xref: /linux/drivers/gpu/drm/nouveau/nouveau_dmem.c (revision 5a505603a917854fd68d2c25e86e1fb96c845ced)
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_dmem.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dma.h"
26 #include "nouveau_mem.h"
27 #include "nouveau_bo.h"
28 #include "nouveau_svm.h"
29 
30 #include <nvif/class.h>
31 #include <nvif/object.h>
32 #include <nvif/push906f.h>
33 #include <nvif/if000c.h>
34 #include <nvif/if500b.h>
35 #include <nvif/if900b.h>
36 #include <nvif/if000c.h>
37 
38 #include <nvhw/class/cla0b5.h>
39 
40 #include <linux/sched/mm.h>
41 #include <linux/hmm.h>
42 
43 /*
44  * FIXME: this is ugly right now we are using TTM to allocate vram and we pin
45  * it in vram while in use. We likely want to overhaul memory management for
46  * nouveau to be more page like (not necessarily with system page size but a
47  * bigger page size) at lowest level and have some shim layer on top that would
48  * provide the same functionality as TTM.
49  */
50 #define DMEM_CHUNK_SIZE (2UL << 20)
51 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
52 
53 enum nouveau_aper {
54 	NOUVEAU_APER_VIRT,
55 	NOUVEAU_APER_VRAM,
56 	NOUVEAU_APER_HOST,
57 };
58 
59 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
60 				      enum nouveau_aper, u64 dst_addr,
61 				      enum nouveau_aper, u64 src_addr);
62 typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length,
63 				      enum nouveau_aper, u64 dst_addr);
64 
65 struct nouveau_dmem_chunk {
66 	struct list_head list;
67 	struct nouveau_bo *bo;
68 	struct nouveau_drm *drm;
69 	unsigned long callocated;
70 	struct dev_pagemap pagemap;
71 };
72 
73 struct nouveau_dmem_migrate {
74 	nouveau_migrate_copy_t copy_func;
75 	nouveau_clear_page_t clear_func;
76 	struct nouveau_channel *chan;
77 };
78 
79 struct nouveau_dmem {
80 	struct nouveau_drm *drm;
81 	struct nouveau_dmem_migrate migrate;
82 	struct list_head chunks;
83 	struct mutex mutex;
84 	struct page *free_pages;
85 	spinlock_t lock;
86 };
87 
88 static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page)
89 {
90 	return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap);
91 }
92 
93 static struct nouveau_drm *page_to_drm(struct page *page)
94 {
95 	struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
96 
97 	return chunk->drm;
98 }
99 
100 unsigned long nouveau_dmem_page_addr(struct page *page)
101 {
102 	struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
103 	unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) -
104 				chunk->pagemap.range.start;
105 
106 	return chunk->bo->offset + off;
107 }
108 
109 static void nouveau_dmem_page_free(struct page *page)
110 {
111 	struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
112 	struct nouveau_dmem *dmem = chunk->drm->dmem;
113 
114 	spin_lock(&dmem->lock);
115 	page->zone_device_data = dmem->free_pages;
116 	dmem->free_pages = page;
117 
118 	WARN_ON(!chunk->callocated);
119 	chunk->callocated--;
120 	/*
121 	 * FIXME when chunk->callocated reach 0 we should add the chunk to
122 	 * a reclaim list so that it can be freed in case of memory pressure.
123 	 */
124 	spin_unlock(&dmem->lock);
125 }
126 
127 static void nouveau_dmem_fence_done(struct nouveau_fence **fence)
128 {
129 	if (fence) {
130 		nouveau_fence_wait(*fence, true, false);
131 		nouveau_fence_unref(fence);
132 	} else {
133 		/*
134 		 * FIXME wait for channel to be IDLE before calling finalizing
135 		 * the hmem object.
136 		 */
137 	}
138 }
139 
140 static vm_fault_t nouveau_dmem_fault_copy_one(struct nouveau_drm *drm,
141 		struct vm_fault *vmf, struct migrate_vma *args,
142 		dma_addr_t *dma_addr)
143 {
144 	struct device *dev = drm->dev->dev;
145 	struct page *dpage, *spage;
146 	struct nouveau_svmm *svmm;
147 
148 	spage = migrate_pfn_to_page(args->src[0]);
149 	if (!spage || !(args->src[0] & MIGRATE_PFN_MIGRATE))
150 		return 0;
151 
152 	dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address);
153 	if (!dpage)
154 		return VM_FAULT_SIGBUS;
155 	lock_page(dpage);
156 
157 	*dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
158 	if (dma_mapping_error(dev, *dma_addr))
159 		goto error_free_page;
160 
161 	svmm = spage->zone_device_data;
162 	mutex_lock(&svmm->mutex);
163 	nouveau_svmm_invalidate(svmm, args->start, args->end);
164 	if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr,
165 			NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage)))
166 		goto error_dma_unmap;
167 	mutex_unlock(&svmm->mutex);
168 
169 	args->dst[0] = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
170 	return 0;
171 
172 error_dma_unmap:
173 	mutex_unlock(&svmm->mutex);
174 	dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
175 error_free_page:
176 	__free_page(dpage);
177 	return VM_FAULT_SIGBUS;
178 }
179 
180 static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf)
181 {
182 	struct nouveau_drm *drm = page_to_drm(vmf->page);
183 	struct nouveau_dmem *dmem = drm->dmem;
184 	struct nouveau_fence *fence;
185 	unsigned long src = 0, dst = 0;
186 	dma_addr_t dma_addr = 0;
187 	vm_fault_t ret;
188 	struct migrate_vma args = {
189 		.vma		= vmf->vma,
190 		.start		= vmf->address,
191 		.end		= vmf->address + PAGE_SIZE,
192 		.src		= &src,
193 		.dst		= &dst,
194 		.pgmap_owner	= drm->dev,
195 		.flags		= MIGRATE_VMA_SELECT_DEVICE_PRIVATE,
196 	};
197 
198 	/*
199 	 * FIXME what we really want is to find some heuristic to migrate more
200 	 * than just one page on CPU fault. When such fault happens it is very
201 	 * likely that more surrounding page will CPU fault too.
202 	 */
203 	if (migrate_vma_setup(&args) < 0)
204 		return VM_FAULT_SIGBUS;
205 	if (!args.cpages)
206 		return 0;
207 
208 	ret = nouveau_dmem_fault_copy_one(drm, vmf, &args, &dma_addr);
209 	if (ret || dst == 0)
210 		goto done;
211 
212 	nouveau_fence_new(dmem->migrate.chan, false, &fence);
213 	migrate_vma_pages(&args);
214 	nouveau_dmem_fence_done(&fence);
215 	dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
216 done:
217 	migrate_vma_finalize(&args);
218 	return ret;
219 }
220 
221 static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = {
222 	.page_free		= nouveau_dmem_page_free,
223 	.migrate_to_ram		= nouveau_dmem_migrate_to_ram,
224 };
225 
226 static int
227 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage)
228 {
229 	struct nouveau_dmem_chunk *chunk;
230 	struct resource *res;
231 	struct page *page;
232 	void *ptr;
233 	unsigned long i, pfn_first;
234 	int ret;
235 
236 	chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
237 	if (chunk == NULL) {
238 		ret = -ENOMEM;
239 		goto out;
240 	}
241 
242 	/* Allocate unused physical address space for device private pages. */
243 	res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE,
244 				      "nouveau_dmem");
245 	if (IS_ERR(res)) {
246 		ret = PTR_ERR(res);
247 		goto out_free;
248 	}
249 
250 	chunk->drm = drm;
251 	chunk->pagemap.type = MEMORY_DEVICE_PRIVATE;
252 	chunk->pagemap.range.start = res->start;
253 	chunk->pagemap.range.end = res->end;
254 	chunk->pagemap.nr_range = 1;
255 	chunk->pagemap.ops = &nouveau_dmem_pagemap_ops;
256 	chunk->pagemap.owner = drm->dev;
257 
258 	ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
259 			     TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL,
260 			     &chunk->bo);
261 	if (ret)
262 		goto out_release;
263 
264 	ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
265 	if (ret)
266 		goto out_bo_free;
267 
268 	ptr = memremap_pages(&chunk->pagemap, numa_node_id());
269 	if (IS_ERR(ptr)) {
270 		ret = PTR_ERR(ptr);
271 		goto out_bo_unpin;
272 	}
273 
274 	mutex_lock(&drm->dmem->mutex);
275 	list_add(&chunk->list, &drm->dmem->chunks);
276 	mutex_unlock(&drm->dmem->mutex);
277 
278 	pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT;
279 	page = pfn_to_page(pfn_first);
280 	spin_lock(&drm->dmem->lock);
281 	for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) {
282 		page->zone_device_data = drm->dmem->free_pages;
283 		drm->dmem->free_pages = page;
284 	}
285 	*ppage = page;
286 	chunk->callocated++;
287 	spin_unlock(&drm->dmem->lock);
288 
289 	NV_INFO(drm, "DMEM: registered %ldMB of device memory\n",
290 		DMEM_CHUNK_SIZE >> 20);
291 
292 	return 0;
293 
294 out_bo_unpin:
295 	nouveau_bo_unpin(chunk->bo);
296 out_bo_free:
297 	nouveau_bo_ref(NULL, &chunk->bo);
298 out_release:
299 	release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range));
300 out_free:
301 	kfree(chunk);
302 out:
303 	return ret;
304 }
305 
306 static struct page *
307 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
308 {
309 	struct nouveau_dmem_chunk *chunk;
310 	struct page *page = NULL;
311 	int ret;
312 
313 	spin_lock(&drm->dmem->lock);
314 	if (drm->dmem->free_pages) {
315 		page = drm->dmem->free_pages;
316 		drm->dmem->free_pages = page->zone_device_data;
317 		chunk = nouveau_page_to_chunk(page);
318 		chunk->callocated++;
319 		spin_unlock(&drm->dmem->lock);
320 	} else {
321 		spin_unlock(&drm->dmem->lock);
322 		ret = nouveau_dmem_chunk_alloc(drm, &page);
323 		if (ret)
324 			return NULL;
325 	}
326 
327 	get_page(page);
328 	lock_page(page);
329 	return page;
330 }
331 
332 static void
333 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
334 {
335 	unlock_page(page);
336 	put_page(page);
337 }
338 
339 void
340 nouveau_dmem_resume(struct nouveau_drm *drm)
341 {
342 	struct nouveau_dmem_chunk *chunk;
343 	int ret;
344 
345 	if (drm->dmem == NULL)
346 		return;
347 
348 	mutex_lock(&drm->dmem->mutex);
349 	list_for_each_entry(chunk, &drm->dmem->chunks, list) {
350 		ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
351 		/* FIXME handle pin failure */
352 		WARN_ON(ret);
353 	}
354 	mutex_unlock(&drm->dmem->mutex);
355 }
356 
357 void
358 nouveau_dmem_suspend(struct nouveau_drm *drm)
359 {
360 	struct nouveau_dmem_chunk *chunk;
361 
362 	if (drm->dmem == NULL)
363 		return;
364 
365 	mutex_lock(&drm->dmem->mutex);
366 	list_for_each_entry(chunk, &drm->dmem->chunks, list)
367 		nouveau_bo_unpin(chunk->bo);
368 	mutex_unlock(&drm->dmem->mutex);
369 }
370 
371 void
372 nouveau_dmem_fini(struct nouveau_drm *drm)
373 {
374 	struct nouveau_dmem_chunk *chunk, *tmp;
375 
376 	if (drm->dmem == NULL)
377 		return;
378 
379 	mutex_lock(&drm->dmem->mutex);
380 
381 	list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) {
382 		nouveau_bo_unpin(chunk->bo);
383 		nouveau_bo_ref(NULL, &chunk->bo);
384 		list_del(&chunk->list);
385 		memunmap_pages(&chunk->pagemap);
386 		release_mem_region(chunk->pagemap.range.start,
387 				   range_len(&chunk->pagemap.range));
388 		kfree(chunk);
389 	}
390 
391 	mutex_unlock(&drm->dmem->mutex);
392 }
393 
394 static int
395 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
396 		    enum nouveau_aper dst_aper, u64 dst_addr,
397 		    enum nouveau_aper src_aper, u64 src_addr)
398 {
399 	struct nvif_push *push = drm->dmem->migrate.chan->chan.push;
400 	u32 launch_dma = 0;
401 	int ret;
402 
403 	ret = PUSH_WAIT(push, 13);
404 	if (ret)
405 		return ret;
406 
407 	if (src_aper != NOUVEAU_APER_VIRT) {
408 		switch (src_aper) {
409 		case NOUVEAU_APER_VRAM:
410 			PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE,
411 				  NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB));
412 			break;
413 		case NOUVEAU_APER_HOST:
414 			PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE,
415 				  NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM));
416 			break;
417 		default:
418 			return -EINVAL;
419 		}
420 
421 		launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL);
422 	}
423 
424 	if (dst_aper != NOUVEAU_APER_VIRT) {
425 		switch (dst_aper) {
426 		case NOUVEAU_APER_VRAM:
427 			PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
428 				  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
429 			break;
430 		case NOUVEAU_APER_HOST:
431 			PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
432 				  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
433 			break;
434 		default:
435 			return -EINVAL;
436 		}
437 
438 		launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
439 	}
440 
441 	PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER,
442 		  NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)),
443 
444 				OFFSET_IN_LOWER, lower_32_bits(src_addr),
445 
446 				OFFSET_OUT_UPPER,
447 		  NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)),
448 
449 				OFFSET_OUT_LOWER, lower_32_bits(dst_addr),
450 				PITCH_IN, PAGE_SIZE,
451 				PITCH_OUT, PAGE_SIZE,
452 				LINE_LENGTH_IN, PAGE_SIZE,
453 				LINE_COUNT, npages);
454 
455 	PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma |
456 		  NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) |
457 		  NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) |
458 		  NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) |
459 		  NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) |
460 		  NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
461 		  NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
462 		  NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) |
463 		  NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) |
464 		  NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING));
465 	return 0;
466 }
467 
468 static int
469 nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length,
470 		     enum nouveau_aper dst_aper, u64 dst_addr)
471 {
472 	struct nvif_push *push = drm->dmem->migrate.chan->chan.push;
473 	u32 launch_dma = 0;
474 	int ret;
475 
476 	ret = PUSH_WAIT(push, 12);
477 	if (ret)
478 		return ret;
479 
480 	switch (dst_aper) {
481 	case NOUVEAU_APER_VRAM:
482 		PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
483 			  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
484 		break;
485 	case NOUVEAU_APER_HOST:
486 		PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
487 			  NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
488 		break;
489 	default:
490 		return -EINVAL;
491 	}
492 
493 	launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
494 
495 	PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0,
496 				SET_REMAP_CONST_B, 0,
497 
498 				SET_REMAP_COMPONENTS,
499 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) |
500 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) |
501 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) |
502 		  NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO));
503 
504 	PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER,
505 		  NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)),
506 
507 				OFFSET_OUT_LOWER, lower_32_bits(dst_addr));
508 
509 	PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3);
510 
511 	PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma |
512 		  NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) |
513 		  NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) |
514 		  NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) |
515 		  NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) |
516 		  NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
517 		  NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
518 		  NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) |
519 		  NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) |
520 		  NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING));
521 	return 0;
522 }
523 
524 static int
525 nouveau_dmem_migrate_init(struct nouveau_drm *drm)
526 {
527 	switch (drm->ttm.copy.oclass) {
528 	case PASCAL_DMA_COPY_A:
529 	case PASCAL_DMA_COPY_B:
530 	case  VOLTA_DMA_COPY_A:
531 	case TURING_DMA_COPY_A:
532 		drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
533 		drm->dmem->migrate.clear_func = nvc0b5_migrate_clear;
534 		drm->dmem->migrate.chan = drm->ttm.chan;
535 		return 0;
536 	default:
537 		break;
538 	}
539 	return -ENODEV;
540 }
541 
542 void
543 nouveau_dmem_init(struct nouveau_drm *drm)
544 {
545 	int ret;
546 
547 	/* This only make sense on PASCAL or newer */
548 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
549 		return;
550 
551 	if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
552 		return;
553 
554 	drm->dmem->drm = drm;
555 	mutex_init(&drm->dmem->mutex);
556 	INIT_LIST_HEAD(&drm->dmem->chunks);
557 	mutex_init(&drm->dmem->mutex);
558 	spin_lock_init(&drm->dmem->lock);
559 
560 	/* Initialize migration dma helpers before registering memory */
561 	ret = nouveau_dmem_migrate_init(drm);
562 	if (ret) {
563 		kfree(drm->dmem);
564 		drm->dmem = NULL;
565 	}
566 }
567 
568 static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm,
569 		struct nouveau_svmm *svmm, unsigned long src,
570 		dma_addr_t *dma_addr, u64 *pfn)
571 {
572 	struct device *dev = drm->dev->dev;
573 	struct page *dpage, *spage;
574 	unsigned long paddr;
575 
576 	spage = migrate_pfn_to_page(src);
577 	if (!(src & MIGRATE_PFN_MIGRATE))
578 		goto out;
579 
580 	dpage = nouveau_dmem_page_alloc_locked(drm);
581 	if (!dpage)
582 		goto out;
583 
584 	paddr = nouveau_dmem_page_addr(dpage);
585 	if (spage) {
586 		*dma_addr = dma_map_page(dev, spage, 0, page_size(spage),
587 					 DMA_BIDIRECTIONAL);
588 		if (dma_mapping_error(dev, *dma_addr))
589 			goto out_free_page;
590 		if (drm->dmem->migrate.copy_func(drm, 1,
591 			NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr))
592 			goto out_dma_unmap;
593 	} else {
594 		*dma_addr = DMA_MAPPING_ERROR;
595 		if (drm->dmem->migrate.clear_func(drm, page_size(dpage),
596 			NOUVEAU_APER_VRAM, paddr))
597 			goto out_free_page;
598 	}
599 
600 	dpage->zone_device_data = svmm;
601 	*pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM |
602 		((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT);
603 	if (src & MIGRATE_PFN_WRITE)
604 		*pfn |= NVIF_VMM_PFNMAP_V0_W;
605 	return migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
606 
607 out_dma_unmap:
608 	dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
609 out_free_page:
610 	nouveau_dmem_page_free_locked(drm, dpage);
611 out:
612 	*pfn = NVIF_VMM_PFNMAP_V0_NONE;
613 	return 0;
614 }
615 
616 static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm,
617 		struct nouveau_svmm *svmm, struct migrate_vma *args,
618 		dma_addr_t *dma_addrs, u64 *pfns)
619 {
620 	struct nouveau_fence *fence;
621 	unsigned long addr = args->start, nr_dma = 0, i;
622 
623 	for (i = 0; addr < args->end; i++) {
624 		args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm,
625 				args->src[i], dma_addrs + nr_dma, pfns + i);
626 		if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma]))
627 			nr_dma++;
628 		addr += PAGE_SIZE;
629 	}
630 
631 	nouveau_fence_new(drm->dmem->migrate.chan, false, &fence);
632 	migrate_vma_pages(args);
633 	nouveau_dmem_fence_done(&fence);
634 	nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i);
635 
636 	while (nr_dma--) {
637 		dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE,
638 				DMA_BIDIRECTIONAL);
639 	}
640 	migrate_vma_finalize(args);
641 }
642 
643 int
644 nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
645 			 struct nouveau_svmm *svmm,
646 			 struct vm_area_struct *vma,
647 			 unsigned long start,
648 			 unsigned long end)
649 {
650 	unsigned long npages = (end - start) >> PAGE_SHIFT;
651 	unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages);
652 	dma_addr_t *dma_addrs;
653 	struct migrate_vma args = {
654 		.vma		= vma,
655 		.start		= start,
656 		.pgmap_owner	= drm->dev,
657 		.flags		= MIGRATE_VMA_SELECT_SYSTEM,
658 	};
659 	unsigned long i;
660 	u64 *pfns;
661 	int ret = -ENOMEM;
662 
663 	if (drm->dmem == NULL)
664 		return -ENODEV;
665 
666 	args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL);
667 	if (!args.src)
668 		goto out;
669 	args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL);
670 	if (!args.dst)
671 		goto out_free_src;
672 
673 	dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL);
674 	if (!dma_addrs)
675 		goto out_free_dst;
676 
677 	pfns = nouveau_pfns_alloc(max);
678 	if (!pfns)
679 		goto out_free_dma;
680 
681 	for (i = 0; i < npages; i += max) {
682 		args.end = start + (max << PAGE_SHIFT);
683 		ret = migrate_vma_setup(&args);
684 		if (ret)
685 			goto out_free_pfns;
686 
687 		if (args.cpages)
688 			nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs,
689 						   pfns);
690 		args.start = args.end;
691 	}
692 
693 	ret = 0;
694 out_free_pfns:
695 	nouveau_pfns_free(pfns);
696 out_free_dma:
697 	kfree(dma_addrs);
698 out_free_dst:
699 	kfree(args.dst);
700 out_free_src:
701 	kfree(args.src);
702 out:
703 	return ret;
704 }
705