xref: /linux/drivers/gpu/drm/nouveau/nvkm/engine/gr/gf100.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27 
28 #include <core/client.h>
29 #include <core/firmware.h>
30 #include <core/option.h>
31 #include <subdev/acr.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/therm.h>
36 #include <subdev/timer.h>
37 #include <engine/fifo.h>
38 
39 #include <nvif/class.h>
40 #include <nvif/cl9097.h>
41 #include <nvif/if900d.h>
42 #include <nvif/unpack.h>
43 
44 /*******************************************************************************
45  * Zero Bandwidth Clear
46  ******************************************************************************/
47 
48 static void
49 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
50 {
51 	struct nvkm_device *device = gr->base.engine.subdev.device;
52 	if (gr->zbc_color[zbc].format) {
53 		nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
54 		nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
55 		nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
56 		nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
57 	}
58 	nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
59 	nvkm_wr32(device, 0x405820, zbc);
60 	nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
61 }
62 
63 static int
64 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
65 		       const u32 ds[4], const u32 l2[4])
66 {
67 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
68 	int zbc = -ENOSPC, i;
69 
70 	for (i = ltc->zbc_color_min; i <= ltc->zbc_color_max; i++) {
71 		if (gr->zbc_color[i].format) {
72 			if (gr->zbc_color[i].format != format)
73 				continue;
74 			if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
75 				   gr->zbc_color[i].ds)))
76 				continue;
77 			if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
78 				   gr->zbc_color[i].l2))) {
79 				WARN_ON(1);
80 				return -EINVAL;
81 			}
82 			return i;
83 		} else {
84 			zbc = (zbc < 0) ? i : zbc;
85 		}
86 	}
87 
88 	if (zbc < 0)
89 		return zbc;
90 
91 	memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
92 	memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
93 	gr->zbc_color[zbc].format = format;
94 	nvkm_ltc_zbc_color_get(ltc, zbc, l2);
95 	gr->func->zbc->clear_color(gr, zbc);
96 	return zbc;
97 }
98 
99 static void
100 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
101 {
102 	struct nvkm_device *device = gr->base.engine.subdev.device;
103 	if (gr->zbc_depth[zbc].format)
104 		nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
105 	nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
106 	nvkm_wr32(device, 0x405820, zbc);
107 	nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
108 }
109 
110 static int
111 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
112 		       const u32 ds, const u32 l2)
113 {
114 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
115 	int zbc = -ENOSPC, i;
116 
117 	for (i = ltc->zbc_depth_min; i <= ltc->zbc_depth_max; i++) {
118 		if (gr->zbc_depth[i].format) {
119 			if (gr->zbc_depth[i].format != format)
120 				continue;
121 			if (gr->zbc_depth[i].ds != ds)
122 				continue;
123 			if (gr->zbc_depth[i].l2 != l2) {
124 				WARN_ON(1);
125 				return -EINVAL;
126 			}
127 			return i;
128 		} else {
129 			zbc = (zbc < 0) ? i : zbc;
130 		}
131 	}
132 
133 	if (zbc < 0)
134 		return zbc;
135 
136 	gr->zbc_depth[zbc].format = format;
137 	gr->zbc_depth[zbc].ds = ds;
138 	gr->zbc_depth[zbc].l2 = l2;
139 	nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
140 	gr->func->zbc->clear_depth(gr, zbc);
141 	return zbc;
142 }
143 
144 const struct gf100_gr_func_zbc
145 gf100_gr_zbc = {
146 	.clear_color = gf100_gr_zbc_clear_color,
147 	.clear_depth = gf100_gr_zbc_clear_depth,
148 };
149 
150 /*******************************************************************************
151  * Graphics object classes
152  ******************************************************************************/
153 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
154 
155 struct gf100_gr_object {
156 	struct nvkm_object object;
157 	struct gf100_gr_chan *chan;
158 };
159 
160 static int
161 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
162 {
163 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
164 	union {
165 		struct fermi_a_zbc_color_v0 v0;
166 	} *args = data;
167 	int ret = -ENOSYS;
168 
169 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
170 		switch (args->v0.format) {
171 		case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
172 		case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
173 		case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
174 		case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
175 		case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
176 		case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
177 		case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
178 		case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
179 		case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
180 		case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
181 		case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
182 		case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
183 		case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
184 		case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
185 		case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
186 		case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
187 		case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
188 		case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
189 		case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
190 			ret = gf100_gr_zbc_color_get(gr, args->v0.format,
191 							   args->v0.ds,
192 							   args->v0.l2);
193 			if (ret >= 0) {
194 				args->v0.index = ret;
195 				return 0;
196 			}
197 			break;
198 		default:
199 			return -EINVAL;
200 		}
201 	}
202 
203 	return ret;
204 }
205 
206 static int
207 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
208 {
209 	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
210 	union {
211 		struct fermi_a_zbc_depth_v0 v0;
212 	} *args = data;
213 	int ret = -ENOSYS;
214 
215 	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
216 		switch (args->v0.format) {
217 		case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
218 			ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
219 							   args->v0.ds,
220 							   args->v0.l2);
221 			return (ret >= 0) ? 0 : -ENOSPC;
222 		default:
223 			return -EINVAL;
224 		}
225 	}
226 
227 	return ret;
228 }
229 
230 static int
231 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
232 {
233 	nvif_ioctl(object, "fermi mthd %08x\n", mthd);
234 	switch (mthd) {
235 	case FERMI_A_ZBC_COLOR:
236 		return gf100_fermi_mthd_zbc_color(object, data, size);
237 	case FERMI_A_ZBC_DEPTH:
238 		return gf100_fermi_mthd_zbc_depth(object, data, size);
239 	default:
240 		break;
241 	}
242 	return -EINVAL;
243 }
244 
245 const struct nvkm_object_func
246 gf100_fermi = {
247 	.mthd = gf100_fermi_mthd,
248 };
249 
250 static void
251 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
252 {
253 	nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
254 	nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
255 }
256 
257 static bool
258 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
259 {
260 	switch (class & 0x00ff) {
261 	case 0x97:
262 	case 0xc0:
263 		switch (mthd) {
264 		case 0x1528:
265 			gf100_gr_mthd_set_shader_exceptions(device, data);
266 			return true;
267 		default:
268 			break;
269 		}
270 		break;
271 	default:
272 		break;
273 	}
274 	return false;
275 }
276 
277 static const struct nvkm_object_func
278 gf100_gr_object_func = {
279 };
280 
281 static int
282 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
283 		    struct nvkm_object **pobject)
284 {
285 	struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
286 	struct gf100_gr_object *object;
287 
288 	if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
289 		return -ENOMEM;
290 	*pobject = &object->object;
291 
292 	nvkm_object_ctor(oclass->base.func ? oclass->base.func :
293 			 &gf100_gr_object_func, oclass, &object->object);
294 	object->chan = chan;
295 	return 0;
296 }
297 
298 static int
299 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
300 {
301 	struct gf100_gr *gr = gf100_gr(base);
302 	int c = 0;
303 
304 	while (gr->func->sclass[c].oclass) {
305 		if (c++ == index) {
306 			*sclass = gr->func->sclass[index];
307 			sclass->ctor = gf100_gr_object_new;
308 			return index;
309 		}
310 	}
311 
312 	return c;
313 }
314 
315 /*******************************************************************************
316  * PGRAPH context
317  ******************************************************************************/
318 
319 static int
320 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
321 		   int align, struct nvkm_gpuobj **pgpuobj)
322 {
323 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
324 	struct gf100_gr *gr = chan->gr;
325 	int ret, i;
326 
327 	ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
328 			      align, false, parent, pgpuobj);
329 	if (ret)
330 		return ret;
331 
332 	nvkm_kmap(*pgpuobj);
333 	for (i = 0; i < gr->size; i += 4)
334 		nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
335 
336 	if (!gr->firmware) {
337 		nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
338 		nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma->addr >> 8);
339 	} else {
340 		nvkm_wo32(*pgpuobj, 0xf4, 0);
341 		nvkm_wo32(*pgpuobj, 0xf8, 0);
342 		nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
343 		nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma->addr));
344 		nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma->addr));
345 		nvkm_wo32(*pgpuobj, 0x1c, 1);
346 		nvkm_wo32(*pgpuobj, 0x20, 0);
347 		nvkm_wo32(*pgpuobj, 0x28, 0);
348 		nvkm_wo32(*pgpuobj, 0x2c, 0);
349 	}
350 	nvkm_done(*pgpuobj);
351 	return 0;
352 }
353 
354 static void *
355 gf100_gr_chan_dtor(struct nvkm_object *object)
356 {
357 	struct gf100_gr_chan *chan = gf100_gr_chan(object);
358 
359 	nvkm_vmm_put(chan->vmm, &chan->mmio_vma);
360 	nvkm_memory_unref(&chan->mmio);
361 
362 	nvkm_vmm_put(chan->vmm, &chan->attrib_cb);
363 	nvkm_vmm_put(chan->vmm, &chan->unknown);
364 	nvkm_vmm_put(chan->vmm, &chan->bundle_cb);
365 	nvkm_vmm_put(chan->vmm, &chan->pagepool);
366 	nvkm_vmm_unref(&chan->vmm);
367 	return chan;
368 }
369 
370 static const struct nvkm_object_func
371 gf100_gr_chan = {
372 	.dtor = gf100_gr_chan_dtor,
373 	.bind = gf100_gr_chan_bind,
374 };
375 
376 static int
377 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_chan *fifoch,
378 		  const struct nvkm_oclass *oclass,
379 		  struct nvkm_object **pobject)
380 {
381 	struct gf100_gr *gr = gf100_gr(base);
382 	struct gf100_gr_chan *chan;
383 	struct gf100_vmm_map_v0 args = { .priv = 1 };
384 	struct nvkm_device *device = gr->base.engine.subdev.device;
385 	int ret;
386 
387 	if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
388 		return -ENOMEM;
389 	nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
390 	chan->gr = gr;
391 	chan->vmm = nvkm_vmm_ref(fifoch->vmm);
392 	*pobject = &chan->object;
393 
394 	/* Map pagepool. */
395 	ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->pagepool), &chan->pagepool);
396 	if (ret)
397 		return ret;
398 
399 	ret = nvkm_memory_map(gr->pagepool, 0, chan->vmm, chan->pagepool, &args, sizeof(args));
400 	if (ret)
401 		return ret;
402 
403 	/* Map bundle circular buffer. */
404 	ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->bundle_cb), &chan->bundle_cb);
405 	if (ret)
406 		return ret;
407 
408 	ret = nvkm_memory_map(gr->bundle_cb, 0, chan->vmm, chan->bundle_cb, &args, sizeof(args));
409 	if (ret)
410 		return ret;
411 
412 	/* Map attribute circular buffer. */
413 	ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->attrib_cb), &chan->attrib_cb);
414 	if (ret)
415 		return ret;
416 
417 	if (device->card_type < GP100) {
418 		ret = nvkm_memory_map(gr->attrib_cb, 0, chan->vmm, chan->attrib_cb, NULL, 0);
419 		if (ret)
420 			return ret;
421 	} else {
422 		ret = nvkm_memory_map(gr->attrib_cb, 0, chan->vmm, chan->attrib_cb,
423 				      &args, sizeof(args));
424 		if (ret)
425 			return ret;
426 	}
427 
428 	/* Map some context buffer of unknown purpose. */
429 	if (gr->func->grctx->unknown_size) {
430 		ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->unknown), &chan->unknown);
431 		if (ret)
432 			return ret;
433 
434 		ret = nvkm_memory_map(gr->unknown, 0, chan->vmm, chan->unknown,
435 				      &args, sizeof(args));
436 		if (ret)
437 			return ret;
438 	}
439 
440 	/* Generate golden context image. */
441 	mutex_lock(&gr->fecs.mutex);
442 	if (gr->data == NULL) {
443 		ret = gf100_grctx_generate(gr, chan, fifoch->inst);
444 		if (ret) {
445 			nvkm_error(&base->engine.subdev, "failed to construct context\n");
446 			mutex_unlock(&gr->fecs.mutex);
447 			return ret;
448 		}
449 	}
450 	mutex_unlock(&gr->fecs.mutex);
451 
452 	/* allocate memory for a "mmio list" buffer that's used by the HUB
453 	 * fuc to modify some per-context register settings on first load
454 	 * of the context.
455 	 */
456 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
457 			      false, &chan->mmio);
458 	if (ret)
459 		return ret;
460 
461 	ret = nvkm_vmm_get(fifoch->vmm, 12, 0x1000, &chan->mmio_vma);
462 	if (ret)
463 		return ret;
464 
465 	ret = nvkm_memory_map(chan->mmio, 0, fifoch->vmm,
466 			      chan->mmio_vma, &args, sizeof(args));
467 	if (ret)
468 		return ret;
469 
470 	/* finally, fill in the mmio list and point the context at it */
471 	nvkm_kmap(chan->mmio);
472 	gr->func->grctx->pagepool(chan, chan->pagepool->addr);
473 	gr->func->grctx->bundle(chan, chan->bundle_cb->addr, gr->func->grctx->bundle_size);
474 	gr->func->grctx->attrib_cb(chan, chan->attrib_cb->addr, gr->func->grctx->attrib_cb_size(gr));
475 	gr->func->grctx->attrib(chan);
476 	if (gr->func->grctx->patch_ltc)
477 		gr->func->grctx->patch_ltc(chan);
478 	if (gr->func->grctx->unknown_size)
479 		gr->func->grctx->unknown(chan, chan->unknown->addr, gr->func->grctx->unknown_size);
480 	nvkm_done(chan->mmio);
481 	return 0;
482 }
483 
484 /*******************************************************************************
485  * PGRAPH register lists
486  ******************************************************************************/
487 
488 const struct gf100_gr_init
489 gf100_gr_init_main_0[] = {
490 	{ 0x400080,   1, 0x04, 0x003083c2 },
491 	{ 0x400088,   1, 0x04, 0x00006fe7 },
492 	{ 0x40008c,   1, 0x04, 0x00000000 },
493 	{ 0x400090,   1, 0x04, 0x00000030 },
494 	{ 0x40013c,   1, 0x04, 0x013901f7 },
495 	{ 0x400140,   1, 0x04, 0x00000100 },
496 	{ 0x400144,   1, 0x04, 0x00000000 },
497 	{ 0x400148,   1, 0x04, 0x00000110 },
498 	{ 0x400138,   1, 0x04, 0x00000000 },
499 	{ 0x400130,   2, 0x04, 0x00000000 },
500 	{ 0x400124,   1, 0x04, 0x00000002 },
501 	{}
502 };
503 
504 const struct gf100_gr_init
505 gf100_gr_init_fe_0[] = {
506 	{ 0x40415c,   1, 0x04, 0x00000000 },
507 	{ 0x404170,   1, 0x04, 0x00000000 },
508 	{}
509 };
510 
511 const struct gf100_gr_init
512 gf100_gr_init_pri_0[] = {
513 	{ 0x404488,   2, 0x04, 0x00000000 },
514 	{}
515 };
516 
517 const struct gf100_gr_init
518 gf100_gr_init_rstr2d_0[] = {
519 	{ 0x407808,   1, 0x04, 0x00000000 },
520 	{}
521 };
522 
523 const struct gf100_gr_init
524 gf100_gr_init_pd_0[] = {
525 	{ 0x406024,   1, 0x04, 0x00000000 },
526 	{}
527 };
528 
529 const struct gf100_gr_init
530 gf100_gr_init_ds_0[] = {
531 	{ 0x405844,   1, 0x04, 0x00ffffff },
532 	{ 0x405850,   1, 0x04, 0x00000000 },
533 	{ 0x405908,   1, 0x04, 0x00000000 },
534 	{}
535 };
536 
537 const struct gf100_gr_init
538 gf100_gr_init_scc_0[] = {
539 	{ 0x40803c,   1, 0x04, 0x00000000 },
540 	{}
541 };
542 
543 const struct gf100_gr_init
544 gf100_gr_init_prop_0[] = {
545 	{ 0x4184a0,   1, 0x04, 0x00000000 },
546 	{}
547 };
548 
549 const struct gf100_gr_init
550 gf100_gr_init_gpc_unk_0[] = {
551 	{ 0x418604,   1, 0x04, 0x00000000 },
552 	{ 0x418680,   1, 0x04, 0x00000000 },
553 	{ 0x418714,   1, 0x04, 0x80000000 },
554 	{ 0x418384,   1, 0x04, 0x00000000 },
555 	{}
556 };
557 
558 const struct gf100_gr_init
559 gf100_gr_init_setup_0[] = {
560 	{ 0x418814,   3, 0x04, 0x00000000 },
561 	{}
562 };
563 
564 const struct gf100_gr_init
565 gf100_gr_init_crstr_0[] = {
566 	{ 0x418b04,   1, 0x04, 0x00000000 },
567 	{}
568 };
569 
570 const struct gf100_gr_init
571 gf100_gr_init_setup_1[] = {
572 	{ 0x4188c8,   1, 0x04, 0x80000000 },
573 	{ 0x4188cc,   1, 0x04, 0x00000000 },
574 	{ 0x4188d0,   1, 0x04, 0x00010000 },
575 	{ 0x4188d4,   1, 0x04, 0x00000001 },
576 	{}
577 };
578 
579 const struct gf100_gr_init
580 gf100_gr_init_zcull_0[] = {
581 	{ 0x418910,   1, 0x04, 0x00010001 },
582 	{ 0x418914,   1, 0x04, 0x00000301 },
583 	{ 0x418918,   1, 0x04, 0x00800000 },
584 	{ 0x418980,   1, 0x04, 0x77777770 },
585 	{ 0x418984,   3, 0x04, 0x77777777 },
586 	{}
587 };
588 
589 const struct gf100_gr_init
590 gf100_gr_init_gpm_0[] = {
591 	{ 0x418c04,   1, 0x04, 0x00000000 },
592 	{ 0x418c88,   1, 0x04, 0x00000000 },
593 	{}
594 };
595 
596 const struct gf100_gr_init
597 gf100_gr_init_gpc_unk_1[] = {
598 	{ 0x418d00,   1, 0x04, 0x00000000 },
599 	{ 0x418f08,   1, 0x04, 0x00000000 },
600 	{ 0x418e00,   1, 0x04, 0x00000050 },
601 	{ 0x418e08,   1, 0x04, 0x00000000 },
602 	{}
603 };
604 
605 const struct gf100_gr_init
606 gf100_gr_init_gcc_0[] = {
607 	{ 0x41900c,   1, 0x04, 0x00000000 },
608 	{ 0x419018,   1, 0x04, 0x00000000 },
609 	{}
610 };
611 
612 const struct gf100_gr_init
613 gf100_gr_init_tpccs_0[] = {
614 	{ 0x419d08,   2, 0x04, 0x00000000 },
615 	{ 0x419d10,   1, 0x04, 0x00000014 },
616 	{}
617 };
618 
619 const struct gf100_gr_init
620 gf100_gr_init_tex_0[] = {
621 	{ 0x419ab0,   1, 0x04, 0x00000000 },
622 	{ 0x419ab8,   1, 0x04, 0x000000e7 },
623 	{ 0x419abc,   2, 0x04, 0x00000000 },
624 	{}
625 };
626 
627 const struct gf100_gr_init
628 gf100_gr_init_pe_0[] = {
629 	{ 0x41980c,   3, 0x04, 0x00000000 },
630 	{ 0x419844,   1, 0x04, 0x00000000 },
631 	{ 0x41984c,   1, 0x04, 0x00005bc5 },
632 	{ 0x419850,   4, 0x04, 0x00000000 },
633 	{}
634 };
635 
636 const struct gf100_gr_init
637 gf100_gr_init_l1c_0[] = {
638 	{ 0x419c98,   1, 0x04, 0x00000000 },
639 	{ 0x419ca8,   1, 0x04, 0x80000000 },
640 	{ 0x419cb4,   1, 0x04, 0x00000000 },
641 	{ 0x419cb8,   1, 0x04, 0x00008bf4 },
642 	{ 0x419cbc,   1, 0x04, 0x28137606 },
643 	{ 0x419cc0,   2, 0x04, 0x00000000 },
644 	{}
645 };
646 
647 const struct gf100_gr_init
648 gf100_gr_init_wwdx_0[] = {
649 	{ 0x419bd4,   1, 0x04, 0x00800000 },
650 	{ 0x419bdc,   1, 0x04, 0x00000000 },
651 	{}
652 };
653 
654 const struct gf100_gr_init
655 gf100_gr_init_tpccs_1[] = {
656 	{ 0x419d2c,   1, 0x04, 0x00000000 },
657 	{}
658 };
659 
660 const struct gf100_gr_init
661 gf100_gr_init_mpc_0[] = {
662 	{ 0x419c0c,   1, 0x04, 0x00000000 },
663 	{}
664 };
665 
666 static const struct gf100_gr_init
667 gf100_gr_init_sm_0[] = {
668 	{ 0x419e00,   1, 0x04, 0x00000000 },
669 	{ 0x419ea0,   1, 0x04, 0x00000000 },
670 	{ 0x419ea4,   1, 0x04, 0x00000100 },
671 	{ 0x419ea8,   1, 0x04, 0x00001100 },
672 	{ 0x419eac,   1, 0x04, 0x11100702 },
673 	{ 0x419eb0,   1, 0x04, 0x00000003 },
674 	{ 0x419eb4,   4, 0x04, 0x00000000 },
675 	{ 0x419ec8,   1, 0x04, 0x06060618 },
676 	{ 0x419ed0,   1, 0x04, 0x0eff0e38 },
677 	{ 0x419ed4,   1, 0x04, 0x011104f1 },
678 	{ 0x419edc,   1, 0x04, 0x00000000 },
679 	{ 0x419f00,   1, 0x04, 0x00000000 },
680 	{ 0x419f2c,   1, 0x04, 0x00000000 },
681 	{}
682 };
683 
684 const struct gf100_gr_init
685 gf100_gr_init_be_0[] = {
686 	{ 0x40880c,   1, 0x04, 0x00000000 },
687 	{ 0x408910,   9, 0x04, 0x00000000 },
688 	{ 0x408950,   1, 0x04, 0x00000000 },
689 	{ 0x408954,   1, 0x04, 0x0000ffff },
690 	{ 0x408984,   1, 0x04, 0x00000000 },
691 	{ 0x408988,   1, 0x04, 0x08040201 },
692 	{ 0x40898c,   1, 0x04, 0x80402010 },
693 	{}
694 };
695 
696 const struct gf100_gr_init
697 gf100_gr_init_fe_1[] = {
698 	{ 0x4040f0,   1, 0x04, 0x00000000 },
699 	{}
700 };
701 
702 const struct gf100_gr_init
703 gf100_gr_init_pe_1[] = {
704 	{ 0x419880,   1, 0x04, 0x00000002 },
705 	{}
706 };
707 
708 static const struct gf100_gr_pack
709 gf100_gr_pack_mmio[] = {
710 	{ gf100_gr_init_main_0 },
711 	{ gf100_gr_init_fe_0 },
712 	{ gf100_gr_init_pri_0 },
713 	{ gf100_gr_init_rstr2d_0 },
714 	{ gf100_gr_init_pd_0 },
715 	{ gf100_gr_init_ds_0 },
716 	{ gf100_gr_init_scc_0 },
717 	{ gf100_gr_init_prop_0 },
718 	{ gf100_gr_init_gpc_unk_0 },
719 	{ gf100_gr_init_setup_0 },
720 	{ gf100_gr_init_crstr_0 },
721 	{ gf100_gr_init_setup_1 },
722 	{ gf100_gr_init_zcull_0 },
723 	{ gf100_gr_init_gpm_0 },
724 	{ gf100_gr_init_gpc_unk_1 },
725 	{ gf100_gr_init_gcc_0 },
726 	{ gf100_gr_init_tpccs_0 },
727 	{ gf100_gr_init_tex_0 },
728 	{ gf100_gr_init_pe_0 },
729 	{ gf100_gr_init_l1c_0 },
730 	{ gf100_gr_init_wwdx_0 },
731 	{ gf100_gr_init_tpccs_1 },
732 	{ gf100_gr_init_mpc_0 },
733 	{ gf100_gr_init_sm_0 },
734 	{ gf100_gr_init_be_0 },
735 	{ gf100_gr_init_fe_1 },
736 	{ gf100_gr_init_pe_1 },
737 	{}
738 };
739 
740 /*******************************************************************************
741  * PGRAPH engine/subdev functions
742  ******************************************************************************/
743 
744 static u32
745 gf100_gr_ctxsw_inst(struct nvkm_gr *gr)
746 {
747 	return nvkm_rd32(gr->engine.subdev.device, 0x409b00);
748 }
749 
750 static int
751 gf100_gr_fecs_ctrl_ctxsw(struct gf100_gr *gr, u32 mthd)
752 {
753 	struct nvkm_device *device = gr->base.engine.subdev.device;
754 
755 	nvkm_wr32(device, 0x409804, 0xffffffff);
756 	nvkm_wr32(device, 0x409800, 0x00000000);
757 	nvkm_wr32(device, 0x409500, 0xffffffff);
758 	nvkm_wr32(device, 0x409504, mthd);
759 	nvkm_msec(device, 2000,
760 		u32 stat = nvkm_rd32(device, 0x409804);
761 		if (stat == 0x00000002)
762 			return -EIO;
763 		if (stat == 0x00000001)
764 			return 0;
765 	);
766 
767 	return -ETIMEDOUT;
768 }
769 
770 static int
771 gf100_gr_fecs_start_ctxsw(struct nvkm_gr *base)
772 {
773 	struct gf100_gr *gr = gf100_gr(base);
774 	int ret = 0;
775 
776 	mutex_lock(&gr->fecs.mutex);
777 	if (!--gr->fecs.disable) {
778 		if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x39)))
779 			gr->fecs.disable++;
780 	}
781 	mutex_unlock(&gr->fecs.mutex);
782 	return ret;
783 }
784 
785 static int
786 gf100_gr_fecs_stop_ctxsw(struct nvkm_gr *base)
787 {
788 	struct gf100_gr *gr = gf100_gr(base);
789 	int ret = 0;
790 
791 	mutex_lock(&gr->fecs.mutex);
792 	if (!gr->fecs.disable++) {
793 		if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x38)))
794 			gr->fecs.disable--;
795 	}
796 	mutex_unlock(&gr->fecs.mutex);
797 	return ret;
798 }
799 
800 static int
801 gf100_gr_fecs_halt_pipeline(struct gf100_gr *gr)
802 {
803 	int ret = 0;
804 
805 	if (gr->firmware) {
806 		mutex_lock(&gr->fecs.mutex);
807 		ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x04);
808 		mutex_unlock(&gr->fecs.mutex);
809 	}
810 
811 	return ret;
812 }
813 
814 int
815 gf100_gr_fecs_wfi_golden_save(struct gf100_gr *gr, u32 inst)
816 {
817 	struct nvkm_device *device = gr->base.engine.subdev.device;
818 
819 	nvkm_mask(device, 0x409800, 0x00000003, 0x00000000);
820 	nvkm_wr32(device, 0x409500, inst);
821 	nvkm_wr32(device, 0x409504, 0x00000009);
822 	nvkm_msec(device, 2000,
823 		u32 stat = nvkm_rd32(device, 0x409800);
824 		if (stat & 0x00000002)
825 			return -EIO;
826 		if (stat & 0x00000001)
827 			return 0;
828 	);
829 
830 	return -ETIMEDOUT;
831 }
832 
833 int
834 gf100_gr_fecs_bind_pointer(struct gf100_gr *gr, u32 inst)
835 {
836 	struct nvkm_device *device = gr->base.engine.subdev.device;
837 
838 	nvkm_mask(device, 0x409800, 0x00000030, 0x00000000);
839 	nvkm_wr32(device, 0x409500, inst);
840 	nvkm_wr32(device, 0x409504, 0x00000003);
841 	nvkm_msec(device, 2000,
842 		u32 stat = nvkm_rd32(device, 0x409800);
843 		if (stat & 0x00000020)
844 			return -EIO;
845 		if (stat & 0x00000010)
846 			return 0;
847 	);
848 
849 	return -ETIMEDOUT;
850 }
851 
852 static int
853 gf100_gr_fecs_set_reglist_virtual_address(struct gf100_gr *gr, u64 addr)
854 {
855 	struct nvkm_device *device = gr->base.engine.subdev.device;
856 
857 	nvkm_wr32(device, 0x409810, addr >> 8);
858 	nvkm_wr32(device, 0x409800, 0x00000000);
859 	nvkm_wr32(device, 0x409500, 0x00000001);
860 	nvkm_wr32(device, 0x409504, 0x00000032);
861 	nvkm_msec(device, 2000,
862 		if (nvkm_rd32(device, 0x409800) == 0x00000001)
863 			return 0;
864 	);
865 
866 	return -ETIMEDOUT;
867 }
868 
869 static int
870 gf100_gr_fecs_set_reglist_bind_instance(struct gf100_gr *gr, u32 inst)
871 {
872 	struct nvkm_device *device = gr->base.engine.subdev.device;
873 
874 	nvkm_wr32(device, 0x409810, inst);
875 	nvkm_wr32(device, 0x409800, 0x00000000);
876 	nvkm_wr32(device, 0x409500, 0x00000001);
877 	nvkm_wr32(device, 0x409504, 0x00000031);
878 	nvkm_msec(device, 2000,
879 		if (nvkm_rd32(device, 0x409800) == 0x00000001)
880 			return 0;
881 	);
882 
883 	return -ETIMEDOUT;
884 }
885 
886 static int
887 gf100_gr_fecs_discover_reglist_image_size(struct gf100_gr *gr, u32 *psize)
888 {
889 	struct nvkm_device *device = gr->base.engine.subdev.device;
890 
891 	nvkm_wr32(device, 0x409800, 0x00000000);
892 	nvkm_wr32(device, 0x409500, 0x00000001);
893 	nvkm_wr32(device, 0x409504, 0x00000030);
894 	nvkm_msec(device, 2000,
895 		if ((*psize = nvkm_rd32(device, 0x409800)))
896 			return 0;
897 	);
898 
899 	return -ETIMEDOUT;
900 }
901 
902 static int
903 gf100_gr_fecs_elpg_bind(struct gf100_gr *gr)
904 {
905 	u32 size;
906 	int ret;
907 
908 	ret = gf100_gr_fecs_discover_reglist_image_size(gr, &size);
909 	if (ret)
910 		return ret;
911 
912 	/*XXX: We need to allocate + map the above into PMU's inst block,
913 	 *     which which means we probably need a proper PMU before we
914 	 *     even bother.
915 	 */
916 
917 	ret = gf100_gr_fecs_set_reglist_bind_instance(gr, 0);
918 	if (ret)
919 		return ret;
920 
921 	return gf100_gr_fecs_set_reglist_virtual_address(gr, 0);
922 }
923 
924 static int
925 gf100_gr_fecs_discover_pm_image_size(struct gf100_gr *gr, u32 *psize)
926 {
927 	struct nvkm_device *device = gr->base.engine.subdev.device;
928 
929 	nvkm_wr32(device, 0x409800, 0x00000000);
930 	nvkm_wr32(device, 0x409500, 0x00000000);
931 	nvkm_wr32(device, 0x409504, 0x00000025);
932 	nvkm_msec(device, 2000,
933 		if ((*psize = nvkm_rd32(device, 0x409800)))
934 			return 0;
935 	);
936 
937 	return -ETIMEDOUT;
938 }
939 
940 static int
941 gf100_gr_fecs_discover_zcull_image_size(struct gf100_gr *gr, u32 *psize)
942 {
943 	struct nvkm_device *device = gr->base.engine.subdev.device;
944 
945 	nvkm_wr32(device, 0x409800, 0x00000000);
946 	nvkm_wr32(device, 0x409500, 0x00000000);
947 	nvkm_wr32(device, 0x409504, 0x00000016);
948 	nvkm_msec(device, 2000,
949 		if ((*psize = nvkm_rd32(device, 0x409800)))
950 			return 0;
951 	);
952 
953 	return -ETIMEDOUT;
954 }
955 
956 static int
957 gf100_gr_fecs_discover_image_size(struct gf100_gr *gr, u32 *psize)
958 {
959 	struct nvkm_device *device = gr->base.engine.subdev.device;
960 
961 	nvkm_wr32(device, 0x409800, 0x00000000);
962 	nvkm_wr32(device, 0x409500, 0x00000000);
963 	nvkm_wr32(device, 0x409504, 0x00000010);
964 	nvkm_msec(device, 2000,
965 		if ((*psize = nvkm_rd32(device, 0x409800)))
966 			return 0;
967 	);
968 
969 	return -ETIMEDOUT;
970 }
971 
972 static void
973 gf100_gr_fecs_set_watchdog_timeout(struct gf100_gr *gr, u32 timeout)
974 {
975 	struct nvkm_device *device = gr->base.engine.subdev.device;
976 
977 	nvkm_wr32(device, 0x409800, 0x00000000);
978 	nvkm_wr32(device, 0x409500, timeout);
979 	nvkm_wr32(device, 0x409504, 0x00000021);
980 }
981 
982 static bool
983 gf100_gr_chsw_load(struct nvkm_gr *base)
984 {
985 	struct gf100_gr *gr = gf100_gr(base);
986 	if (!gr->firmware) {
987 		u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
988 		if (trace & 0x00000040)
989 			return true;
990 	} else {
991 		u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
992 		if (mthd & 0x00080000)
993 			return true;
994 	}
995 	return false;
996 }
997 
998 int
999 gf100_gr_rops(struct gf100_gr *gr)
1000 {
1001 	struct nvkm_device *device = gr->base.engine.subdev.device;
1002 	return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
1003 }
1004 
1005 void
1006 gf100_gr_zbc_init(struct gf100_gr *gr)
1007 {
1008 	const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
1009 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
1010 	const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
1011 			      0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
1012 	const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
1013 			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
1014 	const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
1015 			      0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
1016 	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
1017 	int index, c = ltc->zbc_color_min, d = ltc->zbc_depth_min, s = ltc->zbc_depth_min;
1018 
1019 	if (!gr->zbc_color[0].format) {
1020 		gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]); c++;
1021 		gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]); c++;
1022 		gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]); c++;
1023 		gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]); c++;
1024 		gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); d++;
1025 		gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); d++;
1026 		if (gr->func->zbc->stencil_get) {
1027 			gr->func->zbc->stencil_get(gr, 1, 0x00, 0x00); s++;
1028 			gr->func->zbc->stencil_get(gr, 1, 0x01, 0x01); s++;
1029 			gr->func->zbc->stencil_get(gr, 1, 0xff, 0xff); s++;
1030 		}
1031 	}
1032 
1033 	for (index = c; index <= ltc->zbc_color_max; index++)
1034 		gr->func->zbc->clear_color(gr, index);
1035 	for (index = d; index <= ltc->zbc_depth_max; index++)
1036 		gr->func->zbc->clear_depth(gr, index);
1037 
1038 	if (gr->func->zbc->clear_stencil) {
1039 		for (index = s; index <= ltc->zbc_depth_max; index++)
1040 			gr->func->zbc->clear_stencil(gr, index);
1041 	}
1042 }
1043 
1044 /*
1045  * Wait until GR goes idle. GR is considered idle if it is disabled by the
1046  * MC (0x200) register, or GR is not busy and a context switch is not in
1047  * progress.
1048  */
1049 int
1050 gf100_gr_wait_idle(struct gf100_gr *gr)
1051 {
1052 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1053 	struct nvkm_device *device = subdev->device;
1054 	unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
1055 	bool gr_enabled, ctxsw_active, gr_busy;
1056 
1057 	do {
1058 		/*
1059 		 * required to make sure FIFO_ENGINE_STATUS (0x2640) is
1060 		 * up-to-date
1061 		 */
1062 		nvkm_rd32(device, 0x400700);
1063 
1064 		gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
1065 		ctxsw_active = nvkm_fifo_ctxsw_in_progress(&gr->base.engine);
1066 		gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
1067 
1068 		if (!gr_enabled || (!gr_busy && !ctxsw_active))
1069 			return 0;
1070 	} while (time_before(jiffies, end_jiffies));
1071 
1072 	nvkm_error(subdev,
1073 		   "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
1074 		   gr_enabled, ctxsw_active, gr_busy);
1075 	return -EAGAIN;
1076 }
1077 
1078 void
1079 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1080 {
1081 	struct nvkm_device *device = gr->base.engine.subdev.device;
1082 	const struct gf100_gr_pack *pack;
1083 	const struct gf100_gr_init *init;
1084 
1085 	pack_for_each_init(init, pack, p) {
1086 		u32 next = init->addr + init->count * init->pitch;
1087 		u32 addr = init->addr;
1088 		while (addr < next) {
1089 			nvkm_wr32(device, addr, init->data);
1090 			addr += init->pitch;
1091 		}
1092 	}
1093 }
1094 
1095 void
1096 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1097 {
1098 	struct nvkm_device *device = gr->base.engine.subdev.device;
1099 	const struct gf100_gr_pack *pack;
1100 	const struct gf100_gr_init *init;
1101 	u64 data = 0;
1102 
1103 	nvkm_wr32(device, 0x400208, 0x80000000);
1104 
1105 	pack_for_each_init(init, pack, p) {
1106 		u32 next = init->addr + init->count * init->pitch;
1107 		u32 addr = init->addr;
1108 
1109 		if ((pack == p && init == p->init) || data != init->data) {
1110 			nvkm_wr32(device, 0x400204, init->data);
1111 			if (pack->type == 64)
1112 				nvkm_wr32(device, 0x40020c, upper_32_bits(init->data));
1113 			data = init->data;
1114 		}
1115 
1116 		while (addr < next) {
1117 			nvkm_wr32(device, 0x400200, addr);
1118 			/**
1119 			 * Wait for GR to go idle after submitting a
1120 			 * GO_IDLE bundle
1121 			 */
1122 			if ((addr & 0xffff) == 0xe100)
1123 				gf100_gr_wait_idle(gr);
1124 			nvkm_msec(device, 2000,
1125 				if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
1126 					break;
1127 			);
1128 			addr += init->pitch;
1129 		}
1130 	}
1131 
1132 	nvkm_wr32(device, 0x400208, 0x00000000);
1133 }
1134 
1135 void
1136 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
1137 {
1138 	struct nvkm_device *device = gr->base.engine.subdev.device;
1139 	const struct gf100_gr_pack *pack;
1140 	const struct gf100_gr_init *init;
1141 	u32 data = 0;
1142 
1143 	pack_for_each_init(init, pack, p) {
1144 		u32 ctrl = 0x80000000 | pack->type;
1145 		u32 next = init->addr + init->count * init->pitch;
1146 		u32 addr = init->addr;
1147 
1148 		if ((pack == p && init == p->init) || data != init->data) {
1149 			nvkm_wr32(device, 0x40448c, init->data);
1150 			data = init->data;
1151 		}
1152 
1153 		while (addr < next) {
1154 			nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
1155 			addr += init->pitch;
1156 		}
1157 	}
1158 }
1159 
1160 u64
1161 gf100_gr_units(struct nvkm_gr *base)
1162 {
1163 	struct gf100_gr *gr = gf100_gr(base);
1164 	u64 cfg;
1165 
1166 	cfg  = (u32)gr->gpc_nr;
1167 	cfg |= (u32)gr->tpc_total << 8;
1168 	cfg |= (u64)gr->rop_nr << 32;
1169 
1170 	return cfg;
1171 }
1172 
1173 static const struct nvkm_bitfield gf100_dispatch_error[] = {
1174 	{ 0x00000001, "INJECTED_BUNDLE_ERROR" },
1175 	{ 0x00000002, "CLASS_SUBCH_MISMATCH" },
1176 	{ 0x00000004, "SUBCHSW_DURING_NOTIFY" },
1177 	{}
1178 };
1179 
1180 static const struct nvkm_bitfield gf100_m2mf_error[] = {
1181 	{ 0x00000001, "PUSH_TOO_MUCH_DATA" },
1182 	{ 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
1183 	{}
1184 };
1185 
1186 static const struct nvkm_bitfield gf100_unk6_error[] = {
1187 	{ 0x00000001, "TEMP_TOO_SMALL" },
1188 	{}
1189 };
1190 
1191 static const struct nvkm_bitfield gf100_ccache_error[] = {
1192 	{ 0x00000001, "INTR" },
1193 	{ 0x00000002, "LDCONST_OOB" },
1194 	{}
1195 };
1196 
1197 static const struct nvkm_bitfield gf100_macro_error[] = {
1198 	{ 0x00000001, "TOO_FEW_PARAMS" },
1199 	{ 0x00000002, "TOO_MANY_PARAMS" },
1200 	{ 0x00000004, "ILLEGAL_OPCODE" },
1201 	{ 0x00000008, "DOUBLE_BRANCH" },
1202 	{ 0x00000010, "WATCHDOG" },
1203 	{}
1204 };
1205 
1206 static const struct nvkm_bitfield gk104_sked_error[] = {
1207 	{ 0x00000040, "CTA_RESUME" },
1208 	{ 0x00000080, "CONSTANT_BUFFER_SIZE" },
1209 	{ 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
1210 	{ 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
1211 	{ 0x00000800, "WARP_CSTACK_SIZE" },
1212 	{ 0x00001000, "TOTAL_TEMP_SIZE" },
1213 	{ 0x00002000, "REGISTER_COUNT" },
1214 	{ 0x00040000, "TOTAL_THREADS" },
1215 	{ 0x00100000, "PROGRAM_OFFSET" },
1216 	{ 0x00200000, "SHARED_MEMORY_SIZE" },
1217 	{ 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
1218 	{ 0x01000000, "MEMORY_WINDOW_OVERLAP" },
1219 	{ 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
1220 	{ 0x04000000, "TOTAL_REGISTER_COUNT" },
1221 	{}
1222 };
1223 
1224 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
1225 	{ 0x00000002, "RT_PITCH_OVERRUN" },
1226 	{ 0x00000010, "RT_WIDTH_OVERRUN" },
1227 	{ 0x00000020, "RT_HEIGHT_OVERRUN" },
1228 	{ 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
1229 	{ 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
1230 	{ 0x00000400, "RT_LINEAR_MISMATCH" },
1231 	{}
1232 };
1233 
1234 static void
1235 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
1236 {
1237 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1238 	struct nvkm_device *device = subdev->device;
1239 	char error[128];
1240 	u32 trap[4];
1241 
1242 	trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
1243 	trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
1244 	trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
1245 	trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
1246 
1247 	nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
1248 
1249 	nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
1250 			   "format = %x, storage type = %x\n",
1251 		   gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
1252 		   (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
1253 	nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1254 }
1255 
1256 const struct nvkm_enum gf100_mp_warp_error[] = {
1257 	{ 0x01, "STACK_ERROR" },
1258 	{ 0x02, "API_STACK_ERROR" },
1259 	{ 0x03, "RET_EMPTY_STACK_ERROR" },
1260 	{ 0x04, "PC_WRAP" },
1261 	{ 0x05, "MISALIGNED_PC" },
1262 	{ 0x06, "PC_OVERFLOW" },
1263 	{ 0x07, "MISALIGNED_IMMC_ADDR" },
1264 	{ 0x08, "MISALIGNED_REG" },
1265 	{ 0x09, "ILLEGAL_INSTR_ENCODING" },
1266 	{ 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
1267 	{ 0x0b, "ILLEGAL_INSTR_PARAM" },
1268 	{ 0x0c, "INVALID_CONST_ADDR" },
1269 	{ 0x0d, "OOR_REG" },
1270 	{ 0x0e, "OOR_ADDR" },
1271 	{ 0x0f, "MISALIGNED_ADDR" },
1272 	{ 0x10, "INVALID_ADDR_SPACE" },
1273 	{ 0x11, "ILLEGAL_INSTR_PARAM2" },
1274 	{ 0x12, "INVALID_CONST_ADDR_LDC" },
1275 	{ 0x13, "GEOMETRY_SM_ERROR" },
1276 	{ 0x14, "DIVERGENT" },
1277 	{ 0x15, "WARP_EXIT" },
1278 	{}
1279 };
1280 
1281 const struct nvkm_bitfield gf100_mp_global_error[] = {
1282 	{ 0x00000001, "SM_TO_SM_FAULT" },
1283 	{ 0x00000002, "L1_ERROR" },
1284 	{ 0x00000004, "MULTIPLE_WARP_ERRORS" },
1285 	{ 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
1286 	{ 0x00000010, "BPT_INT" },
1287 	{ 0x00000020, "BPT_PAUSE" },
1288 	{ 0x00000040, "SINGLE_STEP_COMPLETE" },
1289 	{ 0x20000000, "ECC_SEC_ERROR" },
1290 	{ 0x40000000, "ECC_DED_ERROR" },
1291 	{ 0x80000000, "TIMEOUT" },
1292 	{}
1293 };
1294 
1295 void
1296 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
1297 {
1298 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1299 	struct nvkm_device *device = subdev->device;
1300 	u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
1301 	u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
1302 	const struct nvkm_enum *warp;
1303 	char glob[128];
1304 
1305 	nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1306 	warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1307 
1308 	nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1309 			   "global %08x [%s] warp %04x [%s]\n",
1310 		   gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1311 
1312 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1313 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1314 }
1315 
1316 static void
1317 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1318 {
1319 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1320 	struct nvkm_device *device = subdev->device;
1321 	u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1322 
1323 	if (stat & 0x00000001) {
1324 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1325 		nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1326 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1327 		stat &= ~0x00000001;
1328 	}
1329 
1330 	if (stat & 0x00000002) {
1331 		gr->func->trap_mp(gr, gpc, tpc);
1332 		stat &= ~0x00000002;
1333 	}
1334 
1335 	if (stat & 0x00000004) {
1336 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1337 		nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1338 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1339 		stat &= ~0x00000004;
1340 	}
1341 
1342 	if (stat & 0x00000008) {
1343 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1344 		nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1345 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1346 		stat &= ~0x00000008;
1347 	}
1348 
1349 	if (stat & 0x00000010) {
1350 		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
1351 		nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
1352 		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
1353 		stat &= ~0x00000010;
1354 	}
1355 
1356 	if (stat) {
1357 		nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1358 	}
1359 }
1360 
1361 static void
1362 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1363 {
1364 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1365 	struct nvkm_device *device = subdev->device;
1366 	u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1367 	int tpc;
1368 
1369 	if (stat & 0x00000001) {
1370 		gf100_gr_trap_gpc_rop(gr, gpc);
1371 		stat &= ~0x00000001;
1372 	}
1373 
1374 	if (stat & 0x00000002) {
1375 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1376 		nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1377 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1378 		stat &= ~0x00000002;
1379 	}
1380 
1381 	if (stat & 0x00000004) {
1382 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1383 		nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1384 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1385 		stat &= ~0x00000004;
1386 	}
1387 
1388 	if (stat & 0x00000008) {
1389 		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1390 		nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1391 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1392 		stat &= ~0x00000009;
1393 	}
1394 
1395 	for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1396 		u32 mask = 0x00010000 << tpc;
1397 		if (stat & mask) {
1398 			gf100_gr_trap_tpc(gr, gpc, tpc);
1399 			nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1400 			stat &= ~mask;
1401 		}
1402 	}
1403 
1404 	if (stat) {
1405 		nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1406 	}
1407 }
1408 
1409 static void
1410 gf100_gr_trap_intr(struct gf100_gr *gr)
1411 {
1412 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1413 	struct nvkm_device *device = subdev->device;
1414 	char error[128];
1415 	u32 trap = nvkm_rd32(device, 0x400108);
1416 	int rop, gpc;
1417 
1418 	if (trap & 0x00000001) {
1419 		u32 stat = nvkm_rd32(device, 0x404000);
1420 
1421 		nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1422 			       stat & 0x3fffffff);
1423 		nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1424 		nvkm_wr32(device, 0x404000, 0xc0000000);
1425 		nvkm_wr32(device, 0x400108, 0x00000001);
1426 		trap &= ~0x00000001;
1427 	}
1428 
1429 	if (trap & 0x00000002) {
1430 		u32 stat = nvkm_rd32(device, 0x404600);
1431 
1432 		nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1433 			       stat & 0x3fffffff);
1434 		nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1435 
1436 		nvkm_wr32(device, 0x404600, 0xc0000000);
1437 		nvkm_wr32(device, 0x400108, 0x00000002);
1438 		trap &= ~0x00000002;
1439 	}
1440 
1441 	if (trap & 0x00000008) {
1442 		u32 stat = nvkm_rd32(device, 0x408030);
1443 
1444 		nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
1445 			       stat & 0x3fffffff);
1446 		nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1447 		nvkm_wr32(device, 0x408030, 0xc0000000);
1448 		nvkm_wr32(device, 0x400108, 0x00000008);
1449 		trap &= ~0x00000008;
1450 	}
1451 
1452 	if (trap & 0x00000010) {
1453 		u32 stat = nvkm_rd32(device, 0x405840);
1454 		nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1455 			   stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1456 		nvkm_wr32(device, 0x405840, 0xc0000000);
1457 		nvkm_wr32(device, 0x400108, 0x00000010);
1458 		trap &= ~0x00000010;
1459 	}
1460 
1461 	if (trap & 0x00000040) {
1462 		u32 stat = nvkm_rd32(device, 0x40601c);
1463 
1464 		nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1465 			       stat & 0x3fffffff);
1466 		nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1467 
1468 		nvkm_wr32(device, 0x40601c, 0xc0000000);
1469 		nvkm_wr32(device, 0x400108, 0x00000040);
1470 		trap &= ~0x00000040;
1471 	}
1472 
1473 	if (trap & 0x00000080) {
1474 		u32 stat = nvkm_rd32(device, 0x404490);
1475 		u32 pc = nvkm_rd32(device, 0x404494);
1476 		u32 op = nvkm_rd32(device, 0x40449c);
1477 
1478 		nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1479 			       stat & 0x1fffffff);
1480 		nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1481 			   stat, error, pc & 0x7ff,
1482 			   (pc & 0x10000000) ? "" : " (invalid)",
1483 			   op);
1484 
1485 		nvkm_wr32(device, 0x404490, 0xc0000000);
1486 		nvkm_wr32(device, 0x400108, 0x00000080);
1487 		trap &= ~0x00000080;
1488 	}
1489 
1490 	if (trap & 0x00000100) {
1491 		u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1492 
1493 		nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1494 		nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1495 
1496 		if (stat)
1497 			nvkm_wr32(device, 0x407020, 0x40000000);
1498 		nvkm_wr32(device, 0x400108, 0x00000100);
1499 		trap &= ~0x00000100;
1500 	}
1501 
1502 	if (trap & 0x01000000) {
1503 		u32 stat = nvkm_rd32(device, 0x400118);
1504 		for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1505 			u32 mask = 0x00000001 << gpc;
1506 			if (stat & mask) {
1507 				gf100_gr_trap_gpc(gr, gpc);
1508 				nvkm_wr32(device, 0x400118, mask);
1509 				stat &= ~mask;
1510 			}
1511 		}
1512 		nvkm_wr32(device, 0x400108, 0x01000000);
1513 		trap &= ~0x01000000;
1514 	}
1515 
1516 	if (trap & 0x02000000) {
1517 		for (rop = 0; rop < gr->rop_nr; rop++) {
1518 			u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1519 			u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1520 			nvkm_error(subdev, "ROP%d %08x %08x\n",
1521 				 rop, statz, statc);
1522 			nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1523 			nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1524 		}
1525 		nvkm_wr32(device, 0x400108, 0x02000000);
1526 		trap &= ~0x02000000;
1527 	}
1528 
1529 	if (trap) {
1530 		nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1531 		nvkm_wr32(device, 0x400108, trap);
1532 	}
1533 }
1534 
1535 static void
1536 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1537 {
1538 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1539 	struct nvkm_device *device = subdev->device;
1540 	nvkm_error(subdev, "%06x - done %08x\n", base,
1541 		   nvkm_rd32(device, base + 0x400));
1542 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1543 		   nvkm_rd32(device, base + 0x800),
1544 		   nvkm_rd32(device, base + 0x804),
1545 		   nvkm_rd32(device, base + 0x808),
1546 		   nvkm_rd32(device, base + 0x80c));
1547 	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1548 		   nvkm_rd32(device, base + 0x810),
1549 		   nvkm_rd32(device, base + 0x814),
1550 		   nvkm_rd32(device, base + 0x818),
1551 		   nvkm_rd32(device, base + 0x81c));
1552 }
1553 
1554 void
1555 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1556 {
1557 	struct nvkm_device *device = gr->base.engine.subdev.device;
1558 	u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1559 	u32 gpc;
1560 
1561 	gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1562 	for (gpc = 0; gpc < gpcnr; gpc++)
1563 		gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1564 }
1565 
1566 static void
1567 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1568 {
1569 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1570 	struct nvkm_device *device = subdev->device;
1571 	u32 stat = nvkm_rd32(device, 0x409c18);
1572 
1573 	if (!gr->firmware && (stat & 0x00000001)) {
1574 		u32 code = nvkm_rd32(device, 0x409814);
1575 		if (code == E_BAD_FWMTHD) {
1576 			u32 class = nvkm_rd32(device, 0x409808);
1577 			u32  addr = nvkm_rd32(device, 0x40980c);
1578 			u32  subc = (addr & 0x00070000) >> 16;
1579 			u32  mthd = (addr & 0x00003ffc);
1580 			u32  data = nvkm_rd32(device, 0x409810);
1581 
1582 			nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1583 					   "mthd %04x data %08x\n",
1584 				   subc, class, mthd, data);
1585 		} else {
1586 			nvkm_error(subdev, "FECS ucode error %d\n", code);
1587 		}
1588 		nvkm_wr32(device, 0x409c20, 0x00000001);
1589 		stat &= ~0x00000001;
1590 	}
1591 
1592 	if (!gr->firmware && (stat & 0x00080000)) {
1593 		nvkm_error(subdev, "FECS watchdog timeout\n");
1594 		gf100_gr_ctxctl_debug(gr);
1595 		nvkm_wr32(device, 0x409c20, 0x00080000);
1596 		stat &= ~0x00080000;
1597 	}
1598 
1599 	if (stat) {
1600 		nvkm_error(subdev, "FECS %08x\n", stat);
1601 		gf100_gr_ctxctl_debug(gr);
1602 		nvkm_wr32(device, 0x409c20, stat);
1603 	}
1604 }
1605 
1606 static irqreturn_t
1607 gf100_gr_intr(struct nvkm_inth *inth)
1608 {
1609 	struct gf100_gr *gr = container_of(inth, typeof(*gr), base.engine.subdev.inth);
1610 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1611 	struct nvkm_device *device = subdev->device;
1612 	struct nvkm_chan *chan;
1613 	unsigned long flags;
1614 	u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1615 	u32 stat = nvkm_rd32(device, 0x400100);
1616 	u32 addr = nvkm_rd32(device, 0x400704);
1617 	u32 mthd = (addr & 0x00003ffc);
1618 	u32 subc = (addr & 0x00070000) >> 16;
1619 	u32 data = nvkm_rd32(device, 0x400708);
1620 	u32 code = nvkm_rd32(device, 0x400110);
1621 	u32 class;
1622 	const char *name = "unknown";
1623 	int chid = -1;
1624 
1625 	chan = nvkm_chan_get_inst(&gr->base.engine, (u64)inst << 12, &flags);
1626 	if (chan) {
1627 		name = chan->name;
1628 		chid = chan->id;
1629 	}
1630 
1631 	if (device->card_type < NV_E0 || subc < 4)
1632 		class = nvkm_rd32(device, 0x404200 + (subc * 4));
1633 	else
1634 		class = 0x0000;
1635 
1636 	if (stat & 0x00000001) {
1637 		/*
1638 		 * notifier interrupt, only needed for cyclestats
1639 		 * can be safely ignored
1640 		 */
1641 		nvkm_wr32(device, 0x400100, 0x00000001);
1642 		stat &= ~0x00000001;
1643 	}
1644 
1645 	if (stat & 0x00000010) {
1646 		if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1647 			nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1648 				   "subc %d class %04x mthd %04x data %08x\n",
1649 				   chid, inst << 12, name, subc,
1650 				   class, mthd, data);
1651 		}
1652 		nvkm_wr32(device, 0x400100, 0x00000010);
1653 		stat &= ~0x00000010;
1654 	}
1655 
1656 	if (stat & 0x00000020) {
1657 		nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1658 			   "subc %d class %04x mthd %04x data %08x\n",
1659 			   chid, inst << 12, name, subc, class, mthd, data);
1660 		nvkm_wr32(device, 0x400100, 0x00000020);
1661 		stat &= ~0x00000020;
1662 	}
1663 
1664 	if (stat & 0x00100000) {
1665 		const struct nvkm_enum *en =
1666 			nvkm_enum_find(nv50_data_error_names, code);
1667 		nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1668 				   "subc %d class %04x mthd %04x data %08x\n",
1669 			   code, en ? en->name : "", chid, inst << 12,
1670 			   name, subc, class, mthd, data);
1671 		nvkm_wr32(device, 0x400100, 0x00100000);
1672 		stat &= ~0x00100000;
1673 	}
1674 
1675 	if (stat & 0x00200000) {
1676 		nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1677 			   chid, inst << 12, name);
1678 		gf100_gr_trap_intr(gr);
1679 		nvkm_wr32(device, 0x400100, 0x00200000);
1680 		stat &= ~0x00200000;
1681 	}
1682 
1683 	if (stat & 0x00080000) {
1684 		gf100_gr_ctxctl_isr(gr);
1685 		nvkm_wr32(device, 0x400100, 0x00080000);
1686 		stat &= ~0x00080000;
1687 	}
1688 
1689 	if (stat) {
1690 		nvkm_error(subdev, "intr %08x\n", stat);
1691 		nvkm_wr32(device, 0x400100, stat);
1692 	}
1693 
1694 	nvkm_wr32(device, 0x400500, 0x00010001);
1695 	nvkm_chan_put(&chan, flags);
1696 	return IRQ_HANDLED;
1697 }
1698 
1699 static void
1700 gf100_gr_init_fw(struct nvkm_falcon *falcon,
1701 		 struct nvkm_blob *code, struct nvkm_blob *data)
1702 {
1703 	nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
1704 	nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
1705 }
1706 
1707 static void
1708 gf100_gr_init_csdata(struct gf100_gr *gr,
1709 		     const struct gf100_gr_pack *pack,
1710 		     u32 falcon, u32 starstar, u32 base)
1711 {
1712 	struct nvkm_device *device = gr->base.engine.subdev.device;
1713 	const struct gf100_gr_pack *iter;
1714 	const struct gf100_gr_init *init;
1715 	u32 addr = ~0, prev = ~0, xfer = 0;
1716 	u32 star, temp;
1717 
1718 	nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1719 	star = nvkm_rd32(device, falcon + 0x01c4);
1720 	temp = nvkm_rd32(device, falcon + 0x01c4);
1721 	if (temp > star)
1722 		star = temp;
1723 	nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1724 
1725 	pack_for_each_init(init, iter, pack) {
1726 		u32 head = init->addr - base;
1727 		u32 tail = head + init->count * init->pitch;
1728 		while (head < tail) {
1729 			if (head != prev + 4 || xfer >= 32) {
1730 				if (xfer) {
1731 					u32 data = ((--xfer << 26) | addr);
1732 					nvkm_wr32(device, falcon + 0x01c4, data);
1733 					star += 4;
1734 				}
1735 				addr = head;
1736 				xfer = 0;
1737 			}
1738 			prev = head;
1739 			xfer = xfer + 1;
1740 			head = head + init->pitch;
1741 		}
1742 	}
1743 
1744 	nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1745 	nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1746 	nvkm_wr32(device, falcon + 0x01c4, star + 4);
1747 }
1748 
1749 /* Initialize context from an external (secure or not) firmware */
1750 static int
1751 gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
1752 {
1753 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1754 	struct nvkm_device *device = subdev->device;
1755 	u32 lsf_mask = 0;
1756 	int ret;
1757 
1758 	/* load fuc microcode */
1759 	nvkm_mc_unk260(device, 0);
1760 
1761 	/* securely-managed falcons must be reset using secure boot */
1762 
1763 	if (!nvkm_acr_managed_falcon(device, NVKM_ACR_LSF_FECS)) {
1764 		gf100_gr_init_fw(&gr->fecs.falcon, &gr->fecs.inst,
1765 						   &gr->fecs.data);
1766 	} else {
1767 		lsf_mask |= BIT(NVKM_ACR_LSF_FECS);
1768 	}
1769 
1770 	if (!nvkm_acr_managed_falcon(device, NVKM_ACR_LSF_GPCCS)) {
1771 		gf100_gr_init_fw(&gr->gpccs.falcon, &gr->gpccs.inst,
1772 						    &gr->gpccs.data);
1773 	} else {
1774 		lsf_mask |= BIT(NVKM_ACR_LSF_GPCCS);
1775 	}
1776 
1777 	if (lsf_mask) {
1778 		ret = nvkm_acr_bootstrap_falcons(device, lsf_mask);
1779 		if (ret)
1780 			return ret;
1781 	}
1782 
1783 	nvkm_mc_unk260(device, 1);
1784 
1785 	/* start both of them running */
1786 	nvkm_wr32(device, 0x409800, 0x00000000);
1787 	nvkm_wr32(device, 0x41a10c, 0x00000000);
1788 	nvkm_wr32(device, 0x40910c, 0x00000000);
1789 
1790 	nvkm_falcon_start(&gr->gpccs.falcon);
1791 	nvkm_falcon_start(&gr->fecs.falcon);
1792 
1793 	if (nvkm_msec(device, 2000,
1794 		if (nvkm_rd32(device, 0x409800) & 0x00000001)
1795 			break;
1796 	) < 0)
1797 		return -EBUSY;
1798 
1799 	gf100_gr_fecs_set_watchdog_timeout(gr, 0x7fffffff);
1800 
1801 	/* Determine how much memory is required to store main context image. */
1802 	ret = gf100_gr_fecs_discover_image_size(gr, &gr->size);
1803 	if (ret)
1804 		return ret;
1805 
1806 	/* Determine how much memory is required to store ZCULL image. */
1807 	ret = gf100_gr_fecs_discover_zcull_image_size(gr, &gr->size_zcull);
1808 	if (ret)
1809 		return ret;
1810 
1811 	/* Determine how much memory is required to store PerfMon image. */
1812 	ret = gf100_gr_fecs_discover_pm_image_size(gr, &gr->size_pm);
1813 	if (ret)
1814 		return ret;
1815 
1816 	/*XXX: We (likely) require PMU support to even bother with this.
1817 	 *
1818 	 *     Also, it seems like not all GPUs support ELPG.  Traces I
1819 	 *     have here show RM enabling it on Kepler/Turing, but none
1820 	 *     of the GPUs between those.  NVGPU decides this by PCIID.
1821 	 */
1822 	if (0) {
1823 		ret = gf100_gr_fecs_elpg_bind(gr);
1824 		if (ret)
1825 			return ret;
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static int
1832 gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
1833 {
1834 	const struct gf100_grctx_func *grctx = gr->func->grctx;
1835 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1836 	struct nvkm_device *device = subdev->device;
1837 
1838 	if (!gr->func->fecs.ucode) {
1839 		return -ENOSYS;
1840 	}
1841 
1842 	/* load HUB microcode */
1843 	nvkm_mc_unk260(device, 0);
1844 	nvkm_falcon_load_dmem(&gr->fecs.falcon,
1845 			      gr->func->fecs.ucode->data.data, 0x0,
1846 			      gr->func->fecs.ucode->data.size, 0);
1847 	nvkm_falcon_load_imem(&gr->fecs.falcon,
1848 			      gr->func->fecs.ucode->code.data, 0x0,
1849 			      gr->func->fecs.ucode->code.size, 0, 0, false);
1850 
1851 	/* load GPC microcode */
1852 	nvkm_falcon_load_dmem(&gr->gpccs.falcon,
1853 			      gr->func->gpccs.ucode->data.data, 0x0,
1854 			      gr->func->gpccs.ucode->data.size, 0);
1855 	nvkm_falcon_load_imem(&gr->gpccs.falcon,
1856 			      gr->func->gpccs.ucode->code.data, 0x0,
1857 			      gr->func->gpccs.ucode->code.size, 0, 0, false);
1858 	nvkm_mc_unk260(device, 1);
1859 
1860 	/* load register lists */
1861 	gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1862 	gf100_gr_init_csdata(gr, grctx->gpc_0, 0x41a000, 0x000, 0x418000);
1863 	gf100_gr_init_csdata(gr, grctx->gpc_1, 0x41a000, 0x000, 0x418000);
1864 	gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1865 	gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1866 
1867 	/* start HUB ucode running, it'll init the GPCs */
1868 	nvkm_wr32(device, 0x40910c, 0x00000000);
1869 	nvkm_wr32(device, 0x409100, 0x00000002);
1870 	if (nvkm_msec(device, 2000,
1871 		if (nvkm_rd32(device, 0x409800) & 0x80000000)
1872 			break;
1873 	) < 0) {
1874 		gf100_gr_ctxctl_debug(gr);
1875 		return -EBUSY;
1876 	}
1877 
1878 	gr->size = nvkm_rd32(device, 0x409804);
1879 	return 0;
1880 }
1881 
1882 int
1883 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1884 {
1885 	int ret;
1886 
1887 	if (gr->firmware)
1888 		ret = gf100_gr_init_ctxctl_ext(gr);
1889 	else
1890 		ret = gf100_gr_init_ctxctl_int(gr);
1891 
1892 	return ret;
1893 }
1894 
1895 int
1896 gf100_gr_oneinit_sm_id(struct gf100_gr *gr)
1897 {
1898 	int tpc, gpc;
1899 
1900 	for (tpc = 0; tpc < gr->tpc_max; tpc++) {
1901 		for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1902 			if (tpc < gr->tpc_nr[gpc]) {
1903 				gr->sm[gr->sm_nr].gpc = gpc;
1904 				gr->sm[gr->sm_nr].tpc = tpc;
1905 				gr->sm_nr++;
1906 			}
1907 		}
1908 	}
1909 
1910 	return 0;
1911 }
1912 
1913 void
1914 gf100_gr_oneinit_tiles(struct gf100_gr *gr)
1915 {
1916 	static const u8 primes[] = {
1917 		3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61
1918 	};
1919 	int init_frac[GPC_MAX], init_err[GPC_MAX], run_err[GPC_MAX], i, j;
1920 	u32 mul_factor, comm_denom;
1921 	u8  gpc_map[GPC_MAX];
1922 	bool sorted;
1923 
1924 	switch (gr->tpc_total) {
1925 	case 15: gr->screen_tile_row_offset = 0x06; break;
1926 	case 14: gr->screen_tile_row_offset = 0x05; break;
1927 	case 13: gr->screen_tile_row_offset = 0x02; break;
1928 	case 11: gr->screen_tile_row_offset = 0x07; break;
1929 	case 10: gr->screen_tile_row_offset = 0x06; break;
1930 	case  7:
1931 	case  5: gr->screen_tile_row_offset = 0x01; break;
1932 	case  3: gr->screen_tile_row_offset = 0x02; break;
1933 	case  2:
1934 	case  1: gr->screen_tile_row_offset = 0x01; break;
1935 	default: gr->screen_tile_row_offset = 0x03;
1936 		for (i = 0; i < ARRAY_SIZE(primes); i++) {
1937 			if (gr->tpc_total % primes[i]) {
1938 				gr->screen_tile_row_offset = primes[i];
1939 				break;
1940 			}
1941 		}
1942 		break;
1943 	}
1944 
1945 	/* Sort GPCs by TPC count, highest-to-lowest. */
1946 	for (i = 0; i < gr->gpc_nr; i++)
1947 		gpc_map[i] = i;
1948 	sorted = false;
1949 
1950 	while (!sorted) {
1951 		for (sorted = true, i = 0; i < gr->gpc_nr - 1; i++) {
1952 			if (gr->tpc_nr[gpc_map[i + 1]] >
1953 			    gr->tpc_nr[gpc_map[i + 0]]) {
1954 				u8 swap = gpc_map[i];
1955 				gpc_map[i + 0] = gpc_map[i + 1];
1956 				gpc_map[i + 1] = swap;
1957 				sorted = false;
1958 			}
1959 		}
1960 	}
1961 
1962 	/* Determine tile->GPC mapping */
1963 	mul_factor = gr->gpc_nr * gr->tpc_max;
1964 	if (mul_factor & 1)
1965 		mul_factor = 2;
1966 	else
1967 		mul_factor = 1;
1968 
1969 	comm_denom = gr->gpc_nr * gr->tpc_max * mul_factor;
1970 
1971 	for (i = 0; i < gr->gpc_nr; i++) {
1972 		init_frac[i] = gr->tpc_nr[gpc_map[i]] * gr->gpc_nr * mul_factor;
1973 		init_err[i] = i * gr->tpc_max * mul_factor - comm_denom/2;
1974 		run_err[i] = init_frac[i] + init_err[i];
1975 	}
1976 
1977 	for (i = 0; i < gr->tpc_total;) {
1978 		for (j = 0; j < gr->gpc_nr; j++) {
1979 			if ((run_err[j] * 2) >= comm_denom) {
1980 				gr->tile[i++] = gpc_map[j];
1981 				run_err[j] += init_frac[j] - comm_denom;
1982 			} else {
1983 				run_err[j] += init_frac[j];
1984 			}
1985 		}
1986 	}
1987 }
1988 
1989 static int
1990 gf100_gr_oneinit(struct nvkm_gr *base)
1991 {
1992 	struct gf100_gr *gr = gf100_gr(base);
1993 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1994 	struct nvkm_device *device = subdev->device;
1995 	struct nvkm_intr *intr = &device->mc->intr;
1996 	enum nvkm_intr_type intr_type = NVKM_INTR_SUBDEV;
1997 	int ret, i, j;
1998 
1999 	if (gr->func->oneinit_intr)
2000 		intr = gr->func->oneinit_intr(gr, &intr_type);
2001 
2002 	ret = nvkm_inth_add(intr, intr_type, NVKM_INTR_PRIO_NORMAL, &gr->base.engine.subdev,
2003 			    gf100_gr_intr, &gr->base.engine.subdev.inth);
2004 	if (ret)
2005 		return ret;
2006 
2007 	nvkm_pmu_pgob(device->pmu, false);
2008 
2009 	gr->rop_nr = gr->func->rops(gr);
2010 	gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
2011 	for (i = 0; i < gr->gpc_nr; i++) {
2012 		gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
2013 		gr->tpc_max = max(gr->tpc_max, gr->tpc_nr[i]);
2014 		gr->tpc_total += gr->tpc_nr[i];
2015 		for (j = 0; j < gr->func->ppc_nr; j++) {
2016 			gr->ppc_tpc_mask[i][j] =
2017 				nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
2018 			if (gr->ppc_tpc_mask[i][j] == 0)
2019 				continue;
2020 
2021 			gr->ppc_nr[i]++;
2022 
2023 			gr->ppc_mask[i] |= (1 << j);
2024 			gr->ppc_tpc_nr[i][j] = hweight8(gr->ppc_tpc_mask[i][j]);
2025 			if (gr->ppc_tpc_min == 0 ||
2026 			    gr->ppc_tpc_min > gr->ppc_tpc_nr[i][j])
2027 				gr->ppc_tpc_min = gr->ppc_tpc_nr[i][j];
2028 			if (gr->ppc_tpc_max < gr->ppc_tpc_nr[i][j])
2029 				gr->ppc_tpc_max = gr->ppc_tpc_nr[i][j];
2030 		}
2031 
2032 		gr->ppc_total += gr->ppc_nr[i];
2033 	}
2034 
2035 	/* Allocate global context buffers. */
2036 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST_SR_LOST,
2037 			      gr->func->grctx->pagepool_size, 0x100, false, &gr->pagepool);
2038 	if (ret)
2039 		return ret;
2040 
2041 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST_SR_LOST, gr->func->grctx->bundle_size,
2042 			      0x100, false, &gr->bundle_cb);
2043 	if (ret)
2044 		return ret;
2045 
2046 	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST_SR_LOST,
2047 			      gr->func->grctx->attrib_cb_size(gr), 0x1000, false, &gr->attrib_cb);
2048 	if (ret)
2049 		return ret;
2050 
2051 	if (gr->func->grctx->unknown_size) {
2052 		ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, gr->func->grctx->unknown_size,
2053 				      0x100, false, &gr->unknown);
2054 		if (ret)
2055 			return ret;
2056 	}
2057 
2058 	memset(gr->tile, 0xff, sizeof(gr->tile));
2059 	gr->func->oneinit_tiles(gr);
2060 
2061 	return gr->func->oneinit_sm_id(gr);
2062 }
2063 
2064 static int
2065 gf100_gr_init_(struct nvkm_gr *base)
2066 {
2067 	struct gf100_gr *gr = gf100_gr(base);
2068 	struct nvkm_subdev *subdev = &base->engine.subdev;
2069 	struct nvkm_device *device = subdev->device;
2070 	bool reset = device->chipset == 0x137 || device->chipset == 0x138;
2071 	int ret;
2072 
2073 	/* On certain GP107/GP108 boards, we trigger a weird issue where
2074 	 * GR will stop responding to PRI accesses after we've asked the
2075 	 * SEC2 RTOS to boot the GR falcons.  This happens with far more
2076 	 * frequency when cold-booting a board (ie. returning from D3).
2077 	 *
2078 	 * The root cause for this is not known and has proven difficult
2079 	 * to isolate, with many avenues being dead-ends.
2080 	 *
2081 	 * A workaround was discovered by Karol, whereby putting GR into
2082 	 * reset for an extended period right before initialisation
2083 	 * prevents the problem from occuring.
2084 	 *
2085 	 * XXX: As RM does not require any such workaround, this is more
2086 	 *      of a hack than a true fix.
2087 	 */
2088 	reset = nvkm_boolopt(device->cfgopt, "NvGrResetWar", reset);
2089 	if (reset) {
2090 		nvkm_mask(device, 0x000200, 0x00001000, 0x00000000);
2091 		nvkm_rd32(device, 0x000200);
2092 		msleep(50);
2093 		nvkm_mask(device, 0x000200, 0x00001000, 0x00001000);
2094 		nvkm_rd32(device, 0x000200);
2095 	}
2096 
2097 	nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
2098 
2099 	ret = nvkm_falcon_get(&gr->fecs.falcon, subdev);
2100 	if (ret)
2101 		return ret;
2102 
2103 	ret = nvkm_falcon_get(&gr->gpccs.falcon, subdev);
2104 	if (ret)
2105 		return ret;
2106 
2107 	ret = gr->func->init(gr);
2108 	if (ret)
2109 		return ret;
2110 
2111 	nvkm_inth_allow(&subdev->inth);
2112 	return 0;
2113 }
2114 
2115 static int
2116 gf100_gr_fini(struct nvkm_gr *base, bool suspend)
2117 {
2118 	struct gf100_gr *gr = gf100_gr(base);
2119 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
2120 
2121 	nvkm_inth_block(&subdev->inth);
2122 
2123 	nvkm_falcon_put(&gr->gpccs.falcon, subdev);
2124 	nvkm_falcon_put(&gr->fecs.falcon, subdev);
2125 	return 0;
2126 }
2127 
2128 static void *
2129 gf100_gr_dtor(struct nvkm_gr *base)
2130 {
2131 	struct gf100_gr *gr = gf100_gr(base);
2132 
2133 	kfree(gr->data);
2134 
2135 	nvkm_memory_unref(&gr->unknown);
2136 	nvkm_memory_unref(&gr->attrib_cb);
2137 	nvkm_memory_unref(&gr->bundle_cb);
2138 	nvkm_memory_unref(&gr->pagepool);
2139 
2140 	nvkm_falcon_dtor(&gr->gpccs.falcon);
2141 	nvkm_falcon_dtor(&gr->fecs.falcon);
2142 
2143 	nvkm_blob_dtor(&gr->fecs.inst);
2144 	nvkm_blob_dtor(&gr->fecs.data);
2145 	nvkm_blob_dtor(&gr->gpccs.inst);
2146 	nvkm_blob_dtor(&gr->gpccs.data);
2147 
2148 	vfree(gr->bundle64);
2149 	vfree(gr->bundle_veid);
2150 	vfree(gr->bundle);
2151 	vfree(gr->method);
2152 	vfree(gr->sw_ctx);
2153 	vfree(gr->sw_nonctx);
2154 	vfree(gr->sw_nonctx1);
2155 	vfree(gr->sw_nonctx2);
2156 	vfree(gr->sw_nonctx3);
2157 	vfree(gr->sw_nonctx4);
2158 
2159 	return gr;
2160 }
2161 
2162 static const struct nvkm_falcon_func
2163 gf100_gr_flcn = {
2164 	.load_imem = nvkm_falcon_v1_load_imem,
2165 	.load_dmem = nvkm_falcon_v1_load_dmem,
2166 	.start = nvkm_falcon_v1_start,
2167 };
2168 
2169 void
2170 gf100_gr_init_num_tpc_per_gpc(struct gf100_gr *gr, bool pd, bool ds)
2171 {
2172 	struct nvkm_device *device = gr->base.engine.subdev.device;
2173 	int gpc, i, j;
2174 	u32 data;
2175 
2176 	for (gpc = 0, i = 0; i < 4; i++) {
2177 		for (data = 0, j = 0; j < 8 && gpc < gr->gpc_nr; j++, gpc++)
2178 			data |= gr->tpc_nr[gpc] << (j * 4);
2179 		if (pd)
2180 			nvkm_wr32(device, 0x406028 + (i * 4), data);
2181 		if (ds)
2182 			nvkm_wr32(device, 0x405870 + (i * 4), data);
2183 	}
2184 }
2185 
2186 void
2187 gf100_gr_init_400054(struct gf100_gr *gr)
2188 {
2189 	nvkm_wr32(gr->base.engine.subdev.device, 0x400054, 0x34ce3464);
2190 }
2191 
2192 void
2193 gf100_gr_init_exception2(struct gf100_gr *gr)
2194 {
2195 	struct nvkm_device *device = gr->base.engine.subdev.device;
2196 
2197 	nvkm_wr32(device, 0x40011c, 0xffffffff);
2198 	nvkm_wr32(device, 0x400134, 0xffffffff);
2199 }
2200 
2201 void
2202 gf100_gr_init_rop_exceptions(struct gf100_gr *gr)
2203 {
2204 	struct nvkm_device *device = gr->base.engine.subdev.device;
2205 	int rop;
2206 
2207 	for (rop = 0; rop < gr->rop_nr; rop++) {
2208 		nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0x40000000);
2209 		nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0x40000000);
2210 		nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
2211 		nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
2212 	}
2213 }
2214 
2215 void
2216 gf100_gr_init_shader_exceptions(struct gf100_gr *gr, int gpc, int tpc)
2217 {
2218 	struct nvkm_device *device = gr->base.engine.subdev.device;
2219 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
2220 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
2221 }
2222 
2223 void
2224 gf100_gr_init_tex_hww_esr(struct gf100_gr *gr, int gpc, int tpc)
2225 {
2226 	struct nvkm_device *device = gr->base.engine.subdev.device;
2227 	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
2228 }
2229 
2230 void
2231 gf100_gr_init_419eb4(struct gf100_gr *gr)
2232 {
2233 	struct nvkm_device *device = gr->base.engine.subdev.device;
2234 	nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
2235 }
2236 
2237 void
2238 gf100_gr_init_419cc0(struct gf100_gr *gr)
2239 {
2240 	struct nvkm_device *device = gr->base.engine.subdev.device;
2241 	int gpc, tpc;
2242 
2243 	nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
2244 
2245 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2246 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++)
2247 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
2248 	}
2249 }
2250 
2251 void
2252 gf100_gr_init_40601c(struct gf100_gr *gr)
2253 {
2254 	nvkm_wr32(gr->base.engine.subdev.device, 0x40601c, 0xc0000000);
2255 }
2256 
2257 void
2258 gf100_gr_init_fecs_exceptions(struct gf100_gr *gr)
2259 {
2260 	const u32 data = gr->firmware ? 0x000e0000 : 0x000e0001;
2261 	nvkm_wr32(gr->base.engine.subdev.device, 0x409c24, data);
2262 }
2263 
2264 void
2265 gf100_gr_init_gpc_mmu(struct gf100_gr *gr)
2266 {
2267 	struct nvkm_device *device = gr->base.engine.subdev.device;
2268 	struct nvkm_fb *fb = device->fb;
2269 
2270 	nvkm_wr32(device, 0x418880, nvkm_rd32(device, 0x100c80) & 0x00000001);
2271 	nvkm_wr32(device, 0x4188a4, 0x03000000);
2272 	nvkm_wr32(device, 0x418888, 0x00000000);
2273 	nvkm_wr32(device, 0x41888c, 0x00000000);
2274 	nvkm_wr32(device, 0x418890, 0x00000000);
2275 	nvkm_wr32(device, 0x418894, 0x00000000);
2276 	nvkm_wr32(device, 0x4188b4, nvkm_memory_addr(fb->mmu_wr) >> 8);
2277 	nvkm_wr32(device, 0x4188b8, nvkm_memory_addr(fb->mmu_rd) >> 8);
2278 }
2279 
2280 void
2281 gf100_gr_init_num_active_ltcs(struct gf100_gr *gr)
2282 {
2283 	struct nvkm_device *device = gr->base.engine.subdev.device;
2284 	nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
2285 }
2286 
2287 void
2288 gf100_gr_init_zcull(struct gf100_gr *gr)
2289 {
2290 	struct nvkm_device *device = gr->base.engine.subdev.device;
2291 	const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
2292 	const u8 tile_nr = ALIGN(gr->tpc_total, 32);
2293 	u8 bank[GPC_MAX] = {}, gpc, i, j;
2294 	u32 data;
2295 
2296 	for (i = 0; i < tile_nr; i += 8) {
2297 		for (data = 0, j = 0; j < 8 && i + j < gr->tpc_total; j++) {
2298 			data |= bank[gr->tile[i + j]] << (j * 4);
2299 			bank[gr->tile[i + j]]++;
2300 		}
2301 		nvkm_wr32(device, GPC_BCAST(0x0980 + ((i / 8) * 4)), data);
2302 	}
2303 
2304 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2305 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
2306 			  gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
2307 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
2308 							 gr->tpc_total);
2309 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
2310 	}
2311 
2312 	nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
2313 }
2314 
2315 void
2316 gf100_gr_init_vsc_stream_master(struct gf100_gr *gr)
2317 {
2318 	struct nvkm_device *device = gr->base.engine.subdev.device;
2319 	nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
2320 }
2321 
2322 static int
2323 gf100_gr_reset(struct nvkm_gr *base)
2324 {
2325 	struct nvkm_subdev *subdev = &base->engine.subdev;
2326 	struct nvkm_device *device = subdev->device;
2327 	struct gf100_gr *gr = gf100_gr(base);
2328 
2329 	nvkm_mask(device, 0x400500, 0x00000001, 0x00000000);
2330 
2331 	WARN_ON(gf100_gr_fecs_halt_pipeline(gr));
2332 
2333 	subdev->func->fini(subdev, false);
2334 	nvkm_mc_disable(device, subdev->type, subdev->inst);
2335 	if (gr->func->gpccs.reset)
2336 		gr->func->gpccs.reset(gr);
2337 
2338 	nvkm_mc_enable(device, subdev->type, subdev->inst);
2339 	return subdev->func->init(subdev);
2340 }
2341 
2342 int
2343 gf100_gr_init(struct gf100_gr *gr)
2344 {
2345 	struct nvkm_device *device = gr->base.engine.subdev.device;
2346 	int gpc, tpc;
2347 
2348 	nvkm_mask(device, 0x400500, 0x00010001, 0x00000000);
2349 
2350 	gr->func->init_gpc_mmu(gr);
2351 
2352 	if (gr->sw_nonctx1) {
2353 		gf100_gr_mmio(gr, gr->sw_nonctx1);
2354 		gf100_gr_mmio(gr, gr->sw_nonctx2);
2355 		gf100_gr_mmio(gr, gr->sw_nonctx3);
2356 		gf100_gr_mmio(gr, gr->sw_nonctx4);
2357 	} else
2358 	if (gr->sw_nonctx) {
2359 		gf100_gr_mmio(gr, gr->sw_nonctx);
2360 	} else {
2361 		gf100_gr_mmio(gr, gr->func->mmio);
2362 	}
2363 
2364 	gf100_gr_wait_idle(gr);
2365 
2366 	if (gr->func->init_r405a14)
2367 		gr->func->init_r405a14(gr);
2368 
2369 	if (gr->func->clkgate_pack)
2370 		nvkm_therm_clkgate_init(device->therm, gr->func->clkgate_pack);
2371 
2372 	if (gr->func->init_bios)
2373 		gr->func->init_bios(gr);
2374 
2375 	gr->func->init_vsc_stream_master(gr);
2376 	gr->func->init_zcull(gr);
2377 	gr->func->init_num_active_ltcs(gr);
2378 	if (gr->func->init_rop_active_fbps)
2379 		gr->func->init_rop_active_fbps(gr);
2380 	if (gr->func->init_bios_2)
2381 		gr->func->init_bios_2(gr);
2382 	if (gr->func->init_swdx_pes_mask)
2383 		gr->func->init_swdx_pes_mask(gr);
2384 	if (gr->func->init_fs)
2385 		gr->func->init_fs(gr);
2386 
2387 	nvkm_wr32(device, 0x400500, 0x00010001);
2388 
2389 	nvkm_wr32(device, 0x400100, 0xffffffff);
2390 	nvkm_wr32(device, 0x40013c, 0xffffffff);
2391 	nvkm_wr32(device, 0x400124, 0x00000002);
2392 
2393 	gr->func->init_fecs_exceptions(gr);
2394 
2395 	if (gr->func->init_40a790)
2396 		gr->func->init_40a790(gr);
2397 
2398 	if (gr->func->init_ds_hww_esr_2)
2399 		gr->func->init_ds_hww_esr_2(gr);
2400 
2401 	nvkm_wr32(device, 0x404000, 0xc0000000);
2402 	nvkm_wr32(device, 0x404600, 0xc0000000);
2403 	nvkm_wr32(device, 0x408030, 0xc0000000);
2404 
2405 	if (gr->func->init_40601c)
2406 		gr->func->init_40601c(gr);
2407 
2408 	nvkm_wr32(device, 0x406018, 0xc0000000);
2409 	nvkm_wr32(device, 0x404490, 0xc0000000);
2410 
2411 	if (gr->func->init_sked_hww_esr)
2412 		gr->func->init_sked_hww_esr(gr);
2413 
2414 	nvkm_wr32(device, 0x405840, 0xc0000000);
2415 	nvkm_wr32(device, 0x405844, 0x00ffffff);
2416 
2417 	if (gr->func->init_419cc0)
2418 		gr->func->init_419cc0(gr);
2419 	if (gr->func->init_419eb4)
2420 		gr->func->init_419eb4(gr);
2421 	if (gr->func->init_419c9c)
2422 		gr->func->init_419c9c(gr);
2423 
2424 	if (gr->func->init_ppc_exceptions)
2425 		gr->func->init_ppc_exceptions(gr);
2426 
2427 	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2428 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
2429 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
2430 		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
2431 		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
2432 		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
2433 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
2434 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
2435 			if (gr->func->init_tex_hww_esr)
2436 				gr->func->init_tex_hww_esr(gr, gpc, tpc);
2437 			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
2438 			if (gr->func->init_504430)
2439 				gr->func->init_504430(gr, gpc, tpc);
2440 			gr->func->init_shader_exceptions(gr, gpc, tpc);
2441 		}
2442 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
2443 		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
2444 	}
2445 
2446 	gr->func->init_rop_exceptions(gr);
2447 
2448 	nvkm_wr32(device, 0x400108, 0xffffffff);
2449 	nvkm_wr32(device, 0x400138, 0xffffffff);
2450 	nvkm_wr32(device, 0x400118, 0xffffffff);
2451 	nvkm_wr32(device, 0x400130, 0xffffffff);
2452 	if (gr->func->init_exception2)
2453 		gr->func->init_exception2(gr);
2454 
2455 	if (gr->func->init_400054)
2456 		gr->func->init_400054(gr);
2457 
2458 	gf100_gr_zbc_init(gr);
2459 
2460 	if (gr->func->init_4188a4)
2461 		gr->func->init_4188a4(gr);
2462 
2463 	return gf100_gr_init_ctxctl(gr);
2464 }
2465 
2466 void
2467 gf100_gr_fecs_reset(struct gf100_gr *gr)
2468 {
2469 	struct nvkm_device *device = gr->base.engine.subdev.device;
2470 
2471 	nvkm_wr32(device, 0x409614, 0x00000070);
2472 	nvkm_usec(device, 10, NVKM_DELAY);
2473 	nvkm_mask(device, 0x409614, 0x00000700, 0x00000700);
2474 	nvkm_usec(device, 10, NVKM_DELAY);
2475 	nvkm_rd32(device, 0x409614);
2476 }
2477 
2478 #include "fuc/hubgf100.fuc3.h"
2479 
2480 struct gf100_gr_ucode
2481 gf100_gr_fecs_ucode = {
2482 	.code.data = gf100_grhub_code,
2483 	.code.size = sizeof(gf100_grhub_code),
2484 	.data.data = gf100_grhub_data,
2485 	.data.size = sizeof(gf100_grhub_data),
2486 };
2487 
2488 #include "fuc/gpcgf100.fuc3.h"
2489 
2490 struct gf100_gr_ucode
2491 gf100_gr_gpccs_ucode = {
2492 	.code.data = gf100_grgpc_code,
2493 	.code.size = sizeof(gf100_grgpc_code),
2494 	.data.data = gf100_grgpc_data,
2495 	.data.size = sizeof(gf100_grgpc_data),
2496 };
2497 
2498 static int
2499 gf100_gr_nonstall(struct nvkm_gr *base)
2500 {
2501 	struct gf100_gr *gr = gf100_gr(base);
2502 
2503 	if (gr->func->nonstall)
2504 		return gr->func->nonstall(gr);
2505 
2506 	return -EINVAL;
2507 }
2508 
2509 static const struct nvkm_gr_func
2510 gf100_gr_ = {
2511 	.dtor = gf100_gr_dtor,
2512 	.oneinit = gf100_gr_oneinit,
2513 	.init = gf100_gr_init_,
2514 	.fini = gf100_gr_fini,
2515 	.nonstall = gf100_gr_nonstall,
2516 	.reset = gf100_gr_reset,
2517 	.units = gf100_gr_units,
2518 	.chan_new = gf100_gr_chan_new,
2519 	.object_get = gf100_gr_object_get,
2520 	.chsw_load = gf100_gr_chsw_load,
2521 	.ctxsw.pause = gf100_gr_fecs_stop_ctxsw,
2522 	.ctxsw.resume = gf100_gr_fecs_start_ctxsw,
2523 	.ctxsw.inst = gf100_gr_ctxsw_inst,
2524 };
2525 
2526 static const struct gf100_gr_func
2527 gf100_gr = {
2528 	.oneinit_tiles = gf100_gr_oneinit_tiles,
2529 	.oneinit_sm_id = gf100_gr_oneinit_sm_id,
2530 	.init = gf100_gr_init,
2531 	.init_gpc_mmu = gf100_gr_init_gpc_mmu,
2532 	.init_vsc_stream_master = gf100_gr_init_vsc_stream_master,
2533 	.init_zcull = gf100_gr_init_zcull,
2534 	.init_num_active_ltcs = gf100_gr_init_num_active_ltcs,
2535 	.init_fecs_exceptions = gf100_gr_init_fecs_exceptions,
2536 	.init_40601c = gf100_gr_init_40601c,
2537 	.init_419cc0 = gf100_gr_init_419cc0,
2538 	.init_419eb4 = gf100_gr_init_419eb4,
2539 	.init_tex_hww_esr = gf100_gr_init_tex_hww_esr,
2540 	.init_shader_exceptions = gf100_gr_init_shader_exceptions,
2541 	.init_rop_exceptions = gf100_gr_init_rop_exceptions,
2542 	.init_exception2 = gf100_gr_init_exception2,
2543 	.init_400054 = gf100_gr_init_400054,
2544 	.trap_mp = gf100_gr_trap_mp,
2545 	.mmio = gf100_gr_pack_mmio,
2546 	.fecs.ucode = &gf100_gr_fecs_ucode,
2547 	.fecs.reset = gf100_gr_fecs_reset,
2548 	.gpccs.ucode = &gf100_gr_gpccs_ucode,
2549 	.rops = gf100_gr_rops,
2550 	.grctx = &gf100_grctx,
2551 	.zbc = &gf100_gr_zbc,
2552 	.sclass = {
2553 		{ -1, -1, FERMI_TWOD_A },
2554 		{ -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2555 		{ -1, -1, FERMI_A, &gf100_fermi },
2556 		{ -1, -1, FERMI_COMPUTE_A },
2557 		{}
2558 	}
2559 };
2560 
2561 int
2562 gf100_gr_nofw(struct gf100_gr *gr, int ver, const struct gf100_gr_fwif *fwif)
2563 {
2564 	gr->firmware = false;
2565 	return 0;
2566 }
2567 
2568 static int
2569 gf100_gr_load_fw(struct gf100_gr *gr, const char *name,
2570 		 struct nvkm_blob *blob)
2571 {
2572 	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
2573 	struct nvkm_device *device = subdev->device;
2574 	const struct firmware *fw;
2575 	char f[32];
2576 	int ret;
2577 
2578 	snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, name);
2579 	ret = request_firmware(&fw, f, device->dev);
2580 	if (ret) {
2581 		snprintf(f, sizeof(f), "nouveau/%s", name);
2582 		ret = request_firmware(&fw, f, device->dev);
2583 		if (ret) {
2584 			nvkm_error(subdev, "failed to load %s\n", name);
2585 			return ret;
2586 		}
2587 	}
2588 
2589 	blob->size = fw->size;
2590 	blob->data = kmemdup(fw->data, blob->size, GFP_KERNEL);
2591 	release_firmware(fw);
2592 	return (blob->data != NULL) ? 0 : -ENOMEM;
2593 }
2594 
2595 int
2596 gf100_gr_load(struct gf100_gr *gr, int ver, const struct gf100_gr_fwif *fwif)
2597 {
2598 	struct nvkm_device *device = gr->base.engine.subdev.device;
2599 
2600 	if (!nvkm_boolopt(device->cfgopt, "NvGrUseFW", false))
2601 		return -EINVAL;
2602 
2603 	if (gf100_gr_load_fw(gr, "fuc409c", &gr->fecs.inst) ||
2604 	    gf100_gr_load_fw(gr, "fuc409d", &gr->fecs.data) ||
2605 	    gf100_gr_load_fw(gr, "fuc41ac", &gr->gpccs.inst) ||
2606 	    gf100_gr_load_fw(gr, "fuc41ad", &gr->gpccs.data))
2607 		return -ENOENT;
2608 
2609 	gr->firmware = true;
2610 	return 0;
2611 }
2612 
2613 static const struct gf100_gr_fwif
2614 gf100_gr_fwif[] = {
2615 	{ -1, gf100_gr_load, &gf100_gr },
2616 	{ -1, gf100_gr_nofw, &gf100_gr },
2617 	{}
2618 };
2619 
2620 int
2621 gf100_gr_new_(const struct gf100_gr_fwif *fwif, struct nvkm_device *device,
2622 	      enum nvkm_subdev_type type, int inst, struct nvkm_gr **pgr)
2623 {
2624 	struct gf100_gr *gr;
2625 	int ret;
2626 
2627 	if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
2628 		return -ENOMEM;
2629 	*pgr = &gr->base;
2630 
2631 	ret = nvkm_gr_ctor(&gf100_gr_, device, type, inst, true, &gr->base);
2632 	if (ret)
2633 		return ret;
2634 
2635 	fwif = nvkm_firmware_load(&gr->base.engine.subdev, fwif, "Gr", gr);
2636 	if (IS_ERR(fwif))
2637 		return PTR_ERR(fwif);
2638 
2639 	gr->func = fwif->func;
2640 
2641 	ret = nvkm_falcon_ctor(&gf100_gr_flcn, &gr->base.engine.subdev,
2642 			       "fecs", 0x409000, &gr->fecs.falcon);
2643 	if (ret)
2644 		return ret;
2645 
2646 	mutex_init(&gr->fecs.mutex);
2647 
2648 	ret = nvkm_falcon_ctor(&gf100_gr_flcn, &gr->base.engine.subdev,
2649 			       "gpccs", 0x41a000, &gr->gpccs.falcon);
2650 	if (ret)
2651 		return ret;
2652 
2653 	return 0;
2654 }
2655 
2656 int
2657 gf100_gr_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_gr **pgr)
2658 {
2659 	return gf100_gr_new_(gf100_gr_fwif, device, type, inst, pgr);
2660 }
2661