1 /* 2 * Copyright 2018 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "nouveau_dmem.h" 23 #include "nouveau_drv.h" 24 #include "nouveau_chan.h" 25 #include "nouveau_dma.h" 26 #include "nouveau_mem.h" 27 #include "nouveau_bo.h" 28 #include "nouveau_svm.h" 29 30 #include <nvif/class.h> 31 #include <nvif/object.h> 32 #include <nvif/push906f.h> 33 #include <nvif/if000c.h> 34 #include <nvif/if500b.h> 35 #include <nvif/if900b.h> 36 37 #include <nvhw/class/cla0b5.h> 38 39 #include <linux/sched/mm.h> 40 #include <linux/hmm.h> 41 #include <linux/memremap.h> 42 #include <linux/migrate.h> 43 44 /* 45 * FIXME: this is ugly right now we are using TTM to allocate vram and we pin 46 * it in vram while in use. We likely want to overhaul memory management for 47 * nouveau to be more page like (not necessarily with system page size but a 48 * bigger page size) at lowest level and have some shim layer on top that would 49 * provide the same functionality as TTM. 50 */ 51 #define DMEM_CHUNK_SIZE (2UL << 20) 52 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT) 53 54 enum nouveau_aper { 55 NOUVEAU_APER_VIRT, 56 NOUVEAU_APER_VRAM, 57 NOUVEAU_APER_HOST, 58 }; 59 60 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages, 61 enum nouveau_aper, u64 dst_addr, 62 enum nouveau_aper, u64 src_addr); 63 typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length, 64 enum nouveau_aper, u64 dst_addr); 65 66 struct nouveau_dmem_chunk { 67 struct list_head list; 68 struct nouveau_bo *bo; 69 struct nouveau_drm *drm; 70 unsigned long callocated; 71 struct dev_pagemap pagemap; 72 }; 73 74 struct nouveau_dmem_migrate { 75 nouveau_migrate_copy_t copy_func; 76 nouveau_clear_page_t clear_func; 77 struct nouveau_channel *chan; 78 }; 79 80 struct nouveau_dmem { 81 struct nouveau_drm *drm; 82 struct nouveau_dmem_migrate migrate; 83 struct list_head chunks; 84 struct mutex mutex; 85 struct page *free_pages; 86 spinlock_t lock; 87 }; 88 89 static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page) 90 { 91 return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap); 92 } 93 94 static struct nouveau_drm *page_to_drm(struct page *page) 95 { 96 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 97 98 return chunk->drm; 99 } 100 101 unsigned long nouveau_dmem_page_addr(struct page *page) 102 { 103 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 104 unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) - 105 chunk->pagemap.range.start; 106 107 return chunk->bo->offset + off; 108 } 109 110 static void nouveau_dmem_page_free(struct page *page) 111 { 112 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 113 struct nouveau_dmem *dmem = chunk->drm->dmem; 114 115 spin_lock(&dmem->lock); 116 page->zone_device_data = dmem->free_pages; 117 dmem->free_pages = page; 118 119 WARN_ON(!chunk->callocated); 120 chunk->callocated--; 121 /* 122 * FIXME when chunk->callocated reach 0 we should add the chunk to 123 * a reclaim list so that it can be freed in case of memory pressure. 124 */ 125 spin_unlock(&dmem->lock); 126 } 127 128 static void nouveau_dmem_fence_done(struct nouveau_fence **fence) 129 { 130 if (fence) { 131 nouveau_fence_wait(*fence, false); 132 nouveau_fence_unref(fence); 133 } else { 134 /* 135 * FIXME wait for channel to be IDLE before calling finalizing 136 * the hmem object. 137 */ 138 } 139 } 140 141 static int nouveau_dmem_copy_one(struct nouveau_drm *drm, struct page *spage, 142 struct page *dpage, dma_addr_t *dma_addr) 143 { 144 struct device *dev = drm->dev->dev; 145 146 lock_page(dpage); 147 148 *dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 149 if (dma_mapping_error(dev, *dma_addr)) 150 return -EIO; 151 152 if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr, 153 NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage))) { 154 dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 155 return -EIO; 156 } 157 158 return 0; 159 } 160 161 static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf) 162 { 163 struct nouveau_drm *drm = page_to_drm(vmf->page); 164 struct nouveau_dmem *dmem = drm->dmem; 165 struct nouveau_fence *fence; 166 struct nouveau_svmm *svmm; 167 struct page *spage, *dpage; 168 unsigned long src = 0, dst = 0; 169 dma_addr_t dma_addr = 0; 170 vm_fault_t ret = 0; 171 struct migrate_vma args = { 172 .vma = vmf->vma, 173 .start = vmf->address, 174 .end = vmf->address + PAGE_SIZE, 175 .src = &src, 176 .dst = &dst, 177 .pgmap_owner = drm->dev, 178 .fault_page = vmf->page, 179 .flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE, 180 }; 181 182 /* 183 * FIXME what we really want is to find some heuristic to migrate more 184 * than just one page on CPU fault. When such fault happens it is very 185 * likely that more surrounding page will CPU fault too. 186 */ 187 if (migrate_vma_setup(&args) < 0) 188 return VM_FAULT_SIGBUS; 189 if (!args.cpages) 190 return 0; 191 192 spage = migrate_pfn_to_page(src); 193 if (!spage || !(src & MIGRATE_PFN_MIGRATE)) 194 goto done; 195 196 dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address); 197 if (!dpage) 198 goto done; 199 200 dst = migrate_pfn(page_to_pfn(dpage)); 201 202 svmm = spage->zone_device_data; 203 mutex_lock(&svmm->mutex); 204 nouveau_svmm_invalidate(svmm, args.start, args.end); 205 ret = nouveau_dmem_copy_one(drm, spage, dpage, &dma_addr); 206 mutex_unlock(&svmm->mutex); 207 if (ret) { 208 ret = VM_FAULT_SIGBUS; 209 goto done; 210 } 211 212 nouveau_fence_new(&fence, dmem->migrate.chan); 213 migrate_vma_pages(&args); 214 nouveau_dmem_fence_done(&fence); 215 dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 216 done: 217 migrate_vma_finalize(&args); 218 return ret; 219 } 220 221 static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = { 222 .page_free = nouveau_dmem_page_free, 223 .migrate_to_ram = nouveau_dmem_migrate_to_ram, 224 }; 225 226 static int 227 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage) 228 { 229 struct nouveau_dmem_chunk *chunk; 230 struct resource *res; 231 struct page *page; 232 void *ptr; 233 unsigned long i, pfn_first; 234 int ret; 235 236 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL); 237 if (chunk == NULL) { 238 ret = -ENOMEM; 239 goto out; 240 } 241 242 /* Allocate unused physical address space for device private pages. */ 243 res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE, 244 "nouveau_dmem"); 245 if (IS_ERR(res)) { 246 ret = PTR_ERR(res); 247 goto out_free; 248 } 249 250 chunk->drm = drm; 251 chunk->pagemap.type = MEMORY_DEVICE_PRIVATE; 252 chunk->pagemap.range.start = res->start; 253 chunk->pagemap.range.end = res->end; 254 chunk->pagemap.nr_range = 1; 255 chunk->pagemap.ops = &nouveau_dmem_pagemap_ops; 256 chunk->pagemap.owner = drm->dev; 257 258 ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0, 259 NOUVEAU_GEM_DOMAIN_VRAM, 0, 0, NULL, NULL, 260 &chunk->bo); 261 if (ret) 262 goto out_release; 263 264 ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false); 265 if (ret) 266 goto out_bo_free; 267 268 ptr = memremap_pages(&chunk->pagemap, numa_node_id()); 269 if (IS_ERR(ptr)) { 270 ret = PTR_ERR(ptr); 271 goto out_bo_unpin; 272 } 273 274 mutex_lock(&drm->dmem->mutex); 275 list_add(&chunk->list, &drm->dmem->chunks); 276 mutex_unlock(&drm->dmem->mutex); 277 278 pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT; 279 page = pfn_to_page(pfn_first); 280 spin_lock(&drm->dmem->lock); 281 for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) { 282 page->zone_device_data = drm->dmem->free_pages; 283 drm->dmem->free_pages = page; 284 } 285 *ppage = page; 286 chunk->callocated++; 287 spin_unlock(&drm->dmem->lock); 288 289 NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", 290 DMEM_CHUNK_SIZE >> 20); 291 292 return 0; 293 294 out_bo_unpin: 295 nouveau_bo_unpin(chunk->bo); 296 out_bo_free: 297 nouveau_bo_ref(NULL, &chunk->bo); 298 out_release: 299 release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range)); 300 out_free: 301 kfree(chunk); 302 out: 303 return ret; 304 } 305 306 static struct page * 307 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm) 308 { 309 struct nouveau_dmem_chunk *chunk; 310 struct page *page = NULL; 311 int ret; 312 313 spin_lock(&drm->dmem->lock); 314 if (drm->dmem->free_pages) { 315 page = drm->dmem->free_pages; 316 drm->dmem->free_pages = page->zone_device_data; 317 chunk = nouveau_page_to_chunk(page); 318 chunk->callocated++; 319 spin_unlock(&drm->dmem->lock); 320 } else { 321 spin_unlock(&drm->dmem->lock); 322 ret = nouveau_dmem_chunk_alloc(drm, &page); 323 if (ret) 324 return NULL; 325 } 326 327 zone_device_page_init(page); 328 return page; 329 } 330 331 static void 332 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page) 333 { 334 unlock_page(page); 335 put_page(page); 336 } 337 338 void 339 nouveau_dmem_resume(struct nouveau_drm *drm) 340 { 341 struct nouveau_dmem_chunk *chunk; 342 int ret; 343 344 if (drm->dmem == NULL) 345 return; 346 347 mutex_lock(&drm->dmem->mutex); 348 list_for_each_entry(chunk, &drm->dmem->chunks, list) { 349 ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false); 350 /* FIXME handle pin failure */ 351 WARN_ON(ret); 352 } 353 mutex_unlock(&drm->dmem->mutex); 354 } 355 356 void 357 nouveau_dmem_suspend(struct nouveau_drm *drm) 358 { 359 struct nouveau_dmem_chunk *chunk; 360 361 if (drm->dmem == NULL) 362 return; 363 364 mutex_lock(&drm->dmem->mutex); 365 list_for_each_entry(chunk, &drm->dmem->chunks, list) 366 nouveau_bo_unpin(chunk->bo); 367 mutex_unlock(&drm->dmem->mutex); 368 } 369 370 /* 371 * Evict all pages mapping a chunk. 372 */ 373 static void 374 nouveau_dmem_evict_chunk(struct nouveau_dmem_chunk *chunk) 375 { 376 unsigned long i, npages = range_len(&chunk->pagemap.range) >> PAGE_SHIFT; 377 unsigned long *src_pfns, *dst_pfns; 378 dma_addr_t *dma_addrs; 379 struct nouveau_fence *fence; 380 381 src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL); 382 dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL); 383 dma_addrs = kvcalloc(npages, sizeof(*dma_addrs), GFP_KERNEL | __GFP_NOFAIL); 384 385 migrate_device_range(src_pfns, chunk->pagemap.range.start >> PAGE_SHIFT, 386 npages); 387 388 for (i = 0; i < npages; i++) { 389 if (src_pfns[i] & MIGRATE_PFN_MIGRATE) { 390 struct page *dpage; 391 392 /* 393 * _GFP_NOFAIL because the GPU is going away and there 394 * is nothing sensible we can do if we can't copy the 395 * data back. 396 */ 397 dpage = alloc_page(GFP_HIGHUSER | __GFP_NOFAIL); 398 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)); 399 nouveau_dmem_copy_one(chunk->drm, 400 migrate_pfn_to_page(src_pfns[i]), dpage, 401 &dma_addrs[i]); 402 } 403 } 404 405 nouveau_fence_new(&fence, chunk->drm->dmem->migrate.chan); 406 migrate_device_pages(src_pfns, dst_pfns, npages); 407 nouveau_dmem_fence_done(&fence); 408 migrate_device_finalize(src_pfns, dst_pfns, npages); 409 kvfree(src_pfns); 410 kvfree(dst_pfns); 411 for (i = 0; i < npages; i++) 412 dma_unmap_page(chunk->drm->dev->dev, dma_addrs[i], PAGE_SIZE, DMA_BIDIRECTIONAL); 413 kvfree(dma_addrs); 414 } 415 416 void 417 nouveau_dmem_fini(struct nouveau_drm *drm) 418 { 419 struct nouveau_dmem_chunk *chunk, *tmp; 420 421 if (drm->dmem == NULL) 422 return; 423 424 mutex_lock(&drm->dmem->mutex); 425 426 list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) { 427 nouveau_dmem_evict_chunk(chunk); 428 nouveau_bo_unpin(chunk->bo); 429 nouveau_bo_ref(NULL, &chunk->bo); 430 WARN_ON(chunk->callocated); 431 list_del(&chunk->list); 432 memunmap_pages(&chunk->pagemap); 433 release_mem_region(chunk->pagemap.range.start, 434 range_len(&chunk->pagemap.range)); 435 kfree(chunk); 436 } 437 438 mutex_unlock(&drm->dmem->mutex); 439 } 440 441 static int 442 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages, 443 enum nouveau_aper dst_aper, u64 dst_addr, 444 enum nouveau_aper src_aper, u64 src_addr) 445 { 446 struct nvif_push *push = drm->dmem->migrate.chan->chan.push; 447 u32 launch_dma = 0; 448 int ret; 449 450 ret = PUSH_WAIT(push, 13); 451 if (ret) 452 return ret; 453 454 if (src_aper != NOUVEAU_APER_VIRT) { 455 switch (src_aper) { 456 case NOUVEAU_APER_VRAM: 457 PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, 458 NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB)); 459 break; 460 case NOUVEAU_APER_HOST: 461 PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, 462 NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 463 break; 464 default: 465 return -EINVAL; 466 } 467 468 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL); 469 } 470 471 if (dst_aper != NOUVEAU_APER_VIRT) { 472 switch (dst_aper) { 473 case NOUVEAU_APER_VRAM: 474 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 475 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); 476 break; 477 case NOUVEAU_APER_HOST: 478 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 479 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 480 break; 481 default: 482 return -EINVAL; 483 } 484 485 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); 486 } 487 488 PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER, 489 NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)), 490 491 OFFSET_IN_LOWER, lower_32_bits(src_addr), 492 493 OFFSET_OUT_UPPER, 494 NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), 495 496 OFFSET_OUT_LOWER, lower_32_bits(dst_addr), 497 PITCH_IN, PAGE_SIZE, 498 PITCH_OUT, PAGE_SIZE, 499 LINE_LENGTH_IN, PAGE_SIZE, 500 LINE_COUNT, npages); 501 502 PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | 503 NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | 504 NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | 505 NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | 506 NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | 507 NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | 508 NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | 509 NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) | 510 NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) | 511 NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); 512 return 0; 513 } 514 515 static int 516 nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length, 517 enum nouveau_aper dst_aper, u64 dst_addr) 518 { 519 struct nvif_push *push = drm->dmem->migrate.chan->chan.push; 520 u32 launch_dma = 0; 521 int ret; 522 523 ret = PUSH_WAIT(push, 12); 524 if (ret) 525 return ret; 526 527 switch (dst_aper) { 528 case NOUVEAU_APER_VRAM: 529 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 530 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); 531 break; 532 case NOUVEAU_APER_HOST: 533 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 534 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 535 break; 536 default: 537 return -EINVAL; 538 } 539 540 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); 541 542 PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0, 543 SET_REMAP_CONST_B, 0, 544 545 SET_REMAP_COMPONENTS, 546 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) | 547 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) | 548 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) | 549 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO)); 550 551 PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER, 552 NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), 553 554 OFFSET_OUT_LOWER, lower_32_bits(dst_addr)); 555 556 PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3); 557 558 PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | 559 NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | 560 NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | 561 NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | 562 NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | 563 NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | 564 NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | 565 NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) | 566 NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) | 567 NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); 568 return 0; 569 } 570 571 static int 572 nouveau_dmem_migrate_init(struct nouveau_drm *drm) 573 { 574 switch (drm->ttm.copy.oclass) { 575 case PASCAL_DMA_COPY_A: 576 case PASCAL_DMA_COPY_B: 577 case VOLTA_DMA_COPY_A: 578 case TURING_DMA_COPY_A: 579 drm->dmem->migrate.copy_func = nvc0b5_migrate_copy; 580 drm->dmem->migrate.clear_func = nvc0b5_migrate_clear; 581 drm->dmem->migrate.chan = drm->ttm.chan; 582 return 0; 583 default: 584 break; 585 } 586 return -ENODEV; 587 } 588 589 void 590 nouveau_dmem_init(struct nouveau_drm *drm) 591 { 592 int ret; 593 594 /* This only make sense on PASCAL or newer */ 595 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL) 596 return; 597 598 if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL))) 599 return; 600 601 drm->dmem->drm = drm; 602 mutex_init(&drm->dmem->mutex); 603 INIT_LIST_HEAD(&drm->dmem->chunks); 604 mutex_init(&drm->dmem->mutex); 605 spin_lock_init(&drm->dmem->lock); 606 607 /* Initialize migration dma helpers before registering memory */ 608 ret = nouveau_dmem_migrate_init(drm); 609 if (ret) { 610 kfree(drm->dmem); 611 drm->dmem = NULL; 612 } 613 } 614 615 static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm, 616 struct nouveau_svmm *svmm, unsigned long src, 617 dma_addr_t *dma_addr, u64 *pfn) 618 { 619 struct device *dev = drm->dev->dev; 620 struct page *dpage, *spage; 621 unsigned long paddr; 622 623 spage = migrate_pfn_to_page(src); 624 if (!(src & MIGRATE_PFN_MIGRATE)) 625 goto out; 626 627 dpage = nouveau_dmem_page_alloc_locked(drm); 628 if (!dpage) 629 goto out; 630 631 paddr = nouveau_dmem_page_addr(dpage); 632 if (spage) { 633 *dma_addr = dma_map_page(dev, spage, 0, page_size(spage), 634 DMA_BIDIRECTIONAL); 635 if (dma_mapping_error(dev, *dma_addr)) 636 goto out_free_page; 637 if (drm->dmem->migrate.copy_func(drm, 1, 638 NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr)) 639 goto out_dma_unmap; 640 } else { 641 *dma_addr = DMA_MAPPING_ERROR; 642 if (drm->dmem->migrate.clear_func(drm, page_size(dpage), 643 NOUVEAU_APER_VRAM, paddr)) 644 goto out_free_page; 645 } 646 647 dpage->zone_device_data = svmm; 648 *pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM | 649 ((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT); 650 if (src & MIGRATE_PFN_WRITE) 651 *pfn |= NVIF_VMM_PFNMAP_V0_W; 652 return migrate_pfn(page_to_pfn(dpage)); 653 654 out_dma_unmap: 655 dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 656 out_free_page: 657 nouveau_dmem_page_free_locked(drm, dpage); 658 out: 659 *pfn = NVIF_VMM_PFNMAP_V0_NONE; 660 return 0; 661 } 662 663 static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm, 664 struct nouveau_svmm *svmm, struct migrate_vma *args, 665 dma_addr_t *dma_addrs, u64 *pfns) 666 { 667 struct nouveau_fence *fence; 668 unsigned long addr = args->start, nr_dma = 0, i; 669 670 for (i = 0; addr < args->end; i++) { 671 args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm, 672 args->src[i], dma_addrs + nr_dma, pfns + i); 673 if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma])) 674 nr_dma++; 675 addr += PAGE_SIZE; 676 } 677 678 nouveau_fence_new(&fence, drm->dmem->migrate.chan); 679 migrate_vma_pages(args); 680 nouveau_dmem_fence_done(&fence); 681 nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i); 682 683 while (nr_dma--) { 684 dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE, 685 DMA_BIDIRECTIONAL); 686 } 687 migrate_vma_finalize(args); 688 } 689 690 int 691 nouveau_dmem_migrate_vma(struct nouveau_drm *drm, 692 struct nouveau_svmm *svmm, 693 struct vm_area_struct *vma, 694 unsigned long start, 695 unsigned long end) 696 { 697 unsigned long npages = (end - start) >> PAGE_SHIFT; 698 unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages); 699 dma_addr_t *dma_addrs; 700 struct migrate_vma args = { 701 .vma = vma, 702 .start = start, 703 .pgmap_owner = drm->dev, 704 .flags = MIGRATE_VMA_SELECT_SYSTEM, 705 }; 706 unsigned long i; 707 u64 *pfns; 708 int ret = -ENOMEM; 709 710 if (drm->dmem == NULL) 711 return -ENODEV; 712 713 args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL); 714 if (!args.src) 715 goto out; 716 args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL); 717 if (!args.dst) 718 goto out_free_src; 719 720 dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL); 721 if (!dma_addrs) 722 goto out_free_dst; 723 724 pfns = nouveau_pfns_alloc(max); 725 if (!pfns) 726 goto out_free_dma; 727 728 for (i = 0; i < npages; i += max) { 729 if (args.start + (max << PAGE_SHIFT) > end) 730 args.end = end; 731 else 732 args.end = args.start + (max << PAGE_SHIFT); 733 734 ret = migrate_vma_setup(&args); 735 if (ret) 736 goto out_free_pfns; 737 738 if (args.cpages) 739 nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs, 740 pfns); 741 args.start = args.end; 742 } 743 744 ret = 0; 745 out_free_pfns: 746 nouveau_pfns_free(pfns); 747 out_free_dma: 748 kfree(dma_addrs); 749 out_free_dst: 750 kfree(args.dst); 751 out_free_src: 752 kfree(args.src); 753 out: 754 return ret; 755 } 756