xref: /linux/drivers/gpu/drm/nouveau/nouveau_dmem.c (revision 6a02124c87f0b61dcaaeb65e7fd406d8afb40fd4)
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_dmem.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dma.h"
26 #include "nouveau_mem.h"
27 #include "nouveau_bo.h"
28 #include "nouveau_svm.h"
29 
30 #include <nvif/class.h>
31 #include <nvif/object.h>
32 #include <nvif/push906f.h>
33 #include <nvif/if000c.h>
34 #include <nvif/if500b.h>
35 #include <nvif/if900b.h>
36 #include <nvif/if000c.h>
37 
38 #include <nvhw/class/cla0b5.h>
39 
40 #include <linux/sched/mm.h>
41 #include <linux/hmm.h>
42 #include <linux/memremap.h>
43 #include <linux/migrate.h>
44 
45 /*
46  * FIXME: this is ugly right now we are using TTM to allocate vram and we pin
47  * it in vram while in use. We likely want to overhaul memory management for
48  * nouveau to be more page like (not necessarily with system page size but a
49  * bigger page size) at lowest level and have some shim layer on top that would
50  * provide the same functionality as TTM.
51  */
52 #define DMEM_CHUNK_SIZE (2UL << 20)
53 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
54 
55 enum nouveau_aper {
56 	NOUVEAU_APER_VIRT,
57 	NOUVEAU_APER_VRAM,
58 	NOUVEAU_APER_HOST,
59 };
60 
61 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
62 				      enum nouveau_aper, u64 dst_addr,
63 				      enum nouveau_aper, u64 src_addr);
64 typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length,
65 				      enum nouveau_aper, u64 dst_addr);
66 
67 struct nouveau_dmem_chunk {
68 	struct list_head list;
69 	struct nouveau_bo *bo;
70 	struct nouveau_drm *drm;
71 	unsigned long callocated;
72 	struct dev_pagemap pagemap;
73 };
74 
75 struct nouveau_dmem_migrate {
76 	nouveau_migrate_copy_t copy_func;
77 	nouveau_clear_page_t clear_func;
78 	struct nouveau_channel *chan;
79 };
80 
81 struct nouveau_dmem {
82 	struct nouveau_drm *drm;
83 	struct nouveau_dmem_migrate migrate;
84 	struct list_head chunks;
85 	struct mutex mutex;
86 	struct page *free_pages;
87 	spinlock_t lock;
88 };
89 
90 static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page)
91 {
92 	return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap);
93 }
94 
95 static struct nouveau_drm *page_to_drm(struct page *page)
96 {
97 	struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
98 
99 	return chunk->drm;
100 }
101 
102 unsigned long nouveau_dmem_page_addr(struct page *page)
103 {
104 	struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
105 	unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) -
106 				chunk->pagemap.range.start;
107 
108 	return chunk->bo->offset + off;
109 }
110 
111 static void nouveau_dmem_page_free(struct page *page)
112 {
113 	struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
114 	struct nouveau_dmem *dmem = chunk->drm->dmem;
115 
116 	spin_lock(&dmem->lock);
117 	page->zone_device_data = dmem->free_pages;
118 	dmem->free_pages = page;
119 
120 	WARN_ON(!chunk->callocated);
121 	chunk->callocated--;
122 	/*
123 	 * FIXME when chunk->callocated reach 0 we should add the chunk to
124 	 * a reclaim list so that it can be freed in case of memory pressure.
125 	 */
126 	spin_unlock(&dmem->lock);
127 }
128 
129 static void nouveau_dmem_fence_done(struct nouveau_fence **fence)
130 {
131 	if (fence) {
132 		nouveau_fence_wait(*fence, true, false);
133 		nouveau_fence_unref(fence);
134 	} else {
135 		/*
136 		 * FIXME wait for channel to be IDLE before calling finalizing
137 		 * the hmem object.
138 		 */
139 	}
140 }
141 
142 static vm_fault_t nouveau_dmem_fault_copy_one(struct nouveau_drm *drm,
143 		struct vm_fault *vmf, struct migrate_vma *args,
144 		dma_addr_t *dma_addr)
145 {
146 	struct device *dev = drm->dev->dev;
147 	struct page *dpage, *spage;
148 	struct nouveau_svmm *svmm;
149 
150 	spage = migrate_pfn_to_page(args->src[0]);
151 	if (!spage || !(args->src[0] & MIGRATE_PFN_MIGRATE))
152 		return 0;
153 
154 	dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address);
155 	if (!dpage)
156 		return VM_FAULT_SIGBUS;
157 	lock_page(dpage);
158 
159 	*dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
160 	if (dma_mapping_error(dev, *dma_addr))
161 		goto error_free_page;
162 
163 	svmm = spage->zone_device_data;
164 	mutex_lock(&svmm->mutex);
165 	nouveau_svmm_invalidate(svmm, args->start, args->end);
166 	if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr,
167 			NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage)))
168 		goto error_dma_unmap;
169 	mutex_unlock(&svmm->mutex);
170 
171 	args->dst[0] = migrate_pfn(page_to_pfn(dpage));
172 	return 0;
173 
174 error_dma_unmap:
175 	mutex_unlock(&svmm->mutex);
176 	dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
177 error_free_page:
178 	__free_page(dpage);
179 	return VM_FAULT_SIGBUS;
180 }
181 
182 static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf)
183 {
184 	struct nouveau_drm *drm = page_to_drm(vmf->page);
185 	struct nouveau_dmem *dmem = drm->dmem;
186 	struct nouveau_fence *fence;
187 	unsigned long src = 0, dst = 0;
188 	dma_addr_t dma_addr = 0;
189 	vm_fault_t ret;
190 	struct migrate_vma args = {
191 		.vma		= vmf->vma,
192 		.start		= vmf->address,
193 		.end		= vmf->address + PAGE_SIZE,
194 		.src		= &src,
195 		.dst		= &dst,
196 		.pgmap_owner	= drm->dev,
197 		.flags		= MIGRATE_VMA_SELECT_DEVICE_PRIVATE,
198 	};
199 
200 	/*
201 	 * FIXME what we really want is to find some heuristic to migrate more
202 	 * than just one page on CPU fault. When such fault happens it is very
203 	 * likely that more surrounding page will CPU fault too.
204 	 */
205 	if (migrate_vma_setup(&args) < 0)
206 		return VM_FAULT_SIGBUS;
207 	if (!args.cpages)
208 		return 0;
209 
210 	ret = nouveau_dmem_fault_copy_one(drm, vmf, &args, &dma_addr);
211 	if (ret || dst == 0)
212 		goto done;
213 
214 	nouveau_fence_new(dmem->migrate.chan, false, &fence);
215 	migrate_vma_pages(&args);
216 	nouveau_dmem_fence_done(&fence);
217 	dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
218 done:
219 	migrate_vma_finalize(&args);
220 	return ret;
221 }
222 
223 static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = {
224 	.page_free		= nouveau_dmem_page_free,
225 	.migrate_to_ram		= nouveau_dmem_migrate_to_ram,
226 };
227 
228 static int
229 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage)
230 {
231 	struct nouveau_dmem_chunk *chunk;
232 	struct resource *res;
233 	struct page *page;
234 	void *ptr;
235 	unsigned long i, pfn_first;
236 	int ret;
237 
238 	chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
239 	if (chunk == NULL) {
240 		ret = -ENOMEM;
241 		goto out;
242 	}
243 
244 	/* Allocate unused physical address space for device private pages. */
245 	res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE,
246 				      "nouveau_dmem");
247 	if (IS_ERR(res)) {
248 		ret = PTR_ERR(res);
249 		goto out_free;
250 	}
251 
252 	chunk->drm = drm;
253 	chunk->pagemap.type = MEMORY_DEVICE_PRIVATE;
254 	chunk->pagemap.range.start = res->start;
255 	chunk->pagemap.range.end = res->end;
256 	chunk->pagemap.nr_range = 1;
257 	chunk->pagemap.ops = &nouveau_dmem_pagemap_ops;
258 	chunk->pagemap.owner = drm->dev;
259 
260 	ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
261 			     NOUVEAU_GEM_DOMAIN_VRAM, 0, 0, NULL, NULL,
262 			     &chunk->bo);
263 	if (ret)
264 		goto out_release;
265 
266 	ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false);
267 	if (ret)
268 		goto out_bo_free;
269 
270 	ptr = memremap_pages(&chunk->pagemap, numa_node_id());
271 	if (IS_ERR(ptr)) {
272 		ret = PTR_ERR(ptr);
273 		goto out_bo_unpin;
274 	}
275 
276 	mutex_lock(&drm->dmem->mutex);
277 	list_add(&chunk->list, &drm->dmem->chunks);
278 	mutex_unlock(&drm->dmem->mutex);
279 
280 	pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT;
281 	page = pfn_to_page(pfn_first);
282 	spin_lock(&drm->dmem->lock);
283 	for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) {
284 		page->zone_device_data = drm->dmem->free_pages;
285 		drm->dmem->free_pages = page;
286 	}
287 	*ppage = page;
288 	chunk->callocated++;
289 	spin_unlock(&drm->dmem->lock);
290 
291 	NV_INFO(drm, "DMEM: registered %ldMB of device memory\n",
292 		DMEM_CHUNK_SIZE >> 20);
293 
294 	return 0;
295 
296 out_bo_unpin:
297 	nouveau_bo_unpin(chunk->bo);
298 out_bo_free:
299 	nouveau_bo_ref(NULL, &chunk->bo);
300 out_release:
301 	release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range));
302 out_free:
303 	kfree(chunk);
304 out:
305 	return ret;
306 }
307 
308 static struct page *
309 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
310 {
311 	struct nouveau_dmem_chunk *chunk;
312 	struct page *page = NULL;
313 	int ret;
314 
315 	spin_lock(&drm->dmem->lock);
316 	if (drm->dmem->free_pages) {
317 		page = drm->dmem->free_pages;
318 		drm->dmem->free_pages = page->zone_device_data;
319 		chunk = nouveau_page_to_chunk(page);
320 		chunk->callocated++;
321 		spin_unlock(&drm->dmem->lock);
322 	} else {
323 		spin_unlock(&drm->dmem->lock);
324 		ret = nouveau_dmem_chunk_alloc(drm, &page);
325 		if (ret)
326 			return NULL;
327 	}
328 
329 	lock_page(page);
330 	return page;
331 }
332 
333 static void
334 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
335 {
336 	unlock_page(page);
337 	put_page(page);
338 }
339 
340 void
341 nouveau_dmem_resume(struct nouveau_drm *drm)
342 {
343 	struct nouveau_dmem_chunk *chunk;
344 	int ret;
345 
346 	if (drm->dmem == NULL)
347 		return;
348 
349 	mutex_lock(&drm->dmem->mutex);
350 	list_for_each_entry(chunk, &drm->dmem->chunks, list) {
351 		ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false);
352 		/* FIXME handle pin failure */
353 		WARN_ON(ret);
354 	}
355 	mutex_unlock(&drm->dmem->mutex);
356 }
357 
358 void
359 nouveau_dmem_suspend(struct nouveau_drm *drm)
360 {
361 	struct nouveau_dmem_chunk *chunk;
362 
363 	if (drm->dmem == NULL)
364 		return;
365 
366 	mutex_lock(&drm->dmem->mutex);
367 	list_for_each_entry(chunk, &drm->dmem->chunks, list)
368 		nouveau_bo_unpin(chunk->bo);
369 	mutex_unlock(&drm->dmem->mutex);
370 }
371 
372 void
373 nouveau_dmem_fini(struct nouveau_drm *drm)
374 {
375 	struct nouveau_dmem_chunk *chunk, *tmp;
376 
377 	if (drm->dmem == NULL)
378 		return;
379 
380 	mutex_lock(&drm->dmem->mutex);
381 
382 	list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) {
383 		nouveau_bo_unpin(chunk->bo);
384 		nouveau_bo_ref(NULL, &chunk->bo);
385 		list_del(&chunk->list);
386 		memunmap_pages(&chunk->pagemap);
387 		release_mem_region(chunk->pagemap.range.start,
388 				   range_len(&chunk->pagemap.range));
389 		kfree(chunk);
390 	}
391 
392 	mutex_unlock(&drm->dmem->mutex);
393 }
394 
395 static int
396 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
397 		    enum nouveau_aper dst_aper, u64 dst_addr,
398 		    enum nouveau_aper src_aper, u64 src_addr)
399 {
400 	struct nvif_push *push = drm->dmem->migrate.chan->chan.push;
401 	u32 launch_dma = 0;
402 	int ret;
403 
404 	ret = PUSH_WAIT(push, 13);
405 	if (ret)
406 		return ret;
407 
408 	if (src_aper != NOUVEAU_APER_VIRT) {
409 		switch (src_aper) {
410 		case NOUVEAU_APER_VRAM:
411 			PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE,
412 				  NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB));
413 			break;
414 		case NOUVEAU_APER_HOST:
415 			PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE,
416 				  NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM));
417 			break;
418 		default:
419 			return -EINVAL;
420 		}
421 
422 		launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL);
423 	}
424 
425 	if (dst_aper != NOUVEAU_APER_VIRT) {
426 		switch (dst_aper) {
427 		case NOUVEAU_APER_VRAM:
428 			PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
429 				  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
430 			break;
431 		case NOUVEAU_APER_HOST:
432 			PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
433 				  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
434 			break;
435 		default:
436 			return -EINVAL;
437 		}
438 
439 		launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
440 	}
441 
442 	PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER,
443 		  NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)),
444 
445 				OFFSET_IN_LOWER, lower_32_bits(src_addr),
446 
447 				OFFSET_OUT_UPPER,
448 		  NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)),
449 
450 				OFFSET_OUT_LOWER, lower_32_bits(dst_addr),
451 				PITCH_IN, PAGE_SIZE,
452 				PITCH_OUT, PAGE_SIZE,
453 				LINE_LENGTH_IN, PAGE_SIZE,
454 				LINE_COUNT, npages);
455 
456 	PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma |
457 		  NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) |
458 		  NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) |
459 		  NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) |
460 		  NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) |
461 		  NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
462 		  NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
463 		  NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) |
464 		  NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) |
465 		  NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING));
466 	return 0;
467 }
468 
469 static int
470 nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length,
471 		     enum nouveau_aper dst_aper, u64 dst_addr)
472 {
473 	struct nvif_push *push = drm->dmem->migrate.chan->chan.push;
474 	u32 launch_dma = 0;
475 	int ret;
476 
477 	ret = PUSH_WAIT(push, 12);
478 	if (ret)
479 		return ret;
480 
481 	switch (dst_aper) {
482 	case NOUVEAU_APER_VRAM:
483 		PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
484 			  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
485 		break;
486 	case NOUVEAU_APER_HOST:
487 		PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
488 			  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
489 		break;
490 	default:
491 		return -EINVAL;
492 	}
493 
494 	launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
495 
496 	PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0,
497 				SET_REMAP_CONST_B, 0,
498 
499 				SET_REMAP_COMPONENTS,
500 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) |
501 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) |
502 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) |
503 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO));
504 
505 	PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER,
506 		  NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)),
507 
508 				OFFSET_OUT_LOWER, lower_32_bits(dst_addr));
509 
510 	PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3);
511 
512 	PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma |
513 		  NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) |
514 		  NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) |
515 		  NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) |
516 		  NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) |
517 		  NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
518 		  NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
519 		  NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) |
520 		  NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) |
521 		  NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING));
522 	return 0;
523 }
524 
525 static int
526 nouveau_dmem_migrate_init(struct nouveau_drm *drm)
527 {
528 	switch (drm->ttm.copy.oclass) {
529 	case PASCAL_DMA_COPY_A:
530 	case PASCAL_DMA_COPY_B:
531 	case  VOLTA_DMA_COPY_A:
532 	case TURING_DMA_COPY_A:
533 		drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
534 		drm->dmem->migrate.clear_func = nvc0b5_migrate_clear;
535 		drm->dmem->migrate.chan = drm->ttm.chan;
536 		return 0;
537 	default:
538 		break;
539 	}
540 	return -ENODEV;
541 }
542 
543 void
544 nouveau_dmem_init(struct nouveau_drm *drm)
545 {
546 	int ret;
547 
548 	/* This only make sense on PASCAL or newer */
549 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
550 		return;
551 
552 	if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
553 		return;
554 
555 	drm->dmem->drm = drm;
556 	mutex_init(&drm->dmem->mutex);
557 	INIT_LIST_HEAD(&drm->dmem->chunks);
558 	mutex_init(&drm->dmem->mutex);
559 	spin_lock_init(&drm->dmem->lock);
560 
561 	/* Initialize migration dma helpers before registering memory */
562 	ret = nouveau_dmem_migrate_init(drm);
563 	if (ret) {
564 		kfree(drm->dmem);
565 		drm->dmem = NULL;
566 	}
567 }
568 
569 static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm,
570 		struct nouveau_svmm *svmm, unsigned long src,
571 		dma_addr_t *dma_addr, u64 *pfn)
572 {
573 	struct device *dev = drm->dev->dev;
574 	struct page *dpage, *spage;
575 	unsigned long paddr;
576 
577 	spage = migrate_pfn_to_page(src);
578 	if (!(src & MIGRATE_PFN_MIGRATE))
579 		goto out;
580 
581 	dpage = nouveau_dmem_page_alloc_locked(drm);
582 	if (!dpage)
583 		goto out;
584 
585 	paddr = nouveau_dmem_page_addr(dpage);
586 	if (spage) {
587 		*dma_addr = dma_map_page(dev, spage, 0, page_size(spage),
588 					 DMA_BIDIRECTIONAL);
589 		if (dma_mapping_error(dev, *dma_addr))
590 			goto out_free_page;
591 		if (drm->dmem->migrate.copy_func(drm, 1,
592 			NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr))
593 			goto out_dma_unmap;
594 	} else {
595 		*dma_addr = DMA_MAPPING_ERROR;
596 		if (drm->dmem->migrate.clear_func(drm, page_size(dpage),
597 			NOUVEAU_APER_VRAM, paddr))
598 			goto out_free_page;
599 	}
600 
601 	dpage->zone_device_data = svmm;
602 	*pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM |
603 		((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT);
604 	if (src & MIGRATE_PFN_WRITE)
605 		*pfn |= NVIF_VMM_PFNMAP_V0_W;
606 	return migrate_pfn(page_to_pfn(dpage));
607 
608 out_dma_unmap:
609 	dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
610 out_free_page:
611 	nouveau_dmem_page_free_locked(drm, dpage);
612 out:
613 	*pfn = NVIF_VMM_PFNMAP_V0_NONE;
614 	return 0;
615 }
616 
617 static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm,
618 		struct nouveau_svmm *svmm, struct migrate_vma *args,
619 		dma_addr_t *dma_addrs, u64 *pfns)
620 {
621 	struct nouveau_fence *fence;
622 	unsigned long addr = args->start, nr_dma = 0, i;
623 
624 	for (i = 0; addr < args->end; i++) {
625 		args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm,
626 				args->src[i], dma_addrs + nr_dma, pfns + i);
627 		if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma]))
628 			nr_dma++;
629 		addr += PAGE_SIZE;
630 	}
631 
632 	nouveau_fence_new(drm->dmem->migrate.chan, false, &fence);
633 	migrate_vma_pages(args);
634 	nouveau_dmem_fence_done(&fence);
635 	nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i);
636 
637 	while (nr_dma--) {
638 		dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE,
639 				DMA_BIDIRECTIONAL);
640 	}
641 	migrate_vma_finalize(args);
642 }
643 
644 int
645 nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
646 			 struct nouveau_svmm *svmm,
647 			 struct vm_area_struct *vma,
648 			 unsigned long start,
649 			 unsigned long end)
650 {
651 	unsigned long npages = (end - start) >> PAGE_SHIFT;
652 	unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages);
653 	dma_addr_t *dma_addrs;
654 	struct migrate_vma args = {
655 		.vma		= vma,
656 		.start		= start,
657 		.pgmap_owner	= drm->dev,
658 		.flags		= MIGRATE_VMA_SELECT_SYSTEM,
659 	};
660 	unsigned long i;
661 	u64 *pfns;
662 	int ret = -ENOMEM;
663 
664 	if (drm->dmem == NULL)
665 		return -ENODEV;
666 
667 	args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL);
668 	if (!args.src)
669 		goto out;
670 	args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL);
671 	if (!args.dst)
672 		goto out_free_src;
673 
674 	dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL);
675 	if (!dma_addrs)
676 		goto out_free_dst;
677 
678 	pfns = nouveau_pfns_alloc(max);
679 	if (!pfns)
680 		goto out_free_dma;
681 
682 	for (i = 0; i < npages; i += max) {
683 		if (args.start + (max << PAGE_SHIFT) > end)
684 			args.end = end;
685 		else
686 			args.end = args.start + (max << PAGE_SHIFT);
687 
688 		ret = migrate_vma_setup(&args);
689 		if (ret)
690 			goto out_free_pfns;
691 
692 		if (args.cpages)
693 			nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs,
694 						   pfns);
695 		args.start = args.end;
696 	}
697 
698 	ret = 0;
699 out_free_pfns:
700 	nouveau_pfns_free(pfns);
701 out_free_dma:
702 	kfree(dma_addrs);
703 out_free_dst:
704 	kfree(args.dst);
705 out_free_src:
706 	kfree(args.src);
707 out:
708 	return ret;
709 }
710