xref: /linux/drivers/gpu/drm/nouveau/nouveau_bo.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 #include <drm/ttm/ttm_tt.h>
32 
33 #include "nouveau_drv.h"
34 #include "nouveau_chan.h"
35 #include "nouveau_fence.h"
36 
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
42 
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
46 
47 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
48 			       struct ttm_resource *reg);
49 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm);
50 
51 /*
52  * NV10-NV40 tiling helpers
53  */
54 
55 static void
56 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
57 			   u32 addr, u32 size, u32 pitch, u32 flags)
58 {
59 	struct nouveau_drm *drm = nouveau_drm(dev);
60 	int i = reg - drm->tile.reg;
61 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
62 	struct nvkm_fb_tile *tile = &fb->tile.region[i];
63 
64 	nouveau_fence_unref(&reg->fence);
65 
66 	if (tile->pitch)
67 		nvkm_fb_tile_fini(fb, i, tile);
68 
69 	if (pitch)
70 		nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
71 
72 	nvkm_fb_tile_prog(fb, i, tile);
73 }
74 
75 static struct nouveau_drm_tile *
76 nv10_bo_get_tile_region(struct drm_device *dev, int i)
77 {
78 	struct nouveau_drm *drm = nouveau_drm(dev);
79 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
80 
81 	spin_lock(&drm->tile.lock);
82 
83 	if (!tile->used &&
84 	    (!tile->fence || nouveau_fence_done(tile->fence)))
85 		tile->used = true;
86 	else
87 		tile = NULL;
88 
89 	spin_unlock(&drm->tile.lock);
90 	return tile;
91 }
92 
93 static void
94 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
95 			struct dma_fence *fence)
96 {
97 	struct nouveau_drm *drm = nouveau_drm(dev);
98 
99 	if (tile) {
100 		spin_lock(&drm->tile.lock);
101 		tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
102 		tile->used = false;
103 		spin_unlock(&drm->tile.lock);
104 	}
105 }
106 
107 static struct nouveau_drm_tile *
108 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
109 		   u32 size, u32 pitch, u32 zeta)
110 {
111 	struct nouveau_drm *drm = nouveau_drm(dev);
112 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
113 	struct nouveau_drm_tile *tile, *found = NULL;
114 	int i;
115 
116 	for (i = 0; i < fb->tile.regions; i++) {
117 		tile = nv10_bo_get_tile_region(dev, i);
118 
119 		if (pitch && !found) {
120 			found = tile;
121 			continue;
122 
123 		} else if (tile && fb->tile.region[i].pitch) {
124 			/* Kill an unused tile region. */
125 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
126 		}
127 
128 		nv10_bo_put_tile_region(dev, tile, NULL);
129 	}
130 
131 	if (found)
132 		nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
133 	return found;
134 }
135 
136 static void
137 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
138 {
139 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
140 	struct drm_device *dev = drm->dev;
141 	struct nouveau_bo *nvbo = nouveau_bo(bo);
142 
143 	WARN_ON(nvbo->bo.pin_count > 0);
144 	nouveau_bo_del_io_reserve_lru(bo);
145 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
146 
147 	/*
148 	 * If nouveau_bo_new() allocated this buffer, the GEM object was never
149 	 * initialized, so don't attempt to release it.
150 	 */
151 	if (bo->base.dev) {
152 		/* Gem objects not being shared with other VMs get their
153 		 * dma_resv from a root GEM object.
154 		 */
155 		if (nvbo->no_share)
156 			drm_gem_object_put(nvbo->r_obj);
157 
158 		drm_gem_object_release(&bo->base);
159 	} else {
160 		dma_resv_fini(&bo->base._resv);
161 	}
162 
163 	kfree(nvbo);
164 }
165 
166 static inline u64
167 roundup_64(u64 x, u32 y)
168 {
169 	x += y - 1;
170 	do_div(x, y);
171 	return x * y;
172 }
173 
174 static void
175 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size)
176 {
177 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
178 	struct nvif_device *device = &drm->client.device;
179 
180 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
181 		if (nvbo->mode) {
182 			if (device->info.chipset >= 0x40) {
183 				*align = 65536;
184 				*size = roundup_64(*size, 64 * nvbo->mode);
185 
186 			} else if (device->info.chipset >= 0x30) {
187 				*align = 32768;
188 				*size = roundup_64(*size, 64 * nvbo->mode);
189 
190 			} else if (device->info.chipset >= 0x20) {
191 				*align = 16384;
192 				*size = roundup_64(*size, 64 * nvbo->mode);
193 
194 			} else if (device->info.chipset >= 0x10) {
195 				*align = 16384;
196 				*size = roundup_64(*size, 32 * nvbo->mode);
197 			}
198 		}
199 	} else {
200 		*size = roundup_64(*size, (1 << nvbo->page));
201 		*align = max((1 <<  nvbo->page), *align);
202 	}
203 
204 	*size = roundup_64(*size, PAGE_SIZE);
205 }
206 
207 struct nouveau_bo *
208 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain,
209 		 u32 tile_mode, u32 tile_flags, bool internal)
210 {
211 	struct nouveau_drm *drm = cli->drm;
212 	struct nouveau_bo *nvbo;
213 	struct nvif_mmu *mmu = &cli->mmu;
214 	struct nvif_vmm *vmm = &nouveau_cli_vmm(cli)->vmm;
215 	int i, pi = -1;
216 
217 	if (!*size) {
218 		NV_WARN(drm, "skipped size %016llx\n", *size);
219 		return ERR_PTR(-EINVAL);
220 	}
221 
222 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
223 	if (!nvbo)
224 		return ERR_PTR(-ENOMEM);
225 
226 	INIT_LIST_HEAD(&nvbo->head);
227 	INIT_LIST_HEAD(&nvbo->entry);
228 	INIT_LIST_HEAD(&nvbo->vma_list);
229 	nvbo->bo.bdev = &drm->ttm.bdev;
230 
231 	/* This is confusing, and doesn't actually mean we want an uncached
232 	 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
233 	 * into in nouveau_gem_new().
234 	 */
235 	if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) {
236 		/* Determine if we can get a cache-coherent map, forcing
237 		 * uncached mapping if we can't.
238 		 */
239 		if (!nouveau_drm_use_coherent_gpu_mapping(drm))
240 			nvbo->force_coherent = true;
241 	}
242 
243 	nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
244 	if (!nouveau_cli_uvmm(cli) || internal) {
245 		/* for BO noVM allocs, don't assign kinds */
246 		if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
247 			nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
248 			if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
249 				kfree(nvbo);
250 				return ERR_PTR(-EINVAL);
251 			}
252 
253 			nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
254 		} else if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
255 			nvbo->kind = (tile_flags & 0x00007f00) >> 8;
256 			nvbo->comp = (tile_flags & 0x00030000) >> 16;
257 			if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
258 				kfree(nvbo);
259 				return ERR_PTR(-EINVAL);
260 			}
261 		} else {
262 			nvbo->zeta = (tile_flags & 0x00000007);
263 		}
264 		nvbo->mode = tile_mode;
265 
266 		/* Determine the desirable target GPU page size for the buffer. */
267 		for (i = 0; i < vmm->page_nr; i++) {
268 			/* Because we cannot currently allow VMM maps to fail
269 			 * during buffer migration, we need to determine page
270 			 * size for the buffer up-front, and pre-allocate its
271 			 * page tables.
272 			 *
273 			 * Skip page sizes that can't support needed domains.
274 			 */
275 			if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
276 			    (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
277 				continue;
278 			if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
279 			    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
280 				continue;
281 
282 			/* Select this page size if it's the first that supports
283 			 * the potential memory domains, or when it's compatible
284 			 * with the requested compression settings.
285 			 */
286 			if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
287 				pi = i;
288 
289 			/* Stop once the buffer is larger than the current page size. */
290 			if (*size >= 1ULL << vmm->page[i].shift)
291 				break;
292 		}
293 
294 		if (WARN_ON(pi < 0)) {
295 			kfree(nvbo);
296 			return ERR_PTR(-EINVAL);
297 		}
298 
299 		/* Disable compression if suitable settings couldn't be found. */
300 		if (nvbo->comp && !vmm->page[pi].comp) {
301 			if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
302 				nvbo->kind = mmu->kind[nvbo->kind];
303 			nvbo->comp = 0;
304 		}
305 		nvbo->page = vmm->page[pi].shift;
306 	} else {
307 		/* reject other tile flags when in VM mode. */
308 		if (tile_mode)
309 			return ERR_PTR(-EINVAL);
310 		if (tile_flags & ~NOUVEAU_GEM_TILE_NONCONTIG)
311 			return ERR_PTR(-EINVAL);
312 
313 		/* Determine the desirable target GPU page size for the buffer. */
314 		for (i = 0; i < vmm->page_nr; i++) {
315 			/* Because we cannot currently allow VMM maps to fail
316 			 * during buffer migration, we need to determine page
317 			 * size for the buffer up-front, and pre-allocate its
318 			 * page tables.
319 			 *
320 			 * Skip page sizes that can't support needed domains.
321 			 */
322 			if ((domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
323 				continue;
324 			if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
325 			    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
326 				continue;
327 
328 			/* pick the last one as it will be smallest. */
329 			pi = i;
330 
331 			/* Stop once the buffer is larger than the current page size. */
332 			if (*size >= 1ULL << vmm->page[i].shift)
333 				break;
334 		}
335 		if (WARN_ON(pi < 0)) {
336 			kfree(nvbo);
337 			return ERR_PTR(-EINVAL);
338 		}
339 		nvbo->page = vmm->page[pi].shift;
340 	}
341 
342 	nouveau_bo_fixup_align(nvbo, align, size);
343 
344 	return nvbo;
345 }
346 
347 int
348 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain,
349 		struct sg_table *sg, struct dma_resv *robj)
350 {
351 	int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
352 	int ret;
353 	struct ttm_operation_ctx ctx = {
354 		.interruptible = false,
355 		.no_wait_gpu = false,
356 		.resv = robj,
357 	};
358 
359 	nouveau_bo_placement_set(nvbo, domain, 0);
360 	INIT_LIST_HEAD(&nvbo->io_reserve_lru);
361 
362 	ret = ttm_bo_init_reserved(nvbo->bo.bdev, &nvbo->bo, type,
363 				   &nvbo->placement, align >> PAGE_SHIFT, &ctx,
364 				   sg, robj, nouveau_bo_del_ttm);
365 	if (ret) {
366 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
367 		return ret;
368 	}
369 
370 	if (!robj)
371 		ttm_bo_unreserve(&nvbo->bo);
372 
373 	return 0;
374 }
375 
376 int
377 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
378 	       uint32_t domain, uint32_t tile_mode, uint32_t tile_flags,
379 	       struct sg_table *sg, struct dma_resv *robj,
380 	       struct nouveau_bo **pnvbo)
381 {
382 	struct nouveau_bo *nvbo;
383 	int ret;
384 
385 	nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode,
386 				tile_flags, true);
387 	if (IS_ERR(nvbo))
388 		return PTR_ERR(nvbo);
389 
390 	nvbo->bo.base.size = size;
391 	dma_resv_init(&nvbo->bo.base._resv);
392 	drm_vma_node_reset(&nvbo->bo.base.vma_node);
393 
394 	/* This must be called before ttm_bo_init_reserved(). Subsequent
395 	 * bo_move() callbacks might already iterate the GEMs GPUVA list.
396 	 */
397 	drm_gem_gpuva_init(&nvbo->bo.base);
398 
399 	ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj);
400 	if (ret)
401 		return ret;
402 
403 	*pnvbo = nvbo;
404 	return 0;
405 }
406 
407 static void
408 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain)
409 {
410 	*n = 0;
411 
412 	if (domain & NOUVEAU_GEM_DOMAIN_VRAM) {
413 		pl[*n].mem_type = TTM_PL_VRAM;
414 		pl[*n].flags = 0;
415 		(*n)++;
416 	}
417 	if (domain & NOUVEAU_GEM_DOMAIN_GART) {
418 		pl[*n].mem_type = TTM_PL_TT;
419 		pl[*n].flags = 0;
420 		(*n)++;
421 	}
422 	if (domain & NOUVEAU_GEM_DOMAIN_CPU) {
423 		pl[*n].mem_type = TTM_PL_SYSTEM;
424 		pl[(*n)++].flags = 0;
425 	}
426 }
427 
428 static void
429 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain)
430 {
431 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
432 	u64 vram_size = drm->client.device.info.ram_size;
433 	unsigned i, fpfn, lpfn;
434 
435 	if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
436 	    nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) &&
437 	    nvbo->bo.base.size < vram_size / 4) {
438 		/*
439 		 * Make sure that the color and depth buffers are handled
440 		 * by independent memory controller units. Up to a 9x
441 		 * speed up when alpha-blending and depth-test are enabled
442 		 * at the same time.
443 		 */
444 		if (nvbo->zeta) {
445 			fpfn = (vram_size / 2) >> PAGE_SHIFT;
446 			lpfn = ~0;
447 		} else {
448 			fpfn = 0;
449 			lpfn = (vram_size / 2) >> PAGE_SHIFT;
450 		}
451 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
452 			nvbo->placements[i].fpfn = fpfn;
453 			nvbo->placements[i].lpfn = lpfn;
454 		}
455 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
456 			nvbo->busy_placements[i].fpfn = fpfn;
457 			nvbo->busy_placements[i].lpfn = lpfn;
458 		}
459 	}
460 }
461 
462 void
463 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain,
464 			 uint32_t busy)
465 {
466 	struct ttm_placement *pl = &nvbo->placement;
467 
468 	pl->placement = nvbo->placements;
469 	set_placement_list(nvbo->placements, &pl->num_placement, domain);
470 
471 	pl->busy_placement = nvbo->busy_placements;
472 	set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
473 			   domain | busy);
474 
475 	set_placement_range(nvbo, domain);
476 }
477 
478 int
479 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
480 {
481 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
482 	struct ttm_buffer_object *bo = &nvbo->bo;
483 	bool force = false, evict = false;
484 	int ret;
485 
486 	ret = ttm_bo_reserve(bo, false, false, NULL);
487 	if (ret)
488 		return ret;
489 
490 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
491 	    domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) {
492 		if (!nvbo->contig) {
493 			nvbo->contig = true;
494 			force = true;
495 			evict = true;
496 		}
497 	}
498 
499 	if (nvbo->bo.pin_count) {
500 		bool error = evict;
501 
502 		switch (bo->resource->mem_type) {
503 		case TTM_PL_VRAM:
504 			error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM);
505 			break;
506 		case TTM_PL_TT:
507 			error |= !(domain & NOUVEAU_GEM_DOMAIN_GART);
508 			break;
509 		default:
510 			break;
511 		}
512 
513 		if (error) {
514 			NV_ERROR(drm, "bo %p pinned elsewhere: "
515 				      "0x%08x vs 0x%08x\n", bo,
516 				 bo->resource->mem_type, domain);
517 			ret = -EBUSY;
518 		}
519 		ttm_bo_pin(&nvbo->bo);
520 		goto out;
521 	}
522 
523 	if (evict) {
524 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
525 		ret = nouveau_bo_validate(nvbo, false, false);
526 		if (ret)
527 			goto out;
528 	}
529 
530 	nouveau_bo_placement_set(nvbo, domain, 0);
531 	ret = nouveau_bo_validate(nvbo, false, false);
532 	if (ret)
533 		goto out;
534 
535 	ttm_bo_pin(&nvbo->bo);
536 
537 	switch (bo->resource->mem_type) {
538 	case TTM_PL_VRAM:
539 		drm->gem.vram_available -= bo->base.size;
540 		break;
541 	case TTM_PL_TT:
542 		drm->gem.gart_available -= bo->base.size;
543 		break;
544 	default:
545 		break;
546 	}
547 
548 out:
549 	if (force && ret)
550 		nvbo->contig = false;
551 	ttm_bo_unreserve(bo);
552 	return ret;
553 }
554 
555 int
556 nouveau_bo_unpin(struct nouveau_bo *nvbo)
557 {
558 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
559 	struct ttm_buffer_object *bo = &nvbo->bo;
560 	int ret;
561 
562 	ret = ttm_bo_reserve(bo, false, false, NULL);
563 	if (ret)
564 		return ret;
565 
566 	ttm_bo_unpin(&nvbo->bo);
567 	if (!nvbo->bo.pin_count) {
568 		switch (bo->resource->mem_type) {
569 		case TTM_PL_VRAM:
570 			drm->gem.vram_available += bo->base.size;
571 			break;
572 		case TTM_PL_TT:
573 			drm->gem.gart_available += bo->base.size;
574 			break;
575 		default:
576 			break;
577 		}
578 	}
579 
580 	ttm_bo_unreserve(bo);
581 	return 0;
582 }
583 
584 int
585 nouveau_bo_map(struct nouveau_bo *nvbo)
586 {
587 	int ret;
588 
589 	ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
590 	if (ret)
591 		return ret;
592 
593 	ret = ttm_bo_kmap(&nvbo->bo, 0, PFN_UP(nvbo->bo.base.size), &nvbo->kmap);
594 
595 	ttm_bo_unreserve(&nvbo->bo);
596 	return ret;
597 }
598 
599 void
600 nouveau_bo_unmap(struct nouveau_bo *nvbo)
601 {
602 	if (!nvbo)
603 		return;
604 
605 	ttm_bo_kunmap(&nvbo->kmap);
606 }
607 
608 void
609 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
610 {
611 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
612 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
613 	int i, j;
614 
615 	if (!ttm_dma || !ttm_dma->dma_address)
616 		return;
617 	if (!ttm_dma->pages) {
618 		NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
619 		return;
620 	}
621 
622 	/* Don't waste time looping if the object is coherent */
623 	if (nvbo->force_coherent)
624 		return;
625 
626 	i = 0;
627 	while (i < ttm_dma->num_pages) {
628 		struct page *p = ttm_dma->pages[i];
629 		size_t num_pages = 1;
630 
631 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
632 			if (++p != ttm_dma->pages[j])
633 				break;
634 
635 			++num_pages;
636 		}
637 		dma_sync_single_for_device(drm->dev->dev,
638 					   ttm_dma->dma_address[i],
639 					   num_pages * PAGE_SIZE, DMA_TO_DEVICE);
640 		i += num_pages;
641 	}
642 }
643 
644 void
645 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
646 {
647 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
648 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
649 	int i, j;
650 
651 	if (!ttm_dma || !ttm_dma->dma_address)
652 		return;
653 	if (!ttm_dma->pages) {
654 		NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
655 		return;
656 	}
657 
658 	/* Don't waste time looping if the object is coherent */
659 	if (nvbo->force_coherent)
660 		return;
661 
662 	i = 0;
663 	while (i < ttm_dma->num_pages) {
664 		struct page *p = ttm_dma->pages[i];
665 		size_t num_pages = 1;
666 
667 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
668 			if (++p != ttm_dma->pages[j])
669 				break;
670 
671 			++num_pages;
672 		}
673 
674 		dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
675 					num_pages * PAGE_SIZE, DMA_FROM_DEVICE);
676 		i += num_pages;
677 	}
678 }
679 
680 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo)
681 {
682 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
683 	struct nouveau_bo *nvbo = nouveau_bo(bo);
684 
685 	mutex_lock(&drm->ttm.io_reserve_mutex);
686 	list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru);
687 	mutex_unlock(&drm->ttm.io_reserve_mutex);
688 }
689 
690 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo)
691 {
692 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
693 	struct nouveau_bo *nvbo = nouveau_bo(bo);
694 
695 	mutex_lock(&drm->ttm.io_reserve_mutex);
696 	list_del_init(&nvbo->io_reserve_lru);
697 	mutex_unlock(&drm->ttm.io_reserve_mutex);
698 }
699 
700 int
701 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
702 		    bool no_wait_gpu)
703 {
704 	struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
705 	int ret;
706 
707 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
708 	if (ret)
709 		return ret;
710 
711 	nouveau_bo_sync_for_device(nvbo);
712 
713 	return 0;
714 }
715 
716 void
717 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
718 {
719 	bool is_iomem;
720 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
721 
722 	mem += index;
723 
724 	if (is_iomem)
725 		iowrite16_native(val, (void __force __iomem *)mem);
726 	else
727 		*mem = val;
728 }
729 
730 u32
731 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
732 {
733 	bool is_iomem;
734 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
735 
736 	mem += index;
737 
738 	if (is_iomem)
739 		return ioread32_native((void __force __iomem *)mem);
740 	else
741 		return *mem;
742 }
743 
744 void
745 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
746 {
747 	bool is_iomem;
748 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
749 
750 	mem += index;
751 
752 	if (is_iomem)
753 		iowrite32_native(val, (void __force __iomem *)mem);
754 	else
755 		*mem = val;
756 }
757 
758 static struct ttm_tt *
759 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
760 {
761 #if IS_ENABLED(CONFIG_AGP)
762 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
763 
764 	if (drm->agp.bridge) {
765 		return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
766 	}
767 #endif
768 
769 	return nouveau_sgdma_create_ttm(bo, page_flags);
770 }
771 
772 static int
773 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
774 		    struct ttm_resource *reg)
775 {
776 #if IS_ENABLED(CONFIG_AGP)
777 	struct nouveau_drm *drm = nouveau_bdev(bdev);
778 #endif
779 	if (!reg)
780 		return -EINVAL;
781 #if IS_ENABLED(CONFIG_AGP)
782 	if (drm->agp.bridge)
783 		return ttm_agp_bind(ttm, reg);
784 #endif
785 	return nouveau_sgdma_bind(bdev, ttm, reg);
786 }
787 
788 static void
789 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm)
790 {
791 #if IS_ENABLED(CONFIG_AGP)
792 	struct nouveau_drm *drm = nouveau_bdev(bdev);
793 
794 	if (drm->agp.bridge) {
795 		ttm_agp_unbind(ttm);
796 		return;
797 	}
798 #endif
799 	nouveau_sgdma_unbind(bdev, ttm);
800 }
801 
802 static void
803 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
804 {
805 	struct nouveau_bo *nvbo = nouveau_bo(bo);
806 
807 	switch (bo->resource->mem_type) {
808 	case TTM_PL_VRAM:
809 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART,
810 					 NOUVEAU_GEM_DOMAIN_CPU);
811 		break;
812 	default:
813 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0);
814 		break;
815 	}
816 
817 	*pl = nvbo->placement;
818 }
819 
820 static int
821 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
822 		     struct ttm_resource *reg)
823 {
824 	struct nouveau_mem *old_mem = nouveau_mem(bo->resource);
825 	struct nouveau_mem *new_mem = nouveau_mem(reg);
826 	struct nvif_vmm *vmm = &drm->client.vmm.vmm;
827 	int ret;
828 
829 	ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
830 			   old_mem->mem.size, &old_mem->vma[0]);
831 	if (ret)
832 		return ret;
833 
834 	ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
835 			   new_mem->mem.size, &old_mem->vma[1]);
836 	if (ret)
837 		goto done;
838 
839 	ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
840 	if (ret)
841 		goto done;
842 
843 	ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
844 done:
845 	if (ret) {
846 		nvif_vmm_put(vmm, &old_mem->vma[1]);
847 		nvif_vmm_put(vmm, &old_mem->vma[0]);
848 	}
849 	return 0;
850 }
851 
852 static int
853 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict,
854 		     struct ttm_operation_ctx *ctx,
855 		     struct ttm_resource *new_reg)
856 {
857 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
858 	struct nouveau_channel *chan = drm->ttm.chan;
859 	struct nouveau_cli *cli = (void *)chan->user.client;
860 	struct nouveau_fence *fence;
861 	int ret;
862 
863 	/* create temporary vmas for the transfer and attach them to the
864 	 * old nvkm_mem node, these will get cleaned up after ttm has
865 	 * destroyed the ttm_resource
866 	 */
867 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
868 		ret = nouveau_bo_move_prep(drm, bo, new_reg);
869 		if (ret)
870 			return ret;
871 	}
872 
873 	if (drm_drv_uses_atomic_modeset(drm->dev))
874 		mutex_lock(&cli->mutex);
875 	else
876 		mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
877 
878 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible);
879 	if (ret)
880 		goto out_unlock;
881 
882 	ret = drm->ttm.move(chan, bo, bo->resource, new_reg);
883 	if (ret)
884 		goto out_unlock;
885 
886 	ret = nouveau_fence_new(&fence, chan);
887 	if (ret)
888 		goto out_unlock;
889 
890 	/* TODO: figure out a better solution here
891 	 *
892 	 * wait on the fence here explicitly as going through
893 	 * ttm_bo_move_accel_cleanup somehow doesn't seem to do it.
894 	 *
895 	 * Without this the operation can timeout and we'll fallback to a
896 	 * software copy, which might take several minutes to finish.
897 	 */
898 	nouveau_fence_wait(fence, false, false);
899 	ret = ttm_bo_move_accel_cleanup(bo, &fence->base, evict, false,
900 					new_reg);
901 	nouveau_fence_unref(&fence);
902 
903 out_unlock:
904 	mutex_unlock(&cli->mutex);
905 	return ret;
906 }
907 
908 void
909 nouveau_bo_move_init(struct nouveau_drm *drm)
910 {
911 	static const struct _method_table {
912 		const char *name;
913 		int engine;
914 		s32 oclass;
915 		int (*exec)(struct nouveau_channel *,
916 			    struct ttm_buffer_object *,
917 			    struct ttm_resource *, struct ttm_resource *);
918 		int (*init)(struct nouveau_channel *, u32 handle);
919 	} _methods[] = {
920 		{  "COPY", 4, 0xc7b5, nve0_bo_move_copy, nve0_bo_move_init },
921 		{  "GRCE", 0, 0xc7b5, nve0_bo_move_copy, nvc0_bo_move_init },
922 		{  "COPY", 4, 0xc6b5, nve0_bo_move_copy, nve0_bo_move_init },
923 		{  "GRCE", 0, 0xc6b5, nve0_bo_move_copy, nvc0_bo_move_init },
924 		{  "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
925 		{  "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
926 		{  "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
927 		{  "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
928 		{  "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
929 		{  "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
930 		{  "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
931 		{  "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
932 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
933 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
934 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
935 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
936 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
937 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
938 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
939 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
940 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
941 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
942 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
943 		{},
944 	};
945 	const struct _method_table *mthd = _methods;
946 	const char *name = "CPU";
947 	int ret;
948 
949 	do {
950 		struct nouveau_channel *chan;
951 
952 		if (mthd->engine)
953 			chan = drm->cechan;
954 		else
955 			chan = drm->channel;
956 		if (chan == NULL)
957 			continue;
958 
959 		ret = nvif_object_ctor(&chan->user, "ttmBoMove",
960 				       mthd->oclass | (mthd->engine << 16),
961 				       mthd->oclass, NULL, 0,
962 				       &drm->ttm.copy);
963 		if (ret == 0) {
964 			ret = mthd->init(chan, drm->ttm.copy.handle);
965 			if (ret) {
966 				nvif_object_dtor(&drm->ttm.copy);
967 				continue;
968 			}
969 
970 			drm->ttm.move = mthd->exec;
971 			drm->ttm.chan = chan;
972 			name = mthd->name;
973 			break;
974 		}
975 	} while ((++mthd)->exec);
976 
977 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
978 }
979 
980 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo,
981 				 struct ttm_resource *new_reg)
982 {
983 	struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
984 	struct nouveau_bo *nvbo = nouveau_bo(bo);
985 	struct nouveau_vma *vma;
986 	long ret;
987 
988 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
989 	if (bo->destroy != nouveau_bo_del_ttm)
990 		return;
991 
992 	nouveau_bo_del_io_reserve_lru(bo);
993 
994 	if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
995 	    mem->mem.page == nvbo->page) {
996 		list_for_each_entry(vma, &nvbo->vma_list, head) {
997 			nouveau_vma_map(vma, mem);
998 		}
999 		nouveau_uvmm_bo_map_all(nvbo, mem);
1000 	} else {
1001 		list_for_each_entry(vma, &nvbo->vma_list, head) {
1002 			ret = dma_resv_wait_timeout(bo->base.resv,
1003 						    DMA_RESV_USAGE_BOOKKEEP,
1004 						    false, 15 * HZ);
1005 			WARN_ON(ret <= 0);
1006 			nouveau_vma_unmap(vma);
1007 		}
1008 		nouveau_uvmm_bo_unmap_all(nvbo);
1009 	}
1010 
1011 	if (new_reg)
1012 		nvbo->offset = (new_reg->start << PAGE_SHIFT);
1013 
1014 }
1015 
1016 static int
1017 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg,
1018 		   struct nouveau_drm_tile **new_tile)
1019 {
1020 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1021 	struct drm_device *dev = drm->dev;
1022 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1023 	u64 offset = new_reg->start << PAGE_SHIFT;
1024 
1025 	*new_tile = NULL;
1026 	if (new_reg->mem_type != TTM_PL_VRAM)
1027 		return 0;
1028 
1029 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1030 		*new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size,
1031 					       nvbo->mode, nvbo->zeta);
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 static void
1038 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1039 		      struct nouveau_drm_tile *new_tile,
1040 		      struct nouveau_drm_tile **old_tile)
1041 {
1042 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1043 	struct drm_device *dev = drm->dev;
1044 	struct dma_fence *fence;
1045 	int ret;
1046 
1047 	ret = dma_resv_get_singleton(bo->base.resv, DMA_RESV_USAGE_WRITE,
1048 				     &fence);
1049 	if (ret)
1050 		dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_WRITE,
1051 				      false, MAX_SCHEDULE_TIMEOUT);
1052 
1053 	nv10_bo_put_tile_region(dev, *old_tile, fence);
1054 	*old_tile = new_tile;
1055 }
1056 
1057 static int
1058 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
1059 		struct ttm_operation_ctx *ctx,
1060 		struct ttm_resource *new_reg,
1061 		struct ttm_place *hop)
1062 {
1063 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1064 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1065 	struct drm_gem_object *obj = &bo->base;
1066 	struct ttm_resource *old_reg = bo->resource;
1067 	struct nouveau_drm_tile *new_tile = NULL;
1068 	int ret = 0;
1069 
1070 	if (new_reg->mem_type == TTM_PL_TT) {
1071 		ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg);
1072 		if (ret)
1073 			return ret;
1074 	}
1075 
1076 	drm_gpuvm_bo_gem_evict(obj, evict);
1077 	nouveau_bo_move_ntfy(bo, new_reg);
1078 	ret = ttm_bo_wait_ctx(bo, ctx);
1079 	if (ret)
1080 		goto out_ntfy;
1081 
1082 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1083 		ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
1084 		if (ret)
1085 			goto out_ntfy;
1086 	}
1087 
1088 	/* Fake bo copy. */
1089 	if (!old_reg || (old_reg->mem_type == TTM_PL_SYSTEM &&
1090 			 !bo->ttm)) {
1091 		ttm_bo_move_null(bo, new_reg);
1092 		goto out;
1093 	}
1094 
1095 	if (old_reg->mem_type == TTM_PL_SYSTEM &&
1096 	    new_reg->mem_type == TTM_PL_TT) {
1097 		ttm_bo_move_null(bo, new_reg);
1098 		goto out;
1099 	}
1100 
1101 	if (old_reg->mem_type == TTM_PL_TT &&
1102 	    new_reg->mem_type == TTM_PL_SYSTEM) {
1103 		nouveau_ttm_tt_unbind(bo->bdev, bo->ttm);
1104 		ttm_resource_free(bo, &bo->resource);
1105 		ttm_bo_assign_mem(bo, new_reg);
1106 		goto out;
1107 	}
1108 
1109 	/* Hardware assisted copy. */
1110 	if (drm->ttm.move) {
1111 		if ((old_reg->mem_type == TTM_PL_SYSTEM &&
1112 		     new_reg->mem_type == TTM_PL_VRAM) ||
1113 		    (old_reg->mem_type == TTM_PL_VRAM &&
1114 		     new_reg->mem_type == TTM_PL_SYSTEM)) {
1115 			hop->fpfn = 0;
1116 			hop->lpfn = 0;
1117 			hop->mem_type = TTM_PL_TT;
1118 			hop->flags = 0;
1119 			return -EMULTIHOP;
1120 		}
1121 		ret = nouveau_bo_move_m2mf(bo, evict, ctx,
1122 					   new_reg);
1123 	} else
1124 		ret = -ENODEV;
1125 
1126 	if (ret) {
1127 		/* Fallback to software copy. */
1128 		ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1129 	}
1130 
1131 out:
1132 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1133 		if (ret)
1134 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1135 		else
1136 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1137 	}
1138 out_ntfy:
1139 	if (ret) {
1140 		nouveau_bo_move_ntfy(bo, bo->resource);
1141 		drm_gpuvm_bo_gem_evict(obj, !evict);
1142 	}
1143 	return ret;
1144 }
1145 
1146 static void
1147 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm,
1148 			       struct ttm_resource *reg)
1149 {
1150 	struct nouveau_mem *mem = nouveau_mem(reg);
1151 
1152 	if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1153 		switch (reg->mem_type) {
1154 		case TTM_PL_TT:
1155 			if (mem->kind)
1156 				nvif_object_unmap_handle(&mem->mem.object);
1157 			break;
1158 		case TTM_PL_VRAM:
1159 			nvif_object_unmap_handle(&mem->mem.object);
1160 			break;
1161 		default:
1162 			break;
1163 		}
1164 	}
1165 }
1166 
1167 static int
1168 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg)
1169 {
1170 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1171 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1172 	struct nouveau_mem *mem = nouveau_mem(reg);
1173 	struct nvif_mmu *mmu = &drm->client.mmu;
1174 	int ret;
1175 
1176 	mutex_lock(&drm->ttm.io_reserve_mutex);
1177 retry:
1178 	switch (reg->mem_type) {
1179 	case TTM_PL_SYSTEM:
1180 		/* System memory */
1181 		ret = 0;
1182 		goto out;
1183 	case TTM_PL_TT:
1184 #if IS_ENABLED(CONFIG_AGP)
1185 		if (drm->agp.bridge) {
1186 			reg->bus.offset = (reg->start << PAGE_SHIFT) +
1187 				drm->agp.base;
1188 			reg->bus.is_iomem = !drm->agp.cma;
1189 			reg->bus.caching = ttm_write_combined;
1190 		}
1191 #endif
1192 		if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 ||
1193 		    !mem->kind) {
1194 			/* untiled */
1195 			ret = 0;
1196 			break;
1197 		}
1198 		fallthrough;	/* tiled memory */
1199 	case TTM_PL_VRAM:
1200 		reg->bus.offset = (reg->start << PAGE_SHIFT) +
1201 			device->func->resource_addr(device, 1);
1202 		reg->bus.is_iomem = true;
1203 
1204 		/* Some BARs do not support being ioremapped WC */
1205 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
1206 		    mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED)
1207 			reg->bus.caching = ttm_uncached;
1208 		else
1209 			reg->bus.caching = ttm_write_combined;
1210 
1211 		if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1212 			union {
1213 				struct nv50_mem_map_v0 nv50;
1214 				struct gf100_mem_map_v0 gf100;
1215 			} args;
1216 			u64 handle, length;
1217 			u32 argc = 0;
1218 
1219 			switch (mem->mem.object.oclass) {
1220 			case NVIF_CLASS_MEM_NV50:
1221 				args.nv50.version = 0;
1222 				args.nv50.ro = 0;
1223 				args.nv50.kind = mem->kind;
1224 				args.nv50.comp = mem->comp;
1225 				argc = sizeof(args.nv50);
1226 				break;
1227 			case NVIF_CLASS_MEM_GF100:
1228 				args.gf100.version = 0;
1229 				args.gf100.ro = 0;
1230 				args.gf100.kind = mem->kind;
1231 				argc = sizeof(args.gf100);
1232 				break;
1233 			default:
1234 				WARN_ON(1);
1235 				break;
1236 			}
1237 
1238 			ret = nvif_object_map_handle(&mem->mem.object,
1239 						     &args, argc,
1240 						     &handle, &length);
1241 			if (ret != 1) {
1242 				if (WARN_ON(ret == 0))
1243 					ret = -EINVAL;
1244 				goto out;
1245 			}
1246 
1247 			reg->bus.offset = handle;
1248 		}
1249 		ret = 0;
1250 		break;
1251 	default:
1252 		ret = -EINVAL;
1253 	}
1254 
1255 out:
1256 	if (ret == -ENOSPC) {
1257 		struct nouveau_bo *nvbo;
1258 
1259 		nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru,
1260 						typeof(*nvbo),
1261 						io_reserve_lru);
1262 		if (nvbo) {
1263 			list_del_init(&nvbo->io_reserve_lru);
1264 			drm_vma_node_unmap(&nvbo->bo.base.vma_node,
1265 					   bdev->dev_mapping);
1266 			nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource);
1267 			goto retry;
1268 		}
1269 
1270 	}
1271 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1272 	return ret;
1273 }
1274 
1275 static void
1276 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg)
1277 {
1278 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1279 
1280 	mutex_lock(&drm->ttm.io_reserve_mutex);
1281 	nouveau_ttm_io_mem_free_locked(drm, reg);
1282 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1283 }
1284 
1285 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1286 {
1287 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1288 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1289 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1290 	u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1291 	int i, ret;
1292 
1293 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1294 	 * nothing to do here.
1295 	 */
1296 	if (bo->resource->mem_type != TTM_PL_VRAM) {
1297 		if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1298 		    !nvbo->kind)
1299 			return 0;
1300 
1301 		if (bo->resource->mem_type != TTM_PL_SYSTEM)
1302 			return 0;
1303 
1304 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
1305 
1306 	} else {
1307 		/* make sure bo is in mappable vram */
1308 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1309 		    bo->resource->start + PFN_UP(bo->resource->size) < mappable)
1310 			return 0;
1311 
1312 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
1313 			nvbo->placements[i].fpfn = 0;
1314 			nvbo->placements[i].lpfn = mappable;
1315 		}
1316 
1317 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1318 			nvbo->busy_placements[i].fpfn = 0;
1319 			nvbo->busy_placements[i].lpfn = mappable;
1320 		}
1321 
1322 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0);
1323 	}
1324 
1325 	ret = nouveau_bo_validate(nvbo, false, false);
1326 	if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS))
1327 		return VM_FAULT_NOPAGE;
1328 	else if (unlikely(ret))
1329 		return VM_FAULT_SIGBUS;
1330 
1331 	ttm_bo_move_to_lru_tail_unlocked(bo);
1332 	return 0;
1333 }
1334 
1335 static int
1336 nouveau_ttm_tt_populate(struct ttm_device *bdev,
1337 			struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1338 {
1339 	struct ttm_tt *ttm_dma = (void *)ttm;
1340 	struct nouveau_drm *drm;
1341 	bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
1342 
1343 	if (ttm_tt_is_populated(ttm))
1344 		return 0;
1345 
1346 	if (slave && ttm->sg) {
1347 		drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address,
1348 					       ttm->num_pages);
1349 		return 0;
1350 	}
1351 
1352 	drm = nouveau_bdev(bdev);
1353 
1354 	return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx);
1355 }
1356 
1357 static void
1358 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev,
1359 			  struct ttm_tt *ttm)
1360 {
1361 	struct nouveau_drm *drm;
1362 	bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
1363 
1364 	if (slave)
1365 		return;
1366 
1367 	nouveau_ttm_tt_unbind(bdev, ttm);
1368 
1369 	drm = nouveau_bdev(bdev);
1370 
1371 	return ttm_pool_free(&drm->ttm.bdev.pool, ttm);
1372 }
1373 
1374 static void
1375 nouveau_ttm_tt_destroy(struct ttm_device *bdev,
1376 		       struct ttm_tt *ttm)
1377 {
1378 #if IS_ENABLED(CONFIG_AGP)
1379 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1380 	if (drm->agp.bridge) {
1381 		ttm_agp_destroy(ttm);
1382 		return;
1383 	}
1384 #endif
1385 	nouveau_sgdma_destroy(bdev, ttm);
1386 }
1387 
1388 void
1389 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1390 {
1391 	struct dma_resv *resv = nvbo->bo.base.resv;
1392 
1393 	if (!fence)
1394 		return;
1395 
1396 	dma_resv_add_fence(resv, &fence->base, exclusive ?
1397 			   DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ);
1398 }
1399 
1400 static void
1401 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1402 {
1403 	nouveau_bo_move_ntfy(bo, NULL);
1404 }
1405 
1406 struct ttm_device_funcs nouveau_bo_driver = {
1407 	.ttm_tt_create = &nouveau_ttm_tt_create,
1408 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1409 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1410 	.ttm_tt_destroy = &nouveau_ttm_tt_destroy,
1411 	.eviction_valuable = ttm_bo_eviction_valuable,
1412 	.evict_flags = nouveau_bo_evict_flags,
1413 	.delete_mem_notify = nouveau_bo_delete_mem_notify,
1414 	.move = nouveau_bo_move,
1415 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1416 	.io_mem_free = &nouveau_ttm_io_mem_free,
1417 };
1418