0x137330);
165 	case nv_clk_src_mpllsrc:
166 		return read_pll(priv, 0x132020);
167 	case nv_clk_src_mpll:
168 		return read_pll(priv, 0x132000);
169 	case nv_clk_src_mdiv:
170 		return read_div(priv, 0, 0x137300, 0x137310);
171 	case nv_clk_src_mem:
172 		if (nv_rd32(priv, 0x1373f0) & 0x00000002)
173 			return clk->read(clk, nv_clk_src_mpll);
174 		return clk->read(clk, nv_clk_src_mdiv);
175 
176 	case nv_clk_src_gpc:
177 		return read_clk(priv, 0x00);
178 	case nv_clk_src_rop:
179 		return read_clk(priv, 0x01);
180 	case nv_clk_src_hubk07:
181 		return read_clk(priv, 0x02);
182 	case nv_clk_src_hubk06:
183 		return read_clk(priv, 0x07);
184 	case nv_clk_src_hubk01:
185 		return read_clk(priv, 0x08);
186 	case nv_clk_src_copy:
187 		return read_clk(priv, 0x09);
188 	case nv_clk_src_daemon:
189 		return read_clk(priv, 0x0c);
190 	case nv_clk_src_vdec:
191 		return read_clk(priv, 0x0e);
192 	default:
193 		nv_error(clk, "invalid clock source %d\n", src);
194 		return -EINVAL;
195 	}
196 }
197 
198 static u32
199 calc_div(struct gf100_clk_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv)
200 {
201 	u32 div = min((ref * 2) / freq, (u32)65);
202 	if (div < 2)
203 		div = 2;
204 
205 	*ddiv = div - 2;
206 	return (ref * 2) / div;
207 }
208 
209 static u32
210 calc_src(struct gf100_clk_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
211 {
212 	u32 sclk;
213 
214 	/* use one of the fixed frequencies if possible */
215 	*ddiv = 0x00000000;
216 	switch (freq) {
217 	case  27000:
218 	case 108000:
219 		*dsrc = 0x00000000;
220 		if (freq == 108000)
221 			*dsrc |= 0x00030000;
222 		return freq;
223 	case 100000:
224 		*dsrc = 0x00000002;
225 		return freq;
226 	default:
227 		*dsrc = 0x00000003;
228 		break;
229 	}
230 
231 	/* otherwise, calculate the closest divider */
232 	sclk = read_vco(priv, 0x137160 + (clk * 4));
233 	if (clk < 7)
234 		sclk = calc_div(priv, clk, sclk, freq, ddiv);
235 	return sclk;
236 }
237 
238 static u32
239 calc_pll(struct gf100_clk_priv *priv, int clk, u32 freq, u32 *coef)
240 {
241 	struct nvkm_bios *bios = nvkm_bios(priv);
242 	struct nvbios_pll limits;
243 	int N, M, P, ret;
244 
245 	ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
246 	if (ret)
247 		return 0;
248 
249 	limits.refclk = read_div(priv, clk, 0x137120, 0x137140);
250 	if (!limits.refclk)
251 		return 0;
252 
253 	ret = gt215_pll_calc(nv_subdev(priv), &limits, freq, &N, NULL, &M, &P);
254 	if (ret <= 0)
255 		return 0;
256 
257 	*coef = (P << 16) | (N << 8) | M;
258 	return ret;
259 }
260 
261 static int
262 calc_clk(struct gf100_clk_priv *priv,
263 	 struct nvkm_cstate *cstate, int clk, int dom)
264 {
265 	struct gf100_clk_info *info = &priv->eng[clk];
266 	u32 freq = cstate->domain[dom];
267 	u32 src0, div0, div1D, div1P = 0;
268 	u32 clk0, clk1 = 0;
269 
270 	/* invalid clock domain */
271 	if (!freq)
272 		return 0;
273 
274 	/* first possible path, using only dividers */
275 	clk0 = calc_src(priv, clk, freq, &src0, &div0);
276 	clk0 = calc_div(priv, clk, clk0, freq, &div1D);
277 
278 	/* see if we can get any closer using PLLs */
279 	if (clk0 != freq && (0x00004387 & (1 << clk))) {
280 		if (clk <= 7)
281 			clk1 = calc_pll(priv, clk, freq, &info->coef);
282 		else
283 			clk1 = cstate->domain[nv_clk_src_hubk06];
284 		clk1 = calc_div(priv, clk, clk1, freq, &div1P);
285 	}
286 
287 	/* select the method which gets closest to target freq */
288 	if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
289 		info->dsrc = src0;
290 		if (div0) {
291 			info->ddiv |= 0x80000000;
292 			info->ddiv |= div0 << 8;
293 			info->ddiv |= div0;
294 		}
295 		if (div1D) {
296 			info->mdiv |= 0x80000000;
297 			info->mdiv |= div1D;
298 		}
299 		info->ssel = info->coef = 0;
300 		info->freq = clk0;
301 	} else {
302 		if (div1P) {
303 			info->mdiv |= 0x80000000;
304 			info->mdiv |= div1P << 8;
305 		}
306 		info->ssel = (1 << clk);
307 		info->freq = clk1;
308 	}
309 
310 	return 0;
311 }
312 
313 static int
314 gf100_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
315 {
316 	struct gf100_clk_priv *priv = (void *)clk;
317 	int ret;
318 
319 	if ((ret = calc_clk(priv, cstate, 0x00, nv_clk_src_gpc)) ||
320 	    (ret = calc_clk(priv, cstate, 0x01, nv_clk_src_rop)) ||
321 	    (ret = calc_clk(priv, cstate, 0x02, nv_clk_src_hubk07)) ||
322 	    (ret = calc_clk(priv, cstate, 0x07, nv_clk_src_hubk06)) ||
323 	    (ret = calc_clk(priv, cstate, 0x08, nv_clk_src_hubk01)) ||
324 	    (ret = calc_clk(priv, cstate, 0x09, nv_clk_src_copy)) ||
325 	    (ret = calc_clk(priv, cstate, 0x0c, nv_clk_src_daemon)) ||
326 	    (ret = calc_clk(priv, cstate, 0x0e, nv_clk_src_vdec)))
327 		return ret;
328 
329 	return 0;
330 }
331 
332 static void
333 gf100_clk_prog_0(struct gf100_clk_priv *priv, int clk)
334 {
335 	struct gf100_clk_info *info = &priv->eng[clk];
336 	if (clk < 7 && !info->ssel) {
337 		nv_mask(priv, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
338 		nv_wr32(priv, 0x137160 + (clk * 0x04), info->dsrc);
339 	}
340 }
341 
342 static void
343 gf100_clk_prog_1(struct gf100_clk_priv *priv, int clk)
344 {
345 	nv_mask(priv, 0x137100, (1 << clk), 0x00000000);
346 	nv_wait(priv, 0x137100, (1 << clk), 0x00000000);
347 }
348 
349 static void
350 gf100_clk_prog_2(struct gf100_clk_priv *priv, int clk)
351 {
352 	struct gf100_clk_info *info = &priv->eng[clk];
353 	const u32 addr = 0x137000 + (clk * 0x20);
354 	if (clk <= 7) {
355 		nv_mask(priv, addr + 0x00, 0x00000004, 0x00000000);
356 		nv_mask(priv, addr + 0x00, 0x00000001, 0x00000000);
357 		if (info->coef) {
358 			nv_wr32(priv, addr + 0x04, info->coef);
359 			nv_mask(priv, addr + 0x00, 0x00000001, 0x00000001);
360 			nv_wait(priv, addr + 0x00, 0x00020000, 0x00020000);
361 			nv_mask(priv, addr + 0x00, 0x00020004, 0x00000004);
362 		}
363 	}
364 }
365 
366 static void
367 gf100_clk_prog_3(struct gf100_clk_priv *priv, int clk)
368 {
369 	struct gf100_clk_info *info = &priv->eng[clk];
370 	if (info->ssel) {
371 		nv_mask(priv, 0x137100, (1 << clk), info->ssel);
372 		nv_wait(priv, 0x137100, (1 << clk), info->ssel);
373 	}
374 }
375 
376 static void
377 gf100_clk_prog_4(struct gf100_clk_priv *priv, int clk)
378 {
379 	struct gf100_clk_info *info = &priv->eng[clk];
380 	nv_mask(priv, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
381 }
382 
383 static int
384 gf100_clk_prog(struct nvkm_clk *clk)
385 {
386 	struct gf100_clk_priv *priv = (void *)clk;
387 	struct {
388 		void (*exec)(struct gf100_clk_priv *, int);
389 	} stage[] = {
390 		{ gf100_clk_prog_0 }, /* div programming */
391 		{ gf100_clk_prog_1 }, /* select div mode */
392 		{ gf100_clk_prog_2 }, /* (maybe) program pll */
393 		{ gf100_clk_prog_3 }, /* (maybe) select pll mode */
394 		{ gf100_clk_prog_4 }, /* final divider */
395 	};
396 	int i, j;
397 
398 	for (i = 0; i < ARRAY_SIZE(stage); i++) {
399 		for (j = 0; j < ARRAY_SIZE(priv->eng); j++) {
400 			if (!priv->eng[j].freq)
401 				continue;
402 			stage[i].exec(priv, j);
403 		}
404 	}
405 
406 	return 0;
407 }
408 
409 static void
410 gf100_clk_tidy(struct nvkm_clk *clk)
411 {
412 	struct gf100_clk_priv *priv = (void *)clk;
413 	memset(priv->eng, 0x00, sizeof(priv->eng));
414 }
415 
416 static struct nvkm_domain
417 gf100_domain[] = {
418 	{ nv_clk_src_crystal, 0xff },
419 	{ nv_clk_src_href   , 0xff },
420 	{ nv_clk_src_hubk06 , 0x00 },
421 	{ nv_clk_src_hubk01 , 0x01 },
422 	{ nv_clk_src_copy   , 0x02 },
423 	{ nv_clk_src_gpc    , 0x03, 0, "core", 2000 },
424 	{ nv_clk_src_rop    , 0x04 },
425 	{ nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
426 	{ nv_clk_src_vdec   , 0x06 },
427 	{ nv_clk_src_daemon , 0x0a },
428 	{ nv_clk_src_hubk07 , 0x0b },
429 	{ nv_clk_src_max }
430 };
431 
432 static int
433 gf100_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
434 	       struct nvkm_oclass *oclass, void *data, u32 size,
435 	       struct nvkm_object **pobject)
436 {
437 	struct gf100_clk_priv *priv;
438 	int ret;
439 
440 	ret = nvkm_clk_create(parent, engine, oclass, gf100_domain,
441 			      NULL, 0, false, &priv);
442 	*pobject = nv_object(priv);
443 	if (ret)
444 		return ret;
445 
446 	priv->base.read = gf100_clk_read;
447 	priv->base.calc = gf100_clk_calc;
448 	priv->base.prog = gf100_clk_prog;
449 	priv->base.tidy = gf100_clk_tidy;
450 	return 0;
451 }
452 
453 struct nvkm_oclass
454 gf100_clk_oclass = {
455 	.handle = NV_SUBDEV(CLK, 0xc0),
456 	.ofuncs = &(struct nvkm_ofuncs) {
457 		.ctor = gf100_clk_ctor,
458 		.dtor = _nvkm_clk_dtor,
459 		.init = _nvkm_clk_init,
460 		.fini = _nvkm_clk_fini,
461 	},
462 };
463