1 /* 2 * Copyright 2018 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "nouveau_dmem.h" 23 #include "nouveau_drv.h" 24 #include "nouveau_chan.h" 25 #include "nouveau_dma.h" 26 #include "nouveau_mem.h" 27 #include "nouveau_bo.h" 28 #include "nouveau_svm.h" 29 30 #include <nvif/class.h> 31 #include <nvif/object.h> 32 #include <nvif/push906f.h> 33 #include <nvif/if000c.h> 34 #include <nvif/if500b.h> 35 #include <nvif/if900b.h> 36 #include <nvif/if000c.h> 37 38 #include <nvhw/class/cla0b5.h> 39 40 #include <linux/sched/mm.h> 41 #include <linux/hmm.h> 42 43 /* 44 * FIXME: this is ugly right now we are using TTM to allocate vram and we pin 45 * it in vram while in use. We likely want to overhaul memory management for 46 * nouveau to be more page like (not necessarily with system page size but a 47 * bigger page size) at lowest level and have some shim layer on top that would 48 * provide the same functionality as TTM. 49 */ 50 #define DMEM_CHUNK_SIZE (2UL << 20) 51 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT) 52 53 enum nouveau_aper { 54 NOUVEAU_APER_VIRT, 55 NOUVEAU_APER_VRAM, 56 NOUVEAU_APER_HOST, 57 }; 58 59 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages, 60 enum nouveau_aper, u64 dst_addr, 61 enum nouveau_aper, u64 src_addr); 62 typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length, 63 enum nouveau_aper, u64 dst_addr); 64 65 struct nouveau_dmem_chunk { 66 struct list_head list; 67 struct nouveau_bo *bo; 68 struct nouveau_drm *drm; 69 unsigned long callocated; 70 struct dev_pagemap pagemap; 71 }; 72 73 struct nouveau_dmem_migrate { 74 nouveau_migrate_copy_t copy_func; 75 nouveau_clear_page_t clear_func; 76 struct nouveau_channel *chan; 77 }; 78 79 struct nouveau_dmem { 80 struct nouveau_drm *drm; 81 struct nouveau_dmem_migrate migrate; 82 struct list_head chunks; 83 struct mutex mutex; 84 struct page *free_pages; 85 spinlock_t lock; 86 }; 87 88 static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page) 89 { 90 return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap); 91 } 92 93 static struct nouveau_drm *page_to_drm(struct page *page) 94 { 95 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 96 97 return chunk->drm; 98 } 99 100 unsigned long nouveau_dmem_page_addr(struct page *page) 101 { 102 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 103 unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) - 104 chunk->pagemap.range.start; 105 106 return chunk->bo->offset + off; 107 } 108 109 static void nouveau_dmem_page_free(struct page *page) 110 { 111 struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); 112 struct nouveau_dmem *dmem = chunk->drm->dmem; 113 114 spin_lock(&dmem->lock); 115 page->zone_device_data = dmem->free_pages; 116 dmem->free_pages = page; 117 118 WARN_ON(!chunk->callocated); 119 chunk->callocated--; 120 /* 121 * FIXME when chunk->callocated reach 0 we should add the chunk to 122 * a reclaim list so that it can be freed in case of memory pressure. 123 */ 124 spin_unlock(&dmem->lock); 125 } 126 127 static void nouveau_dmem_fence_done(struct nouveau_fence **fence) 128 { 129 if (fence) { 130 nouveau_fence_wait(*fence, true, false); 131 nouveau_fence_unref(fence); 132 } else { 133 /* 134 * FIXME wait for channel to be IDLE before calling finalizing 135 * the hmem object. 136 */ 137 } 138 } 139 140 static vm_fault_t nouveau_dmem_fault_copy_one(struct nouveau_drm *drm, 141 struct vm_fault *vmf, struct migrate_vma *args, 142 dma_addr_t *dma_addr) 143 { 144 struct device *dev = drm->dev->dev; 145 struct page *dpage, *spage; 146 struct nouveau_svmm *svmm; 147 148 spage = migrate_pfn_to_page(args->src[0]); 149 if (!spage || !(args->src[0] & MIGRATE_PFN_MIGRATE)) 150 return 0; 151 152 dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address); 153 if (!dpage) 154 return VM_FAULT_SIGBUS; 155 lock_page(dpage); 156 157 *dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 158 if (dma_mapping_error(dev, *dma_addr)) 159 goto error_free_page; 160 161 svmm = spage->zone_device_data; 162 mutex_lock(&svmm->mutex); 163 nouveau_svmm_invalidate(svmm, args->start, args->end); 164 if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr, 165 NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage))) 166 goto error_dma_unmap; 167 mutex_unlock(&svmm->mutex); 168 169 args->dst[0] = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED; 170 return 0; 171 172 error_dma_unmap: 173 mutex_unlock(&svmm->mutex); 174 dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 175 error_free_page: 176 __free_page(dpage); 177 return VM_FAULT_SIGBUS; 178 } 179 180 static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf) 181 { 182 struct nouveau_drm *drm = page_to_drm(vmf->page); 183 struct nouveau_dmem *dmem = drm->dmem; 184 struct nouveau_fence *fence; 185 unsigned long src = 0, dst = 0; 186 dma_addr_t dma_addr = 0; 187 vm_fault_t ret; 188 struct migrate_vma args = { 189 .vma = vmf->vma, 190 .start = vmf->address, 191 .end = vmf->address + PAGE_SIZE, 192 .src = &src, 193 .dst = &dst, 194 .pgmap_owner = drm->dev, 195 .flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE, 196 }; 197 198 /* 199 * FIXME what we really want is to find some heuristic to migrate more 200 * than just one page on CPU fault. When such fault happens it is very 201 * likely that more surrounding page will CPU fault too. 202 */ 203 if (migrate_vma_setup(&args) < 0) 204 return VM_FAULT_SIGBUS; 205 if (!args.cpages) 206 return 0; 207 208 ret = nouveau_dmem_fault_copy_one(drm, vmf, &args, &dma_addr); 209 if (ret || dst == 0) 210 goto done; 211 212 nouveau_fence_new(dmem->migrate.chan, false, &fence); 213 migrate_vma_pages(&args); 214 nouveau_dmem_fence_done(&fence); 215 dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 216 done: 217 migrate_vma_finalize(&args); 218 return ret; 219 } 220 221 static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = { 222 .page_free = nouveau_dmem_page_free, 223 .migrate_to_ram = nouveau_dmem_migrate_to_ram, 224 }; 225 226 static int 227 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage) 228 { 229 struct nouveau_dmem_chunk *chunk; 230 struct resource *res; 231 struct page *page; 232 void *ptr; 233 unsigned long i, pfn_first; 234 int ret; 235 236 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL); 237 if (chunk == NULL) { 238 ret = -ENOMEM; 239 goto out; 240 } 241 242 /* Allocate unused physical address space for device private pages. */ 243 res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE, 244 "nouveau_dmem"); 245 if (IS_ERR(res)) { 246 ret = PTR_ERR(res); 247 goto out_free; 248 } 249 250 chunk->drm = drm; 251 chunk->pagemap.type = MEMORY_DEVICE_PRIVATE; 252 chunk->pagemap.range.start = res->start; 253 chunk->pagemap.range.end = res->end; 254 chunk->pagemap.nr_range = 1; 255 chunk->pagemap.ops = &nouveau_dmem_pagemap_ops; 256 chunk->pagemap.owner = drm->dev; 257 258 ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0, 259 TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL, 260 &chunk->bo); 261 if (ret) 262 goto out_release; 263 264 ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false); 265 if (ret) 266 goto out_bo_free; 267 268 ptr = memremap_pages(&chunk->pagemap, numa_node_id()); 269 if (IS_ERR(ptr)) { 270 ret = PTR_ERR(ptr); 271 goto out_bo_unpin; 272 } 273 274 mutex_lock(&drm->dmem->mutex); 275 list_add(&chunk->list, &drm->dmem->chunks); 276 mutex_unlock(&drm->dmem->mutex); 277 278 pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT; 279 page = pfn_to_page(pfn_first); 280 spin_lock(&drm->dmem->lock); 281 for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) { 282 page->zone_device_data = drm->dmem->free_pages; 283 drm->dmem->free_pages = page; 284 } 285 *ppage = page; 286 chunk->callocated++; 287 spin_unlock(&drm->dmem->lock); 288 289 NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", 290 DMEM_CHUNK_SIZE >> 20); 291 292 return 0; 293 294 out_bo_unpin: 295 nouveau_bo_unpin(chunk->bo); 296 out_bo_free: 297 nouveau_bo_ref(NULL, &chunk->bo); 298 out_release: 299 release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range)); 300 out_free: 301 kfree(chunk); 302 out: 303 return ret; 304 } 305 306 static struct page * 307 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm) 308 { 309 struct nouveau_dmem_chunk *chunk; 310 struct page *page = NULL; 311 int ret; 312 313 spin_lock(&drm->dmem->lock); 314 if (drm->dmem->free_pages) { 315 page = drm->dmem->free_pages; 316 drm->dmem->free_pages = page->zone_device_data; 317 chunk = nouveau_page_to_chunk(page); 318 chunk->callocated++; 319 spin_unlock(&drm->dmem->lock); 320 } else { 321 spin_unlock(&drm->dmem->lock); 322 ret = nouveau_dmem_chunk_alloc(drm, &page); 323 if (ret) 324 return NULL; 325 } 326 327 get_page(page); 328 lock_page(page); 329 return page; 330 } 331 332 static void 333 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page) 334 { 335 unlock_page(page); 336 put_page(page); 337 } 338 339 void 340 nouveau_dmem_resume(struct nouveau_drm *drm) 341 { 342 struct nouveau_dmem_chunk *chunk; 343 int ret; 344 345 if (drm->dmem == NULL) 346 return; 347 348 mutex_lock(&drm->dmem->mutex); 349 list_for_each_entry(chunk, &drm->dmem->chunks, list) { 350 ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false); 351 /* FIXME handle pin failure */ 352 WARN_ON(ret); 353 } 354 mutex_unlock(&drm->dmem->mutex); 355 } 356 357 void 358 nouveau_dmem_suspend(struct nouveau_drm *drm) 359 { 360 struct nouveau_dmem_chunk *chunk; 361 362 if (drm->dmem == NULL) 363 return; 364 365 mutex_lock(&drm->dmem->mutex); 366 list_for_each_entry(chunk, &drm->dmem->chunks, list) 367 nouveau_bo_unpin(chunk->bo); 368 mutex_unlock(&drm->dmem->mutex); 369 } 370 371 void 372 nouveau_dmem_fini(struct nouveau_drm *drm) 373 { 374 struct nouveau_dmem_chunk *chunk, *tmp; 375 376 if (drm->dmem == NULL) 377 return; 378 379 mutex_lock(&drm->dmem->mutex); 380 381 list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) { 382 nouveau_bo_unpin(chunk->bo); 383 nouveau_bo_ref(NULL, &chunk->bo); 384 list_del(&chunk->list); 385 memunmap_pages(&chunk->pagemap); 386 release_mem_region(chunk->pagemap.range.start, 387 range_len(&chunk->pagemap.range)); 388 kfree(chunk); 389 } 390 391 mutex_unlock(&drm->dmem->mutex); 392 } 393 394 static int 395 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages, 396 enum nouveau_aper dst_aper, u64 dst_addr, 397 enum nouveau_aper src_aper, u64 src_addr) 398 { 399 struct nvif_push *push = drm->dmem->migrate.chan->chan.push; 400 u32 launch_dma = 0; 401 int ret; 402 403 ret = PUSH_WAIT(push, 13); 404 if (ret) 405 return ret; 406 407 if (src_aper != NOUVEAU_APER_VIRT) { 408 switch (src_aper) { 409 case NOUVEAU_APER_VRAM: 410 PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, 411 NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB)); 412 break; 413 case NOUVEAU_APER_HOST: 414 PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, 415 NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 416 break; 417 default: 418 return -EINVAL; 419 } 420 421 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL); 422 } 423 424 if (dst_aper != NOUVEAU_APER_VIRT) { 425 switch (dst_aper) { 426 case NOUVEAU_APER_VRAM: 427 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 428 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); 429 break; 430 case NOUVEAU_APER_HOST: 431 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 432 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 433 break; 434 default: 435 return -EINVAL; 436 } 437 438 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); 439 } 440 441 PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER, 442 NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)), 443 444 OFFSET_IN_LOWER, lower_32_bits(src_addr), 445 446 OFFSET_OUT_UPPER, 447 NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), 448 449 OFFSET_OUT_LOWER, lower_32_bits(dst_addr), 450 PITCH_IN, PAGE_SIZE, 451 PITCH_OUT, PAGE_SIZE, 452 LINE_LENGTH_IN, PAGE_SIZE, 453 LINE_COUNT, npages); 454 455 PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | 456 NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | 457 NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | 458 NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | 459 NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | 460 NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | 461 NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | 462 NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) | 463 NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) | 464 NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); 465 return 0; 466 } 467 468 static int 469 nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length, 470 enum nouveau_aper dst_aper, u64 dst_addr) 471 { 472 struct nvif_push *push = drm->dmem->migrate.chan->chan.push; 473 u32 launch_dma = 0; 474 int ret; 475 476 ret = PUSH_WAIT(push, 12); 477 if (ret) 478 return ret; 479 480 switch (dst_aper) { 481 case NOUVEAU_APER_VRAM: 482 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 483 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); 484 break; 485 case NOUVEAU_APER_HOST: 486 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, 487 NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); 488 break; 489 default: 490 return -EINVAL; 491 } 492 493 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); 494 495 PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0, 496 SET_REMAP_CONST_B, 0, 497 498 SET_REMAP_COMPONENTS, 499 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) | 500 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) | 501 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) | 502 NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO)); 503 504 PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER, 505 NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), 506 507 OFFSET_OUT_LOWER, lower_32_bits(dst_addr)); 508 509 PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3); 510 511 PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | 512 NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | 513 NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | 514 NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | 515 NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | 516 NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | 517 NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | 518 NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) | 519 NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) | 520 NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); 521 return 0; 522 } 523 524 static int 525 nouveau_dmem_migrate_init(struct nouveau_drm *drm) 526 { 527 switch (drm->ttm.copy.oclass) { 528 case PASCAL_DMA_COPY_A: 529 case PASCAL_DMA_COPY_B: 530 case VOLTA_DMA_COPY_A: 531 case TURING_DMA_COPY_A: 532 drm->dmem->migrate.copy_func = nvc0b5_migrate_copy; 533 drm->dmem->migrate.clear_func = nvc0b5_migrate_clear; 534 drm->dmem->migrate.chan = drm->ttm.chan; 535 return 0; 536 default: 537 break; 538 } 539 return -ENODEV; 540 } 541 542 void 543 nouveau_dmem_init(struct nouveau_drm *drm) 544 { 545 int ret; 546 547 /* This only make sense on PASCAL or newer */ 548 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL) 549 return; 550 551 if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL))) 552 return; 553 554 drm->dmem->drm = drm; 555 mutex_init(&drm->dmem->mutex); 556 INIT_LIST_HEAD(&drm->dmem->chunks); 557 mutex_init(&drm->dmem->mutex); 558 spin_lock_init(&drm->dmem->lock); 559 560 /* Initialize migration dma helpers before registering memory */ 561 ret = nouveau_dmem_migrate_init(drm); 562 if (ret) { 563 kfree(drm->dmem); 564 drm->dmem = NULL; 565 } 566 } 567 568 static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm, 569 struct nouveau_svmm *svmm, unsigned long src, 570 dma_addr_t *dma_addr, u64 *pfn) 571 { 572 struct device *dev = drm->dev->dev; 573 struct page *dpage, *spage; 574 unsigned long paddr; 575 576 spage = migrate_pfn_to_page(src); 577 if (!(src & MIGRATE_PFN_MIGRATE)) 578 goto out; 579 580 dpage = nouveau_dmem_page_alloc_locked(drm); 581 if (!dpage) 582 goto out; 583 584 paddr = nouveau_dmem_page_addr(dpage); 585 if (spage) { 586 *dma_addr = dma_map_page(dev, spage, 0, page_size(spage), 587 DMA_BIDIRECTIONAL); 588 if (dma_mapping_error(dev, *dma_addr)) 589 goto out_free_page; 590 if (drm->dmem->migrate.copy_func(drm, 1, 591 NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr)) 592 goto out_dma_unmap; 593 } else { 594 *dma_addr = DMA_MAPPING_ERROR; 595 if (drm->dmem->migrate.clear_func(drm, page_size(dpage), 596 NOUVEAU_APER_VRAM, paddr)) 597 goto out_free_page; 598 } 599 600 dpage->zone_device_data = svmm; 601 *pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM | 602 ((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT); 603 if (src & MIGRATE_PFN_WRITE) 604 *pfn |= NVIF_VMM_PFNMAP_V0_W; 605 return migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED; 606 607 out_dma_unmap: 608 dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); 609 out_free_page: 610 nouveau_dmem_page_free_locked(drm, dpage); 611 out: 612 *pfn = NVIF_VMM_PFNMAP_V0_NONE; 613 return 0; 614 } 615 616 static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm, 617 struct nouveau_svmm *svmm, struct migrate_vma *args, 618 dma_addr_t *dma_addrs, u64 *pfns) 619 { 620 struct nouveau_fence *fence; 621 unsigned long addr = args->start, nr_dma = 0, i; 622 623 for (i = 0; addr < args->end; i++) { 624 args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm, 625 args->src[i], dma_addrs + nr_dma, pfns + i); 626 if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma])) 627 nr_dma++; 628 addr += PAGE_SIZE; 629 } 630 631 nouveau_fence_new(drm->dmem->migrate.chan, false, &fence); 632 migrate_vma_pages(args); 633 nouveau_dmem_fence_done(&fence); 634 nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i); 635 636 while (nr_dma--) { 637 dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE, 638 DMA_BIDIRECTIONAL); 639 } 640 migrate_vma_finalize(args); 641 } 642 643 int 644 nouveau_dmem_migrate_vma(struct nouveau_drm *drm, 645 struct nouveau_svmm *svmm, 646 struct vm_area_struct *vma, 647 unsigned long start, 648 unsigned long end) 649 { 650 unsigned long npages = (end - start) >> PAGE_SHIFT; 651 unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages); 652 dma_addr_t *dma_addrs; 653 struct migrate_vma args = { 654 .vma = vma, 655 .start = start, 656 .pgmap_owner = drm->dev, 657 .flags = MIGRATE_VMA_SELECT_SYSTEM, 658 }; 659 unsigned long i; 660 u64 *pfns; 661 int ret = -ENOMEM; 662 663 if (drm->dmem == NULL) 664 return -ENODEV; 665 666 args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL); 667 if (!args.src) 668 goto out; 669 args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL); 670 if (!args.dst) 671 goto out_free_src; 672 673 dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL); 674 if (!dma_addrs) 675 goto out_free_dst; 676 677 pfns = nouveau_pfns_alloc(max); 678 if (!pfns) 679 goto out_free_dma; 680 681 for (i = 0; i < npages; i += max) { 682 args.end = start + (max << PAGE_SHIFT); 683 ret = migrate_vma_setup(&args); 684 if (ret) 685 goto out_free_pfns; 686 687 if (args.cpages) 688 nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs, 689 pfns); 690 args.start = args.end; 691 } 692 693 ret = 0; 694 out_free_pfns: 695 nouveau_pfns_free(pfns); 696 out_free_dma: 697 kfree(dma_addrs); 698 out_free_dst: 699 kfree(args.dst); 700 out_free_src: 701 kfree(args.src); 702 out: 703 return ret; 704 } 705