xref: /linux/drivers/gpu/drm/nouveau/nvkm/engine/disp/nv50.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "priv.h"
25 #include "chan.h"
26 #include "conn.h"
27 #include "head.h"
28 #include "dp.h"
29 #include "ior.h"
30 #include "outp.h"
31 
32 #include <core/client.h>
33 #include <core/ramht.h>
34 #include <subdev/bios.h>
35 #include <subdev/bios/disp.h>
36 #include <subdev/bios/init.h>
37 #include <subdev/bios/pll.h>
38 #include <subdev/devinit.h>
39 #include <subdev/i2c.h>
40 #include <subdev/mmu.h>
41 #include <subdev/timer.h>
42 
43 #include <nvif/class.h>
44 #include <nvif/unpack.h>
45 
46 static void
47 nv50_pior_clock(struct nvkm_ior *pior)
48 {
49 	struct nvkm_device *device = pior->disp->engine.subdev.device;
50 	const u32 poff = nv50_ior_base(pior);
51 
52 	nvkm_mask(device, 0x614380 + poff, 0x00000707, 0x00000001);
53 }
54 
55 static int
56 nv50_pior_dp_links(struct nvkm_ior *pior, struct nvkm_i2c_aux *aux)
57 {
58 	int ret = nvkm_i2c_aux_lnk_ctl(aux, pior->dp.nr, pior->dp.bw, pior->dp.ef);
59 	if (ret)
60 		return ret;
61 
62 	return 1;
63 }
64 
65 static const struct nvkm_ior_func_dp
66 nv50_pior_dp = {
67 	.links = nv50_pior_dp_links,
68 };
69 
70 static void
71 nv50_pior_power_wait(struct nvkm_device *device, u32 poff)
72 {
73 	nvkm_msec(device, 2000,
74 		if (!(nvkm_rd32(device, 0x61e004 + poff) & 0x80000000))
75 			break;
76 	);
77 }
78 
79 static void
80 nv50_pior_power(struct nvkm_ior *pior, bool normal, bool pu, bool data, bool vsync, bool hsync)
81 {
82 	struct nvkm_device *device = pior->disp->engine.subdev.device;
83 	const u32  poff = nv50_ior_base(pior);
84 	const u32 shift = normal ? 0 : 16;
85 	const u32 state = 0x80000000 | (0x00000001 * !!pu) << shift;
86 	const u32 field = 0x80000000 | (0x00000101 << shift);
87 
88 	nv50_pior_power_wait(device, poff);
89 	nvkm_mask(device, 0x61e004 + poff, field, state);
90 	nv50_pior_power_wait(device, poff);
91 }
92 
93 void
94 nv50_pior_depth(struct nvkm_ior *ior, struct nvkm_ior_state *state, u32 ctrl)
95 {
96 	/* GF119 moves this information to per-head methods, which is
97 	 * a lot more convenient, and where our shared code expect it.
98 	 */
99 	if (state->head && state == &ior->asy) {
100 		struct nvkm_head *head = nvkm_head_find(ior->disp, __ffs(state->head));
101 
102 		if (!WARN_ON(!head)) {
103 			struct nvkm_head_state *state = &head->asy;
104 			switch ((ctrl & 0x000f0000) >> 16) {
105 			case 6: state->or.depth = 30; break;
106 			case 5: state->or.depth = 24; break;
107 			case 2: state->or.depth = 18; break;
108 			case 0: state->or.depth = 18; break; /*XXX*/
109 			default:
110 				state->or.depth = 18;
111 				WARN_ON(1);
112 				break;
113 			}
114 		}
115 	}
116 }
117 
118 static void
119 nv50_pior_state(struct nvkm_ior *pior, struct nvkm_ior_state *state)
120 {
121 	struct nvkm_device *device = pior->disp->engine.subdev.device;
122 	const u32 coff = pior->id * 8 + (state == &pior->arm) * 4;
123 	u32 ctrl = nvkm_rd32(device, 0x610b80 + coff);
124 
125 	state->proto_evo = (ctrl & 0x00000f00) >> 8;
126 	state->rgdiv = 1;
127 	switch (state->proto_evo) {
128 	case 0: state->proto = TMDS; break;
129 	default:
130 		state->proto = UNKNOWN;
131 		break;
132 	}
133 
134 	state->head = ctrl & 0x00000003;
135 	nv50_pior_depth(pior, state, ctrl);
136 }
137 
138 static const struct nvkm_ior_func
139 nv50_pior = {
140 	.state = nv50_pior_state,
141 	.power = nv50_pior_power,
142 	.clock = nv50_pior_clock,
143 	.dp = &nv50_pior_dp,
144 };
145 
146 int
147 nv50_pior_new(struct nvkm_disp *disp, int id)
148 {
149 	return nvkm_ior_new_(&nv50_pior, disp, PIOR, id, false);
150 }
151 
152 int
153 nv50_pior_cnt(struct nvkm_disp *disp, unsigned long *pmask)
154 {
155 	struct nvkm_device *device = disp->engine.subdev.device;
156 
157 	*pmask = (nvkm_rd32(device, 0x610184) & 0x70000000) >> 28;
158 	return 3;
159 }
160 
161 static int
162 nv50_sor_bl_set(struct nvkm_ior *ior, int lvl)
163 {
164 	struct nvkm_device *device = ior->disp->engine.subdev.device;
165 	const u32 soff = nv50_ior_base(ior);
166 	u32 div = 1025;
167 	u32 val = (lvl * div) / 100;
168 
169 	nvkm_wr32(device, 0x61c084 + soff, 0x80000000 | val);
170 	return 0;
171 }
172 
173 static int
174 nv50_sor_bl_get(struct nvkm_ior *ior)
175 {
176 	struct nvkm_device *device = ior->disp->engine.subdev.device;
177 	const u32 soff = nv50_ior_base(ior);
178 	u32 div = 1025;
179 	u32 val;
180 
181 	val  = nvkm_rd32(device, 0x61c084 + soff);
182 	val &= 0x000007ff;
183 	return ((val * 100) + (div / 2)) / div;
184 }
185 
186 const struct nvkm_ior_func_bl
187 nv50_sor_bl = {
188 	.get = nv50_sor_bl_get,
189 	.set = nv50_sor_bl_set,
190 };
191 
192 void
193 nv50_sor_clock(struct nvkm_ior *sor)
194 {
195 	struct nvkm_device *device = sor->disp->engine.subdev.device;
196 	const int  div = sor->asy.link == 3;
197 	const u32 soff = nv50_ior_base(sor);
198 
199 	nvkm_mask(device, 0x614300 + soff, 0x00000707, (div << 8) | div);
200 }
201 
202 static void
203 nv50_sor_power_wait(struct nvkm_device *device, u32 soff)
204 {
205 	nvkm_msec(device, 2000,
206 		if (!(nvkm_rd32(device, 0x61c004 + soff) & 0x80000000))
207 			break;
208 	);
209 }
210 
211 void
212 nv50_sor_power(struct nvkm_ior *sor, bool normal, bool pu, bool data, bool vsync, bool hsync)
213 {
214 	struct nvkm_device *device = sor->disp->engine.subdev.device;
215 	const u32  soff = nv50_ior_base(sor);
216 	const u32 shift = normal ? 0 : 16;
217 	const u32 state = 0x80000000 | (0x00000001 * !!pu) << shift;
218 	const u32 field = 0x80000000 | (0x00000001 << shift);
219 
220 	nv50_sor_power_wait(device, soff);
221 	nvkm_mask(device, 0x61c004 + soff, field, state);
222 	nv50_sor_power_wait(device, soff);
223 
224 	nvkm_msec(device, 2000,
225 		if (!(nvkm_rd32(device, 0x61c030 + soff) & 0x10000000))
226 			break;
227 	);
228 }
229 
230 void
231 nv50_sor_state(struct nvkm_ior *sor, struct nvkm_ior_state *state)
232 {
233 	struct nvkm_device *device = sor->disp->engine.subdev.device;
234 	const u32 coff = sor->id * 8 + (state == &sor->arm) * 4;
235 	u32 ctrl = nvkm_rd32(device, 0x610b70 + coff);
236 
237 	state->proto_evo = (ctrl & 0x00000f00) >> 8;
238 	switch (state->proto_evo) {
239 	case 0: state->proto = LVDS; state->link = 1; break;
240 	case 1: state->proto = TMDS; state->link = 1; break;
241 	case 2: state->proto = TMDS; state->link = 2; break;
242 	case 5: state->proto = TMDS; state->link = 3; break;
243 	default:
244 		state->proto = UNKNOWN;
245 		break;
246 	}
247 
248 	state->head = ctrl & 0x00000003;
249 }
250 
251 static const struct nvkm_ior_func
252 nv50_sor = {
253 	.state = nv50_sor_state,
254 	.power = nv50_sor_power,
255 	.clock = nv50_sor_clock,
256 	.bl = &nv50_sor_bl,
257 };
258 
259 static int
260 nv50_sor_new(struct nvkm_disp *disp, int id)
261 {
262 	return nvkm_ior_new_(&nv50_sor, disp, SOR, id, false);
263 }
264 
265 int
266 nv50_sor_cnt(struct nvkm_disp *disp, unsigned long *pmask)
267 {
268 	struct nvkm_device *device = disp->engine.subdev.device;
269 
270 	*pmask = (nvkm_rd32(device, 0x610184) & 0x03000000) >> 24;
271 	return 2;
272 }
273 
274 static void
275 nv50_dac_clock(struct nvkm_ior *dac)
276 {
277 	struct nvkm_device *device = dac->disp->engine.subdev.device;
278 	const u32 doff = nv50_ior_base(dac);
279 
280 	nvkm_mask(device, 0x614280 + doff, 0x07070707, 0x00000000);
281 }
282 
283 int
284 nv50_dac_sense(struct nvkm_ior *dac, u32 loadval)
285 {
286 	struct nvkm_device *device = dac->disp->engine.subdev.device;
287 	const u32 doff = nv50_ior_base(dac);
288 
289 	dac->func->power(dac, false, true, false, false, false);
290 
291 	nvkm_wr32(device, 0x61a00c + doff, 0x00100000 | loadval);
292 	mdelay(9);
293 	udelay(500);
294 	loadval = nvkm_mask(device, 0x61a00c + doff, 0xffffffff, 0x00000000);
295 
296 	dac->func->power(dac, false, false, false, false, false);
297 	if (!(loadval & 0x80000000))
298 		return -ETIMEDOUT;
299 
300 	return (loadval & 0x38000000) >> 27;
301 }
302 
303 static void
304 nv50_dac_power_wait(struct nvkm_device *device, const u32 doff)
305 {
306 	nvkm_msec(device, 2000,
307 		if (!(nvkm_rd32(device, 0x61a004 + doff) & 0x80000000))
308 			break;
309 	);
310 }
311 
312 void
313 nv50_dac_power(struct nvkm_ior *dac, bool normal, bool pu, bool data, bool vsync, bool hsync)
314 {
315 	struct nvkm_device *device = dac->disp->engine.subdev.device;
316 	const u32  doff = nv50_ior_base(dac);
317 	const u32 shift = normal ? 0 : 16;
318 	const u32 state = 0x80000000 | (0x00000040 * !    pu |
319 					0x00000010 * !  data |
320 					0x00000004 * ! vsync |
321 					0x00000001 * ! hsync) << shift;
322 	const u32 field = 0xc0000000 | (0x00000055 << shift);
323 
324 	nv50_dac_power_wait(device, doff);
325 	nvkm_mask(device, 0x61a004 + doff, field, state);
326 	nv50_dac_power_wait(device, doff);
327 }
328 
329 static void
330 nv50_dac_state(struct nvkm_ior *dac, struct nvkm_ior_state *state)
331 {
332 	struct nvkm_device *device = dac->disp->engine.subdev.device;
333 	const u32 coff = dac->id * 8 + (state == &dac->arm) * 4;
334 	u32 ctrl = nvkm_rd32(device, 0x610b58 + coff);
335 
336 	state->proto_evo = (ctrl & 0x00000f00) >> 8;
337 	switch (state->proto_evo) {
338 	case 0: state->proto = CRT; break;
339 	default:
340 		state->proto = UNKNOWN;
341 		break;
342 	}
343 
344 	state->head = ctrl & 0x00000003;
345 }
346 
347 static const struct nvkm_ior_func
348 nv50_dac = {
349 	.state = nv50_dac_state,
350 	.power = nv50_dac_power,
351 	.sense = nv50_dac_sense,
352 	.clock = nv50_dac_clock,
353 };
354 
355 int
356 nv50_dac_new(struct nvkm_disp *disp, int id)
357 {
358 	return nvkm_ior_new_(&nv50_dac, disp, DAC, id, false);
359 }
360 
361 int
362 nv50_dac_cnt(struct nvkm_disp *disp, unsigned long *pmask)
363 {
364 	struct nvkm_device *device = disp->engine.subdev.device;
365 
366 	*pmask = (nvkm_rd32(device, 0x610184) & 0x00700000) >> 20;
367 	return 3;
368 }
369 
370 static void
371 nv50_head_vblank_put(struct nvkm_head *head)
372 {
373 	struct nvkm_device *device = head->disp->engine.subdev.device;
374 
375 	nvkm_mask(device, 0x61002c, (4 << head->id), 0);
376 }
377 
378 static void
379 nv50_head_vblank_get(struct nvkm_head *head)
380 {
381 	struct nvkm_device *device = head->disp->engine.subdev.device;
382 
383 	nvkm_mask(device, 0x61002c, (4 << head->id), (4 << head->id));
384 }
385 
386 static void
387 nv50_head_rgclk(struct nvkm_head *head, int div)
388 {
389 	struct nvkm_device *device = head->disp->engine.subdev.device;
390 
391 	nvkm_mask(device, 0x614200 + (head->id * 0x800), 0x0000000f, div);
392 }
393 
394 void
395 nv50_head_rgpos(struct nvkm_head *head, u16 *hline, u16 *vline)
396 {
397 	struct nvkm_device *device = head->disp->engine.subdev.device;
398 	const u32 hoff = head->id * 0x800;
399 
400 	/* vline read locks hline. */
401 	*vline = nvkm_rd32(device, 0x616340 + hoff) & 0x0000ffff;
402 	*hline = nvkm_rd32(device, 0x616344 + hoff) & 0x0000ffff;
403 }
404 
405 static void
406 nv50_head_state(struct nvkm_head *head, struct nvkm_head_state *state)
407 {
408 	struct nvkm_device *device = head->disp->engine.subdev.device;
409 	const u32 hoff = head->id * 0x540 + (state == &head->arm) * 4;
410 	u32 data;
411 
412 	data = nvkm_rd32(device, 0x610ae8 + hoff);
413 	state->vblanke = (data & 0xffff0000) >> 16;
414 	state->hblanke = (data & 0x0000ffff);
415 	data = nvkm_rd32(device, 0x610af0 + hoff);
416 	state->vblanks = (data & 0xffff0000) >> 16;
417 	state->hblanks = (data & 0x0000ffff);
418 	data = nvkm_rd32(device, 0x610af8 + hoff);
419 	state->vtotal = (data & 0xffff0000) >> 16;
420 	state->htotal = (data & 0x0000ffff);
421 	data = nvkm_rd32(device, 0x610b00 + hoff);
422 	state->vsynce = (data & 0xffff0000) >> 16;
423 	state->hsynce = (data & 0x0000ffff);
424 	state->hz = (nvkm_rd32(device, 0x610ad0 + hoff) & 0x003fffff) * 1000;
425 }
426 
427 static const struct nvkm_head_func
428 nv50_head = {
429 	.state = nv50_head_state,
430 	.rgpos = nv50_head_rgpos,
431 	.rgclk = nv50_head_rgclk,
432 	.vblank_get = nv50_head_vblank_get,
433 	.vblank_put = nv50_head_vblank_put,
434 };
435 
436 int
437 nv50_head_new(struct nvkm_disp *disp, int id)
438 {
439 	return nvkm_head_new_(&nv50_head, disp, id);
440 }
441 
442 int
443 nv50_head_cnt(struct nvkm_disp *disp, unsigned long *pmask)
444 {
445 	*pmask = 3;
446 	return 2;
447 }
448 
449 
450 static void
451 nv50_disp_mthd_list(struct nvkm_disp *disp, int debug, u32 base, int c,
452 		    const struct nvkm_disp_mthd_list *list, int inst)
453 {
454 	struct nvkm_subdev *subdev = &disp->engine.subdev;
455 	struct nvkm_device *device = subdev->device;
456 	int i;
457 
458 	for (i = 0; list->data[i].mthd; i++) {
459 		if (list->data[i].addr) {
460 			u32 next = nvkm_rd32(device, list->data[i].addr + base + 0);
461 			u32 prev = nvkm_rd32(device, list->data[i].addr + base + c);
462 			u32 mthd = list->data[i].mthd + (list->mthd * inst);
463 			const char *name = list->data[i].name;
464 			char mods[16];
465 
466 			if (prev != next)
467 				snprintf(mods, sizeof(mods), "-> %08x", next);
468 			else
469 				snprintf(mods, sizeof(mods), "%13c", ' ');
470 
471 			nvkm_printk_(subdev, debug, info,
472 				     "\t%04x: %08x %s%s%s\n",
473 				     mthd, prev, mods, name ? " // " : "",
474 				     name ? name : "");
475 		}
476 	}
477 }
478 
479 void
480 nv50_disp_chan_mthd(struct nvkm_disp_chan *chan, int debug)
481 {
482 	struct nvkm_disp *disp = chan->disp;
483 	struct nvkm_subdev *subdev = &disp->engine.subdev;
484 	const struct nvkm_disp_chan_mthd *mthd = chan->mthd;
485 	const struct nvkm_disp_mthd_list *list;
486 	int i, j;
487 
488 	if (debug > subdev->debug)
489 		return;
490 	if (!mthd)
491 		return;
492 
493 	for (i = 0; (list = mthd->data[i].mthd) != NULL; i++) {
494 		u32 base = chan->head * mthd->addr;
495 		for (j = 0; j < mthd->data[i].nr; j++, base += list->addr) {
496 			const char *cname = mthd->name;
497 			const char *sname = "";
498 			char cname_[16], sname_[16];
499 
500 			if (mthd->addr) {
501 				snprintf(cname_, sizeof(cname_), "%s %d",
502 					 mthd->name, chan->chid.user);
503 				cname = cname_;
504 			}
505 
506 			if (mthd->data[i].nr > 1) {
507 				snprintf(sname_, sizeof(sname_), " - %s %d",
508 					 mthd->data[i].name, j);
509 				sname = sname_;
510 			}
511 
512 			nvkm_printk_(subdev, debug, info, "%s%s:\n", cname, sname);
513 			nv50_disp_mthd_list(disp, debug, base, mthd->prev,
514 					    list, j);
515 		}
516 	}
517 }
518 
519 static void
520 nv50_disp_chan_uevent_fini(struct nvkm_event *event, int type, int index)
521 {
522 	struct nvkm_disp *disp = container_of(event, typeof(*disp), uevent);
523 	struct nvkm_device *device = disp->engine.subdev.device;
524 	nvkm_mask(device, 0x610028, 0x00000001 << index, 0x00000000 << index);
525 	nvkm_wr32(device, 0x610020, 0x00000001 << index);
526 }
527 
528 static void
529 nv50_disp_chan_uevent_init(struct nvkm_event *event, int types, int index)
530 {
531 	struct nvkm_disp *disp = container_of(event, typeof(*disp), uevent);
532 	struct nvkm_device *device = disp->engine.subdev.device;
533 	nvkm_wr32(device, 0x610020, 0x00000001 << index);
534 	nvkm_mask(device, 0x610028, 0x00000001 << index, 0x00000001 << index);
535 }
536 
537 void
538 nv50_disp_chan_uevent_send(struct nvkm_disp *disp, int chid)
539 {
540 	nvkm_event_ntfy(&disp->uevent, chid, NVKM_DISP_EVENT_CHAN_AWAKEN);
541 }
542 
543 const struct nvkm_event_func
544 nv50_disp_chan_uevent = {
545 	.init = nv50_disp_chan_uevent_init,
546 	.fini = nv50_disp_chan_uevent_fini,
547 };
548 
549 u64
550 nv50_disp_chan_user(struct nvkm_disp_chan *chan, u64 *psize)
551 {
552 	*psize = 0x1000;
553 	return 0x640000 + (chan->chid.user * 0x1000);
554 }
555 
556 void
557 nv50_disp_chan_intr(struct nvkm_disp_chan *chan, bool en)
558 {
559 	struct nvkm_device *device = chan->disp->engine.subdev.device;
560 	const u32 mask = 0x00010001 << chan->chid.user;
561 	const u32 data = en ? 0x00010000 << chan->chid.user : 0x00000000;
562 	nvkm_mask(device, 0x610028, mask, data);
563 }
564 
565 static void
566 nv50_disp_pioc_fini(struct nvkm_disp_chan *chan)
567 {
568 	struct nvkm_disp *disp = chan->disp;
569 	struct nvkm_subdev *subdev = &disp->engine.subdev;
570 	struct nvkm_device *device = subdev->device;
571 	int ctrl = chan->chid.ctrl;
572 	int user = chan->chid.user;
573 
574 	nvkm_mask(device, 0x610200 + (ctrl * 0x10), 0x00000001, 0x00000000);
575 	if (nvkm_msec(device, 2000,
576 		if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x00030000))
577 			break;
578 	) < 0) {
579 		nvkm_error(subdev, "ch %d timeout: %08x\n", user,
580 			   nvkm_rd32(device, 0x610200 + (ctrl * 0x10)));
581 	}
582 }
583 
584 static int
585 nv50_disp_pioc_init(struct nvkm_disp_chan *chan)
586 {
587 	struct nvkm_disp *disp = chan->disp;
588 	struct nvkm_subdev *subdev = &disp->engine.subdev;
589 	struct nvkm_device *device = subdev->device;
590 	int ctrl = chan->chid.ctrl;
591 	int user = chan->chid.user;
592 
593 	nvkm_wr32(device, 0x610200 + (ctrl * 0x10), 0x00002000);
594 	if (nvkm_msec(device, 2000,
595 		if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x00030000))
596 			break;
597 	) < 0) {
598 		nvkm_error(subdev, "ch %d timeout0: %08x\n", user,
599 			   nvkm_rd32(device, 0x610200 + (ctrl * 0x10)));
600 		return -EBUSY;
601 	}
602 
603 	nvkm_wr32(device, 0x610200 + (ctrl * 0x10), 0x00000001);
604 	if (nvkm_msec(device, 2000,
605 		u32 tmp = nvkm_rd32(device, 0x610200 + (ctrl * 0x10));
606 		if ((tmp & 0x00030000) == 0x00010000)
607 			break;
608 	) < 0) {
609 		nvkm_error(subdev, "ch %d timeout1: %08x\n", user,
610 			   nvkm_rd32(device, 0x610200 + (ctrl * 0x10)));
611 		return -EBUSY;
612 	}
613 
614 	return 0;
615 }
616 
617 const struct nvkm_disp_chan_func
618 nv50_disp_pioc_func = {
619 	.init = nv50_disp_pioc_init,
620 	.fini = nv50_disp_pioc_fini,
621 	.intr = nv50_disp_chan_intr,
622 	.user = nv50_disp_chan_user,
623 };
624 
625 int
626 nv50_disp_dmac_bind(struct nvkm_disp_chan *chan, struct nvkm_object *object, u32 handle)
627 {
628 	return nvkm_ramht_insert(chan->disp->ramht, object, chan->chid.user, -10, handle,
629 				 chan->chid.user << 28 | chan->chid.user);
630 }
631 
632 static void
633 nv50_disp_dmac_fini(struct nvkm_disp_chan *chan)
634 {
635 	struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
636 	struct nvkm_device *device = subdev->device;
637 	int ctrl = chan->chid.ctrl;
638 	int user = chan->chid.user;
639 
640 	/* deactivate channel */
641 	nvkm_mask(device, 0x610200 + (ctrl * 0x0010), 0x00001010, 0x00001000);
642 	nvkm_mask(device, 0x610200 + (ctrl * 0x0010), 0x00000003, 0x00000000);
643 	if (nvkm_msec(device, 2000,
644 		if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x001e0000))
645 			break;
646 	) < 0) {
647 		nvkm_error(subdev, "ch %d fini timeout, %08x\n", user,
648 			   nvkm_rd32(device, 0x610200 + (ctrl * 0x10)));
649 	}
650 
651 	chan->suspend_put = nvkm_rd32(device, 0x640000 + (ctrl * 0x1000));
652 }
653 
654 static int
655 nv50_disp_dmac_init(struct nvkm_disp_chan *chan)
656 {
657 	struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
658 	struct nvkm_device *device = subdev->device;
659 	int ctrl = chan->chid.ctrl;
660 	int user = chan->chid.user;
661 
662 	/* initialise channel for dma command submission */
663 	nvkm_wr32(device, 0x610204 + (ctrl * 0x0010), chan->push);
664 	nvkm_wr32(device, 0x610208 + (ctrl * 0x0010), 0x00010000);
665 	nvkm_wr32(device, 0x61020c + (ctrl * 0x0010), ctrl);
666 	nvkm_mask(device, 0x610200 + (ctrl * 0x0010), 0x00000010, 0x00000010);
667 	nvkm_wr32(device, 0x640000 + (ctrl * 0x1000), chan->suspend_put);
668 	nvkm_wr32(device, 0x610200 + (ctrl * 0x0010), 0x00000013);
669 
670 	/* wait for it to go inactive */
671 	if (nvkm_msec(device, 2000,
672 		if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x80000000))
673 			break;
674 	) < 0) {
675 		nvkm_error(subdev, "ch %d init timeout, %08x\n", user,
676 			   nvkm_rd32(device, 0x610200 + (ctrl * 0x10)));
677 		return -EBUSY;
678 	}
679 
680 	return 0;
681 }
682 
683 int
684 nv50_disp_dmac_push(struct nvkm_disp_chan *chan, u64 object)
685 {
686 	chan->memory = nvkm_umem_search(chan->object.client, object);
687 	if (IS_ERR(chan->memory))
688 		return PTR_ERR(chan->memory);
689 
690 	if (nvkm_memory_size(chan->memory) < 0x1000)
691 		return -EINVAL;
692 
693 	switch (nvkm_memory_target(chan->memory)) {
694 	case NVKM_MEM_TARGET_VRAM: chan->push = 0x00000001; break;
695 	case NVKM_MEM_TARGET_NCOH: chan->push = 0x00000002; break;
696 	case NVKM_MEM_TARGET_HOST: chan->push = 0x00000003; break;
697 	default:
698 		return -EINVAL;
699 	}
700 
701 	chan->push |= nvkm_memory_addr(chan->memory) >> 8;
702 	return 0;
703 }
704 
705 const struct nvkm_disp_chan_func
706 nv50_disp_dmac_func = {
707 	.push = nv50_disp_dmac_push,
708 	.init = nv50_disp_dmac_init,
709 	.fini = nv50_disp_dmac_fini,
710 	.intr = nv50_disp_chan_intr,
711 	.user = nv50_disp_chan_user,
712 	.bind = nv50_disp_dmac_bind,
713 };
714 
715 const struct nvkm_disp_chan_user
716 nv50_disp_curs = {
717 	.func = &nv50_disp_pioc_func,
718 	.ctrl = 7,
719 	.user = 7,
720 };
721 
722 const struct nvkm_disp_chan_user
723 nv50_disp_oimm = {
724 	.func = &nv50_disp_pioc_func,
725 	.ctrl = 5,
726 	.user = 5,
727 };
728 
729 static const struct nvkm_disp_mthd_list
730 nv50_disp_ovly_mthd_base = {
731 	.mthd = 0x0000,
732 	.addr = 0x000000,
733 	.data = {
734 		{ 0x0080, 0x000000 },
735 		{ 0x0084, 0x0009a0 },
736 		{ 0x0088, 0x0009c0 },
737 		{ 0x008c, 0x0009c8 },
738 		{ 0x0090, 0x6109b4 },
739 		{ 0x0094, 0x610970 },
740 		{ 0x00a0, 0x610998 },
741 		{ 0x00a4, 0x610964 },
742 		{ 0x00c0, 0x610958 },
743 		{ 0x00e0, 0x6109a8 },
744 		{ 0x00e4, 0x6109d0 },
745 		{ 0x00e8, 0x6109d8 },
746 		{ 0x0100, 0x61094c },
747 		{ 0x0104, 0x610984 },
748 		{ 0x0108, 0x61098c },
749 		{ 0x0800, 0x6109f8 },
750 		{ 0x0808, 0x610a08 },
751 		{ 0x080c, 0x610a10 },
752 		{ 0x0810, 0x610a00 },
753 		{}
754 	}
755 };
756 
757 static const struct nvkm_disp_chan_mthd
758 nv50_disp_ovly_mthd = {
759 	.name = "Overlay",
760 	.addr = 0x000540,
761 	.prev = 0x000004,
762 	.data = {
763 		{ "Global", 1, &nv50_disp_ovly_mthd_base },
764 		{}
765 	}
766 };
767 
768 static const struct nvkm_disp_chan_user
769 nv50_disp_ovly = {
770 	.func = &nv50_disp_dmac_func,
771 	.ctrl = 3,
772 	.user = 3,
773 	.mthd = &nv50_disp_ovly_mthd,
774 };
775 
776 static const struct nvkm_disp_mthd_list
777 nv50_disp_base_mthd_base = {
778 	.mthd = 0x0000,
779 	.addr = 0x000000,
780 	.data = {
781 		{ 0x0080, 0x000000 },
782 		{ 0x0084, 0x0008c4 },
783 		{ 0x0088, 0x0008d0 },
784 		{ 0x008c, 0x0008dc },
785 		{ 0x0090, 0x0008e4 },
786 		{ 0x0094, 0x610884 },
787 		{ 0x00a0, 0x6108a0 },
788 		{ 0x00a4, 0x610878 },
789 		{ 0x00c0, 0x61086c },
790 		{ 0x00e0, 0x610858 },
791 		{ 0x00e4, 0x610860 },
792 		{ 0x00e8, 0x6108ac },
793 		{ 0x00ec, 0x6108b4 },
794 		{ 0x0100, 0x610894 },
795 		{ 0x0110, 0x6108bc },
796 		{ 0x0114, 0x61088c },
797 		{}
798 	}
799 };
800 
801 const struct nvkm_disp_mthd_list
802 nv50_disp_base_mthd_image = {
803 	.mthd = 0x0400,
804 	.addr = 0x000000,
805 	.data = {
806 		{ 0x0800, 0x6108f0 },
807 		{ 0x0804, 0x6108fc },
808 		{ 0x0808, 0x61090c },
809 		{ 0x080c, 0x610914 },
810 		{ 0x0810, 0x610904 },
811 		{}
812 	}
813 };
814 
815 static const struct nvkm_disp_chan_mthd
816 nv50_disp_base_mthd = {
817 	.name = "Base",
818 	.addr = 0x000540,
819 	.prev = 0x000004,
820 	.data = {
821 		{ "Global", 1, &nv50_disp_base_mthd_base },
822 		{  "Image", 2, &nv50_disp_base_mthd_image },
823 		{}
824 	}
825 };
826 
827 static const struct nvkm_disp_chan_user
828 nv50_disp_base = {
829 	.func = &nv50_disp_dmac_func,
830 	.ctrl = 1,
831 	.user = 1,
832 	.mthd = &nv50_disp_base_mthd,
833 };
834 
835 const struct nvkm_disp_mthd_list
836 nv50_disp_core_mthd_base = {
837 	.mthd = 0x0000,
838 	.addr = 0x000000,
839 	.data = {
840 		{ 0x0080, 0x000000 },
841 		{ 0x0084, 0x610bb8 },
842 		{ 0x0088, 0x610b9c },
843 		{ 0x008c, 0x000000 },
844 		{}
845 	}
846 };
847 
848 static const struct nvkm_disp_mthd_list
849 nv50_disp_core_mthd_dac = {
850 	.mthd = 0x0080,
851 	.addr = 0x000008,
852 	.data = {
853 		{ 0x0400, 0x610b58 },
854 		{ 0x0404, 0x610bdc },
855 		{ 0x0420, 0x610828 },
856 		{}
857 	}
858 };
859 
860 const struct nvkm_disp_mthd_list
861 nv50_disp_core_mthd_sor = {
862 	.mthd = 0x0040,
863 	.addr = 0x000008,
864 	.data = {
865 		{ 0x0600, 0x610b70 },
866 		{}
867 	}
868 };
869 
870 const struct nvkm_disp_mthd_list
871 nv50_disp_core_mthd_pior = {
872 	.mthd = 0x0040,
873 	.addr = 0x000008,
874 	.data = {
875 		{ 0x0700, 0x610b80 },
876 		{}
877 	}
878 };
879 
880 static const struct nvkm_disp_mthd_list
881 nv50_disp_core_mthd_head = {
882 	.mthd = 0x0400,
883 	.addr = 0x000540,
884 	.data = {
885 		{ 0x0800, 0x610ad8 },
886 		{ 0x0804, 0x610ad0 },
887 		{ 0x0808, 0x610a48 },
888 		{ 0x080c, 0x610a78 },
889 		{ 0x0810, 0x610ac0 },
890 		{ 0x0814, 0x610af8 },
891 		{ 0x0818, 0x610b00 },
892 		{ 0x081c, 0x610ae8 },
893 		{ 0x0820, 0x610af0 },
894 		{ 0x0824, 0x610b08 },
895 		{ 0x0828, 0x610b10 },
896 		{ 0x082c, 0x610a68 },
897 		{ 0x0830, 0x610a60 },
898 		{ 0x0834, 0x000000 },
899 		{ 0x0838, 0x610a40 },
900 		{ 0x0840, 0x610a24 },
901 		{ 0x0844, 0x610a2c },
902 		{ 0x0848, 0x610aa8 },
903 		{ 0x084c, 0x610ab0 },
904 		{ 0x0860, 0x610a84 },
905 		{ 0x0864, 0x610a90 },
906 		{ 0x0868, 0x610b18 },
907 		{ 0x086c, 0x610b20 },
908 		{ 0x0870, 0x610ac8 },
909 		{ 0x0874, 0x610a38 },
910 		{ 0x0880, 0x610a58 },
911 		{ 0x0884, 0x610a9c },
912 		{ 0x08a0, 0x610a70 },
913 		{ 0x08a4, 0x610a50 },
914 		{ 0x08a8, 0x610ae0 },
915 		{ 0x08c0, 0x610b28 },
916 		{ 0x08c4, 0x610b30 },
917 		{ 0x08c8, 0x610b40 },
918 		{ 0x08d4, 0x610b38 },
919 		{ 0x08d8, 0x610b48 },
920 		{ 0x08dc, 0x610b50 },
921 		{ 0x0900, 0x610a18 },
922 		{ 0x0904, 0x610ab8 },
923 		{}
924 	}
925 };
926 
927 static const struct nvkm_disp_chan_mthd
928 nv50_disp_core_mthd = {
929 	.name = "Core",
930 	.addr = 0x000000,
931 	.prev = 0x000004,
932 	.data = {
933 		{ "Global", 1, &nv50_disp_core_mthd_base },
934 		{    "DAC", 3, &nv50_disp_core_mthd_dac  },
935 		{    "SOR", 2, &nv50_disp_core_mthd_sor  },
936 		{   "PIOR", 3, &nv50_disp_core_mthd_pior },
937 		{   "HEAD", 2, &nv50_disp_core_mthd_head },
938 		{}
939 	}
940 };
941 
942 static void
943 nv50_disp_core_fini(struct nvkm_disp_chan *chan)
944 {
945 	struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
946 	struct nvkm_device *device = subdev->device;
947 
948 	/* deactivate channel */
949 	nvkm_mask(device, 0x610200, 0x00000010, 0x00000000);
950 	nvkm_mask(device, 0x610200, 0x00000003, 0x00000000);
951 	if (nvkm_msec(device, 2000,
952 		if (!(nvkm_rd32(device, 0x610200) & 0x001e0000))
953 			break;
954 	) < 0) {
955 		nvkm_error(subdev, "core fini: %08x\n",
956 			   nvkm_rd32(device, 0x610200));
957 	}
958 
959 	chan->suspend_put = nvkm_rd32(device, 0x640000);
960 }
961 
962 static int
963 nv50_disp_core_init(struct nvkm_disp_chan *chan)
964 {
965 	struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
966 	struct nvkm_device *device = subdev->device;
967 
968 	/* attempt to unstick channel from some unknown state */
969 	if ((nvkm_rd32(device, 0x610200) & 0x009f0000) == 0x00020000)
970 		nvkm_mask(device, 0x610200, 0x00800000, 0x00800000);
971 	if ((nvkm_rd32(device, 0x610200) & 0x003f0000) == 0x00030000)
972 		nvkm_mask(device, 0x610200, 0x00600000, 0x00600000);
973 
974 	/* initialise channel for dma command submission */
975 	nvkm_wr32(device, 0x610204, chan->push);
976 	nvkm_wr32(device, 0x610208, 0x00010000);
977 	nvkm_wr32(device, 0x61020c, 0x00000000);
978 	nvkm_mask(device, 0x610200, 0x00000010, 0x00000010);
979 	nvkm_wr32(device, 0x640000, chan->suspend_put);
980 	nvkm_wr32(device, 0x610200, 0x01000013);
981 
982 	/* wait for it to go inactive */
983 	if (nvkm_msec(device, 2000,
984 		if (!(nvkm_rd32(device, 0x610200) & 0x80000000))
985 			break;
986 	) < 0) {
987 		nvkm_error(subdev, "core init: %08x\n",
988 			   nvkm_rd32(device, 0x610200));
989 		return -EBUSY;
990 	}
991 
992 	return 0;
993 }
994 
995 const struct nvkm_disp_chan_func
996 nv50_disp_core_func = {
997 	.push = nv50_disp_dmac_push,
998 	.init = nv50_disp_core_init,
999 	.fini = nv50_disp_core_fini,
1000 	.intr = nv50_disp_chan_intr,
1001 	.user = nv50_disp_chan_user,
1002 	.bind = nv50_disp_dmac_bind,
1003 };
1004 
1005 static const struct nvkm_disp_chan_user
1006 nv50_disp_core = {
1007 	.func = &nv50_disp_core_func,
1008 	.ctrl = 0,
1009 	.user = 0,
1010 	.mthd = &nv50_disp_core_mthd,
1011 };
1012 
1013 static u32
1014 nv50_disp_super_iedt(struct nvkm_head *head, struct nvkm_outp *outp,
1015 		     u8 *ver, u8 *hdr, u8 *cnt, u8 *len,
1016 		     struct nvbios_outp *iedt)
1017 {
1018 	struct nvkm_bios *bios = head->disp->engine.subdev.device->bios;
1019 	const u8  l = ffs(outp->info.link);
1020 	const u16 t = outp->info.hasht;
1021 	const u16 m = (0x0100 << head->id) | (l << 6) | outp->info.or;
1022 	u32 data = nvbios_outp_match(bios, t, m, ver, hdr, cnt, len, iedt);
1023 	if (!data)
1024 		OUTP_DBG(outp, "missing IEDT for %04x:%04x", t, m);
1025 	return data;
1026 }
1027 
1028 static void
1029 nv50_disp_super_ied_on(struct nvkm_head *head,
1030 		       struct nvkm_ior *ior, int id, u32 khz)
1031 {
1032 	struct nvkm_subdev *subdev = &head->disp->engine.subdev;
1033 	struct nvkm_bios *bios = subdev->device->bios;
1034 	struct nvkm_outp *outp = ior->asy.outp;
1035 	struct nvbios_ocfg iedtrs;
1036 	struct nvbios_outp iedt;
1037 	u8  ver, hdr, cnt, len, flags = 0x00;
1038 	u32 data;
1039 
1040 	if (!outp) {
1041 		IOR_DBG(ior, "nothing to attach");
1042 		return;
1043 	}
1044 
1045 	/* Lookup IED table for the device. */
1046 	data = nv50_disp_super_iedt(head, outp, &ver, &hdr, &cnt, &len, &iedt);
1047 	if (!data)
1048 		return;
1049 
1050 	/* Lookup IEDT runtime settings for the current configuration. */
1051 	if (ior->type == SOR) {
1052 		if (ior->asy.proto == LVDS) {
1053 			if (head->asy.or.depth == 24)
1054 				flags |= 0x02;
1055 		}
1056 		if (ior->asy.link == 3)
1057 			flags |= 0x01;
1058 	}
1059 
1060 	data = nvbios_ocfg_match(bios, data, ior->asy.proto_evo, flags,
1061 				 &ver, &hdr, &cnt, &len, &iedtrs);
1062 	if (!data) {
1063 		OUTP_DBG(outp, "missing IEDT RS for %02x:%02x",
1064 			 ior->asy.proto_evo, flags);
1065 		return;
1066 	}
1067 
1068 	/* Execute the OnInt[23] script for the current frequency. */
1069 	data = nvbios_oclk_match(bios, iedtrs.clkcmp[id], khz);
1070 	if (!data) {
1071 		OUTP_DBG(outp, "missing IEDT RSS %d for %02x:%02x %d khz",
1072 			 id, ior->asy.proto_evo, flags, khz);
1073 		return;
1074 	}
1075 
1076 	nvbios_init(subdev, data,
1077 		init.outp = &outp->info;
1078 		init.or   = ior->id;
1079 		init.link = ior->asy.link;
1080 		init.head = head->id;
1081 	);
1082 }
1083 
1084 static void
1085 nv50_disp_super_ied_off(struct nvkm_head *head, struct nvkm_ior *ior, int id)
1086 {
1087 	struct nvkm_outp *outp = ior->arm.outp;
1088 	struct nvbios_outp iedt;
1089 	u8  ver, hdr, cnt, len;
1090 	u32 data;
1091 
1092 	if (!outp) {
1093 		IOR_DBG(ior, "nothing attached");
1094 		return;
1095 	}
1096 
1097 	data = nv50_disp_super_iedt(head, outp, &ver, &hdr, &cnt, &len, &iedt);
1098 	if (!data)
1099 		return;
1100 
1101 	nvbios_init(&head->disp->engine.subdev, iedt.script[id],
1102 		init.outp = &outp->info;
1103 		init.or   = ior->id;
1104 		init.link = ior->arm.link;
1105 		init.head = head->id;
1106 	);
1107 }
1108 
1109 static struct nvkm_ior *
1110 nv50_disp_super_ior_asy(struct nvkm_head *head)
1111 {
1112 	struct nvkm_ior *ior;
1113 	list_for_each_entry(ior, &head->disp->iors, head) {
1114 		if (ior->asy.head & (1 << head->id)) {
1115 			HEAD_DBG(head, "to %s", ior->name);
1116 			return ior;
1117 		}
1118 	}
1119 	HEAD_DBG(head, "nothing to attach");
1120 	return NULL;
1121 }
1122 
1123 static struct nvkm_ior *
1124 nv50_disp_super_ior_arm(struct nvkm_head *head)
1125 {
1126 	struct nvkm_ior *ior;
1127 	list_for_each_entry(ior, &head->disp->iors, head) {
1128 		if (ior->arm.head & (1 << head->id)) {
1129 			HEAD_DBG(head, "on %s", ior->name);
1130 			return ior;
1131 		}
1132 	}
1133 	HEAD_DBG(head, "nothing attached");
1134 	return NULL;
1135 }
1136 
1137 void
1138 nv50_disp_super_3_0(struct nvkm_disp *disp, struct nvkm_head *head)
1139 {
1140 	struct nvkm_ior *ior;
1141 
1142 	/* Determine which OR, if any, we're attaching to the head. */
1143 	HEAD_DBG(head, "supervisor 3.0");
1144 	ior = nv50_disp_super_ior_asy(head);
1145 	if (!ior)
1146 		return;
1147 
1148 	/* Execute OnInt3 IED script. */
1149 	nv50_disp_super_ied_on(head, ior, 1, head->asy.hz / 1000);
1150 
1151 	/* OR-specific handling. */
1152 	if (ior->func->war_3)
1153 		ior->func->war_3(ior);
1154 }
1155 
1156 static void
1157 nv50_disp_super_2_2_dp(struct nvkm_head *head, struct nvkm_ior *ior)
1158 {
1159 	struct nvkm_subdev *subdev = &head->disp->engine.subdev;
1160 	const u32      khz = head->asy.hz / 1000;
1161 	const u32 linkKBps = ior->dp.bw * 27000;
1162 	const u32   symbol = 100000;
1163 	int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0;
1164 	int TU, VTUi, VTUf, VTUa;
1165 	u64 link_data_rate, link_ratio, unk;
1166 	u32 best_diff = 64 * symbol;
1167 	u64 h, v;
1168 
1169 	/* symbols/hblank - algorithm taken from comments in tegra driver */
1170 	h = head->asy.hblanke + head->asy.htotal - head->asy.hblanks - 7;
1171 	h = h * linkKBps;
1172 	do_div(h, khz);
1173 	h = h - (3 * ior->dp.ef) - (12 / ior->dp.nr);
1174 
1175 	/* symbols/vblank - algorithm taken from comments in tegra driver */
1176 	v = head->asy.vblanks - head->asy.vblanke - 25;
1177 	v = v * linkKBps;
1178 	do_div(v, khz);
1179 	v = v - ((36 / ior->dp.nr) + 3) - 1;
1180 
1181 	ior->func->dp->audio_sym(ior, head->id, h, v);
1182 
1183 	/* watermark / activesym */
1184 	link_data_rate = (khz * head->asy.or.depth / 8) / ior->dp.nr;
1185 
1186 	/* calculate ratio of packed data rate to link symbol rate */
1187 	link_ratio = link_data_rate * symbol;
1188 	do_div(link_ratio, linkKBps);
1189 
1190 	for (TU = 64; ior->func->dp->activesym && TU >= 32; TU--) {
1191 		/* calculate average number of valid symbols in each TU */
1192 		u32 tu_valid = link_ratio * TU;
1193 		u32 calc, diff;
1194 
1195 		/* find a hw representation for the fraction.. */
1196 		VTUi = tu_valid / symbol;
1197 		calc = VTUi * symbol;
1198 		diff = tu_valid - calc;
1199 		if (diff) {
1200 			if (diff >= (symbol / 2)) {
1201 				VTUf = symbol / (symbol - diff);
1202 				if (symbol - (VTUf * diff))
1203 					VTUf++;
1204 
1205 				if (VTUf <= 15) {
1206 					VTUa  = 1;
1207 					calc += symbol - (symbol / VTUf);
1208 				} else {
1209 					VTUa  = 0;
1210 					VTUf  = 1;
1211 					calc += symbol;
1212 				}
1213 			} else {
1214 				VTUa  = 0;
1215 				VTUf  = min((int)(symbol / diff), 15);
1216 				calc += symbol / VTUf;
1217 			}
1218 
1219 			diff = calc - tu_valid;
1220 		} else {
1221 			/* no remainder, but the hw doesn't like the fractional
1222 			 * part to be zero.  decrement the integer part and
1223 			 * have the fraction add a whole symbol back
1224 			 */
1225 			VTUa = 0;
1226 			VTUf = 1;
1227 			VTUi--;
1228 		}
1229 
1230 		if (diff < best_diff) {
1231 			best_diff = diff;
1232 			bestTU = TU;
1233 			bestVTUa = VTUa;
1234 			bestVTUf = VTUf;
1235 			bestVTUi = VTUi;
1236 			if (diff == 0)
1237 				break;
1238 		}
1239 	}
1240 
1241 	if (ior->func->dp->activesym) {
1242 		if (!bestTU) {
1243 			nvkm_error(subdev, "unable to determine dp config\n");
1244 			return;
1245 		}
1246 
1247 		ior->func->dp->activesym(ior, head->id, bestTU, bestVTUa, bestVTUf, bestVTUi);
1248 	} else {
1249 		bestTU = 64;
1250 	}
1251 
1252 	/* XXX close to vbios numbers, but not right */
1253 	unk  = (symbol - link_ratio) * bestTU;
1254 	unk *= link_ratio;
1255 	do_div(unk, symbol);
1256 	do_div(unk, symbol);
1257 	unk += 6;
1258 
1259 	ior->func->dp->watermark(ior, head->id, unk);
1260 }
1261 
1262 void
1263 nv50_disp_super_2_2(struct nvkm_disp *disp, struct nvkm_head *head)
1264 {
1265 	const u32 khz = head->asy.hz / 1000;
1266 	struct nvkm_outp *outp;
1267 	struct nvkm_ior *ior;
1268 
1269 	/* Determine which OR, if any, we're attaching from the head. */
1270 	HEAD_DBG(head, "supervisor 2.2");
1271 	ior = nv50_disp_super_ior_asy(head);
1272 	if (!ior)
1273 		return;
1274 
1275 	outp = ior->asy.outp;
1276 
1277 	/* For some reason, NVIDIA decided not to:
1278 	 *
1279 	 * A) Give dual-link LVDS a separate EVO protocol, like for TMDS.
1280 	 *  and
1281 	 * B) Use SetControlOutputResource.PixelDepth on LVDS.
1282 	 *
1283 	 * Override the values we usually read from HW with the same
1284 	 * data we pass though an ioctl instead.
1285 	 */
1286 	if (outp && ior->type == SOR && ior->asy.proto == LVDS) {
1287 		head->asy.or.depth = outp->lvds.bpc8 ? 24 : 18;
1288 		ior->asy.link      = outp->lvds.dual ? 3 : 1;
1289 	}
1290 
1291 	/* Execute OnInt2 IED script. */
1292 	nv50_disp_super_ied_on(head, ior, 0, khz);
1293 
1294 	/* Program RG clock divider. */
1295 	head->func->rgclk(head, ior->asy.rgdiv);
1296 
1297 	/* Mode-specific internal DP configuration. */
1298 	if (ior->type == SOR && ior->asy.proto == DP)
1299 		nv50_disp_super_2_2_dp(head, ior);
1300 
1301 	/* OR-specific handling. */
1302 	ior->func->clock(ior);
1303 	if (ior->func->war_2)
1304 		ior->func->war_2(ior);
1305 }
1306 
1307 void
1308 nv50_disp_super_2_1(struct nvkm_disp *disp, struct nvkm_head *head)
1309 {
1310 	struct nvkm_devinit *devinit = disp->engine.subdev.device->devinit;
1311 	const u32 khz = head->asy.hz / 1000;
1312 	HEAD_DBG(head, "supervisor 2.1 - %d khz", khz);
1313 	if (khz)
1314 		nvkm_devinit_pll_set(devinit, PLL_VPLL0 + head->id, khz);
1315 }
1316 
1317 void
1318 nv50_disp_super_2_0(struct nvkm_disp *disp, struct nvkm_head *head)
1319 {
1320 	struct nvkm_ior *ior;
1321 
1322 	/* Determine which OR, if any, we're detaching from the head. */
1323 	HEAD_DBG(head, "supervisor 2.0");
1324 	ior = nv50_disp_super_ior_arm(head);
1325 	if (!ior)
1326 		return;
1327 
1328 	/* Execute OffInt2 IED script. */
1329 	nv50_disp_super_ied_off(head, ior, 2);
1330 }
1331 
1332 void
1333 nv50_disp_super_1_0(struct nvkm_disp *disp, struct nvkm_head *head)
1334 {
1335 	struct nvkm_ior *ior;
1336 
1337 	/* Determine which OR, if any, we're detaching from the head. */
1338 	HEAD_DBG(head, "supervisor 1.0");
1339 	ior = nv50_disp_super_ior_arm(head);
1340 	if (!ior)
1341 		return;
1342 
1343 	/* Execute OffInt1 IED script. */
1344 	nv50_disp_super_ied_off(head, ior, 1);
1345 }
1346 
1347 void
1348 nv50_disp_super_1(struct nvkm_disp *disp)
1349 {
1350 	struct nvkm_head *head;
1351 	struct nvkm_ior *ior;
1352 
1353 	list_for_each_entry(head, &disp->heads, head) {
1354 		head->func->state(head, &head->arm);
1355 		head->func->state(head, &head->asy);
1356 	}
1357 
1358 	list_for_each_entry(ior, &disp->iors, head) {
1359 		ior->func->state(ior, &ior->arm);
1360 		ior->func->state(ior, &ior->asy);
1361 	}
1362 }
1363 
1364 void
1365 nv50_disp_super(struct work_struct *work)
1366 {
1367 	struct nvkm_disp *disp = container_of(work, struct nvkm_disp, super.work);
1368 	struct nvkm_subdev *subdev = &disp->engine.subdev;
1369 	struct nvkm_device *device = subdev->device;
1370 	struct nvkm_head *head;
1371 	u32 super;
1372 
1373 	mutex_lock(&disp->super.mutex);
1374 	super = nvkm_rd32(device, 0x610030);
1375 
1376 	nvkm_debug(subdev, "supervisor %08x %08x\n", disp->super.pending, super);
1377 
1378 	if (disp->super.pending & 0x00000010) {
1379 		nv50_disp_chan_mthd(disp->chan[0], NV_DBG_DEBUG);
1380 		nv50_disp_super_1(disp);
1381 		list_for_each_entry(head, &disp->heads, head) {
1382 			if (!(super & (0x00000020 << head->id)))
1383 				continue;
1384 			if (!(super & (0x00000080 << head->id)))
1385 				continue;
1386 			nv50_disp_super_1_0(disp, head);
1387 		}
1388 	} else
1389 	if (disp->super.pending & 0x00000020) {
1390 		list_for_each_entry(head, &disp->heads, head) {
1391 			if (!(super & (0x00000080 << head->id)))
1392 				continue;
1393 			nv50_disp_super_2_0(disp, head);
1394 		}
1395 		list_for_each_entry(head, &disp->heads, head) {
1396 			if (!(super & (0x00000200 << head->id)))
1397 				continue;
1398 			nv50_disp_super_2_1(disp, head);
1399 		}
1400 		list_for_each_entry(head, &disp->heads, head) {
1401 			if (!(super & (0x00000080 << head->id)))
1402 				continue;
1403 			nv50_disp_super_2_2(disp, head);
1404 		}
1405 	} else
1406 	if (disp->super.pending & 0x00000040) {
1407 		list_for_each_entry(head, &disp->heads, head) {
1408 			if (!(super & (0x00000080 << head->id)))
1409 				continue;
1410 			nv50_disp_super_3_0(disp, head);
1411 		}
1412 	}
1413 
1414 	nvkm_wr32(device, 0x610030, 0x80000000);
1415 	mutex_unlock(&disp->super.mutex);
1416 }
1417 
1418 const struct nvkm_enum
1419 nv50_disp_intr_error_type[] = {
1420 	{ 0, "NONE" },
1421 	{ 1, "PUSHBUFFER_ERR" },
1422 	{ 2, "TRAP" },
1423 	{ 3, "RESERVED_METHOD" },
1424 	{ 4, "INVALID_ARG" },
1425 	{ 5, "INVALID_STATE" },
1426 	{ 7, "UNRESOLVABLE_HANDLE" },
1427 	{}
1428 };
1429 
1430 static const struct nvkm_enum
1431 nv50_disp_intr_error_code[] = {
1432 	{ 0x00, "" },
1433 	{}
1434 };
1435 
1436 static void
1437 nv50_disp_intr_error(struct nvkm_disp *disp, int chid)
1438 {
1439 	struct nvkm_subdev *subdev = &disp->engine.subdev;
1440 	struct nvkm_device *device = subdev->device;
1441 	u32 data = nvkm_rd32(device, 0x610084 + (chid * 0x08));
1442 	u32 addr = nvkm_rd32(device, 0x610080 + (chid * 0x08));
1443 	u32 code = (addr & 0x00ff0000) >> 16;
1444 	u32 type = (addr & 0x00007000) >> 12;
1445 	u32 mthd = (addr & 0x00000ffc);
1446 	const struct nvkm_enum *ec, *et;
1447 
1448 	et = nvkm_enum_find(nv50_disp_intr_error_type, type);
1449 	ec = nvkm_enum_find(nv50_disp_intr_error_code, code);
1450 
1451 	nvkm_error(subdev,
1452 		   "ERROR %d [%s] %02x [%s] chid %d mthd %04x data %08x\n",
1453 		   type, et ? et->name : "", code, ec ? ec->name : "",
1454 		   chid, mthd, data);
1455 
1456 	if (chid < ARRAY_SIZE(disp->chan)) {
1457 		switch (mthd) {
1458 		case 0x0080:
1459 			nv50_disp_chan_mthd(disp->chan[chid], NV_DBG_ERROR);
1460 			break;
1461 		default:
1462 			break;
1463 		}
1464 	}
1465 
1466 	nvkm_wr32(device, 0x610020, 0x00010000 << chid);
1467 	nvkm_wr32(device, 0x610080 + (chid * 0x08), 0x90000000);
1468 }
1469 
1470 void
1471 nv50_disp_intr(struct nvkm_disp *disp)
1472 {
1473 	struct nvkm_device *device = disp->engine.subdev.device;
1474 	u32 intr0 = nvkm_rd32(device, 0x610020);
1475 	u32 intr1 = nvkm_rd32(device, 0x610024);
1476 
1477 	while (intr0 & 0x001f0000) {
1478 		u32 chid = __ffs(intr0 & 0x001f0000) - 16;
1479 		nv50_disp_intr_error(disp, chid);
1480 		intr0 &= ~(0x00010000 << chid);
1481 	}
1482 
1483 	while (intr0 & 0x0000001f) {
1484 		u32 chid = __ffs(intr0 & 0x0000001f);
1485 		nv50_disp_chan_uevent_send(disp, chid);
1486 		intr0 &= ~(0x00000001 << chid);
1487 	}
1488 
1489 	if (intr1 & 0x00000004) {
1490 		nvkm_disp_vblank(disp, 0);
1491 		nvkm_wr32(device, 0x610024, 0x00000004);
1492 	}
1493 
1494 	if (intr1 & 0x00000008) {
1495 		nvkm_disp_vblank(disp, 1);
1496 		nvkm_wr32(device, 0x610024, 0x00000008);
1497 	}
1498 
1499 	if (intr1 & 0x00000070) {
1500 		disp->super.pending = (intr1 & 0x00000070);
1501 		queue_work(disp->super.wq, &disp->super.work);
1502 		nvkm_wr32(device, 0x610024, disp->super.pending);
1503 	}
1504 }
1505 
1506 void
1507 nv50_disp_fini(struct nvkm_disp *disp, bool suspend)
1508 {
1509 	struct nvkm_device *device = disp->engine.subdev.device;
1510 	/* disable all interrupts */
1511 	nvkm_wr32(device, 0x610024, 0x00000000);
1512 	nvkm_wr32(device, 0x610020, 0x00000000);
1513 }
1514 
1515 int
1516 nv50_disp_init(struct nvkm_disp *disp)
1517 {
1518 	struct nvkm_device *device = disp->engine.subdev.device;
1519 	struct nvkm_head *head;
1520 	u32 tmp;
1521 	int i;
1522 
1523 	/* The below segments of code copying values from one register to
1524 	 * another appear to inform EVO of the display capabilities or
1525 	 * something similar.  NFI what the 0x614004 caps are for..
1526 	 */
1527 	tmp = nvkm_rd32(device, 0x614004);
1528 	nvkm_wr32(device, 0x610184, tmp);
1529 
1530 	/* ... CRTC caps */
1531 	list_for_each_entry(head, &disp->heads, head) {
1532 		tmp = nvkm_rd32(device, 0x616100 + (head->id * 0x800));
1533 		nvkm_wr32(device, 0x610190 + (head->id * 0x10), tmp);
1534 		tmp = nvkm_rd32(device, 0x616104 + (head->id * 0x800));
1535 		nvkm_wr32(device, 0x610194 + (head->id * 0x10), tmp);
1536 		tmp = nvkm_rd32(device, 0x616108 + (head->id * 0x800));
1537 		nvkm_wr32(device, 0x610198 + (head->id * 0x10), tmp);
1538 		tmp = nvkm_rd32(device, 0x61610c + (head->id * 0x800));
1539 		nvkm_wr32(device, 0x61019c + (head->id * 0x10), tmp);
1540 	}
1541 
1542 	/* ... DAC caps */
1543 	for (i = 0; i < disp->dac.nr; i++) {
1544 		tmp = nvkm_rd32(device, 0x61a000 + (i * 0x800));
1545 		nvkm_wr32(device, 0x6101d0 + (i * 0x04), tmp);
1546 	}
1547 
1548 	/* ... SOR caps */
1549 	for (i = 0; i < disp->sor.nr; i++) {
1550 		tmp = nvkm_rd32(device, 0x61c000 + (i * 0x800));
1551 		nvkm_wr32(device, 0x6101e0 + (i * 0x04), tmp);
1552 	}
1553 
1554 	/* ... PIOR caps */
1555 	for (i = 0; i < disp->pior.nr; i++) {
1556 		tmp = nvkm_rd32(device, 0x61e000 + (i * 0x800));
1557 		nvkm_wr32(device, 0x6101f0 + (i * 0x04), tmp);
1558 	}
1559 
1560 	/* steal display away from vbios, or something like that */
1561 	if (nvkm_rd32(device, 0x610024) & 0x00000100) {
1562 		nvkm_wr32(device, 0x610024, 0x00000100);
1563 		nvkm_mask(device, 0x6194e8, 0x00000001, 0x00000000);
1564 		if (nvkm_msec(device, 2000,
1565 			if (!(nvkm_rd32(device, 0x6194e8) & 0x00000002))
1566 				break;
1567 		) < 0)
1568 			return -EBUSY;
1569 	}
1570 
1571 	/* point at display engine memory area (hash table, objects) */
1572 	nvkm_wr32(device, 0x610010, (disp->inst->addr >> 8) | 9);
1573 
1574 	/* enable supervisor interrupts, disable everything else */
1575 	nvkm_wr32(device, 0x61002c, 0x00000370);
1576 	nvkm_wr32(device, 0x610028, 0x00000000);
1577 	return 0;
1578 }
1579 
1580 int
1581 nv50_disp_oneinit(struct nvkm_disp *disp)
1582 {
1583 	const struct nvkm_disp_func *func = disp->func;
1584 	struct nvkm_subdev *subdev = &disp->engine.subdev;
1585 	struct nvkm_device *device = subdev->device;
1586 	struct nvkm_bios *bios = device->bios;
1587 	struct nvkm_outp *outp, *outt, *pair;
1588 	struct nvkm_conn *conn;
1589 	struct nvkm_ior *ior;
1590 	int ret, i;
1591 	u8  ver, hdr;
1592 	u32 data;
1593 	struct dcb_output dcbE;
1594 	struct nvbios_connE connE;
1595 
1596 	if (func->wndw.cnt) {
1597 		disp->wndw.nr = func->wndw.cnt(disp, &disp->wndw.mask);
1598 		nvkm_debug(subdev, "Window(s): %d (%08lx)\n", disp->wndw.nr, disp->wndw.mask);
1599 	}
1600 
1601 	disp->head.nr = func->head.cnt(disp, &disp->head.mask);
1602 	nvkm_debug(subdev, "  Head(s): %d (%02lx)\n", disp->head.nr, disp->head.mask);
1603 	for_each_set_bit(i, &disp->head.mask, disp->head.nr) {
1604 		ret = func->head.new(disp, i);
1605 		if (ret)
1606 			return ret;
1607 	}
1608 
1609 	if (func->dac.cnt) {
1610 		disp->dac.nr = func->dac.cnt(disp, &disp->dac.mask);
1611 		nvkm_debug(subdev, "   DAC(s): %d (%02lx)\n", disp->dac.nr, disp->dac.mask);
1612 		for_each_set_bit(i, &disp->dac.mask, disp->dac.nr) {
1613 			ret = func->dac.new(disp, i);
1614 			if (ret)
1615 				return ret;
1616 		}
1617 	}
1618 
1619 	if (func->pior.cnt) {
1620 		disp->pior.nr = func->pior.cnt(disp, &disp->pior.mask);
1621 		nvkm_debug(subdev, "  PIOR(s): %d (%02lx)\n", disp->pior.nr, disp->pior.mask);
1622 		for_each_set_bit(i, &disp->pior.mask, disp->pior.nr) {
1623 			ret = func->pior.new(disp, i);
1624 			if (ret)
1625 				return ret;
1626 		}
1627 	}
1628 
1629 	disp->sor.nr = func->sor.cnt(disp, &disp->sor.mask);
1630 	nvkm_debug(subdev, "   SOR(s): %d (%02lx)\n", disp->sor.nr, disp->sor.mask);
1631 	for_each_set_bit(i, &disp->sor.mask, disp->sor.nr) {
1632 		ret = func->sor.new(disp, i);
1633 		if (ret)
1634 			return ret;
1635 	}
1636 
1637 	ret = nvkm_gpuobj_new(device, 0x10000, 0x10000, false, NULL, &disp->inst);
1638 	if (ret)
1639 		return ret;
1640 
1641 	ret = nvkm_ramht_new(device, func->ramht_size ? func->ramht_size : 0x1000, 0, disp->inst,
1642 			     &disp->ramht);
1643 	if (ret)
1644 		return ret;
1645 
1646 	/* Create output path objects for each VBIOS display path. */
1647 	i = -1;
1648 	while ((data = dcb_outp_parse(bios, ++i, &ver, &hdr, &dcbE))) {
1649 		if (WARN_ON((ver & 0xf0) != 0x40))
1650 			return -EINVAL;
1651 		if (dcbE.type == DCB_OUTPUT_UNUSED)
1652 			continue;
1653 		if (dcbE.type == DCB_OUTPUT_EOL)
1654 			break;
1655 		outp = NULL;
1656 
1657 		switch (dcbE.type) {
1658 		case DCB_OUTPUT_ANALOG:
1659 		case DCB_OUTPUT_TMDS:
1660 		case DCB_OUTPUT_LVDS:
1661 			ret = nvkm_outp_new(disp, i, &dcbE, &outp);
1662 			break;
1663 		case DCB_OUTPUT_DP:
1664 			ret = nvkm_dp_new(disp, i, &dcbE, &outp);
1665 			break;
1666 		case DCB_OUTPUT_TV:
1667 		case DCB_OUTPUT_WFD:
1668 			/* No support for WFD yet. */
1669 			ret = -ENODEV;
1670 			continue;
1671 		default:
1672 			nvkm_warn(subdev, "dcb %d type %d unknown\n",
1673 				  i, dcbE.type);
1674 			continue;
1675 		}
1676 
1677 		if (ret) {
1678 			if (outp) {
1679 				if (ret != -ENODEV)
1680 					OUTP_ERR(outp, "ctor failed: %d", ret);
1681 				else
1682 					OUTP_DBG(outp, "not supported");
1683 				nvkm_outp_del(&outp);
1684 				continue;
1685 			}
1686 			nvkm_error(subdev, "failed to create outp %d\n", i);
1687 			continue;
1688 		}
1689 
1690 		list_add_tail(&outp->head, &disp->outps);
1691 	}
1692 
1693 	/* Create connector objects based on available output paths. */
1694 	list_for_each_entry_safe(outp, outt, &disp->outps, head) {
1695 		/* VBIOS data *should* give us the most useful information. */
1696 		data = nvbios_connEp(bios, outp->info.connector, &ver, &hdr,
1697 				     &connE);
1698 
1699 		/* No bios connector data... */
1700 		if (!data) {
1701 			/* Heuristic: anything with the same ccb index is
1702 			 * considered to be on the same connector, any
1703 			 * output path without an associated ccb entry will
1704 			 * be put on its own connector.
1705 			 */
1706 			int ccb_index = outp->info.i2c_index;
1707 			if (ccb_index != 0xf) {
1708 				list_for_each_entry(pair, &disp->outps, head) {
1709 					if (pair->info.i2c_index == ccb_index) {
1710 						outp->conn = pair->conn;
1711 						break;
1712 					}
1713 				}
1714 			}
1715 
1716 			/* Connector shared with another output path. */
1717 			if (outp->conn)
1718 				continue;
1719 
1720 			memset(&connE, 0x00, sizeof(connE));
1721 			connE.type = DCB_CONNECTOR_NONE;
1722 			i = -1;
1723 		} else {
1724 			i = outp->info.connector;
1725 		}
1726 
1727 		/* Check that we haven't already created this connector. */
1728 		list_for_each_entry(conn, &disp->conns, head) {
1729 			if (conn->index == outp->info.connector) {
1730 				outp->conn = conn;
1731 				break;
1732 			}
1733 		}
1734 
1735 		if (outp->conn)
1736 			continue;
1737 
1738 		/* Apparently we need to create a new one! */
1739 		ret = nvkm_conn_new(disp, i, &connE, &outp->conn);
1740 		if (ret) {
1741 			nvkm_error(subdev, "failed to create outp %d conn: %d\n", outp->index, ret);
1742 			nvkm_conn_del(&outp->conn);
1743 			list_del(&outp->head);
1744 			nvkm_outp_del(&outp);
1745 			continue;
1746 		}
1747 
1748 		list_add_tail(&outp->conn->head, &disp->conns);
1749 	}
1750 
1751 	/* Enforce identity-mapped SOR assignment for panels, which have
1752 	 * certain bits (ie. backlight controls) wired to a specific SOR.
1753 	 */
1754 	list_for_each_entry(outp, &disp->outps, head) {
1755 		if (outp->conn->info.type == DCB_CONNECTOR_LVDS ||
1756 		    outp->conn->info.type == DCB_CONNECTOR_eDP) {
1757 			ior = nvkm_ior_find(disp, SOR, ffs(outp->info.or) - 1);
1758 			if (!WARN_ON(!ior))
1759 				ior->identity = true;
1760 			outp->identity = true;
1761 		}
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 static const struct nvkm_disp_func
1768 nv50_disp = {
1769 	.oneinit = nv50_disp_oneinit,
1770 	.init = nv50_disp_init,
1771 	.fini = nv50_disp_fini,
1772 	.intr = nv50_disp_intr,
1773 	.super = nv50_disp_super,
1774 	.uevent = &nv50_disp_chan_uevent,
1775 	.head = { .cnt = nv50_head_cnt, .new = nv50_head_new },
1776 	.dac = { .cnt = nv50_dac_cnt, .new = nv50_dac_new },
1777 	.sor = { .cnt = nv50_sor_cnt, .new = nv50_sor_new },
1778 	.pior = { .cnt = nv50_pior_cnt, .new = nv50_pior_new },
1779 	.root = { 0, 0, NV50_DISP },
1780 	.user = {
1781 		{{0,0,NV50_DISP_CURSOR             }, nvkm_disp_chan_new, &nv50_disp_curs },
1782 		{{0,0,NV50_DISP_OVERLAY            }, nvkm_disp_chan_new, &nv50_disp_oimm },
1783 		{{0,0,NV50_DISP_BASE_CHANNEL_DMA   }, nvkm_disp_chan_new, &nv50_disp_base },
1784 		{{0,0,NV50_DISP_CORE_CHANNEL_DMA   }, nvkm_disp_core_new, &nv50_disp_core },
1785 		{{0,0,NV50_DISP_OVERLAY_CHANNEL_DMA}, nvkm_disp_chan_new, &nv50_disp_ovly },
1786 		{}
1787 	}
1788 };
1789 
1790 int
1791 nv50_disp_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
1792 	      struct nvkm_disp **pdisp)
1793 {
1794 	return nvkm_disp_new_(&nv50_disp, device, type, inst, pdisp);
1795 }
1796