xref: /linux/drivers/gpu/drm/nouveau/nvkm/engine/gr/gf100.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27 
28 #include <core/client.h>
29 #include <core/option.h>
30 #include <core/firmware.h>
31 #include <subdev/secboot.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/timer.h>
36 #include <engine/fifo.h>
37 
38 #include <nvif/class.h>
39 #include <nvif/cl9097.h>
40 #include <nvif/if900d.h>
41 #include <nvif/unpack.h>
42 
43 /*******************************************************************************
44  * Zero Bandwidth Clear
45  ******************************************************************************/
46 
47 static void
48 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
49 {
50 	struct nvkm_device *device = gr->base.engine.subdev.device;
51 	if (gr->zbc_color[zbc].format) {
52 		nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
53 		nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
54 		nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
55 		nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
56 	}
57 	nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
58 	nvkm_wr32(device, 0x405820, zbc);
59 	nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
60 }
61 
62 static int
63 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
64 		       const u32 ds[4], const u32 l2[4])
65 {
66 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
67 	int zbc = -ENOSPC, i;
68 
69 	for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
70 		if (gr->zbc_color[i].format) {
71 			if (gr->zbc_color[i].format != format)
72 				continue;
73 			if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
74 				   gr->zbc_color[i].ds)))
75 				continue;
76 			if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
77 				   gr->zbc_color[i].l2))) {
78 				WARN_ON(1);
79 				return -EINVAL;
80 			}
81 			return i;
82 		} else {
83 			zbc = (zbc < 0) ? i : zbc;
84 		}
85 	}
86 
87 	if (zbc < 0)
88 		return zbc;
89 
90 	memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
91 	memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
92 	gr->zbc_color[zbc].format = format;
93 	nvkm_ltc_zbc_color_get(ltc, zbc, l2);
94 	gf100_gr_zbc_clear_color(gr, zbc);
95 	return zbc;
96 }
97 
98 static void
99 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
100 {
101 	struct nvkm_device *device = gr->base.engine.subdev.device;
102 	if (gr->zbc_depth[zbc].format)
103 		nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
104 	nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
105 	nvkm_wr32(device, 0x405820, zbc);
106 	nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
107 }
108 
109 static int
110 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
111 		       const u32 ds, const u32 l2)
112 {
113 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
114 	int zbc = -ENOSPC, i;
115 
116 	for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
117 		if (gr->zbc_depth[i].format) {
118 			if (gr->zbc_depth[i].format != format)
119 				continue;
120 			if (gr->zbc_depth[i].ds != ds)
121 				continue;
122 			if (gr->zbc_depth[i].l2 != l2) {
123 				WARN_ON(1);
124 				return -EINVAL;
125 			}
126 			return i;
127 		} else {
128 			zbc = (zbc < 0) ? i : zbc;
129 		}
130 	}
131 
132 	if (zbc < 0)
133 		return zbc;
134 
135 	gr->zbc_depth[zbc].format = format;
136 	gr->zbc_depth[zbc].ds = ds;
137 	gr->zbc_depth[zbc].l2 = l2;
138 	nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
139 	gf100_gr_zbc_clear_depth(gr, zbc);
140 	return zbc;
141 }
142 
143 /*******************************************************************************
144  * Graphics object classes
145  ******************************************************************************/
146 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
147 
148 struct gf100_gr_object {
149 	struct nvkm_object object;
150 	struct gf100_gr_chan *chan;
151 };
152 
153 static int
154 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
155 {
156 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
157 	union {
158 		struct fermi_a_zbc_color_v0 v0;
159 	} *args = data;
160 	int ret = -ENOSYS;
161 
162 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
163 		switch (args->v0.format) {
164 		case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
165 		case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
166 		case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
167 		case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
168 		case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
169 		case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
170 		case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
171 		case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
172 		case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
173 		case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
174 		case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
175 		case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
176 		case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
177 		case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
178 		case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
179 		case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
180 		case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
181 		case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
182 		case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
183 			ret = gf100_gr_zbc_color_get(gr, args->v0.format,
184 							   args->v0.ds,
185 							   args->v0.l2);
186 			if (ret >= 0) {
187 				args->v0.index = ret;
188 				return 0;
189 			}
190 			break;
191 		default:
192 			return -EINVAL;
193 		}
194 	}
195 
196 	return ret;
197 }
198 
199 static int
200 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
201 {
202 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
203 	union {
204 		struct fermi_a_zbc_depth_v0 v0;
205 	} *args = data;
206 	int ret = -ENOSYS;
207 
208 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
209 		switch (args->v0.format) {
210 		case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
211 			ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
212 							   args->v0.ds,
213 							   args->v0.l2);
214 			return (ret >= 0) ? 0 : -ENOSPC;
215 		default:
216 			return -EINVAL;
217 		}
218 	}
219 
220 	return ret;
221 }
222 
223 static int
224 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
225 {
226 	nvif_ioctl(object, "fermi mthd %08x\n", mthd);
227 	switch (mthd) {
228 	case FERMI_A_ZBC_COLOR:
229 		return gf100_fermi_mthd_zbc_color(object, data, size);
230 	case FERMI_A_ZBC_DEPTH:
231 		return gf100_fermi_mthd_zbc_depth(object, data, size);
232 	default:
233 		break;
234 	}
235 	return -EINVAL;
236 }
237 
238 const struct nvkm_object_func
239 gf100_fermi = {
240 	.mthd = gf100_fermi_mthd,
241 };
242 
243 static void
244 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
245 {
246 	nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
247 	nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
248 }
249 
250 static bool
251 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
252 {
253 	switch (class & 0x00ff) {
254 	case 0x97:
255 	case 0xc0:
256 		switch (mthd) {
257 		case 0x1528:
258 			gf100_gr_mthd_set_shader_exceptions(device, data);
259 			return true;
260 		default:
261 			break;
262 		}
263 		break;
264 	default:
265 		break;
266 	}
267 	return false;
268 }
269 
270 static const struct nvkm_object_func
271 gf100_gr_object_func = {
272 };
273 
274 static int
275 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
276 		    struct nvkm_object **pobject)
277 {
278 	struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
279 	struct gf100_gr_object *object;
280 
281 	if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
282 		return -ENOMEM;
283 	*pobject = &object->object;
284 
285 	nvkm_object_ctor(oclass->base.func ? oclass->base.func :
286 			 &gf100_gr_object_func, oclass, &object->object);
287 	object->chan = chan;
288 	return 0;
289 }
290 
291 static int
292 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
293 {
294 	struct gf100_gr *gr = gf100_gr(base);
295 	int c = 0;
296 
297 	while (gr->func->sclass[c].oclass) {
298 		if (c++ == index) {
299 			*sclass = gr->func->sclass[index];
300 			sclass->ctor = gf100_gr_object_new;
301 			return index;
302 		}
303 	}
304 
305 	return c;
306 }
307 
308 /*******************************************************************************
309  * PGRAPH context
310  ******************************************************************************/
311 
312 static int
313 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
314 		   int align, struct nvkm_gpuobj **pgpuobj)
315 {
316 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
317 	struct gf100_gr *gr = chan->gr;
318 	int ret, i;
319 
320 	ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
321 			      align, false, parent, pgpuobj);
322 	if (ret)
323 		return ret;
324 
325 	nvkm_kmap(*pgpuobj);
326 	for (i = 0; i < gr->size; i += 4)
327 		nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
328 
329 	if (!gr->firmware) {
330 		nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
331 		nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma->addr >> 8);
332 	} else {
333 		nvkm_wo32(*pgpuobj, 0xf4, 0);
334 		nvkm_wo32(*pgpuobj, 0xf8, 0);
335 		nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
336 		nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma->addr));
337 		nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma->addr));
338 		nvkm_wo32(*pgpuobj, 0x1c, 1);
339 		nvkm_wo32(*pgpuobj, 0x20, 0);
340 		nvkm_wo32(*pgpuobj, 0x28, 0);
341 		nvkm_wo32(*pgpuobj, 0x2c, 0);
342 	}
343 	nvkm_done(*pgpuobj);
344 	return 0;
345 }
346 
347 static void *
348 gf100_gr_chan_dtor(struct nvkm_object *object)
349 {
350 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
351 	int i;
352 
353 	for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
354 		nvkm_vmm_put(chan->vmm, &chan->data[i].vma);
355 		nvkm_memory_unref(&chan->data[i].mem);
356 	}
357 
358 	nvkm_vmm_put(chan->vmm, &chan->mmio_vma);
359 	nvkm_memory_unref(&chan->mmio);
360 	nvkm_vmm_unref(&chan->vmm);
361 	return chan;
362 }
363 
364 static const struct nvkm_object_func
365 gf100_gr_chan = {
366 	.dtor = gf100_gr_chan_dtor,
367 	.bind = gf100_gr_chan_bind,
368 };
369 
370 static int
371 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
372 		  const struct nvkm_oclass *oclass,
373 		  struct nvkm_object **pobject)
374 {
375 	struct gf100_gr *gr = gf100_gr(base);
376 	struct gf100_gr_data *data = gr->mmio_data;
377 	struct gf100_gr_mmio *mmio = gr->mmio_list;
378 	struct gf100_gr_chan *chan;
379 	struct gf100_vmm_map_v0 args = { .priv = 1 };
380 	struct nvkm_device *device = gr->base.engine.subdev.device;
381 	int ret, i;
382 
383 	if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
384 		return -ENOMEM;
385 	nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
386 	chan->gr = gr;
387 	chan->vmm = nvkm_vmm_ref(fifoch->vmm);
388 	*pobject = &chan->object;
389 
390 	/* allocate memory for a "mmio list" buffer that's used by the HUB
391 	 * fuc to modify some per-context register settings on first load
392 	 * of the context.
393 	 */
394 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
395 			      false, &chan->mmio);
396 	if (ret)
397 		return ret;
398 
399 	ret = nvkm_vmm_get(fifoch->vmm, 12, 0x1000, &chan->mmio_vma);
400 	if (ret)
401 		return ret;
402 
403 	ret = nvkm_memory_map(chan->mmio, 0, fifoch->vmm,
404 			      chan->mmio_vma, &args, sizeof(args));
405 	if (ret)
406 		return ret;
407 
408 	/* allocate buffers referenced by mmio list */
409 	for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
410 		ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
411 				      data->size, data->align, false,
412 				      &chan->data[i].mem);
413 		if (ret)
414 			return ret;
415 
416 		ret = nvkm_vmm_get(fifoch->vmm, 12,
417 				   nvkm_memory_size(chan->data[i].mem),
418 				   &chan->data[i].vma);
419 		if (ret)
420 			return ret;
421 
422 		args.priv = data->priv;
423 
424 		ret = nvkm_memory_map(chan->data[i].mem, 0, chan->vmm,
425 				      chan->data[i].vma, &args, sizeof(args));
426 		if (ret)
427 			return ret;
428 
429 		data++;
430 	}
431 
432 	/* finally, fill in the mmio list and point the context at it */
433 	nvkm_kmap(chan->mmio);
434 	for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
435 		u32 addr = mmio->addr;
436 		u32 data = mmio->data;
437 
438 		if (mmio->buffer >= 0) {
439 			u64 info = chan->data[mmio->buffer].vma->addr;
440 			data |= info >> mmio->shift;
441 		}
442 
443 		nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
444 		nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
445 		mmio++;
446 	}
447 	nvkm_done(chan->mmio);
448 	return 0;
449 }
450 
451 /*******************************************************************************
452  * PGRAPH register lists
453  ******************************************************************************/
454 
455 const struct gf100_gr_init
456 gf100_gr_init_main_0[] = {
457 	{ 0x400080,   1, 0x04, 0x003083c2 },
458 	{ 0x400088,   1, 0x04, 0x00006fe7 },
459 	{ 0x40008c,   1, 0x04, 0x00000000 },
460 	{ 0x400090,   1, 0x04, 0x00000030 },
461 	{ 0x40013c,   1, 0x04, 0x013901f7 },
462 	{ 0x400140,   1, 0x04, 0x00000100 },
463 	{ 0x400144,   1, 0x04, 0x00000000 },
464 	{ 0x400148,   1, 0x04, 0x00000110 },
465 	{ 0x400138,   1, 0x04, 0x00000000 },
466 	{ 0x400130,   2, 0x04, 0x00000000 },
467 	{ 0x400124,   1, 0x04, 0x00000002 },
468 	{}
469 };
470 
471 const struct gf100_gr_init
472 gf100_gr_init_fe_0[] = {
473 	{ 0x40415c,   1, 0x04, 0x00000000 },
474 	{ 0x404170,   1, 0x04, 0x00000000 },
475 	{}
476 };
477 
478 const struct gf100_gr_init
479 gf100_gr_init_pri_0[] = {
480 	{ 0x404488,   2, 0x04, 0x00000000 },
481 	{}
482 };
483 
484 const struct gf100_gr_init
485 gf100_gr_init_rstr2d_0[] = {
486 	{ 0x407808,   1, 0x04, 0x00000000 },
487 	{}
488 };
489 
490 const struct gf100_gr_init
491 gf100_gr_init_pd_0[] = {
492 	{ 0x406024,   1, 0x04, 0x00000000 },
493 	{}
494 };
495 
496 const struct gf100_gr_init
497 gf100_gr_init_ds_0[] = {
498 	{ 0x405844,   1, 0x04, 0x00ffffff },
499 	{ 0x405850,   1, 0x04, 0x00000000 },
500 	{ 0x405908,   1, 0x04, 0x00000000 },
501 	{}
502 };
503 
504 const struct gf100_gr_init
505 gf100_gr_init_scc_0[] = {
506 	{ 0x40803c,   1, 0x04, 0x00000000 },
507 	{}
508 };
509 
510 const struct gf100_gr_init
511 gf100_gr_init_prop_0[] = {
512 	{ 0x4184a0,   1, 0x04, 0x00000000 },
513 	{}
514 };
515 
516 const struct gf100_gr_init
517 gf100_gr_init_gpc_unk_0[] = {
518 	{ 0x418604,   1, 0x04, 0x00000000 },
519 	{ 0x418680,   1, 0x04, 0x00000000 },
520 	{ 0x418714,   1, 0x04, 0x80000000 },
521 	{ 0x418384,   1, 0x04, 0x00000000 },
522 	{}
523 };
524 
525 const struct gf100_gr_init
526 gf100_gr_init_setup_0[] = {
527 	{ 0x418814,   3, 0x04, 0x00000000 },
528 	{}
529 };
530 
531 const struct gf100_gr_init
532 gf100_gr_init_crstr_0[] = {
533 	{ 0x418b04,   1, 0x04, 0x00000000 },
534 	{}
535 };
536 
537 const struct gf100_gr_init
538 gf100_gr_init_setup_1[] = {
539 	{ 0x4188c8,   1, 0x04, 0x80000000 },
540 	{ 0x4188cc,   1, 0x04, 0x00000000 },
541 	{ 0x4188d0,   1, 0x04, 0x00010000 },
542 	{ 0x4188d4,   1, 0x04, 0x00000001 },
543 	{}
544 };
545 
546 const struct gf100_gr_init
547 gf100_gr_init_zcull_0[] = {
548 	{ 0x418910,   1, 0x04, 0x00010001 },
549 	{ 0x418914,   1, 0x04, 0x00000301 },
550 	{ 0x418918,   1, 0x04, 0x00800000 },
551 	{ 0x418980,   1, 0x04, 0x77777770 },
552 	{ 0x418984,   3, 0x04, 0x77777777 },
553 	{}
554 };
555 
556 const struct gf100_gr_init
557 gf100_gr_init_gpm_0[] = {
558 	{ 0x418c04,   1, 0x04, 0x00000000 },
559 	{ 0x418c88,   1, 0x04, 0x00000000 },
560 	{}
561 };
562 
563 const struct gf100_gr_init
564 gf100_gr_init_gpc_unk_1[] = {
565 	{ 0x418d00,   1, 0x04, 0x00000000 },
566 	{ 0x418f08,   1, 0x04, 0x00000000 },
567 	{ 0x418e00,   1, 0x04, 0x00000050 },
568 	{ 0x418e08,   1, 0x04, 0x00000000 },
569 	{}
570 };
571 
572 const struct gf100_gr_init
573 gf100_gr_init_gcc_0[] = {
574 	{ 0x41900c,   1, 0x04, 0x00000000 },
575 	{ 0x419018,   1, 0x04, 0x00000000 },
576 	{}
577 };
578 
579 const struct gf100_gr_init
580 gf100_gr_init_tpccs_0[] = {
581 	{ 0x419d08,   2, 0x04, 0x00000000 },
582 	{ 0x419d10,   1, 0x04, 0x00000014 },
583 	{}
584 };
585 
586 const struct gf100_gr_init
587 gf100_gr_init_tex_0[] = {
588 	{ 0x419ab0,   1, 0x04, 0x00000000 },
589 	{ 0x419ab8,   1, 0x04, 0x000000e7 },
590 	{ 0x419abc,   2, 0x04, 0x00000000 },
591 	{}
592 };
593 
594 const struct gf100_gr_init
595 gf100_gr_init_pe_0[] = {
596 	{ 0x41980c,   3, 0x04, 0x00000000 },
597 	{ 0x419844,   1, 0x04, 0x00000000 },
598 	{ 0x41984c,   1, 0x04, 0x00005bc5 },
599 	{ 0x419850,   4, 0x04, 0x00000000 },
600 	{}
601 };
602 
603 const struct gf100_gr_init
604 gf100_gr_init_l1c_0[] = {
605 	{ 0x419c98,   1, 0x04, 0x00000000 },
606 	{ 0x419ca8,   1, 0x04, 0x80000000 },
607 	{ 0x419cb4,   1, 0x04, 0x00000000 },
608 	{ 0x419cb8,   1, 0x04, 0x00008bf4 },
609 	{ 0x419cbc,   1, 0x04, 0x28137606 },
610 	{ 0x419cc0,   2, 0x04, 0x00000000 },
611 	{}
612 };
613 
614 const struct gf100_gr_init
615 gf100_gr_init_wwdx_0[] = {
616 	{ 0x419bd4,   1, 0x04, 0x00800000 },
617 	{ 0x419bdc,   1, 0x04, 0x00000000 },
618 	{}
619 };
620 
621 const struct gf100_gr_init
622 gf100_gr_init_tpccs_1[] = {
623 	{ 0x419d2c,   1, 0x04, 0x00000000 },
624 	{}
625 };
626 
627 const struct gf100_gr_init
628 gf100_gr_init_mpc_0[] = {
629 	{ 0x419c0c,   1, 0x04, 0x00000000 },
630 	{}
631 };
632 
633 static const struct gf100_gr_init
634 gf100_gr_init_sm_0[] = {
635 	{ 0x419e00,   1, 0x04, 0x00000000 },
636 	{ 0x419ea0,   1, 0x04, 0x00000000 },
637 	{ 0x419ea4,   1, 0x04, 0x00000100 },
638 	{ 0x419ea8,   1, 0x04, 0x00001100 },
639 	{ 0x419eac,   1, 0x04, 0x11100702 },
640 	{ 0x419eb0,   1, 0x04, 0x00000003 },
641 	{ 0x419eb4,   4, 0x04, 0x00000000 },
642 	{ 0x419ec8,   1, 0x04, 0x06060618 },
643 	{ 0x419ed0,   1, 0x04, 0x0eff0e38 },
644 	{ 0x419ed4,   1, 0x04, 0x011104f1 },
645 	{ 0x419edc,   1, 0x04, 0x00000000 },
646 	{ 0x419f00,   1, 0x04, 0x00000000 },
647 	{ 0x419f2c,   1, 0x04, 0x00000000 },
648 	{}
649 };
650 
651 const struct gf100_gr_init
652 gf100_gr_init_be_0[] = {
653 	{ 0x40880c,   1, 0x04, 0x00000000 },
654 	{ 0x408910,   9, 0x04, 0x00000000 },
655 	{ 0x408950,   1, 0x04, 0x00000000 },
656 	{ 0x408954,   1, 0x04, 0x0000ffff },
657 	{ 0x408984,   1, 0x04, 0x00000000 },
658 	{ 0x408988,   1, 0x04, 0x08040201 },
659 	{ 0x40898c,   1, 0x04, 0x80402010 },
660 	{}
661 };
662 
663 const struct gf100_gr_init
664 gf100_gr_init_fe_1[] = {
665 	{ 0x4040f0,   1, 0x04, 0x00000000 },
666 	{}
667 };
668 
669 const struct gf100_gr_init
670 gf100_gr_init_pe_1[] = {
671 	{ 0x419880,   1, 0x04, 0x00000002 },
672 	{}
673 };
674 
675 static const struct gf100_gr_pack
676 gf100_gr_pack_mmio[] = {
677 	{ gf100_gr_init_main_0 },
678 	{ gf100_gr_init_fe_0 },
679 	{ gf100_gr_init_pri_0 },
680 	{ gf100_gr_init_rstr2d_0 },
681 	{ gf100_gr_init_pd_0 },
682 	{ gf100_gr_init_ds_0 },
683 	{ gf100_gr_init_scc_0 },
684 	{ gf100_gr_init_prop_0 },
685 	{ gf100_gr_init_gpc_unk_0 },
686 	{ gf100_gr_init_setup_0 },
687 	{ gf100_gr_init_crstr_0 },
688 	{ gf100_gr_init_setup_1 },
689 	{ gf100_gr_init_zcull_0 },
690 	{ gf100_gr_init_gpm_0 },
691 	{ gf100_gr_init_gpc_unk_1 },
692 	{ gf100_gr_init_gcc_0 },
693 	{ gf100_gr_init_tpccs_0 },
694 	{ gf100_gr_init_tex_0 },
695 	{ gf100_gr_init_pe_0 },
696 	{ gf100_gr_init_l1c_0 },
697 	{ gf100_gr_init_wwdx_0 },
698 	{ gf100_gr_init_tpccs_1 },
699 	{ gf100_gr_init_mpc_0 },
700 	{ gf100_gr_init_sm_0 },
701 	{ gf100_gr_init_be_0 },
702 	{ gf100_gr_init_fe_1 },
703 	{ gf100_gr_init_pe_1 },
704 	{}
705 };
706 
707 /*******************************************************************************
708  * PGRAPH engine/subdev functions
709  ******************************************************************************/
710 
711 static bool
712 gf100_gr_chsw_load(struct nvkm_gr *base)
713 {
714 	struct gf100_gr *gr = gf100_gr(base);
715 	if (!gr->firmware) {
716 		u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
717 		if (trace & 0x00000040)
718 			return true;
719 	} else {
720 		u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
721 		if (mthd & 0x00080000)
722 			return true;
723 	}
724 	return false;
725 }
726 
727 int
728 gf100_gr_rops(struct gf100_gr *gr)
729 {
730 	struct nvkm_device *device = gr->base.engine.subdev.device;
731 	return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
732 }
733 
734 void
735 gf100_gr_zbc_init(struct gf100_gr *gr)
736 {
737 	const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
738 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
739 	const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
740 			      0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
741 	const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
742 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
743 	const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
744 			      0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
745 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
746 	int index;
747 
748 	if (!gr->zbc_color[0].format) {
749 		gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]);
750 		gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]);
751 		gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]);
752 		gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]);
753 		gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000);
754 		gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000);
755 	}
756 
757 	for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
758 		gf100_gr_zbc_clear_color(gr, index);
759 	for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
760 		gf100_gr_zbc_clear_depth(gr, index);
761 }
762 
763 /**
764  * Wait until GR goes idle. GR is considered idle if it is disabled by the
765  * MC (0x200) register, or GR is not busy and a context switch is not in
766  * progress.
767  */
768 int
769 gf100_gr_wait_idle(struct gf100_gr *gr)
770 {
771 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
772 	struct nvkm_device *device = subdev->device;
773 	unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
774 	bool gr_enabled, ctxsw_active, gr_busy;
775 
776 	do {
777 		/*
778 		 * required to make sure FIFO_ENGINE_STATUS (0x2640) is
779 		 * up-to-date
780 		 */
781 		nvkm_rd32(device, 0x400700);
782 
783 		gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
784 		ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
785 		gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
786 
787 		if (!gr_enabled || (!gr_busy && !ctxsw_active))
788 			return 0;
789 	} while (time_before(jiffies, end_jiffies));
790 
791 	nvkm_error(subdev,
792 		   "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
793 		   gr_enabled, ctxsw_active, gr_busy);
794 	return -EAGAIN;
795 }
796 
797 void
798 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
799 {
800 	struct nvkm_device *device = gr->base.engine.subdev.device;
801 	const struct gf100_gr_pack *pack;
802 	const struct gf100_gr_init *init;
803 
804 	pack_for_each_init(init, pack, p) {
805 		u32 next = init->addr + init->count * init->pitch;
806 		u32 addr = init->addr;
807 		while (addr < next) {
808 			nvkm_wr32(device, addr, init->data);
809 			addr += init->pitch;
810 		}
811 	}
812 }
813 
814 void
815 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
816 {
817 	struct nvkm_device *device = gr->base.engine.subdev.device;
818 	const struct gf100_gr_pack *pack;
819 	const struct gf100_gr_init *init;
820 	u32 data = 0;
821 
822 	nvkm_wr32(device, 0x400208, 0x80000000);
823 
824 	pack_for_each_init(init, pack, p) {
825 		u32 next = init->addr + init->count * init->pitch;
826 		u32 addr = init->addr;
827 
828 		if ((pack == p && init == p->init) || data != init->data) {
829 			nvkm_wr32(device, 0x400204, init->data);
830 			data = init->data;
831 		}
832 
833 		while (addr < next) {
834 			nvkm_wr32(device, 0x400200, addr);
835 			/**
836 			 * Wait for GR to go idle after submitting a
837 			 * GO_IDLE bundle
838 			 */
839 			if ((addr & 0xffff) == 0xe100)
840 				gf100_gr_wait_idle(gr);
841 			nvkm_msec(device, 2000,
842 				if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
843 					break;
844 			);
845 			addr += init->pitch;
846 		}
847 	}
848 
849 	nvkm_wr32(device, 0x400208, 0x00000000);
850 }
851 
852 void
853 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
854 {
855 	struct nvkm_device *device = gr->base.engine.subdev.device;
856 	const struct gf100_gr_pack *pack;
857 	const struct gf100_gr_init *init;
858 	u32 data = 0;
859 
860 	pack_for_each_init(init, pack, p) {
861 		u32 ctrl = 0x80000000 | pack->type;
862 		u32 next = init->addr + init->count * init->pitch;
863 		u32 addr = init->addr;
864 
865 		if ((pack == p && init == p->init) || data != init->data) {
866 			nvkm_wr32(device, 0x40448c, init->data);
867 			data = init->data;
868 		}
869 
870 		while (addr < next) {
871 			nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
872 			addr += init->pitch;
873 		}
874 	}
875 }
876 
877 u64
878 gf100_gr_units(struct nvkm_gr *base)
879 {
880 	struct gf100_gr *gr = gf100_gr(base);
881 	u64 cfg;
882 
883 	cfg  = (u32)gr->gpc_nr;
884 	cfg |= (u32)gr->tpc_total << 8;
885 	cfg |= (u64)gr->rop_nr << 32;
886 
887 	return cfg;
888 }
889 
890 static const struct nvkm_bitfield gf100_dispatch_error[] = {
891 	{ 0x00000001, "INJECTED_BUNDLE_ERROR" },
892 	{ 0x00000002, "CLASS_SUBCH_MISMATCH" },
893 	{ 0x00000004, "SUBCHSW_DURING_NOTIFY" },
894 	{}
895 };
896 
897 static const struct nvkm_bitfield gf100_m2mf_error[] = {
898 	{ 0x00000001, "PUSH_TOO_MUCH_DATA" },
899 	{ 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
900 	{}
901 };
902 
903 static const struct nvkm_bitfield gf100_unk6_error[] = {
904 	{ 0x00000001, "TEMP_TOO_SMALL" },
905 	{}
906 };
907 
908 static const struct nvkm_bitfield gf100_ccache_error[] = {
909 	{ 0x00000001, "INTR" },
910 	{ 0x00000002, "LDCONST_OOB" },
911 	{}
912 };
913 
914 static const struct nvkm_bitfield gf100_macro_error[] = {
915 	{ 0x00000001, "TOO_FEW_PARAMS" },
916 	{ 0x00000002, "TOO_MANY_PARAMS" },
917 	{ 0x00000004, "ILLEGAL_OPCODE" },
918 	{ 0x00000008, "DOUBLE_BRANCH" },
919 	{ 0x00000010, "WATCHDOG" },
920 	{}
921 };
922 
923 static const struct nvkm_bitfield gk104_sked_error[] = {
924 	{ 0x00000040, "CTA_RESUME" },
925 	{ 0x00000080, "CONSTANT_BUFFER_SIZE" },
926 	{ 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
927 	{ 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
928 	{ 0x00000800, "WARP_CSTACK_SIZE" },
929 	{ 0x00001000, "TOTAL_TEMP_SIZE" },
930 	{ 0x00002000, "REGISTER_COUNT" },
931 	{ 0x00040000, "TOTAL_THREADS" },
932 	{ 0x00100000, "PROGRAM_OFFSET" },
933 	{ 0x00200000, "SHARED_MEMORY_SIZE" },
934 	{ 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
935 	{ 0x01000000, "MEMORY_WINDOW_OVERLAP" },
936 	{ 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
937 	{ 0x04000000, "TOTAL_REGISTER_COUNT" },
938 	{}
939 };
940 
941 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
942 	{ 0x00000002, "RT_PITCH_OVERRUN" },
943 	{ 0x00000010, "RT_WIDTH_OVERRUN" },
944 	{ 0x00000020, "RT_HEIGHT_OVERRUN" },
945 	{ 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
946 	{ 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
947 	{ 0x00000400, "RT_LINEAR_MISMATCH" },
948 	{}
949 };
950 
951 static void
952 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
953 {
954 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
955 	struct nvkm_device *device = subdev->device;
956 	char error[128];
957 	u32 trap[4];
958 
959 	trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
960 	trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
961 	trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
962 	trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
963 
964 	nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
965 
966 	nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
967 			   "format = %x, storage type = %x\n",
968 		   gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
969 		   (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
970 	nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
971 }
972 
973 static const struct nvkm_enum gf100_mp_warp_error[] = {
974 	{ 0x01, "STACK_ERROR" },
975 	{ 0x02, "API_STACK_ERROR" },
976 	{ 0x03, "RET_EMPTY_STACK_ERROR" },
977 	{ 0x04, "PC_WRAP" },
978 	{ 0x05, "MISALIGNED_PC" },
979 	{ 0x06, "PC_OVERFLOW" },
980 	{ 0x07, "MISALIGNED_IMMC_ADDR" },
981 	{ 0x08, "MISALIGNED_REG" },
982 	{ 0x09, "ILLEGAL_INSTR_ENCODING" },
983 	{ 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
984 	{ 0x0b, "ILLEGAL_INSTR_PARAM" },
985 	{ 0x0c, "INVALID_CONST_ADDR" },
986 	{ 0x0d, "OOR_REG" },
987 	{ 0x0e, "OOR_ADDR" },
988 	{ 0x0f, "MISALIGNED_ADDR" },
989 	{ 0x10, "INVALID_ADDR_SPACE" },
990 	{ 0x11, "ILLEGAL_INSTR_PARAM2" },
991 	{ 0x12, "INVALID_CONST_ADDR_LDC" },
992 	{ 0x13, "GEOMETRY_SM_ERROR" },
993 	{ 0x14, "DIVERGENT" },
994 	{ 0x15, "WARP_EXIT" },
995 	{}
996 };
997 
998 static const struct nvkm_bitfield gf100_mp_global_error[] = {
999 	{ 0x00000001, "SM_TO_SM_FAULT" },
1000 	{ 0x00000002, "L1_ERROR" },
1001 	{ 0x00000004, "MULTIPLE_WARP_ERRORS" },
1002 	{ 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
1003 	{ 0x00000010, "BPT_INT" },
1004 	{ 0x00000020, "BPT_PAUSE" },
1005 	{ 0x00000040, "SINGLE_STEP_COMPLETE" },
1006 	{ 0x20000000, "ECC_SEC_ERROR" },
1007 	{ 0x40000000, "ECC_DED_ERROR" },
1008 	{ 0x80000000, "TIMEOUT" },
1009 	{}
1010 };
1011 
1012 static void
1013 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
1014 {
1015 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1016 	struct nvkm_device *device = subdev->device;
1017 	u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
1018 	u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
1019 	const struct nvkm_enum *warp;
1020 	char glob[128];
1021 
1022 	nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1023 	warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1024 
1025 	nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1026 			   "global %08x [%s] warp %04x [%s]\n",
1027 		   gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1028 
1029 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1030 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1031 }
1032 
1033 static void
1034 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1035 {
1036 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1037 	struct nvkm_device *device = subdev->device;
1038 	u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1039 
1040 	if (stat & 0x00000001) {
1041 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1042 		nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1043 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1044 		stat &= ~0x00000001;
1045 	}
1046 
1047 	if (stat & 0x00000002) {
1048 		gf100_gr_trap_mp(gr, gpc, tpc);
1049 		stat &= ~0x00000002;
1050 	}
1051 
1052 	if (stat & 0x00000004) {
1053 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1054 		nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1055 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1056 		stat &= ~0x00000004;
1057 	}
1058 
1059 	if (stat & 0x00000008) {
1060 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1061 		nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1062 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1063 		stat &= ~0x00000008;
1064 	}
1065 
1066 	if (stat & 0x00000010) {
1067 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
1068 		nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
1069 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
1070 		stat &= ~0x00000010;
1071 	}
1072 
1073 	if (stat) {
1074 		nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1075 	}
1076 }
1077 
1078 static void
1079 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1080 {
1081 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1082 	struct nvkm_device *device = subdev->device;
1083 	u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1084 	int tpc;
1085 
1086 	if (stat & 0x00000001) {
1087 		gf100_gr_trap_gpc_rop(gr, gpc);
1088 		stat &= ~0x00000001;
1089 	}
1090 
1091 	if (stat & 0x00000002) {
1092 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1093 		nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1094 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1095 		stat &= ~0x00000002;
1096 	}
1097 
1098 	if (stat & 0x00000004) {
1099 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1100 		nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1101 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1102 		stat &= ~0x00000004;
1103 	}
1104 
1105 	if (stat & 0x00000008) {
1106 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1107 		nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1108 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1109 		stat &= ~0x00000009;
1110 	}
1111 
1112 	for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1113 		u32 mask = 0x00010000 << tpc;
1114 		if (stat & mask) {
1115 			gf100_gr_trap_tpc(gr, gpc, tpc);
1116 			nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1117 			stat &= ~mask;
1118 		}
1119 	}
1120 
1121 	if (stat) {
1122 		nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1123 	}
1124 }
1125 
1126 static void
1127 gf100_gr_trap_intr(struct gf100_gr *gr)
1128 {
1129 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1130 	struct nvkm_device *device = subdev->device;
1131 	char error[128];
1132 	u32 trap = nvkm_rd32(device, 0x400108);
1133 	int rop, gpc;
1134 
1135 	if (trap & 0x00000001) {
1136 		u32 stat = nvkm_rd32(device, 0x404000);
1137 
1138 		nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1139 			       stat & 0x3fffffff);
1140 		nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1141 		nvkm_wr32(device, 0x404000, 0xc0000000);
1142 		nvkm_wr32(device, 0x400108, 0x00000001);
1143 		trap &= ~0x00000001;
1144 	}
1145 
1146 	if (trap & 0x00000002) {
1147 		u32 stat = nvkm_rd32(device, 0x404600);
1148 
1149 		nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1150 			       stat & 0x3fffffff);
1151 		nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1152 
1153 		nvkm_wr32(device, 0x404600, 0xc0000000);
1154 		nvkm_wr32(device, 0x400108, 0x00000002);
1155 		trap &= ~0x00000002;
1156 	}
1157 
1158 	if (trap & 0x00000008) {
1159 		u32 stat = nvkm_rd32(device, 0x408030);
1160 
1161 		nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
1162 			       stat & 0x3fffffff);
1163 		nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1164 		nvkm_wr32(device, 0x408030, 0xc0000000);
1165 		nvkm_wr32(device, 0x400108, 0x00000008);
1166 		trap &= ~0x00000008;
1167 	}
1168 
1169 	if (trap & 0x00000010) {
1170 		u32 stat = nvkm_rd32(device, 0x405840);
1171 		nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1172 			   stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1173 		nvkm_wr32(device, 0x405840, 0xc0000000);
1174 		nvkm_wr32(device, 0x400108, 0x00000010);
1175 		trap &= ~0x00000010;
1176 	}
1177 
1178 	if (trap & 0x00000040) {
1179 		u32 stat = nvkm_rd32(device, 0x40601c);
1180 
1181 		nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1182 			       stat & 0x3fffffff);
1183 		nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1184 
1185 		nvkm_wr32(device, 0x40601c, 0xc0000000);
1186 		nvkm_wr32(device, 0x400108, 0x00000040);
1187 		trap &= ~0x00000040;
1188 	}
1189 
1190 	if (trap & 0x00000080) {
1191 		u32 stat = nvkm_rd32(device, 0x404490);
1192 		u32 pc = nvkm_rd32(device, 0x404494);
1193 		u32 op = nvkm_rd32(device, 0x40449c);
1194 
1195 		nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1196 			       stat & 0x1fffffff);
1197 		nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1198 			   stat, error, pc & 0x7ff,
1199 			   (pc & 0x10000000) ? "" : " (invalid)",
1200 			   op);
1201 
1202 		nvkm_wr32(device, 0x404490, 0xc0000000);
1203 		nvkm_wr32(device, 0x400108, 0x00000080);
1204 		trap &= ~0x00000080;
1205 	}
1206 
1207 	if (trap & 0x00000100) {
1208 		u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1209 
1210 		nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1211 		nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1212 
1213 		if (stat)
1214 			nvkm_wr32(device, 0x407020, 0x40000000);
1215 		nvkm_wr32(device, 0x400108, 0x00000100);
1216 		trap &= ~0x00000100;
1217 	}
1218 
1219 	if (trap & 0x01000000) {
1220 		u32 stat = nvkm_rd32(device, 0x400118);
1221 		for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1222 			u32 mask = 0x00000001 << gpc;
1223 			if (stat & mask) {
1224 				gf100_gr_trap_gpc(gr, gpc);
1225 				nvkm_wr32(device, 0x400118, mask);
1226 				stat &= ~mask;
1227 			}
1228 		}
1229 		nvkm_wr32(device, 0x400108, 0x01000000);
1230 		trap &= ~0x01000000;
1231 	}
1232 
1233 	if (trap & 0x02000000) {
1234 		for (rop = 0; rop < gr->rop_nr; rop++) {
1235 			u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1236 			u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1237 			nvkm_error(subdev, "ROP%d %08x %08x\n",
1238 				 rop, statz, statc);
1239 			nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1240 			nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1241 		}
1242 		nvkm_wr32(device, 0x400108, 0x02000000);
1243 		trap &= ~0x02000000;
1244 	}
1245 
1246 	if (trap) {
1247 		nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1248 		nvkm_wr32(device, 0x400108, trap);
1249 	}
1250 }
1251 
1252 static void
1253 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1254 {
1255 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1256 	struct nvkm_device *device = subdev->device;
1257 	nvkm_error(subdev, "%06x - done %08x\n", base,
1258 		   nvkm_rd32(device, base + 0x400));
1259 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1260 		   nvkm_rd32(device, base + 0x800),
1261 		   nvkm_rd32(device, base + 0x804),
1262 		   nvkm_rd32(device, base + 0x808),
1263 		   nvkm_rd32(device, base + 0x80c));
1264 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1265 		   nvkm_rd32(device, base + 0x810),
1266 		   nvkm_rd32(device, base + 0x814),
1267 		   nvkm_rd32(device, base + 0x818),
1268 		   nvkm_rd32(device, base + 0x81c));
1269 }
1270 
1271 void
1272 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1273 {
1274 	struct nvkm_device *device = gr->base.engine.subdev.device;
1275 	u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1276 	u32 gpc;
1277 
1278 	gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1279 	for (gpc = 0; gpc < gpcnr; gpc++)
1280 		gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1281 }
1282 
1283 static void
1284 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1285 {
1286 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1287 	struct nvkm_device *device = subdev->device;
1288 	u32 stat = nvkm_rd32(device, 0x409c18);
1289 
1290 	if (!gr->firmware && (stat & 0x00000001)) {
1291 		u32 code = nvkm_rd32(device, 0x409814);
1292 		if (code == E_BAD_FWMTHD) {
1293 			u32 class = nvkm_rd32(device, 0x409808);
1294 			u32  addr = nvkm_rd32(device, 0x40980c);
1295 			u32  subc = (addr & 0x00070000) >> 16;
1296 			u32  mthd = (addr & 0x00003ffc);
1297 			u32  data = nvkm_rd32(device, 0x409810);
1298 
1299 			nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1300 					   "mthd %04x data %08x\n",
1301 				   subc, class, mthd, data);
1302 		} else {
1303 			nvkm_error(subdev, "FECS ucode error %d\n", code);
1304 		}
1305 		nvkm_wr32(device, 0x409c20, 0x00000001);
1306 		stat &= ~0x00000001;
1307 	}
1308 
1309 	if (!gr->firmware && (stat & 0x00080000)) {
1310 		nvkm_error(subdev, "FECS watchdog timeout\n");
1311 		gf100_gr_ctxctl_debug(gr);
1312 		nvkm_wr32(device, 0x409c20, 0x00080000);
1313 		stat &= ~0x00080000;
1314 	}
1315 
1316 	if (stat) {
1317 		nvkm_error(subdev, "FECS %08x\n", stat);
1318 		gf100_gr_ctxctl_debug(gr);
1319 		nvkm_wr32(device, 0x409c20, stat);
1320 	}
1321 }
1322 
1323 static void
1324 gf100_gr_intr(struct nvkm_gr *base)
1325 {
1326 	struct gf100_gr *gr = gf100_gr(base);
1327 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1328 	struct nvkm_device *device = subdev->device;
1329 	struct nvkm_fifo_chan *chan;
1330 	unsigned long flags;
1331 	u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1332 	u32 stat = nvkm_rd32(device, 0x400100);
1333 	u32 addr = nvkm_rd32(device, 0x400704);
1334 	u32 mthd = (addr & 0x00003ffc);
1335 	u32 subc = (addr & 0x00070000) >> 16;
1336 	u32 data = nvkm_rd32(device, 0x400708);
1337 	u32 code = nvkm_rd32(device, 0x400110);
1338 	u32 class;
1339 	const char *name = "unknown";
1340 	int chid = -1;
1341 
1342 	chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1343 	if (chan) {
1344 		name = chan->object.client->name;
1345 		chid = chan->chid;
1346 	}
1347 
1348 	if (device->card_type < NV_E0 || subc < 4)
1349 		class = nvkm_rd32(device, 0x404200 + (subc * 4));
1350 	else
1351 		class = 0x0000;
1352 
1353 	if (stat & 0x00000001) {
1354 		/*
1355 		 * notifier interrupt, only needed for cyclestats
1356 		 * can be safely ignored
1357 		 */
1358 		nvkm_wr32(device, 0x400100, 0x00000001);
1359 		stat &= ~0x00000001;
1360 	}
1361 
1362 	if (stat & 0x00000010) {
1363 		if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1364 			nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1365 				   "subc %d class %04x mthd %04x data %08x\n",
1366 				   chid, inst << 12, name, subc,
1367 				   class, mthd, data);
1368 		}
1369 		nvkm_wr32(device, 0x400100, 0x00000010);
1370 		stat &= ~0x00000010;
1371 	}
1372 
1373 	if (stat & 0x00000020) {
1374 		nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1375 			   "subc %d class %04x mthd %04x data %08x\n",
1376 			   chid, inst << 12, name, subc, class, mthd, data);
1377 		nvkm_wr32(device, 0x400100, 0x00000020);
1378 		stat &= ~0x00000020;
1379 	}
1380 
1381 	if (stat & 0x00100000) {
1382 		const struct nvkm_enum *en =
1383 			nvkm_enum_find(nv50_data_error_names, code);
1384 		nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1385 				   "subc %d class %04x mthd %04x data %08x\n",
1386 			   code, en ? en->name : "", chid, inst << 12,
1387 			   name, subc, class, mthd, data);
1388 		nvkm_wr32(device, 0x400100, 0x00100000);
1389 		stat &= ~0x00100000;
1390 	}
1391 
1392 	if (stat & 0x00200000) {
1393 		nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1394 			   chid, inst << 12, name);
1395 		gf100_gr_trap_intr(gr);
1396 		nvkm_wr32(device, 0x400100, 0x00200000);
1397 		stat &= ~0x00200000;
1398 	}
1399 
1400 	if (stat & 0x00080000) {
1401 		gf100_gr_ctxctl_isr(gr);
1402 		nvkm_wr32(device, 0x400100, 0x00080000);
1403 		stat &= ~0x00080000;
1404 	}
1405 
1406 	if (stat) {
1407 		nvkm_error(subdev, "intr %08x\n", stat);
1408 		nvkm_wr32(device, 0x400100, stat);
1409 	}
1410 
1411 	nvkm_wr32(device, 0x400500, 0x00010001);
1412 	nvkm_fifo_chan_put(device->fifo, flags, &chan);
1413 }
1414 
1415 static void
1416 gf100_gr_init_fw(struct nvkm_falcon *falcon,
1417 		 struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1418 {
1419 	nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
1420 	nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
1421 }
1422 
1423 static void
1424 gf100_gr_init_csdata(struct gf100_gr *gr,
1425 		     const struct gf100_gr_pack *pack,
1426 		     u32 falcon, u32 starstar, u32 base)
1427 {
1428 	struct nvkm_device *device = gr->base.engine.subdev.device;
1429 	const struct gf100_gr_pack *iter;
1430 	const struct gf100_gr_init *init;
1431 	u32 addr = ~0, prev = ~0, xfer = 0;
1432 	u32 star, temp;
1433 
1434 	nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1435 	star = nvkm_rd32(device, falcon + 0x01c4);
1436 	temp = nvkm_rd32(device, falcon + 0x01c4);
1437 	if (temp > star)
1438 		star = temp;
1439 	nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1440 
1441 	pack_for_each_init(init, iter, pack) {
1442 		u32 head = init->addr - base;
1443 		u32 tail = head + init->count * init->pitch;
1444 		while (head < tail) {
1445 			if (head != prev + 4 || xfer >= 32) {
1446 				if (xfer) {
1447 					u32 data = ((--xfer << 26) | addr);
1448 					nvkm_wr32(device, falcon + 0x01c4, data);
1449 					star += 4;
1450 				}
1451 				addr = head;
1452 				xfer = 0;
1453 			}
1454 			prev = head;
1455 			xfer = xfer + 1;
1456 			head = head + init->pitch;
1457 		}
1458 	}
1459 
1460 	nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1461 	nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1462 	nvkm_wr32(device, falcon + 0x01c4, star + 4);
1463 }
1464 
1465 /* Initialize context from an external (secure or not) firmware */
1466 static int
1467 gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
1468 {
1469 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1470 	struct nvkm_device *device = subdev->device;
1471 	struct nvkm_secboot *sb = device->secboot;
1472 	u32 secboot_mask = 0;
1473 
1474 	/* load fuc microcode */
1475 	nvkm_mc_unk260(device, 0);
1476 
1477 	/* securely-managed falcons must be reset using secure boot */
1478 	if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1479 		secboot_mask |= BIT(NVKM_SECBOOT_FALCON_FECS);
1480 	else
1481 		gf100_gr_init_fw(gr->fecs, &gr->fuc409c, &gr->fuc409d);
1482 
1483 	if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1484 		secboot_mask |= BIT(NVKM_SECBOOT_FALCON_GPCCS);
1485 	else
1486 		gf100_gr_init_fw(gr->gpccs, &gr->fuc41ac, &gr->fuc41ad);
1487 
1488 	if (secboot_mask != 0) {
1489 		int ret = nvkm_secboot_reset(sb, secboot_mask);
1490 		if (ret)
1491 			return ret;
1492 	}
1493 
1494 	nvkm_mc_unk260(device, 1);
1495 
1496 	/* start both of them running */
1497 	nvkm_wr32(device, 0x409840, 0xffffffff);
1498 	nvkm_wr32(device, 0x41a10c, 0x00000000);
1499 	nvkm_wr32(device, 0x40910c, 0x00000000);
1500 
1501 	nvkm_falcon_start(gr->gpccs);
1502 	nvkm_falcon_start(gr->fecs);
1503 
1504 	if (nvkm_msec(device, 2000,
1505 		if (nvkm_rd32(device, 0x409800) & 0x00000001)
1506 			break;
1507 	) < 0)
1508 		return -EBUSY;
1509 
1510 	nvkm_wr32(device, 0x409840, 0xffffffff);
1511 	nvkm_wr32(device, 0x409500, 0x7fffffff);
1512 	nvkm_wr32(device, 0x409504, 0x00000021);
1513 
1514 	nvkm_wr32(device, 0x409840, 0xffffffff);
1515 	nvkm_wr32(device, 0x409500, 0x00000000);
1516 	nvkm_wr32(device, 0x409504, 0x00000010);
1517 	if (nvkm_msec(device, 2000,
1518 		if ((gr->size = nvkm_rd32(device, 0x409800)))
1519 			break;
1520 	) < 0)
1521 		return -EBUSY;
1522 
1523 	nvkm_wr32(device, 0x409840, 0xffffffff);
1524 	nvkm_wr32(device, 0x409500, 0x00000000);
1525 	nvkm_wr32(device, 0x409504, 0x00000016);
1526 	if (nvkm_msec(device, 2000,
1527 		if (nvkm_rd32(device, 0x409800))
1528 			break;
1529 	) < 0)
1530 		return -EBUSY;
1531 
1532 	nvkm_wr32(device, 0x409840, 0xffffffff);
1533 	nvkm_wr32(device, 0x409500, 0x00000000);
1534 	nvkm_wr32(device, 0x409504, 0x00000025);
1535 	if (nvkm_msec(device, 2000,
1536 		if (nvkm_rd32(device, 0x409800))
1537 			break;
1538 	) < 0)
1539 		return -EBUSY;
1540 
1541 	if (device->chipset >= 0xe0) {
1542 		nvkm_wr32(device, 0x409800, 0x00000000);
1543 		nvkm_wr32(device, 0x409500, 0x00000001);
1544 		nvkm_wr32(device, 0x409504, 0x00000030);
1545 		if (nvkm_msec(device, 2000,
1546 			if (nvkm_rd32(device, 0x409800))
1547 				break;
1548 		) < 0)
1549 			return -EBUSY;
1550 
1551 		nvkm_wr32(device, 0x409810, 0xb00095c8);
1552 		nvkm_wr32(device, 0x409800, 0x00000000);
1553 		nvkm_wr32(device, 0x409500, 0x00000001);
1554 		nvkm_wr32(device, 0x409504, 0x00000031);
1555 		if (nvkm_msec(device, 2000,
1556 			if (nvkm_rd32(device, 0x409800))
1557 				break;
1558 		) < 0)
1559 			return -EBUSY;
1560 
1561 		nvkm_wr32(device, 0x409810, 0x00080420);
1562 		nvkm_wr32(device, 0x409800, 0x00000000);
1563 		nvkm_wr32(device, 0x409500, 0x00000001);
1564 		nvkm_wr32(device, 0x409504, 0x00000032);
1565 		if (nvkm_msec(device, 2000,
1566 			if (nvkm_rd32(device, 0x409800))
1567 				break;
1568 		) < 0)
1569 			return -EBUSY;
1570 
1571 		nvkm_wr32(device, 0x409614, 0x00000070);
1572 		nvkm_wr32(device, 0x409614, 0x00000770);
1573 		nvkm_wr32(device, 0x40802c, 0x00000001);
1574 	}
1575 
1576 	if (gr->data == NULL) {
1577 		int ret = gf100_grctx_generate(gr);
1578 		if (ret) {
1579 			nvkm_error(subdev, "failed to construct context\n");
1580 			return ret;
1581 		}
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 static int
1588 gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
1589 {
1590 	const struct gf100_grctx_func *grctx = gr->func->grctx;
1591 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1592 	struct nvkm_device *device = subdev->device;
1593 
1594 	if (!gr->func->fecs.ucode) {
1595 		return -ENOSYS;
1596 	}
1597 
1598 	/* load HUB microcode */
1599 	nvkm_mc_unk260(device, 0);
1600 	nvkm_falcon_load_dmem(gr->fecs, gr->func->fecs.ucode->data.data, 0x0,
1601 			      gr->func->fecs.ucode->data.size, 0);
1602 	nvkm_falcon_load_imem(gr->fecs, gr->func->fecs.ucode->code.data, 0x0,
1603 			      gr->func->fecs.ucode->code.size, 0, 0, false);
1604 
1605 	/* load GPC microcode */
1606 	nvkm_falcon_load_dmem(gr->gpccs, gr->func->gpccs.ucode->data.data, 0x0,
1607 			      gr->func->gpccs.ucode->data.size, 0);
1608 	nvkm_falcon_load_imem(gr->gpccs, gr->func->gpccs.ucode->code.data, 0x0,
1609 			      gr->func->gpccs.ucode->code.size, 0, 0, false);
1610 	nvkm_mc_unk260(device, 1);
1611 
1612 	/* load register lists */
1613 	gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1614 	gf100_gr_init_csdata(gr, grctx->gpc, 0x41a000, 0x000, 0x418000);
1615 	gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1616 	gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1617 
1618 	/* start HUB ucode running, it'll init the GPCs */
1619 	nvkm_wr32(device, 0x40910c, 0x00000000);
1620 	nvkm_wr32(device, 0x409100, 0x00000002);
1621 	if (nvkm_msec(device, 2000,
1622 		if (nvkm_rd32(device, 0x409800) & 0x80000000)
1623 			break;
1624 	) < 0) {
1625 		gf100_gr_ctxctl_debug(gr);
1626 		return -EBUSY;
1627 	}
1628 
1629 	gr->size = nvkm_rd32(device, 0x409804);
1630 	if (gr->data == NULL) {
1631 		int ret = gf100_grctx_generate(gr);
1632 		if (ret) {
1633 			nvkm_error(subdev, "failed to construct context\n");
1634 			return ret;
1635 		}
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 int
1642 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1643 {
1644 	int ret;
1645 
1646 	if (gr->firmware)
1647 		ret = gf100_gr_init_ctxctl_ext(gr);
1648 	else
1649 		ret = gf100_gr_init_ctxctl_int(gr);
1650 
1651 	return ret;
1652 }
1653 
1654 static int
1655 gf100_gr_oneinit(struct nvkm_gr *base)
1656 {
1657 	struct gf100_gr *gr = gf100_gr(base);
1658 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1659 	struct nvkm_device *device = subdev->device;
1660 	int i, j;
1661 	int ret;
1662 
1663 	ret = nvkm_falcon_v1_new(subdev, "FECS", 0x409000, &gr->fecs);
1664 	if (ret)
1665 		return ret;
1666 
1667 	ret = nvkm_falcon_v1_new(subdev, "GPCCS", 0x41a000, &gr->gpccs);
1668 	if (ret)
1669 		return ret;
1670 
1671 	nvkm_pmu_pgob(device->pmu, false);
1672 
1673 	gr->rop_nr = gr->func->rops(gr);
1674 	gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1675 	for (i = 0; i < gr->gpc_nr; i++) {
1676 		gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1677 		gr->tpc_total += gr->tpc_nr[i];
1678 		gr->ppc_nr[i]  = gr->func->ppc_nr;
1679 		for (j = 0; j < gr->ppc_nr[i]; j++) {
1680 			u8 mask = nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1681 			if (mask)
1682 				gr->ppc_mask[i] |= (1 << j);
1683 			gr->ppc_tpc_nr[i][j] = hweight8(mask);
1684 		}
1685 	}
1686 
1687 	/*XXX: these need figuring out... though it might not even matter */
1688 	switch (device->chipset) {
1689 	case 0xc0:
1690 		if (gr->tpc_total == 11) { /* 465, 3/4/4/0, 4 */
1691 			gr->screen_tile_row_offset = 0x07;
1692 		} else
1693 		if (gr->tpc_total == 14) { /* 470, 3/3/4/4, 5 */
1694 			gr->screen_tile_row_offset = 0x05;
1695 		} else
1696 		if (gr->tpc_total == 15) { /* 480, 3/4/4/4, 6 */
1697 			gr->screen_tile_row_offset = 0x06;
1698 		}
1699 		break;
1700 	case 0xc3: /* 450, 4/0/0/0, 2 */
1701 		gr->screen_tile_row_offset = 0x03;
1702 		break;
1703 	case 0xc4: /* 460, 3/4/0/0, 4 */
1704 		gr->screen_tile_row_offset = 0x01;
1705 		break;
1706 	case 0xc1: /* 2/0/0/0, 1 */
1707 		gr->screen_tile_row_offset = 0x01;
1708 		break;
1709 	case 0xc8: /* 4/4/3/4, 5 */
1710 		gr->screen_tile_row_offset = 0x06;
1711 		break;
1712 	case 0xce: /* 4/4/0/0, 4 */
1713 		gr->screen_tile_row_offset = 0x03;
1714 		break;
1715 	case 0xcf: /* 4/0/0/0, 3 */
1716 		gr->screen_tile_row_offset = 0x03;
1717 		break;
1718 	case 0xd7:
1719 	case 0xd9: /* 1/0/0/0, 1 */
1720 	case 0xea: /* gk20a */
1721 	case 0x12b: /* gm20b */
1722 		gr->screen_tile_row_offset = 0x01;
1723 		break;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 static int
1730 gf100_gr_init_(struct nvkm_gr *base)
1731 {
1732 	struct gf100_gr *gr = gf100_gr(base);
1733 	struct nvkm_subdev *subdev = &base->engine.subdev;
1734 	u32 ret;
1735 
1736 	nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1737 
1738 	ret = nvkm_falcon_get(gr->fecs, subdev);
1739 	if (ret)
1740 		return ret;
1741 
1742 	ret = nvkm_falcon_get(gr->gpccs, subdev);
1743 	if (ret)
1744 		return ret;
1745 
1746 	return gr->func->init(gr);
1747 }
1748 
1749 static int
1750 gf100_gr_fini_(struct nvkm_gr *base, bool suspend)
1751 {
1752 	struct gf100_gr *gr = gf100_gr(base);
1753 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1754 	nvkm_falcon_put(gr->gpccs, subdev);
1755 	nvkm_falcon_put(gr->fecs, subdev);
1756 	return 0;
1757 }
1758 
1759 void
1760 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
1761 {
1762 	kfree(fuc->data);
1763 	fuc->data = NULL;
1764 }
1765 
1766 static void
1767 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
1768 {
1769 	vfree(pack);
1770 }
1771 
1772 void *
1773 gf100_gr_dtor(struct nvkm_gr *base)
1774 {
1775 	struct gf100_gr *gr = gf100_gr(base);
1776 
1777 	if (gr->func->dtor)
1778 		gr->func->dtor(gr);
1779 	kfree(gr->data);
1780 
1781 	nvkm_falcon_del(&gr->gpccs);
1782 	nvkm_falcon_del(&gr->fecs);
1783 
1784 	gf100_gr_dtor_fw(&gr->fuc409c);
1785 	gf100_gr_dtor_fw(&gr->fuc409d);
1786 	gf100_gr_dtor_fw(&gr->fuc41ac);
1787 	gf100_gr_dtor_fw(&gr->fuc41ad);
1788 
1789 	gf100_gr_dtor_init(gr->fuc_bundle);
1790 	gf100_gr_dtor_init(gr->fuc_method);
1791 	gf100_gr_dtor_init(gr->fuc_sw_ctx);
1792 	gf100_gr_dtor_init(gr->fuc_sw_nonctx);
1793 
1794 	return gr;
1795 }
1796 
1797 static const struct nvkm_gr_func
1798 gf100_gr_ = {
1799 	.dtor = gf100_gr_dtor,
1800 	.oneinit = gf100_gr_oneinit,
1801 	.init = gf100_gr_init_,
1802 	.fini = gf100_gr_fini_,
1803 	.intr = gf100_gr_intr,
1804 	.units = gf100_gr_units,
1805 	.chan_new = gf100_gr_chan_new,
1806 	.object_get = gf100_gr_object_get,
1807 	.chsw_load = gf100_gr_chsw_load,
1808 };
1809 
1810 int
1811 gf100_gr_ctor_fw_legacy(struct gf100_gr *gr, const char *fwname,
1812 			struct gf100_gr_fuc *fuc, int ret)
1813 {
1814 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1815 	struct nvkm_device *device = subdev->device;
1816 	const struct firmware *fw;
1817 	char f[32];
1818 
1819 	/* see if this firmware has a legacy path */
1820 	if (!strcmp(fwname, "fecs_inst"))
1821 		fwname = "fuc409c";
1822 	else if (!strcmp(fwname, "fecs_data"))
1823 		fwname = "fuc409d";
1824 	else if (!strcmp(fwname, "gpccs_inst"))
1825 		fwname = "fuc41ac";
1826 	else if (!strcmp(fwname, "gpccs_data"))
1827 		fwname = "fuc41ad";
1828 	else {
1829 		/* nope, let's just return the error we got */
1830 		nvkm_error(subdev, "failed to load %s\n", fwname);
1831 		return ret;
1832 	}
1833 
1834 	/* yes, try to load from the legacy path */
1835 	nvkm_debug(subdev, "%s: falling back to legacy path\n", fwname);
1836 
1837 	snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname);
1838 	ret = request_firmware(&fw, f, device->dev);
1839 	if (ret) {
1840 		snprintf(f, sizeof(f), "nouveau/%s", fwname);
1841 		ret = request_firmware(&fw, f, device->dev);
1842 		if (ret) {
1843 			nvkm_error(subdev, "failed to load %s\n", fwname);
1844 			return ret;
1845 		}
1846 	}
1847 
1848 	fuc->size = fw->size;
1849 	fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1850 	release_firmware(fw);
1851 	return (fuc->data != NULL) ? 0 : -ENOMEM;
1852 }
1853 
1854 int
1855 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
1856 		 struct gf100_gr_fuc *fuc)
1857 {
1858 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1859 	struct nvkm_device *device = subdev->device;
1860 	const struct firmware *fw;
1861 	int ret;
1862 
1863 	ret = nvkm_firmware_get(device, fwname, &fw);
1864 	if (ret) {
1865 		ret = gf100_gr_ctor_fw_legacy(gr, fwname, fuc, ret);
1866 		if (ret)
1867 			return -ENODEV;
1868 		return 0;
1869 	}
1870 
1871 	fuc->size = fw->size;
1872 	fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1873 	nvkm_firmware_put(fw);
1874 	return (fuc->data != NULL) ? 0 : -ENOMEM;
1875 }
1876 
1877 int
1878 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
1879 	      int index, struct gf100_gr *gr)
1880 {
1881 	gr->func = func;
1882 	gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
1883 				    func->fecs.ucode == NULL);
1884 
1885 	return nvkm_gr_ctor(&gf100_gr_, device, index,
1886 			    gr->firmware || func->fecs.ucode != NULL,
1887 			    &gr->base);
1888 }
1889 
1890 int
1891 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
1892 	      int index, struct nvkm_gr **pgr)
1893 {
1894 	struct gf100_gr *gr;
1895 	int ret;
1896 
1897 	if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
1898 		return -ENOMEM;
1899 	*pgr = &gr->base;
1900 
1901 	ret = gf100_gr_ctor(func, device, index, gr);
1902 	if (ret)
1903 		return ret;
1904 
1905 	if (gr->firmware) {
1906 		if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
1907 		    gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
1908 		    gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
1909 		    gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
1910 			return -ENODEV;
1911 	}
1912 
1913 	return 0;
1914 }
1915 
1916 void
1917 gf100_gr_init_gpc_mmu(struct gf100_gr *gr)
1918 {
1919 	struct nvkm_device *device = gr->base.engine.subdev.device;
1920 	struct nvkm_fb *fb = device->fb;
1921 
1922 	nvkm_wr32(device, 0x418880, nvkm_rd32(device, 0x100c80) & 0x00000001);
1923 	nvkm_wr32(device, 0x4188a4, 0x00000000);
1924 	nvkm_wr32(device, 0x418888, 0x00000000);
1925 	nvkm_wr32(device, 0x41888c, 0x00000000);
1926 	nvkm_wr32(device, 0x418890, 0x00000000);
1927 	nvkm_wr32(device, 0x418894, 0x00000000);
1928 	nvkm_wr32(device, 0x4188b4, nvkm_memory_addr(fb->mmu_wr) >> 8);
1929 	nvkm_wr32(device, 0x4188b8, nvkm_memory_addr(fb->mmu_rd) >> 8);
1930 }
1931 
1932 int
1933 gf100_gr_init(struct gf100_gr *gr)
1934 {
1935 	struct nvkm_device *device = gr->base.engine.subdev.device;
1936 	const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
1937 	u32 data[TPC_MAX / 8] = {};
1938 	u8  tpcnr[GPC_MAX];
1939 	int gpc, tpc, rop;
1940 	int i;
1941 
1942 	gr->func->init_gpc_mmu(gr);
1943 
1944 	gf100_gr_mmio(gr, gr->func->mmio);
1945 
1946 	nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
1947 
1948 	memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr));
1949 	for (i = 0, gpc = -1; i < gr->tpc_total; i++) {
1950 		do {
1951 			gpc = (gpc + 1) % gr->gpc_nr;
1952 		} while (!tpcnr[gpc]);
1953 		tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--;
1954 
1955 		data[i / 8] |= tpc << ((i % 8) * 4);
1956 	}
1957 
1958 	nvkm_wr32(device, GPC_BCAST(0x0980), data[0]);
1959 	nvkm_wr32(device, GPC_BCAST(0x0984), data[1]);
1960 	nvkm_wr32(device, GPC_BCAST(0x0988), data[2]);
1961 	nvkm_wr32(device, GPC_BCAST(0x098c), data[3]);
1962 
1963 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1964 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
1965 			  gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
1966 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
1967 							 gr->tpc_total);
1968 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
1969 	}
1970 
1971 	if (device->chipset != 0xd7)
1972 		nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
1973 	else
1974 		nvkm_wr32(device, GPC_BCAST(0x3fd4), magicgpc918);
1975 
1976 	nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
1977 
1978 	nvkm_wr32(device, 0x400500, 0x00010001);
1979 
1980 	nvkm_wr32(device, 0x400100, 0xffffffff);
1981 	nvkm_wr32(device, 0x40013c, 0xffffffff);
1982 
1983 	nvkm_wr32(device, 0x409c24, 0x000f0000);
1984 	nvkm_wr32(device, 0x404000, 0xc0000000);
1985 	nvkm_wr32(device, 0x404600, 0xc0000000);
1986 	nvkm_wr32(device, 0x408030, 0xc0000000);
1987 	nvkm_wr32(device, 0x40601c, 0xc0000000);
1988 	nvkm_wr32(device, 0x404490, 0xc0000000);
1989 	nvkm_wr32(device, 0x406018, 0xc0000000);
1990 	nvkm_wr32(device, 0x405840, 0xc0000000);
1991 	nvkm_wr32(device, 0x405844, 0x00ffffff);
1992 	nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
1993 	nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
1994 
1995 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1996 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1997 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1998 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1999 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
2000 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
2001 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
2002 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
2003 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
2004 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
2005 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
2006 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
2007 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
2008 		}
2009 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
2010 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
2011 	}
2012 
2013 	for (rop = 0; rop < gr->rop_nr; rop++) {
2014 		nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
2015 		nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
2016 		nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
2017 		nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
2018 	}
2019 
2020 	nvkm_wr32(device, 0x400108, 0xffffffff);
2021 	nvkm_wr32(device, 0x400138, 0xffffffff);
2022 	nvkm_wr32(device, 0x400118, 0xffffffff);
2023 	nvkm_wr32(device, 0x400130, 0xffffffff);
2024 	nvkm_wr32(device, 0x40011c, 0xffffffff);
2025 	nvkm_wr32(device, 0x400134, 0xffffffff);
2026 
2027 	nvkm_wr32(device, 0x400054, 0x34ce3464);
2028 
2029 	gf100_gr_zbc_init(gr);
2030 
2031 	return gf100_gr_init_ctxctl(gr);
2032 }
2033 
2034 #include "fuc/hubgf100.fuc3.h"
2035 
2036 struct gf100_gr_ucode
2037 gf100_gr_fecs_ucode = {
2038 	.code.data = gf100_grhub_code,
2039 	.code.size = sizeof(gf100_grhub_code),
2040 	.data.data = gf100_grhub_data,
2041 	.data.size = sizeof(gf100_grhub_data),
2042 };
2043 
2044 #include "fuc/gpcgf100.fuc3.h"
2045 
2046 struct gf100_gr_ucode
2047 gf100_gr_gpccs_ucode = {
2048 	.code.data = gf100_grgpc_code,
2049 	.code.size = sizeof(gf100_grgpc_code),
2050 	.data.data = gf100_grgpc_data,
2051 	.data.size = sizeof(gf100_grgpc_data),
2052 };
2053 
2054 static const struct gf100_gr_func
2055 gf100_gr = {
2056 	.init = gf100_gr_init,
2057 	.init_gpc_mmu = gf100_gr_init_gpc_mmu,
2058 	.mmio = gf100_gr_pack_mmio,
2059 	.fecs.ucode = &gf100_gr_fecs_ucode,
2060 	.gpccs.ucode = &gf100_gr_gpccs_ucode,
2061 	.rops = gf100_gr_rops,
2062 	.grctx = &gf100_grctx,
2063 	.sclass = {
2064 		{ -1, -1, FERMI_TWOD_A },
2065 		{ -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2066 		{ -1, -1, FERMI_A, &gf100_fermi },
2067 		{ -1, -1, FERMI_COMPUTE_A },
2068 		{}
2069 	}
2070 };
2071 
2072 int
2073 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
2074 {
2075 	return gf100_gr_new_(&gf100_gr, device, index, pgr);
2076 }
2077