xref: /linux/drivers/gpu/drm/nouveau/nouveau_bo.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 
32 #include "nouveau_drv.h"
33 #include "nouveau_chan.h"
34 #include "nouveau_fence.h"
35 
36 #include "nouveau_bo.h"
37 #include "nouveau_ttm.h"
38 #include "nouveau_gem.h"
39 #include "nouveau_mem.h"
40 #include "nouveau_vmm.h"
41 
42 #include <nvif/class.h>
43 #include <nvif/if500b.h>
44 #include <nvif/if900b.h>
45 
46 static int nouveau_ttm_tt_bind(struct ttm_bo_device *bdev, struct ttm_tt *ttm,
47 			       struct ttm_resource *reg);
48 static void nouveau_ttm_tt_unbind(struct ttm_bo_device *bdev, struct ttm_tt *ttm);
49 
50 /*
51  * NV10-NV40 tiling helpers
52  */
53 
54 static void
55 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
56 			   u32 addr, u32 size, u32 pitch, u32 flags)
57 {
58 	struct nouveau_drm *drm = nouveau_drm(dev);
59 	int i = reg - drm->tile.reg;
60 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
61 	struct nvkm_fb_tile *tile = &fb->tile.region[i];
62 
63 	nouveau_fence_unref(&reg->fence);
64 
65 	if (tile->pitch)
66 		nvkm_fb_tile_fini(fb, i, tile);
67 
68 	if (pitch)
69 		nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
70 
71 	nvkm_fb_tile_prog(fb, i, tile);
72 }
73 
74 static struct nouveau_drm_tile *
75 nv10_bo_get_tile_region(struct drm_device *dev, int i)
76 {
77 	struct nouveau_drm *drm = nouveau_drm(dev);
78 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
79 
80 	spin_lock(&drm->tile.lock);
81 
82 	if (!tile->used &&
83 	    (!tile->fence || nouveau_fence_done(tile->fence)))
84 		tile->used = true;
85 	else
86 		tile = NULL;
87 
88 	spin_unlock(&drm->tile.lock);
89 	return tile;
90 }
91 
92 static void
93 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
94 			struct dma_fence *fence)
95 {
96 	struct nouveau_drm *drm = nouveau_drm(dev);
97 
98 	if (tile) {
99 		spin_lock(&drm->tile.lock);
100 		tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
101 		tile->used = false;
102 		spin_unlock(&drm->tile.lock);
103 	}
104 }
105 
106 static struct nouveau_drm_tile *
107 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
108 		   u32 size, u32 pitch, u32 zeta)
109 {
110 	struct nouveau_drm *drm = nouveau_drm(dev);
111 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
112 	struct nouveau_drm_tile *tile, *found = NULL;
113 	int i;
114 
115 	for (i = 0; i < fb->tile.regions; i++) {
116 		tile = nv10_bo_get_tile_region(dev, i);
117 
118 		if (pitch && !found) {
119 			found = tile;
120 			continue;
121 
122 		} else if (tile && fb->tile.region[i].pitch) {
123 			/* Kill an unused tile region. */
124 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
125 		}
126 
127 		nv10_bo_put_tile_region(dev, tile, NULL);
128 	}
129 
130 	if (found)
131 		nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
132 	return found;
133 }
134 
135 static void
136 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
137 {
138 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
139 	struct drm_device *dev = drm->dev;
140 	struct nouveau_bo *nvbo = nouveau_bo(bo);
141 
142 	WARN_ON(nvbo->bo.pin_count > 0);
143 	nouveau_bo_del_io_reserve_lru(bo);
144 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
145 
146 	/*
147 	 * If nouveau_bo_new() allocated this buffer, the GEM object was never
148 	 * initialized, so don't attempt to release it.
149 	 */
150 	if (bo->base.dev)
151 		drm_gem_object_release(&bo->base);
152 
153 	kfree(nvbo);
154 }
155 
156 static inline u64
157 roundup_64(u64 x, u32 y)
158 {
159 	x += y - 1;
160 	do_div(x, y);
161 	return x * y;
162 }
163 
164 static void
165 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size)
166 {
167 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
168 	struct nvif_device *device = &drm->client.device;
169 
170 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
171 		if (nvbo->mode) {
172 			if (device->info.chipset >= 0x40) {
173 				*align = 65536;
174 				*size = roundup_64(*size, 64 * nvbo->mode);
175 
176 			} else if (device->info.chipset >= 0x30) {
177 				*align = 32768;
178 				*size = roundup_64(*size, 64 * nvbo->mode);
179 
180 			} else if (device->info.chipset >= 0x20) {
181 				*align = 16384;
182 				*size = roundup_64(*size, 64 * nvbo->mode);
183 
184 			} else if (device->info.chipset >= 0x10) {
185 				*align = 16384;
186 				*size = roundup_64(*size, 32 * nvbo->mode);
187 			}
188 		}
189 	} else {
190 		*size = roundup_64(*size, (1 << nvbo->page));
191 		*align = max((1 <<  nvbo->page), *align);
192 	}
193 
194 	*size = roundup_64(*size, PAGE_SIZE);
195 }
196 
197 struct nouveau_bo *
198 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain,
199 		 u32 tile_mode, u32 tile_flags)
200 {
201 	struct nouveau_drm *drm = cli->drm;
202 	struct nouveau_bo *nvbo;
203 	struct nvif_mmu *mmu = &cli->mmu;
204 	struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm;
205 	int i, pi = -1;
206 
207 	if (!*size) {
208 		NV_WARN(drm, "skipped size %016llx\n", *size);
209 		return ERR_PTR(-EINVAL);
210 	}
211 
212 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
213 	if (!nvbo)
214 		return ERR_PTR(-ENOMEM);
215 	INIT_LIST_HEAD(&nvbo->head);
216 	INIT_LIST_HEAD(&nvbo->entry);
217 	INIT_LIST_HEAD(&nvbo->vma_list);
218 	nvbo->bo.bdev = &drm->ttm.bdev;
219 
220 	/* This is confusing, and doesn't actually mean we want an uncached
221 	 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
222 	 * into in nouveau_gem_new().
223 	 */
224 	if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) {
225 		/* Determine if we can get a cache-coherent map, forcing
226 		 * uncached mapping if we can't.
227 		 */
228 		if (!nouveau_drm_use_coherent_gpu_mapping(drm))
229 			nvbo->force_coherent = true;
230 	}
231 
232 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
233 		nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
234 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
235 			kfree(nvbo);
236 			return ERR_PTR(-EINVAL);
237 		}
238 
239 		nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
240 	} else
241 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
242 		nvbo->kind = (tile_flags & 0x00007f00) >> 8;
243 		nvbo->comp = (tile_flags & 0x00030000) >> 16;
244 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
245 			kfree(nvbo);
246 			return ERR_PTR(-EINVAL);
247 		}
248 	} else {
249 		nvbo->zeta = (tile_flags & 0x00000007);
250 	}
251 	nvbo->mode = tile_mode;
252 	nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
253 
254 	/* Determine the desirable target GPU page size for the buffer. */
255 	for (i = 0; i < vmm->page_nr; i++) {
256 		/* Because we cannot currently allow VMM maps to fail
257 		 * during buffer migration, we need to determine page
258 		 * size for the buffer up-front, and pre-allocate its
259 		 * page tables.
260 		 *
261 		 * Skip page sizes that can't support needed domains.
262 		 */
263 		if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
264 		    (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
265 			continue;
266 		if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
267 		    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
268 			continue;
269 
270 		/* Select this page size if it's the first that supports
271 		 * the potential memory domains, or when it's compatible
272 		 * with the requested compression settings.
273 		 */
274 		if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
275 			pi = i;
276 
277 		/* Stop once the buffer is larger than the current page size. */
278 		if (*size >= 1ULL << vmm->page[i].shift)
279 			break;
280 	}
281 
282 	if (WARN_ON(pi < 0))
283 		return ERR_PTR(-EINVAL);
284 
285 	/* Disable compression if suitable settings couldn't be found. */
286 	if (nvbo->comp && !vmm->page[pi].comp) {
287 		if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
288 			nvbo->kind = mmu->kind[nvbo->kind];
289 		nvbo->comp = 0;
290 	}
291 	nvbo->page = vmm->page[pi].shift;
292 
293 	nouveau_bo_fixup_align(nvbo, align, size);
294 
295 	return nvbo;
296 }
297 
298 int
299 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain,
300 		struct sg_table *sg, struct dma_resv *robj)
301 {
302 	int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
303 	size_t acc_size;
304 	int ret;
305 
306 	acc_size = ttm_bo_dma_acc_size(nvbo->bo.bdev, size, sizeof(*nvbo));
307 
308 	nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
309 	nouveau_bo_placement_set(nvbo, domain, 0);
310 	INIT_LIST_HEAD(&nvbo->io_reserve_lru);
311 
312 	ret = ttm_bo_init(nvbo->bo.bdev, &nvbo->bo, size, type,
313 			  &nvbo->placement, align >> PAGE_SHIFT, false,
314 			  acc_size, sg, robj, nouveau_bo_del_ttm);
315 	if (ret) {
316 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
317 		return ret;
318 	}
319 
320 	return 0;
321 }
322 
323 int
324 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
325 	       uint32_t domain, uint32_t tile_mode, uint32_t tile_flags,
326 	       struct sg_table *sg, struct dma_resv *robj,
327 	       struct nouveau_bo **pnvbo)
328 {
329 	struct nouveau_bo *nvbo;
330 	int ret;
331 
332 	nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode,
333 				tile_flags);
334 	if (IS_ERR(nvbo))
335 		return PTR_ERR(nvbo);
336 
337 	ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj);
338 	if (ret)
339 		return ret;
340 
341 	*pnvbo = nvbo;
342 	return 0;
343 }
344 
345 static void
346 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain)
347 {
348 	*n = 0;
349 
350 	if (domain & NOUVEAU_GEM_DOMAIN_VRAM) {
351 		pl[*n].mem_type = TTM_PL_VRAM;
352 		pl[*n].flags = 0;
353 		(*n)++;
354 	}
355 	if (domain & NOUVEAU_GEM_DOMAIN_GART) {
356 		pl[*n].mem_type = TTM_PL_TT;
357 		pl[*n].flags = 0;
358 		(*n)++;
359 	}
360 	if (domain & NOUVEAU_GEM_DOMAIN_CPU) {
361 		pl[*n].mem_type = TTM_PL_SYSTEM;
362 		pl[(*n)++].flags = 0;
363 	}
364 }
365 
366 static void
367 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain)
368 {
369 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
370 	u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT;
371 	unsigned i, fpfn, lpfn;
372 
373 	if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
374 	    nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) &&
375 	    nvbo->bo.mem.num_pages < vram_pages / 4) {
376 		/*
377 		 * Make sure that the color and depth buffers are handled
378 		 * by independent memory controller units. Up to a 9x
379 		 * speed up when alpha-blending and depth-test are enabled
380 		 * at the same time.
381 		 */
382 		if (nvbo->zeta) {
383 			fpfn = vram_pages / 2;
384 			lpfn = ~0;
385 		} else {
386 			fpfn = 0;
387 			lpfn = vram_pages / 2;
388 		}
389 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
390 			nvbo->placements[i].fpfn = fpfn;
391 			nvbo->placements[i].lpfn = lpfn;
392 		}
393 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
394 			nvbo->busy_placements[i].fpfn = fpfn;
395 			nvbo->busy_placements[i].lpfn = lpfn;
396 		}
397 	}
398 }
399 
400 void
401 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain,
402 			 uint32_t busy)
403 {
404 	struct ttm_placement *pl = &nvbo->placement;
405 
406 	pl->placement = nvbo->placements;
407 	set_placement_list(nvbo->placements, &pl->num_placement, domain);
408 
409 	pl->busy_placement = nvbo->busy_placements;
410 	set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
411 			   domain | busy);
412 
413 	set_placement_range(nvbo, domain);
414 }
415 
416 int
417 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
418 {
419 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
420 	struct ttm_buffer_object *bo = &nvbo->bo;
421 	bool force = false, evict = false;
422 	int ret;
423 
424 	ret = ttm_bo_reserve(bo, false, false, NULL);
425 	if (ret)
426 		return ret;
427 
428 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
429 	    domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) {
430 		if (!nvbo->contig) {
431 			nvbo->contig = true;
432 			force = true;
433 			evict = true;
434 		}
435 	}
436 
437 	if (nvbo->bo.pin_count) {
438 		bool error = evict;
439 
440 		switch (bo->mem.mem_type) {
441 		case TTM_PL_VRAM:
442 			error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM);
443 			break;
444 		case TTM_PL_TT:
445 			error |= !(domain & NOUVEAU_GEM_DOMAIN_GART);
446 		default:
447 			break;
448 		}
449 
450 		if (error) {
451 			NV_ERROR(drm, "bo %p pinned elsewhere: "
452 				      "0x%08x vs 0x%08x\n", bo,
453 				 bo->mem.mem_type, domain);
454 			ret = -EBUSY;
455 		}
456 		ttm_bo_pin(&nvbo->bo);
457 		goto out;
458 	}
459 
460 	if (evict) {
461 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
462 		ret = nouveau_bo_validate(nvbo, false, false);
463 		if (ret)
464 			goto out;
465 	}
466 
467 	nouveau_bo_placement_set(nvbo, domain, 0);
468 	ret = nouveau_bo_validate(nvbo, false, false);
469 	if (ret)
470 		goto out;
471 
472 	ttm_bo_pin(&nvbo->bo);
473 
474 	switch (bo->mem.mem_type) {
475 	case TTM_PL_VRAM:
476 		drm->gem.vram_available -= bo->mem.size;
477 		break;
478 	case TTM_PL_TT:
479 		drm->gem.gart_available -= bo->mem.size;
480 		break;
481 	default:
482 		break;
483 	}
484 
485 out:
486 	if (force && ret)
487 		nvbo->contig = false;
488 	ttm_bo_unreserve(bo);
489 	return ret;
490 }
491 
492 int
493 nouveau_bo_unpin(struct nouveau_bo *nvbo)
494 {
495 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
496 	struct ttm_buffer_object *bo = &nvbo->bo;
497 	int ret;
498 
499 	ret = ttm_bo_reserve(bo, false, false, NULL);
500 	if (ret)
501 		return ret;
502 
503 	ttm_bo_unpin(&nvbo->bo);
504 	if (!nvbo->bo.pin_count) {
505 		switch (bo->mem.mem_type) {
506 		case TTM_PL_VRAM:
507 			drm->gem.vram_available += bo->mem.size;
508 			break;
509 		case TTM_PL_TT:
510 			drm->gem.gart_available += bo->mem.size;
511 			break;
512 		default:
513 			break;
514 		}
515 	}
516 
517 	ttm_bo_unreserve(bo);
518 	return 0;
519 }
520 
521 int
522 nouveau_bo_map(struct nouveau_bo *nvbo)
523 {
524 	int ret;
525 
526 	ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
527 	if (ret)
528 		return ret;
529 
530 	ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
531 
532 	ttm_bo_unreserve(&nvbo->bo);
533 	return ret;
534 }
535 
536 void
537 nouveau_bo_unmap(struct nouveau_bo *nvbo)
538 {
539 	if (!nvbo)
540 		return;
541 
542 	ttm_bo_kunmap(&nvbo->kmap);
543 }
544 
545 void
546 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
547 {
548 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
549 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
550 	int i, j;
551 
552 	if (!ttm_dma)
553 		return;
554 
555 	/* Don't waste time looping if the object is coherent */
556 	if (nvbo->force_coherent)
557 		return;
558 
559 	for (i = 0; i < ttm_dma->num_pages; ++i) {
560 		struct page *p = ttm_dma->pages[i];
561 		size_t num_pages = 1;
562 
563 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
564 			if (++p != ttm_dma->pages[j])
565 				break;
566 
567 			++num_pages;
568 		}
569 		dma_sync_single_for_device(drm->dev->dev,
570 					   ttm_dma->dma_address[i],
571 					   num_pages * PAGE_SIZE, DMA_TO_DEVICE);
572 		i += num_pages;
573 	}
574 }
575 
576 void
577 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
578 {
579 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
580 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
581 	int i, j;
582 
583 	if (!ttm_dma)
584 		return;
585 
586 	/* Don't waste time looping if the object is coherent */
587 	if (nvbo->force_coherent)
588 		return;
589 
590 	for (i = 0; i < ttm_dma->num_pages; ++i) {
591 		struct page *p = ttm_dma->pages[i];
592 		size_t num_pages = 1;
593 
594 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
595 			if (++p != ttm_dma->pages[j])
596 				break;
597 
598 			++num_pages;
599 		}
600 
601 		dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
602 					num_pages * PAGE_SIZE, DMA_FROM_DEVICE);
603 		i += num_pages;
604 	}
605 }
606 
607 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo)
608 {
609 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
610 	struct nouveau_bo *nvbo = nouveau_bo(bo);
611 
612 	mutex_lock(&drm->ttm.io_reserve_mutex);
613 	list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru);
614 	mutex_unlock(&drm->ttm.io_reserve_mutex);
615 }
616 
617 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo)
618 {
619 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
620 	struct nouveau_bo *nvbo = nouveau_bo(bo);
621 
622 	mutex_lock(&drm->ttm.io_reserve_mutex);
623 	list_del_init(&nvbo->io_reserve_lru);
624 	mutex_unlock(&drm->ttm.io_reserve_mutex);
625 }
626 
627 int
628 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
629 		    bool no_wait_gpu)
630 {
631 	struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
632 	int ret;
633 
634 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
635 	if (ret)
636 		return ret;
637 
638 	nouveau_bo_sync_for_device(nvbo);
639 
640 	return 0;
641 }
642 
643 void
644 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
645 {
646 	bool is_iomem;
647 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
648 
649 	mem += index;
650 
651 	if (is_iomem)
652 		iowrite16_native(val, (void __force __iomem *)mem);
653 	else
654 		*mem = val;
655 }
656 
657 u32
658 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
659 {
660 	bool is_iomem;
661 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
662 
663 	mem += index;
664 
665 	if (is_iomem)
666 		return ioread32_native((void __force __iomem *)mem);
667 	else
668 		return *mem;
669 }
670 
671 void
672 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
673 {
674 	bool is_iomem;
675 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
676 
677 	mem += index;
678 
679 	if (is_iomem)
680 		iowrite32_native(val, (void __force __iomem *)mem);
681 	else
682 		*mem = val;
683 }
684 
685 static struct ttm_tt *
686 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
687 {
688 #if IS_ENABLED(CONFIG_AGP)
689 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
690 
691 	if (drm->agp.bridge) {
692 		return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
693 	}
694 #endif
695 
696 	return nouveau_sgdma_create_ttm(bo, page_flags);
697 }
698 
699 static int
700 nouveau_ttm_tt_bind(struct ttm_bo_device *bdev, struct ttm_tt *ttm,
701 		    struct ttm_resource *reg)
702 {
703 #if IS_ENABLED(CONFIG_AGP)
704 	struct nouveau_drm *drm = nouveau_bdev(bdev);
705 #endif
706 	if (!reg)
707 		return -EINVAL;
708 #if IS_ENABLED(CONFIG_AGP)
709 	if (drm->agp.bridge)
710 		return ttm_agp_bind(ttm, reg);
711 #endif
712 	return nouveau_sgdma_bind(bdev, ttm, reg);
713 }
714 
715 static void
716 nouveau_ttm_tt_unbind(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
717 {
718 #if IS_ENABLED(CONFIG_AGP)
719 	struct nouveau_drm *drm = nouveau_bdev(bdev);
720 
721 	if (drm->agp.bridge) {
722 		ttm_agp_unbind(ttm);
723 		return;
724 	}
725 #endif
726 	nouveau_sgdma_unbind(bdev, ttm);
727 }
728 
729 static void
730 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
731 {
732 	struct nouveau_bo *nvbo = nouveau_bo(bo);
733 
734 	switch (bo->mem.mem_type) {
735 	case TTM_PL_VRAM:
736 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART,
737 					 NOUVEAU_GEM_DOMAIN_CPU);
738 		break;
739 	default:
740 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0);
741 		break;
742 	}
743 
744 	*pl = nvbo->placement;
745 }
746 
747 static int
748 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
749 		     struct ttm_resource *reg)
750 {
751 	struct nouveau_mem *old_mem = nouveau_mem(&bo->mem);
752 	struct nouveau_mem *new_mem = nouveau_mem(reg);
753 	struct nvif_vmm *vmm = &drm->client.vmm.vmm;
754 	int ret;
755 
756 	ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
757 			   old_mem->mem.size, &old_mem->vma[0]);
758 	if (ret)
759 		return ret;
760 
761 	ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
762 			   new_mem->mem.size, &old_mem->vma[1]);
763 	if (ret)
764 		goto done;
765 
766 	ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
767 	if (ret)
768 		goto done;
769 
770 	ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
771 done:
772 	if (ret) {
773 		nvif_vmm_put(vmm, &old_mem->vma[1]);
774 		nvif_vmm_put(vmm, &old_mem->vma[0]);
775 	}
776 	return 0;
777 }
778 
779 static int
780 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict,
781 		     struct ttm_operation_ctx *ctx,
782 		     struct ttm_resource *new_reg)
783 {
784 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
785 	struct nouveau_channel *chan = drm->ttm.chan;
786 	struct nouveau_cli *cli = (void *)chan->user.client;
787 	struct nouveau_fence *fence;
788 	int ret;
789 
790 	/* create temporary vmas for the transfer and attach them to the
791 	 * old nvkm_mem node, these will get cleaned up after ttm has
792 	 * destroyed the ttm_resource
793 	 */
794 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
795 		ret = nouveau_bo_move_prep(drm, bo, new_reg);
796 		if (ret)
797 			return ret;
798 	}
799 
800 	mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
801 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible);
802 	if (ret == 0) {
803 		ret = drm->ttm.move(chan, bo, &bo->mem, new_reg);
804 		if (ret == 0) {
805 			ret = nouveau_fence_new(chan, false, &fence);
806 			if (ret == 0) {
807 				ret = ttm_bo_move_accel_cleanup(bo,
808 								&fence->base,
809 								evict, false,
810 								new_reg);
811 				nouveau_fence_unref(&fence);
812 			}
813 		}
814 	}
815 	mutex_unlock(&cli->mutex);
816 	return ret;
817 }
818 
819 void
820 nouveau_bo_move_init(struct nouveau_drm *drm)
821 {
822 	static const struct _method_table {
823 		const char *name;
824 		int engine;
825 		s32 oclass;
826 		int (*exec)(struct nouveau_channel *,
827 			    struct ttm_buffer_object *,
828 			    struct ttm_resource *, struct ttm_resource *);
829 		int (*init)(struct nouveau_channel *, u32 handle);
830 	} _methods[] = {
831 		{  "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
832 		{  "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
833 		{  "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
834 		{  "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
835 		{  "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
836 		{  "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
837 		{  "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
838 		{  "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
839 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
840 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
841 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
842 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
843 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
844 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
845 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
846 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
847 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
848 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
849 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
850 		{},
851 	};
852 	const struct _method_table *mthd = _methods;
853 	const char *name = "CPU";
854 	int ret;
855 
856 	do {
857 		struct nouveau_channel *chan;
858 
859 		if (mthd->engine)
860 			chan = drm->cechan;
861 		else
862 			chan = drm->channel;
863 		if (chan == NULL)
864 			continue;
865 
866 		ret = nvif_object_ctor(&chan->user, "ttmBoMove",
867 				       mthd->oclass | (mthd->engine << 16),
868 				       mthd->oclass, NULL, 0,
869 				       &drm->ttm.copy);
870 		if (ret == 0) {
871 			ret = mthd->init(chan, drm->ttm.copy.handle);
872 			if (ret) {
873 				nvif_object_dtor(&drm->ttm.copy);
874 				continue;
875 			}
876 
877 			drm->ttm.move = mthd->exec;
878 			drm->ttm.chan = chan;
879 			name = mthd->name;
880 			break;
881 		}
882 	} while ((++mthd)->exec);
883 
884 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
885 }
886 
887 static void
888 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, bool evict,
889 		     struct ttm_resource *new_reg)
890 {
891 	struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
892 	struct nouveau_bo *nvbo = nouveau_bo(bo);
893 	struct nouveau_vma *vma;
894 
895 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
896 	if (bo->destroy != nouveau_bo_del_ttm)
897 		return;
898 
899 	nouveau_bo_del_io_reserve_lru(bo);
900 
901 	if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
902 	    mem->mem.page == nvbo->page) {
903 		list_for_each_entry(vma, &nvbo->vma_list, head) {
904 			nouveau_vma_map(vma, mem);
905 		}
906 	} else {
907 		list_for_each_entry(vma, &nvbo->vma_list, head) {
908 			WARN_ON(ttm_bo_wait(bo, false, false));
909 			nouveau_vma_unmap(vma);
910 		}
911 	}
912 
913 	if (new_reg) {
914 		if (new_reg->mm_node)
915 			nvbo->offset = (new_reg->start << PAGE_SHIFT);
916 		else
917 			nvbo->offset = 0;
918 	}
919 
920 }
921 
922 static int
923 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg,
924 		   struct nouveau_drm_tile **new_tile)
925 {
926 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
927 	struct drm_device *dev = drm->dev;
928 	struct nouveau_bo *nvbo = nouveau_bo(bo);
929 	u64 offset = new_reg->start << PAGE_SHIFT;
930 
931 	*new_tile = NULL;
932 	if (new_reg->mem_type != TTM_PL_VRAM)
933 		return 0;
934 
935 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
936 		*new_tile = nv10_bo_set_tiling(dev, offset, new_reg->size,
937 					       nvbo->mode, nvbo->zeta);
938 	}
939 
940 	return 0;
941 }
942 
943 static void
944 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
945 		      struct nouveau_drm_tile *new_tile,
946 		      struct nouveau_drm_tile **old_tile)
947 {
948 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
949 	struct drm_device *dev = drm->dev;
950 	struct dma_fence *fence = dma_resv_get_excl(bo->base.resv);
951 
952 	nv10_bo_put_tile_region(dev, *old_tile, fence);
953 	*old_tile = new_tile;
954 }
955 
956 static int
957 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
958 		struct ttm_operation_ctx *ctx,
959 		struct ttm_resource *new_reg,
960 		struct ttm_place *hop)
961 {
962 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
963 	struct nouveau_bo *nvbo = nouveau_bo(bo);
964 	struct ttm_resource *old_reg = &bo->mem;
965 	struct nouveau_drm_tile *new_tile = NULL;
966 	int ret = 0;
967 
968 
969 	if (new_reg->mem_type == TTM_PL_TT) {
970 		ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg);
971 		if (ret)
972 			return ret;
973 	}
974 
975 	nouveau_bo_move_ntfy(bo, evict, new_reg);
976 	ret = ttm_bo_wait_ctx(bo, ctx);
977 	if (ret)
978 		goto out_ntfy;
979 
980 	if (nvbo->bo.pin_count)
981 		NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
982 
983 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
984 		ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
985 		if (ret)
986 			goto out_ntfy;
987 	}
988 
989 	/* Fake bo copy. */
990 	if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
991 		ttm_bo_move_null(bo, new_reg);
992 		goto out;
993 	}
994 
995 	if (old_reg->mem_type == TTM_PL_SYSTEM &&
996 	    new_reg->mem_type == TTM_PL_TT) {
997 		ttm_bo_move_null(bo, new_reg);
998 		goto out;
999 	}
1000 
1001 	if (old_reg->mem_type == TTM_PL_TT &&
1002 	    new_reg->mem_type == TTM_PL_SYSTEM) {
1003 		nouveau_ttm_tt_unbind(bo->bdev, bo->ttm);
1004 		ttm_resource_free(bo, &bo->mem);
1005 		ttm_bo_assign_mem(bo, new_reg);
1006 		goto out;
1007 	}
1008 
1009 	/* Hardware assisted copy. */
1010 	if (drm->ttm.move) {
1011 		if ((old_reg->mem_type == TTM_PL_SYSTEM &&
1012 		     new_reg->mem_type == TTM_PL_VRAM) ||
1013 		    (old_reg->mem_type == TTM_PL_VRAM &&
1014 		     new_reg->mem_type == TTM_PL_SYSTEM)) {
1015 			hop->fpfn = 0;
1016 			hop->lpfn = 0;
1017 			hop->mem_type = TTM_PL_TT;
1018 			hop->flags = 0;
1019 			return -EMULTIHOP;
1020 		}
1021 		ret = nouveau_bo_move_m2mf(bo, evict, ctx,
1022 					   new_reg);
1023 	} else
1024 		ret = -ENODEV;
1025 
1026 	if (ret) {
1027 		/* Fallback to software copy. */
1028 		ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1029 	}
1030 
1031 out:
1032 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1033 		if (ret)
1034 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1035 		else
1036 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1037 	}
1038 out_ntfy:
1039 	if (ret) {
1040 		swap(*new_reg, bo->mem);
1041 		nouveau_bo_move_ntfy(bo, false, new_reg);
1042 		swap(*new_reg, bo->mem);
1043 	}
1044 	return ret;
1045 }
1046 
1047 static int
1048 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1049 {
1050 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1051 
1052 	return drm_vma_node_verify_access(&nvbo->bo.base.vma_node,
1053 					  filp->private_data);
1054 }
1055 
1056 static void
1057 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm,
1058 			       struct ttm_resource *reg)
1059 {
1060 	struct nouveau_mem *mem = nouveau_mem(reg);
1061 
1062 	if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1063 		switch (reg->mem_type) {
1064 		case TTM_PL_TT:
1065 			if (mem->kind)
1066 				nvif_object_unmap_handle(&mem->mem.object);
1067 			break;
1068 		case TTM_PL_VRAM:
1069 			nvif_object_unmap_handle(&mem->mem.object);
1070 			break;
1071 		default:
1072 			break;
1073 		}
1074 	}
1075 }
1076 
1077 static int
1078 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *reg)
1079 {
1080 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1081 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1082 	struct nouveau_mem *mem = nouveau_mem(reg);
1083 	struct nvif_mmu *mmu = &drm->client.mmu;
1084 	int ret;
1085 
1086 	mutex_lock(&drm->ttm.io_reserve_mutex);
1087 retry:
1088 	switch (reg->mem_type) {
1089 	case TTM_PL_SYSTEM:
1090 		/* System memory */
1091 		ret = 0;
1092 		goto out;
1093 	case TTM_PL_TT:
1094 #if IS_ENABLED(CONFIG_AGP)
1095 		if (drm->agp.bridge) {
1096 			reg->bus.offset = (reg->start << PAGE_SHIFT) +
1097 				drm->agp.base;
1098 			reg->bus.is_iomem = !drm->agp.cma;
1099 			reg->bus.caching = ttm_write_combined;
1100 		}
1101 #endif
1102 		if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 ||
1103 		    !mem->kind) {
1104 			/* untiled */
1105 			ret = 0;
1106 			break;
1107 		}
1108 		fallthrough;	/* tiled memory */
1109 	case TTM_PL_VRAM:
1110 		reg->bus.offset = (reg->start << PAGE_SHIFT) +
1111 			device->func->resource_addr(device, 1);
1112 		reg->bus.is_iomem = true;
1113 
1114 		/* Some BARs do not support being ioremapped WC */
1115 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
1116 		    mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED)
1117 			reg->bus.caching = ttm_uncached;
1118 		else
1119 			reg->bus.caching = ttm_write_combined;
1120 
1121 		if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1122 			union {
1123 				struct nv50_mem_map_v0 nv50;
1124 				struct gf100_mem_map_v0 gf100;
1125 			} args;
1126 			u64 handle, length;
1127 			u32 argc = 0;
1128 
1129 			switch (mem->mem.object.oclass) {
1130 			case NVIF_CLASS_MEM_NV50:
1131 				args.nv50.version = 0;
1132 				args.nv50.ro = 0;
1133 				args.nv50.kind = mem->kind;
1134 				args.nv50.comp = mem->comp;
1135 				argc = sizeof(args.nv50);
1136 				break;
1137 			case NVIF_CLASS_MEM_GF100:
1138 				args.gf100.version = 0;
1139 				args.gf100.ro = 0;
1140 				args.gf100.kind = mem->kind;
1141 				argc = sizeof(args.gf100);
1142 				break;
1143 			default:
1144 				WARN_ON(1);
1145 				break;
1146 			}
1147 
1148 			ret = nvif_object_map_handle(&mem->mem.object,
1149 						     &args, argc,
1150 						     &handle, &length);
1151 			if (ret != 1) {
1152 				if (WARN_ON(ret == 0))
1153 					ret = -EINVAL;
1154 				goto out;
1155 			}
1156 
1157 			reg->bus.offset = handle;
1158 		}
1159 		ret = 0;
1160 		break;
1161 	default:
1162 		ret = -EINVAL;
1163 	}
1164 
1165 out:
1166 	if (ret == -ENOSPC) {
1167 		struct nouveau_bo *nvbo;
1168 
1169 		nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru,
1170 						typeof(*nvbo),
1171 						io_reserve_lru);
1172 		if (nvbo) {
1173 			list_del_init(&nvbo->io_reserve_lru);
1174 			drm_vma_node_unmap(&nvbo->bo.base.vma_node,
1175 					   bdev->dev_mapping);
1176 			nouveau_ttm_io_mem_free_locked(drm, &nvbo->bo.mem);
1177 			goto retry;
1178 		}
1179 
1180 	}
1181 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1182 	return ret;
1183 }
1184 
1185 static void
1186 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_resource *reg)
1187 {
1188 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1189 
1190 	mutex_lock(&drm->ttm.io_reserve_mutex);
1191 	nouveau_ttm_io_mem_free_locked(drm, reg);
1192 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1193 }
1194 
1195 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1196 {
1197 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1198 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1199 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1200 	u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1201 	int i, ret;
1202 
1203 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1204 	 * nothing to do here.
1205 	 */
1206 	if (bo->mem.mem_type != TTM_PL_VRAM) {
1207 		if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1208 		    !nvbo->kind)
1209 			return 0;
1210 
1211 		if (bo->mem.mem_type != TTM_PL_SYSTEM)
1212 			return 0;
1213 
1214 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
1215 
1216 	} else {
1217 		/* make sure bo is in mappable vram */
1218 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1219 		    bo->mem.start + bo->mem.num_pages < mappable)
1220 			return 0;
1221 
1222 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
1223 			nvbo->placements[i].fpfn = 0;
1224 			nvbo->placements[i].lpfn = mappable;
1225 		}
1226 
1227 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1228 			nvbo->busy_placements[i].fpfn = 0;
1229 			nvbo->busy_placements[i].lpfn = mappable;
1230 		}
1231 
1232 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0);
1233 	}
1234 
1235 	ret = nouveau_bo_validate(nvbo, false, false);
1236 	if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS))
1237 		return VM_FAULT_NOPAGE;
1238 	else if (unlikely(ret))
1239 		return VM_FAULT_SIGBUS;
1240 
1241 	ttm_bo_move_to_lru_tail_unlocked(bo);
1242 	return 0;
1243 }
1244 
1245 static int
1246 nouveau_ttm_tt_populate(struct ttm_bo_device *bdev,
1247 			struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1248 {
1249 	struct ttm_tt *ttm_dma = (void *)ttm;
1250 	struct nouveau_drm *drm;
1251 	struct device *dev;
1252 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1253 
1254 	if (ttm_tt_is_populated(ttm))
1255 		return 0;
1256 
1257 	if (slave && ttm->sg) {
1258 		/* make userspace faulting work */
1259 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1260 						 ttm_dma->dma_address, ttm->num_pages);
1261 		return 0;
1262 	}
1263 
1264 	drm = nouveau_bdev(bdev);
1265 	dev = drm->dev->dev;
1266 
1267 	return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx);
1268 }
1269 
1270 static void
1271 nouveau_ttm_tt_unpopulate(struct ttm_bo_device *bdev,
1272 			  struct ttm_tt *ttm)
1273 {
1274 	struct nouveau_drm *drm;
1275 	struct device *dev;
1276 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1277 
1278 	if (slave)
1279 		return;
1280 
1281 	drm = nouveau_bdev(bdev);
1282 	dev = drm->dev->dev;
1283 
1284 	return ttm_pool_free(&drm->ttm.bdev.pool, ttm);
1285 }
1286 
1287 static void
1288 nouveau_ttm_tt_destroy(struct ttm_bo_device *bdev,
1289 		       struct ttm_tt *ttm)
1290 {
1291 #if IS_ENABLED(CONFIG_AGP)
1292 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1293 	if (drm->agp.bridge) {
1294 		ttm_agp_unbind(ttm);
1295 		ttm_tt_destroy_common(bdev, ttm);
1296 		ttm_agp_destroy(ttm);
1297 		return;
1298 	}
1299 #endif
1300 	nouveau_sgdma_destroy(bdev, ttm);
1301 }
1302 
1303 void
1304 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1305 {
1306 	struct dma_resv *resv = nvbo->bo.base.resv;
1307 
1308 	if (exclusive)
1309 		dma_resv_add_excl_fence(resv, &fence->base);
1310 	else if (fence)
1311 		dma_resv_add_shared_fence(resv, &fence->base);
1312 }
1313 
1314 static void
1315 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1316 {
1317 	nouveau_bo_move_ntfy(bo, false, NULL);
1318 }
1319 
1320 struct ttm_bo_driver nouveau_bo_driver = {
1321 	.ttm_tt_create = &nouveau_ttm_tt_create,
1322 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1323 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1324 	.ttm_tt_destroy = &nouveau_ttm_tt_destroy,
1325 	.eviction_valuable = ttm_bo_eviction_valuable,
1326 	.evict_flags = nouveau_bo_evict_flags,
1327 	.delete_mem_notify = nouveau_bo_delete_mem_notify,
1328 	.move = nouveau_bo_move,
1329 	.verify_access = nouveau_bo_verify_access,
1330 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1331 	.io_mem_free = &nouveau_ttm_io_mem_free,
1332 };
1333