xref: /linux/drivers/gpu/drm/nouveau/nouveau_bo.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
32 
33 #include "nouveau_drm.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
36 
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 
41 /*
42  * NV10-NV40 tiling helpers
43  */
44 
45 static void
46 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
47 			   u32 addr, u32 size, u32 pitch, u32 flags)
48 {
49 	struct nouveau_drm *drm = nouveau_drm(dev);
50 	int i = reg - drm->tile.reg;
51 	struct nvkm_device *device = nvxx_device(&drm->device);
52 	struct nvkm_fb *fb = device->fb;
53 	struct nvkm_fb_tile *tile = &fb->tile.region[i];
54 
55 	nouveau_fence_unref(&reg->fence);
56 
57 	if (tile->pitch)
58 		nvkm_fb_tile_fini(fb, i, tile);
59 
60 	if (pitch)
61 		nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
62 
63 	nvkm_fb_tile_prog(fb, i, tile);
64 }
65 
66 static struct nouveau_drm_tile *
67 nv10_bo_get_tile_region(struct drm_device *dev, int i)
68 {
69 	struct nouveau_drm *drm = nouveau_drm(dev);
70 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
71 
72 	spin_lock(&drm->tile.lock);
73 
74 	if (!tile->used &&
75 	    (!tile->fence || nouveau_fence_done(tile->fence)))
76 		tile->used = true;
77 	else
78 		tile = NULL;
79 
80 	spin_unlock(&drm->tile.lock);
81 	return tile;
82 }
83 
84 static void
85 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
86 			struct fence *fence)
87 {
88 	struct nouveau_drm *drm = nouveau_drm(dev);
89 
90 	if (tile) {
91 		spin_lock(&drm->tile.lock);
92 		tile->fence = (struct nouveau_fence *)fence_get(fence);
93 		tile->used = false;
94 		spin_unlock(&drm->tile.lock);
95 	}
96 }
97 
98 static struct nouveau_drm_tile *
99 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
100 		   u32 size, u32 pitch, u32 flags)
101 {
102 	struct nouveau_drm *drm = nouveau_drm(dev);
103 	struct nvkm_fb *fb = nvxx_fb(&drm->device);
104 	struct nouveau_drm_tile *tile, *found = NULL;
105 	int i;
106 
107 	for (i = 0; i < fb->tile.regions; i++) {
108 		tile = nv10_bo_get_tile_region(dev, i);
109 
110 		if (pitch && !found) {
111 			found = tile;
112 			continue;
113 
114 		} else if (tile && fb->tile.region[i].pitch) {
115 			/* Kill an unused tile region. */
116 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
117 		}
118 
119 		nv10_bo_put_tile_region(dev, tile, NULL);
120 	}
121 
122 	if (found)
123 		nv10_bo_update_tile_region(dev, found, addr, size,
124 					    pitch, flags);
125 	return found;
126 }
127 
128 static void
129 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
130 {
131 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
132 	struct drm_device *dev = drm->dev;
133 	struct nouveau_bo *nvbo = nouveau_bo(bo);
134 
135 	if (unlikely(nvbo->gem.filp))
136 		DRM_ERROR("bo %p still attached to GEM object\n", bo);
137 	WARN_ON(nvbo->pin_refcnt > 0);
138 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
139 	kfree(nvbo);
140 }
141 
142 static void
143 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
144 		       int *align, int *size)
145 {
146 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
147 	struct nvif_device *device = &drm->device;
148 
149 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
150 		if (nvbo->tile_mode) {
151 			if (device->info.chipset >= 0x40) {
152 				*align = 65536;
153 				*size = roundup(*size, 64 * nvbo->tile_mode);
154 
155 			} else if (device->info.chipset >= 0x30) {
156 				*align = 32768;
157 				*size = roundup(*size, 64 * nvbo->tile_mode);
158 
159 			} else if (device->info.chipset >= 0x20) {
160 				*align = 16384;
161 				*size = roundup(*size, 64 * nvbo->tile_mode);
162 
163 			} else if (device->info.chipset >= 0x10) {
164 				*align = 16384;
165 				*size = roundup(*size, 32 * nvbo->tile_mode);
166 			}
167 		}
168 	} else {
169 		*size = roundup(*size, (1 << nvbo->page_shift));
170 		*align = max((1 <<  nvbo->page_shift), *align);
171 	}
172 
173 	*size = roundup(*size, PAGE_SIZE);
174 }
175 
176 int
177 nouveau_bo_new(struct drm_device *dev, int size, int align,
178 	       uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
179 	       struct sg_table *sg, struct reservation_object *robj,
180 	       struct nouveau_bo **pnvbo)
181 {
182 	struct nouveau_drm *drm = nouveau_drm(dev);
183 	struct nouveau_bo *nvbo;
184 	size_t acc_size;
185 	int ret;
186 	int type = ttm_bo_type_device;
187 	int lpg_shift = 12;
188 	int max_size;
189 
190 	if (drm->client.vm)
191 		lpg_shift = drm->client.vm->mmu->lpg_shift;
192 	max_size = INT_MAX & ~((1 << lpg_shift) - 1);
193 
194 	if (size <= 0 || size > max_size) {
195 		NV_WARN(drm, "skipped size %x\n", (u32)size);
196 		return -EINVAL;
197 	}
198 
199 	if (sg)
200 		type = ttm_bo_type_sg;
201 
202 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
203 	if (!nvbo)
204 		return -ENOMEM;
205 	INIT_LIST_HEAD(&nvbo->head);
206 	INIT_LIST_HEAD(&nvbo->entry);
207 	INIT_LIST_HEAD(&nvbo->vma_list);
208 	nvbo->tile_mode = tile_mode;
209 	nvbo->tile_flags = tile_flags;
210 	nvbo->bo.bdev = &drm->ttm.bdev;
211 
212 	if (!nvxx_device(&drm->device)->func->cpu_coherent)
213 		nvbo->force_coherent = flags & TTM_PL_FLAG_UNCACHED;
214 
215 	nvbo->page_shift = 12;
216 	if (drm->client.vm) {
217 		if (!(flags & TTM_PL_FLAG_TT) && size > 256 * 1024)
218 			nvbo->page_shift = drm->client.vm->mmu->lpg_shift;
219 	}
220 
221 	nouveau_bo_fixup_align(nvbo, flags, &align, &size);
222 	nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
223 	nouveau_bo_placement_set(nvbo, flags, 0);
224 
225 	acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
226 				       sizeof(struct nouveau_bo));
227 
228 	ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
229 			  type, &nvbo->placement,
230 			  align >> PAGE_SHIFT, false, NULL, acc_size, sg,
231 			  robj, nouveau_bo_del_ttm);
232 	if (ret) {
233 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
234 		return ret;
235 	}
236 
237 	*pnvbo = nvbo;
238 	return 0;
239 }
240 
241 static void
242 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
243 {
244 	*n = 0;
245 
246 	if (type & TTM_PL_FLAG_VRAM)
247 		pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
248 	if (type & TTM_PL_FLAG_TT)
249 		pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
250 	if (type & TTM_PL_FLAG_SYSTEM)
251 		pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
252 }
253 
254 static void
255 set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
256 {
257 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
258 	u32 vram_pages = drm->device.info.ram_size >> PAGE_SHIFT;
259 	unsigned i, fpfn, lpfn;
260 
261 	if (drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
262 	    nvbo->tile_mode && (type & TTM_PL_FLAG_VRAM) &&
263 	    nvbo->bo.mem.num_pages < vram_pages / 4) {
264 		/*
265 		 * Make sure that the color and depth buffers are handled
266 		 * by independent memory controller units. Up to a 9x
267 		 * speed up when alpha-blending and depth-test are enabled
268 		 * at the same time.
269 		 */
270 		if (nvbo->tile_flags & NOUVEAU_GEM_TILE_ZETA) {
271 			fpfn = vram_pages / 2;
272 			lpfn = ~0;
273 		} else {
274 			fpfn = 0;
275 			lpfn = vram_pages / 2;
276 		}
277 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
278 			nvbo->placements[i].fpfn = fpfn;
279 			nvbo->placements[i].lpfn = lpfn;
280 		}
281 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
282 			nvbo->busy_placements[i].fpfn = fpfn;
283 			nvbo->busy_placements[i].lpfn = lpfn;
284 		}
285 	}
286 }
287 
288 void
289 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
290 {
291 	struct ttm_placement *pl = &nvbo->placement;
292 	uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
293 						 TTM_PL_MASK_CACHING) |
294 			 (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
295 
296 	pl->placement = nvbo->placements;
297 	set_placement_list(nvbo->placements, &pl->num_placement,
298 			   type, flags);
299 
300 	pl->busy_placement = nvbo->busy_placements;
301 	set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
302 			   type | busy, flags);
303 
304 	set_placement_range(nvbo, type);
305 }
306 
307 int
308 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
309 {
310 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
311 	struct ttm_buffer_object *bo = &nvbo->bo;
312 	bool force = false, evict = false;
313 	int ret;
314 
315 	ret = ttm_bo_reserve(bo, false, false, false, NULL);
316 	if (ret)
317 		return ret;
318 
319 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
320 	    memtype == TTM_PL_FLAG_VRAM && contig) {
321 		if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) {
322 			if (bo->mem.mem_type == TTM_PL_VRAM) {
323 				struct nvkm_mem *mem = bo->mem.mm_node;
324 				if (!list_is_singular(&mem->regions))
325 					evict = true;
326 			}
327 			nvbo->tile_flags &= ~NOUVEAU_GEM_TILE_NONCONTIG;
328 			force = true;
329 		}
330 	}
331 
332 	if (nvbo->pin_refcnt) {
333 		if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
334 			NV_ERROR(drm, "bo %p pinned elsewhere: "
335 				      "0x%08x vs 0x%08x\n", bo,
336 				 1 << bo->mem.mem_type, memtype);
337 			ret = -EBUSY;
338 		}
339 		nvbo->pin_refcnt++;
340 		goto out;
341 	}
342 
343 	if (evict) {
344 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
345 		ret = nouveau_bo_validate(nvbo, false, false);
346 		if (ret)
347 			goto out;
348 	}
349 
350 	nvbo->pin_refcnt++;
351 	nouveau_bo_placement_set(nvbo, memtype, 0);
352 
353 	/* drop pin_refcnt temporarily, so we don't trip the assertion
354 	 * in nouveau_bo_move() that makes sure we're not trying to
355 	 * move a pinned buffer
356 	 */
357 	nvbo->pin_refcnt--;
358 	ret = nouveau_bo_validate(nvbo, false, false);
359 	if (ret)
360 		goto out;
361 	nvbo->pin_refcnt++;
362 
363 	switch (bo->mem.mem_type) {
364 	case TTM_PL_VRAM:
365 		drm->gem.vram_available -= bo->mem.size;
366 		break;
367 	case TTM_PL_TT:
368 		drm->gem.gart_available -= bo->mem.size;
369 		break;
370 	default:
371 		break;
372 	}
373 
374 out:
375 	if (force && ret)
376 		nvbo->tile_flags |= NOUVEAU_GEM_TILE_NONCONTIG;
377 	ttm_bo_unreserve(bo);
378 	return ret;
379 }
380 
381 int
382 nouveau_bo_unpin(struct nouveau_bo *nvbo)
383 {
384 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
385 	struct ttm_buffer_object *bo = &nvbo->bo;
386 	int ret, ref;
387 
388 	ret = ttm_bo_reserve(bo, false, false, false, NULL);
389 	if (ret)
390 		return ret;
391 
392 	ref = --nvbo->pin_refcnt;
393 	WARN_ON_ONCE(ref < 0);
394 	if (ref)
395 		goto out;
396 
397 	nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
398 
399 	ret = nouveau_bo_validate(nvbo, false, false);
400 	if (ret == 0) {
401 		switch (bo->mem.mem_type) {
402 		case TTM_PL_VRAM:
403 			drm->gem.vram_available += bo->mem.size;
404 			break;
405 		case TTM_PL_TT:
406 			drm->gem.gart_available += bo->mem.size;
407 			break;
408 		default:
409 			break;
410 		}
411 	}
412 
413 out:
414 	ttm_bo_unreserve(bo);
415 	return ret;
416 }
417 
418 int
419 nouveau_bo_map(struct nouveau_bo *nvbo)
420 {
421 	int ret;
422 
423 	ret = ttm_bo_reserve(&nvbo->bo, false, false, false, NULL);
424 	if (ret)
425 		return ret;
426 
427 	/*
428 	 * TTM buffers allocated using the DMA API already have a mapping, let's
429 	 * use it instead.
430 	 */
431 	if (!nvbo->force_coherent)
432 		ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages,
433 				  &nvbo->kmap);
434 
435 	ttm_bo_unreserve(&nvbo->bo);
436 	return ret;
437 }
438 
439 void
440 nouveau_bo_unmap(struct nouveau_bo *nvbo)
441 {
442 	if (!nvbo)
443 		return;
444 
445 	/*
446 	 * TTM buffers allocated using the DMA API already had a coherent
447 	 * mapping which we used, no need to unmap.
448 	 */
449 	if (!nvbo->force_coherent)
450 		ttm_bo_kunmap(&nvbo->kmap);
451 }
452 
453 void
454 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
455 {
456 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
457 	struct nvkm_device *device = nvxx_device(&drm->device);
458 	struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
459 	int i;
460 
461 	if (!ttm_dma)
462 		return;
463 
464 	/* Don't waste time looping if the object is coherent */
465 	if (nvbo->force_coherent)
466 		return;
467 
468 	for (i = 0; i < ttm_dma->ttm.num_pages; i++)
469 		dma_sync_single_for_device(device->dev, ttm_dma->dma_address[i],
470 					   PAGE_SIZE, DMA_TO_DEVICE);
471 }
472 
473 void
474 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
475 {
476 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
477 	struct nvkm_device *device = nvxx_device(&drm->device);
478 	struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
479 	int i;
480 
481 	if (!ttm_dma)
482 		return;
483 
484 	/* Don't waste time looping if the object is coherent */
485 	if (nvbo->force_coherent)
486 		return;
487 
488 	for (i = 0; i < ttm_dma->ttm.num_pages; i++)
489 		dma_sync_single_for_cpu(device->dev, ttm_dma->dma_address[i],
490 					PAGE_SIZE, DMA_FROM_DEVICE);
491 }
492 
493 int
494 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
495 		    bool no_wait_gpu)
496 {
497 	int ret;
498 
499 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement,
500 			      interruptible, no_wait_gpu);
501 	if (ret)
502 		return ret;
503 
504 	nouveau_bo_sync_for_device(nvbo);
505 
506 	return 0;
507 }
508 
509 static inline void *
510 _nouveau_bo_mem_index(struct nouveau_bo *nvbo, unsigned index, void *mem, u8 sz)
511 {
512 	struct ttm_dma_tt *dma_tt;
513 	u8 *m = mem;
514 
515 	index *= sz;
516 
517 	if (m) {
518 		/* kmap'd address, return the corresponding offset */
519 		m += index;
520 	} else {
521 		/* DMA-API mapping, lookup the right address */
522 		dma_tt = (struct ttm_dma_tt *)nvbo->bo.ttm;
523 		m = dma_tt->cpu_address[index / PAGE_SIZE];
524 		m += index % PAGE_SIZE;
525 	}
526 
527 	return m;
528 }
529 #define nouveau_bo_mem_index(o, i, m) _nouveau_bo_mem_index(o, i, m, sizeof(*m))
530 
531 void
532 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
533 {
534 	bool is_iomem;
535 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
536 
537 	mem = nouveau_bo_mem_index(nvbo, index, mem);
538 
539 	if (is_iomem)
540 		iowrite16_native(val, (void __force __iomem *)mem);
541 	else
542 		*mem = val;
543 }
544 
545 u32
546 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
547 {
548 	bool is_iomem;
549 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
550 
551 	mem = nouveau_bo_mem_index(nvbo, index, mem);
552 
553 	if (is_iomem)
554 		return ioread32_native((void __force __iomem *)mem);
555 	else
556 		return *mem;
557 }
558 
559 void
560 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
561 {
562 	bool is_iomem;
563 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
564 
565 	mem = nouveau_bo_mem_index(nvbo, index, mem);
566 
567 	if (is_iomem)
568 		iowrite32_native(val, (void __force __iomem *)mem);
569 	else
570 		*mem = val;
571 }
572 
573 static struct ttm_tt *
574 nouveau_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
575 		      uint32_t page_flags, struct page *dummy_read)
576 {
577 #if __OS_HAS_AGP
578 	struct nouveau_drm *drm = nouveau_bdev(bdev);
579 
580 	if (drm->agp.bridge) {
581 		return ttm_agp_tt_create(bdev, drm->agp.bridge, size,
582 					 page_flags, dummy_read);
583 	}
584 #endif
585 
586 	return nouveau_sgdma_create_ttm(bdev, size, page_flags, dummy_read);
587 }
588 
589 static int
590 nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
591 {
592 	/* We'll do this from user space. */
593 	return 0;
594 }
595 
596 static int
597 nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
598 			 struct ttm_mem_type_manager *man)
599 {
600 	struct nouveau_drm *drm = nouveau_bdev(bdev);
601 
602 	switch (type) {
603 	case TTM_PL_SYSTEM:
604 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
605 		man->available_caching = TTM_PL_MASK_CACHING;
606 		man->default_caching = TTM_PL_FLAG_CACHED;
607 		break;
608 	case TTM_PL_VRAM:
609 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
610 			     TTM_MEMTYPE_FLAG_MAPPABLE;
611 		man->available_caching = TTM_PL_FLAG_UNCACHED |
612 					 TTM_PL_FLAG_WC;
613 		man->default_caching = TTM_PL_FLAG_WC;
614 
615 		if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
616 			/* Some BARs do not support being ioremapped WC */
617 			if (nvxx_bar(&drm->device)->iomap_uncached) {
618 				man->available_caching = TTM_PL_FLAG_UNCACHED;
619 				man->default_caching = TTM_PL_FLAG_UNCACHED;
620 			}
621 
622 			man->func = &nouveau_vram_manager;
623 			man->io_reserve_fastpath = false;
624 			man->use_io_reserve_lru = true;
625 		} else {
626 			man->func = &ttm_bo_manager_func;
627 		}
628 		break;
629 	case TTM_PL_TT:
630 		if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA)
631 			man->func = &nouveau_gart_manager;
632 		else
633 		if (!drm->agp.bridge)
634 			man->func = &nv04_gart_manager;
635 		else
636 			man->func = &ttm_bo_manager_func;
637 
638 		if (drm->agp.bridge) {
639 			man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
640 			man->available_caching = TTM_PL_FLAG_UNCACHED |
641 				TTM_PL_FLAG_WC;
642 			man->default_caching = TTM_PL_FLAG_WC;
643 		} else {
644 			man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
645 				     TTM_MEMTYPE_FLAG_CMA;
646 			man->available_caching = TTM_PL_MASK_CACHING;
647 			man->default_caching = TTM_PL_FLAG_CACHED;
648 		}
649 
650 		break;
651 	default:
652 		return -EINVAL;
653 	}
654 	return 0;
655 }
656 
657 static void
658 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
659 {
660 	struct nouveau_bo *nvbo = nouveau_bo(bo);
661 
662 	switch (bo->mem.mem_type) {
663 	case TTM_PL_VRAM:
664 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
665 					 TTM_PL_FLAG_SYSTEM);
666 		break;
667 	default:
668 		nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
669 		break;
670 	}
671 
672 	*pl = nvbo->placement;
673 }
674 
675 
676 static int
677 nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
678 {
679 	int ret = RING_SPACE(chan, 2);
680 	if (ret == 0) {
681 		BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
682 		OUT_RING  (chan, handle & 0x0000ffff);
683 		FIRE_RING (chan);
684 	}
685 	return ret;
686 }
687 
688 static int
689 nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
690 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
691 {
692 	struct nvkm_mem *node = old_mem->mm_node;
693 	int ret = RING_SPACE(chan, 10);
694 	if (ret == 0) {
695 		BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
696 		OUT_RING  (chan, upper_32_bits(node->vma[0].offset));
697 		OUT_RING  (chan, lower_32_bits(node->vma[0].offset));
698 		OUT_RING  (chan, upper_32_bits(node->vma[1].offset));
699 		OUT_RING  (chan, lower_32_bits(node->vma[1].offset));
700 		OUT_RING  (chan, PAGE_SIZE);
701 		OUT_RING  (chan, PAGE_SIZE);
702 		OUT_RING  (chan, PAGE_SIZE);
703 		OUT_RING  (chan, new_mem->num_pages);
704 		BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
705 	}
706 	return ret;
707 }
708 
709 static int
710 nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
711 {
712 	int ret = RING_SPACE(chan, 2);
713 	if (ret == 0) {
714 		BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
715 		OUT_RING  (chan, handle);
716 	}
717 	return ret;
718 }
719 
720 static int
721 nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
722 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
723 {
724 	struct nvkm_mem *node = old_mem->mm_node;
725 	u64 src_offset = node->vma[0].offset;
726 	u64 dst_offset = node->vma[1].offset;
727 	u32 page_count = new_mem->num_pages;
728 	int ret;
729 
730 	page_count = new_mem->num_pages;
731 	while (page_count) {
732 		int line_count = (page_count > 8191) ? 8191 : page_count;
733 
734 		ret = RING_SPACE(chan, 11);
735 		if (ret)
736 			return ret;
737 
738 		BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
739 		OUT_RING  (chan, upper_32_bits(src_offset));
740 		OUT_RING  (chan, lower_32_bits(src_offset));
741 		OUT_RING  (chan, upper_32_bits(dst_offset));
742 		OUT_RING  (chan, lower_32_bits(dst_offset));
743 		OUT_RING  (chan, PAGE_SIZE);
744 		OUT_RING  (chan, PAGE_SIZE);
745 		OUT_RING  (chan, PAGE_SIZE);
746 		OUT_RING  (chan, line_count);
747 		BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
748 		OUT_RING  (chan, 0x00000110);
749 
750 		page_count -= line_count;
751 		src_offset += (PAGE_SIZE * line_count);
752 		dst_offset += (PAGE_SIZE * line_count);
753 	}
754 
755 	return 0;
756 }
757 
758 static int
759 nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
760 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
761 {
762 	struct nvkm_mem *node = old_mem->mm_node;
763 	u64 src_offset = node->vma[0].offset;
764 	u64 dst_offset = node->vma[1].offset;
765 	u32 page_count = new_mem->num_pages;
766 	int ret;
767 
768 	page_count = new_mem->num_pages;
769 	while (page_count) {
770 		int line_count = (page_count > 2047) ? 2047 : page_count;
771 
772 		ret = RING_SPACE(chan, 12);
773 		if (ret)
774 			return ret;
775 
776 		BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
777 		OUT_RING  (chan, upper_32_bits(dst_offset));
778 		OUT_RING  (chan, lower_32_bits(dst_offset));
779 		BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
780 		OUT_RING  (chan, upper_32_bits(src_offset));
781 		OUT_RING  (chan, lower_32_bits(src_offset));
782 		OUT_RING  (chan, PAGE_SIZE); /* src_pitch */
783 		OUT_RING  (chan, PAGE_SIZE); /* dst_pitch */
784 		OUT_RING  (chan, PAGE_SIZE); /* line_length */
785 		OUT_RING  (chan, line_count);
786 		BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
787 		OUT_RING  (chan, 0x00100110);
788 
789 		page_count -= line_count;
790 		src_offset += (PAGE_SIZE * line_count);
791 		dst_offset += (PAGE_SIZE * line_count);
792 	}
793 
794 	return 0;
795 }
796 
797 static int
798 nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
799 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
800 {
801 	struct nvkm_mem *node = old_mem->mm_node;
802 	u64 src_offset = node->vma[0].offset;
803 	u64 dst_offset = node->vma[1].offset;
804 	u32 page_count = new_mem->num_pages;
805 	int ret;
806 
807 	page_count = new_mem->num_pages;
808 	while (page_count) {
809 		int line_count = (page_count > 8191) ? 8191 : page_count;
810 
811 		ret = RING_SPACE(chan, 11);
812 		if (ret)
813 			return ret;
814 
815 		BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
816 		OUT_RING  (chan, upper_32_bits(src_offset));
817 		OUT_RING  (chan, lower_32_bits(src_offset));
818 		OUT_RING  (chan, upper_32_bits(dst_offset));
819 		OUT_RING  (chan, lower_32_bits(dst_offset));
820 		OUT_RING  (chan, PAGE_SIZE);
821 		OUT_RING  (chan, PAGE_SIZE);
822 		OUT_RING  (chan, PAGE_SIZE);
823 		OUT_RING  (chan, line_count);
824 		BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
825 		OUT_RING  (chan, 0x00000110);
826 
827 		page_count -= line_count;
828 		src_offset += (PAGE_SIZE * line_count);
829 		dst_offset += (PAGE_SIZE * line_count);
830 	}
831 
832 	return 0;
833 }
834 
835 static int
836 nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
837 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
838 {
839 	struct nvkm_mem *node = old_mem->mm_node;
840 	int ret = RING_SPACE(chan, 7);
841 	if (ret == 0) {
842 		BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
843 		OUT_RING  (chan, upper_32_bits(node->vma[0].offset));
844 		OUT_RING  (chan, lower_32_bits(node->vma[0].offset));
845 		OUT_RING  (chan, upper_32_bits(node->vma[1].offset));
846 		OUT_RING  (chan, lower_32_bits(node->vma[1].offset));
847 		OUT_RING  (chan, 0x00000000 /* COPY */);
848 		OUT_RING  (chan, new_mem->num_pages << PAGE_SHIFT);
849 	}
850 	return ret;
851 }
852 
853 static int
854 nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
855 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
856 {
857 	struct nvkm_mem *node = old_mem->mm_node;
858 	int ret = RING_SPACE(chan, 7);
859 	if (ret == 0) {
860 		BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
861 		OUT_RING  (chan, new_mem->num_pages << PAGE_SHIFT);
862 		OUT_RING  (chan, upper_32_bits(node->vma[0].offset));
863 		OUT_RING  (chan, lower_32_bits(node->vma[0].offset));
864 		OUT_RING  (chan, upper_32_bits(node->vma[1].offset));
865 		OUT_RING  (chan, lower_32_bits(node->vma[1].offset));
866 		OUT_RING  (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
867 	}
868 	return ret;
869 }
870 
871 static int
872 nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
873 {
874 	int ret = RING_SPACE(chan, 6);
875 	if (ret == 0) {
876 		BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
877 		OUT_RING  (chan, handle);
878 		BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
879 		OUT_RING  (chan, chan->drm->ntfy.handle);
880 		OUT_RING  (chan, chan->vram.handle);
881 		OUT_RING  (chan, chan->vram.handle);
882 	}
883 
884 	return ret;
885 }
886 
887 static int
888 nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
889 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
890 {
891 	struct nvkm_mem *node = old_mem->mm_node;
892 	u64 length = (new_mem->num_pages << PAGE_SHIFT);
893 	u64 src_offset = node->vma[0].offset;
894 	u64 dst_offset = node->vma[1].offset;
895 	int src_tiled = !!node->memtype;
896 	int dst_tiled = !!((struct nvkm_mem *)new_mem->mm_node)->memtype;
897 	int ret;
898 
899 	while (length) {
900 		u32 amount, stride, height;
901 
902 		ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
903 		if (ret)
904 			return ret;
905 
906 		amount  = min(length, (u64)(4 * 1024 * 1024));
907 		stride  = 16 * 4;
908 		height  = amount / stride;
909 
910 		if (src_tiled) {
911 			BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
912 			OUT_RING  (chan, 0);
913 			OUT_RING  (chan, 0);
914 			OUT_RING  (chan, stride);
915 			OUT_RING  (chan, height);
916 			OUT_RING  (chan, 1);
917 			OUT_RING  (chan, 0);
918 			OUT_RING  (chan, 0);
919 		} else {
920 			BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
921 			OUT_RING  (chan, 1);
922 		}
923 		if (dst_tiled) {
924 			BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
925 			OUT_RING  (chan, 0);
926 			OUT_RING  (chan, 0);
927 			OUT_RING  (chan, stride);
928 			OUT_RING  (chan, height);
929 			OUT_RING  (chan, 1);
930 			OUT_RING  (chan, 0);
931 			OUT_RING  (chan, 0);
932 		} else {
933 			BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
934 			OUT_RING  (chan, 1);
935 		}
936 
937 		BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
938 		OUT_RING  (chan, upper_32_bits(src_offset));
939 		OUT_RING  (chan, upper_32_bits(dst_offset));
940 		BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
941 		OUT_RING  (chan, lower_32_bits(src_offset));
942 		OUT_RING  (chan, lower_32_bits(dst_offset));
943 		OUT_RING  (chan, stride);
944 		OUT_RING  (chan, stride);
945 		OUT_RING  (chan, stride);
946 		OUT_RING  (chan, height);
947 		OUT_RING  (chan, 0x00000101);
948 		OUT_RING  (chan, 0x00000000);
949 		BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
950 		OUT_RING  (chan, 0);
951 
952 		length -= amount;
953 		src_offset += amount;
954 		dst_offset += amount;
955 	}
956 
957 	return 0;
958 }
959 
960 static int
961 nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
962 {
963 	int ret = RING_SPACE(chan, 4);
964 	if (ret == 0) {
965 		BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
966 		OUT_RING  (chan, handle);
967 		BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
968 		OUT_RING  (chan, chan->drm->ntfy.handle);
969 	}
970 
971 	return ret;
972 }
973 
974 static inline uint32_t
975 nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
976 		      struct nouveau_channel *chan, struct ttm_mem_reg *mem)
977 {
978 	if (mem->mem_type == TTM_PL_TT)
979 		return NvDmaTT;
980 	return chan->vram.handle;
981 }
982 
983 static int
984 nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
985 		  struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
986 {
987 	u32 src_offset = old_mem->start << PAGE_SHIFT;
988 	u32 dst_offset = new_mem->start << PAGE_SHIFT;
989 	u32 page_count = new_mem->num_pages;
990 	int ret;
991 
992 	ret = RING_SPACE(chan, 3);
993 	if (ret)
994 		return ret;
995 
996 	BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
997 	OUT_RING  (chan, nouveau_bo_mem_ctxdma(bo, chan, old_mem));
998 	OUT_RING  (chan, nouveau_bo_mem_ctxdma(bo, chan, new_mem));
999 
1000 	page_count = new_mem->num_pages;
1001 	while (page_count) {
1002 		int line_count = (page_count > 2047) ? 2047 : page_count;
1003 
1004 		ret = RING_SPACE(chan, 11);
1005 		if (ret)
1006 			return ret;
1007 
1008 		BEGIN_NV04(chan, NvSubCopy,
1009 				 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
1010 		OUT_RING  (chan, src_offset);
1011 		OUT_RING  (chan, dst_offset);
1012 		OUT_RING  (chan, PAGE_SIZE); /* src_pitch */
1013 		OUT_RING  (chan, PAGE_SIZE); /* dst_pitch */
1014 		OUT_RING  (chan, PAGE_SIZE); /* line_length */
1015 		OUT_RING  (chan, line_count);
1016 		OUT_RING  (chan, 0x00000101);
1017 		OUT_RING  (chan, 0x00000000);
1018 		BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
1019 		OUT_RING  (chan, 0);
1020 
1021 		page_count -= line_count;
1022 		src_offset += (PAGE_SIZE * line_count);
1023 		dst_offset += (PAGE_SIZE * line_count);
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static int
1030 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
1031 		     struct ttm_mem_reg *mem)
1032 {
1033 	struct nvkm_mem *old_node = bo->mem.mm_node;
1034 	struct nvkm_mem *new_node = mem->mm_node;
1035 	u64 size = (u64)mem->num_pages << PAGE_SHIFT;
1036 	int ret;
1037 
1038 	ret = nvkm_vm_get(drm->client.vm, size, old_node->page_shift,
1039 			  NV_MEM_ACCESS_RW, &old_node->vma[0]);
1040 	if (ret)
1041 		return ret;
1042 
1043 	ret = nvkm_vm_get(drm->client.vm, size, new_node->page_shift,
1044 			  NV_MEM_ACCESS_RW, &old_node->vma[1]);
1045 	if (ret) {
1046 		nvkm_vm_put(&old_node->vma[0]);
1047 		return ret;
1048 	}
1049 
1050 	nvkm_vm_map(&old_node->vma[0], old_node);
1051 	nvkm_vm_map(&old_node->vma[1], new_node);
1052 	return 0;
1053 }
1054 
1055 static int
1056 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
1057 		     bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1058 {
1059 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1060 	struct nouveau_channel *chan = drm->ttm.chan;
1061 	struct nouveau_cli *cli = (void *)chan->user.client;
1062 	struct nouveau_fence *fence;
1063 	int ret;
1064 
1065 	/* create temporary vmas for the transfer and attach them to the
1066 	 * old nvkm_mem node, these will get cleaned up after ttm has
1067 	 * destroyed the ttm_mem_reg
1068 	 */
1069 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1070 		ret = nouveau_bo_move_prep(drm, bo, new_mem);
1071 		if (ret)
1072 			return ret;
1073 	}
1074 
1075 	mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
1076 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
1077 	if (ret == 0) {
1078 		ret = drm->ttm.move(chan, bo, &bo->mem, new_mem);
1079 		if (ret == 0) {
1080 			ret = nouveau_fence_new(chan, false, &fence);
1081 			if (ret == 0) {
1082 				ret = ttm_bo_move_accel_cleanup(bo,
1083 								&fence->base,
1084 								evict,
1085 								no_wait_gpu,
1086 								new_mem);
1087 				nouveau_fence_unref(&fence);
1088 			}
1089 		}
1090 	}
1091 	mutex_unlock(&cli->mutex);
1092 	return ret;
1093 }
1094 
1095 void
1096 nouveau_bo_move_init(struct nouveau_drm *drm)
1097 {
1098 	static const struct {
1099 		const char *name;
1100 		int engine;
1101 		s32 oclass;
1102 		int (*exec)(struct nouveau_channel *,
1103 			    struct ttm_buffer_object *,
1104 			    struct ttm_mem_reg *, struct ttm_mem_reg *);
1105 		int (*init)(struct nouveau_channel *, u32 handle);
1106 	} _methods[] = {
1107 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
1108 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1109 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
1110 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1111 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
1112 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
1113 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
1114 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
1115 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
1116 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
1117 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
1118 		{},
1119 		{ "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
1120 	}, *mthd = _methods;
1121 	const char *name = "CPU";
1122 	int ret;
1123 
1124 	do {
1125 		struct nouveau_channel *chan;
1126 
1127 		if (mthd->engine)
1128 			chan = drm->cechan;
1129 		else
1130 			chan = drm->channel;
1131 		if (chan == NULL)
1132 			continue;
1133 
1134 		ret = nvif_object_init(&chan->user,
1135 				       mthd->oclass | (mthd->engine << 16),
1136 				       mthd->oclass, NULL, 0,
1137 				       &drm->ttm.copy);
1138 		if (ret == 0) {
1139 			ret = mthd->init(chan, drm->ttm.copy.handle);
1140 			if (ret) {
1141 				nvif_object_fini(&drm->ttm.copy);
1142 				continue;
1143 			}
1144 
1145 			drm->ttm.move = mthd->exec;
1146 			drm->ttm.chan = chan;
1147 			name = mthd->name;
1148 			break;
1149 		}
1150 	} while ((++mthd)->exec);
1151 
1152 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
1153 }
1154 
1155 static int
1156 nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
1157 		      bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1158 {
1159 	struct ttm_place placement_memtype = {
1160 		.fpfn = 0,
1161 		.lpfn = 0,
1162 		.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1163 	};
1164 	struct ttm_placement placement;
1165 	struct ttm_mem_reg tmp_mem;
1166 	int ret;
1167 
1168 	placement.num_placement = placement.num_busy_placement = 1;
1169 	placement.placement = placement.busy_placement = &placement_memtype;
1170 
1171 	tmp_mem = *new_mem;
1172 	tmp_mem.mm_node = NULL;
1173 	ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
1174 	if (ret)
1175 		return ret;
1176 
1177 	ret = ttm_tt_bind(bo->ttm, &tmp_mem);
1178 	if (ret)
1179 		goto out;
1180 
1181 	ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_mem);
1182 	if (ret)
1183 		goto out;
1184 
1185 	ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, new_mem);
1186 out:
1187 	ttm_bo_mem_put(bo, &tmp_mem);
1188 	return ret;
1189 }
1190 
1191 static int
1192 nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
1193 		      bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1194 {
1195 	struct ttm_place placement_memtype = {
1196 		.fpfn = 0,
1197 		.lpfn = 0,
1198 		.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1199 	};
1200 	struct ttm_placement placement;
1201 	struct ttm_mem_reg tmp_mem;
1202 	int ret;
1203 
1204 	placement.num_placement = placement.num_busy_placement = 1;
1205 	placement.placement = placement.busy_placement = &placement_memtype;
1206 
1207 	tmp_mem = *new_mem;
1208 	tmp_mem.mm_node = NULL;
1209 	ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
1210 	if (ret)
1211 		return ret;
1212 
1213 	ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, &tmp_mem);
1214 	if (ret)
1215 		goto out;
1216 
1217 	ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_mem);
1218 	if (ret)
1219 		goto out;
1220 
1221 out:
1222 	ttm_bo_mem_put(bo, &tmp_mem);
1223 	return ret;
1224 }
1225 
1226 static void
1227 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem)
1228 {
1229 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1230 	struct nvkm_vma *vma;
1231 
1232 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
1233 	if (bo->destroy != nouveau_bo_del_ttm)
1234 		return;
1235 
1236 	list_for_each_entry(vma, &nvbo->vma_list, head) {
1237 		if (new_mem && new_mem->mem_type != TTM_PL_SYSTEM &&
1238 			      (new_mem->mem_type == TTM_PL_VRAM ||
1239 			       nvbo->page_shift != vma->vm->mmu->lpg_shift)) {
1240 			nvkm_vm_map(vma, new_mem->mm_node);
1241 		} else {
1242 			nvkm_vm_unmap(vma);
1243 		}
1244 	}
1245 }
1246 
1247 static int
1248 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem,
1249 		   struct nouveau_drm_tile **new_tile)
1250 {
1251 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1252 	struct drm_device *dev = drm->dev;
1253 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1254 	u64 offset = new_mem->start << PAGE_SHIFT;
1255 
1256 	*new_tile = NULL;
1257 	if (new_mem->mem_type != TTM_PL_VRAM)
1258 		return 0;
1259 
1260 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1261 		*new_tile = nv10_bo_set_tiling(dev, offset, new_mem->size,
1262 						nvbo->tile_mode,
1263 						nvbo->tile_flags);
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 static void
1270 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1271 		      struct nouveau_drm_tile *new_tile,
1272 		      struct nouveau_drm_tile **old_tile)
1273 {
1274 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1275 	struct drm_device *dev = drm->dev;
1276 	struct fence *fence = reservation_object_get_excl(bo->resv);
1277 
1278 	nv10_bo_put_tile_region(dev, *old_tile, fence);
1279 	*old_tile = new_tile;
1280 }
1281 
1282 static int
1283 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, bool intr,
1284 		bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1285 {
1286 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1287 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1288 	struct ttm_mem_reg *old_mem = &bo->mem;
1289 	struct nouveau_drm_tile *new_tile = NULL;
1290 	int ret = 0;
1291 
1292 	if (nvbo->pin_refcnt)
1293 		NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
1294 
1295 	if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1296 		ret = nouveau_bo_vm_bind(bo, new_mem, &new_tile);
1297 		if (ret)
1298 			return ret;
1299 	}
1300 
1301 	/* Fake bo copy. */
1302 	if (old_mem->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1303 		BUG_ON(bo->mem.mm_node != NULL);
1304 		bo->mem = *new_mem;
1305 		new_mem->mm_node = NULL;
1306 		goto out;
1307 	}
1308 
1309 	/* Hardware assisted copy. */
1310 	if (drm->ttm.move) {
1311 		if (new_mem->mem_type == TTM_PL_SYSTEM)
1312 			ret = nouveau_bo_move_flipd(bo, evict, intr,
1313 						    no_wait_gpu, new_mem);
1314 		else if (old_mem->mem_type == TTM_PL_SYSTEM)
1315 			ret = nouveau_bo_move_flips(bo, evict, intr,
1316 						    no_wait_gpu, new_mem);
1317 		else
1318 			ret = nouveau_bo_move_m2mf(bo, evict, intr,
1319 						   no_wait_gpu, new_mem);
1320 		if (!ret)
1321 			goto out;
1322 	}
1323 
1324 	/* Fallback to software copy. */
1325 	ret = ttm_bo_wait(bo, true, intr, no_wait_gpu);
1326 	if (ret == 0)
1327 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, new_mem);
1328 
1329 out:
1330 	if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1331 		if (ret)
1332 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1333 		else
1334 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1335 	}
1336 
1337 	return ret;
1338 }
1339 
1340 static int
1341 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1342 {
1343 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1344 
1345 	return drm_vma_node_verify_access(&nvbo->gem.vma_node, filp);
1346 }
1347 
1348 static int
1349 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1350 {
1351 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1352 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1353 	struct nvkm_device *device = nvxx_device(&drm->device);
1354 	struct nvkm_mem *node = mem->mm_node;
1355 	int ret;
1356 
1357 	mem->bus.addr = NULL;
1358 	mem->bus.offset = 0;
1359 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
1360 	mem->bus.base = 0;
1361 	mem->bus.is_iomem = false;
1362 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1363 		return -EINVAL;
1364 	switch (mem->mem_type) {
1365 	case TTM_PL_SYSTEM:
1366 		/* System memory */
1367 		return 0;
1368 	case TTM_PL_TT:
1369 #if __OS_HAS_AGP
1370 		if (drm->agp.bridge) {
1371 			mem->bus.offset = mem->start << PAGE_SHIFT;
1372 			mem->bus.base = drm->agp.base;
1373 			mem->bus.is_iomem = !drm->agp.cma;
1374 		}
1375 #endif
1376 		if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA || !node->memtype)
1377 			/* untiled */
1378 			break;
1379 		/* fallthrough, tiled memory */
1380 	case TTM_PL_VRAM:
1381 		mem->bus.offset = mem->start << PAGE_SHIFT;
1382 		mem->bus.base = device->func->resource_addr(device, 1);
1383 		mem->bus.is_iomem = true;
1384 		if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1385 			struct nvkm_bar *bar = nvxx_bar(&drm->device);
1386 			int page_shift = 12;
1387 			if (drm->device.info.family >= NV_DEVICE_INFO_V0_FERMI)
1388 				page_shift = node->page_shift;
1389 
1390 			ret = nvkm_bar_umap(bar, node->size << 12, page_shift,
1391 					    &node->bar_vma);
1392 			if (ret)
1393 				return ret;
1394 
1395 			nvkm_vm_map(&node->bar_vma, node);
1396 			mem->bus.offset = node->bar_vma.offset;
1397 		}
1398 		break;
1399 	default:
1400 		return -EINVAL;
1401 	}
1402 	return 0;
1403 }
1404 
1405 static void
1406 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1407 {
1408 	struct nvkm_mem *node = mem->mm_node;
1409 
1410 	if (!node->bar_vma.node)
1411 		return;
1412 
1413 	nvkm_vm_unmap(&node->bar_vma);
1414 	nvkm_vm_put(&node->bar_vma);
1415 }
1416 
1417 static int
1418 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1419 {
1420 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1421 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1422 	struct nvkm_device *device = nvxx_device(&drm->device);
1423 	u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1424 	int i, ret;
1425 
1426 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1427 	 * nothing to do here.
1428 	 */
1429 	if (bo->mem.mem_type != TTM_PL_VRAM) {
1430 		if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1431 		    !nouveau_bo_tile_layout(nvbo))
1432 			return 0;
1433 
1434 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1435 			nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
1436 
1437 			ret = nouveau_bo_validate(nvbo, false, false);
1438 			if (ret)
1439 				return ret;
1440 		}
1441 		return 0;
1442 	}
1443 
1444 	/* make sure bo is in mappable vram */
1445 	if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1446 	    bo->mem.start + bo->mem.num_pages < mappable)
1447 		return 0;
1448 
1449 	for (i = 0; i < nvbo->placement.num_placement; ++i) {
1450 		nvbo->placements[i].fpfn = 0;
1451 		nvbo->placements[i].lpfn = mappable;
1452 	}
1453 
1454 	for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1455 		nvbo->busy_placements[i].fpfn = 0;
1456 		nvbo->busy_placements[i].lpfn = mappable;
1457 	}
1458 
1459 	nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
1460 	return nouveau_bo_validate(nvbo, false, false);
1461 }
1462 
1463 static int
1464 nouveau_ttm_tt_populate(struct ttm_tt *ttm)
1465 {
1466 	struct ttm_dma_tt *ttm_dma = (void *)ttm;
1467 	struct nouveau_drm *drm;
1468 	struct nvkm_device *device;
1469 	struct drm_device *dev;
1470 	struct device *pdev;
1471 	unsigned i;
1472 	int r;
1473 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1474 
1475 	if (ttm->state != tt_unpopulated)
1476 		return 0;
1477 
1478 	if (slave && ttm->sg) {
1479 		/* make userspace faulting work */
1480 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1481 						 ttm_dma->dma_address, ttm->num_pages);
1482 		ttm->state = tt_unbound;
1483 		return 0;
1484 	}
1485 
1486 	drm = nouveau_bdev(ttm->bdev);
1487 	device = nvxx_device(&drm->device);
1488 	dev = drm->dev;
1489 	pdev = device->dev;
1490 
1491 	/*
1492 	 * Objects matching this condition have been marked as force_coherent,
1493 	 * so use the DMA API for them.
1494 	 */
1495 	if (!nvxx_device(&drm->device)->func->cpu_coherent &&
1496 	    ttm->caching_state == tt_uncached)
1497 		return ttm_dma_populate(ttm_dma, dev->dev);
1498 
1499 #if __OS_HAS_AGP
1500 	if (drm->agp.bridge) {
1501 		return ttm_agp_tt_populate(ttm);
1502 	}
1503 #endif
1504 
1505 #ifdef CONFIG_SWIOTLB
1506 	if (swiotlb_nr_tbl()) {
1507 		return ttm_dma_populate((void *)ttm, dev->dev);
1508 	}
1509 #endif
1510 
1511 	r = ttm_pool_populate(ttm);
1512 	if (r) {
1513 		return r;
1514 	}
1515 
1516 	for (i = 0; i < ttm->num_pages; i++) {
1517 		dma_addr_t addr;
1518 
1519 		addr = dma_map_page(pdev, ttm->pages[i], 0, PAGE_SIZE,
1520 				    DMA_BIDIRECTIONAL);
1521 
1522 		if (dma_mapping_error(pdev, addr)) {
1523 			while (--i) {
1524 				dma_unmap_page(pdev, ttm_dma->dma_address[i],
1525 					       PAGE_SIZE, DMA_BIDIRECTIONAL);
1526 				ttm_dma->dma_address[i] = 0;
1527 			}
1528 			ttm_pool_unpopulate(ttm);
1529 			return -EFAULT;
1530 		}
1531 
1532 		ttm_dma->dma_address[i] = addr;
1533 	}
1534 	return 0;
1535 }
1536 
1537 static void
1538 nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
1539 {
1540 	struct ttm_dma_tt *ttm_dma = (void *)ttm;
1541 	struct nouveau_drm *drm;
1542 	struct nvkm_device *device;
1543 	struct drm_device *dev;
1544 	struct device *pdev;
1545 	unsigned i;
1546 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1547 
1548 	if (slave)
1549 		return;
1550 
1551 	drm = nouveau_bdev(ttm->bdev);
1552 	device = nvxx_device(&drm->device);
1553 	dev = drm->dev;
1554 	pdev = device->dev;
1555 
1556 	/*
1557 	 * Objects matching this condition have been marked as force_coherent,
1558 	 * so use the DMA API for them.
1559 	 */
1560 	if (!nvxx_device(&drm->device)->func->cpu_coherent &&
1561 	    ttm->caching_state == tt_uncached) {
1562 		ttm_dma_unpopulate(ttm_dma, dev->dev);
1563 		return;
1564 	}
1565 
1566 #if __OS_HAS_AGP
1567 	if (drm->agp.bridge) {
1568 		ttm_agp_tt_unpopulate(ttm);
1569 		return;
1570 	}
1571 #endif
1572 
1573 #ifdef CONFIG_SWIOTLB
1574 	if (swiotlb_nr_tbl()) {
1575 		ttm_dma_unpopulate((void *)ttm, dev->dev);
1576 		return;
1577 	}
1578 #endif
1579 
1580 	for (i = 0; i < ttm->num_pages; i++) {
1581 		if (ttm_dma->dma_address[i]) {
1582 			dma_unmap_page(pdev, ttm_dma->dma_address[i], PAGE_SIZE,
1583 				       DMA_BIDIRECTIONAL);
1584 		}
1585 	}
1586 
1587 	ttm_pool_unpopulate(ttm);
1588 }
1589 
1590 void
1591 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1592 {
1593 	struct reservation_object *resv = nvbo->bo.resv;
1594 
1595 	if (exclusive)
1596 		reservation_object_add_excl_fence(resv, &fence->base);
1597 	else if (fence)
1598 		reservation_object_add_shared_fence(resv, &fence->base);
1599 }
1600 
1601 struct ttm_bo_driver nouveau_bo_driver = {
1602 	.ttm_tt_create = &nouveau_ttm_tt_create,
1603 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1604 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1605 	.invalidate_caches = nouveau_bo_invalidate_caches,
1606 	.init_mem_type = nouveau_bo_init_mem_type,
1607 	.evict_flags = nouveau_bo_evict_flags,
1608 	.move_notify = nouveau_bo_move_ntfy,
1609 	.move = nouveau_bo_move,
1610 	.verify_access = nouveau_bo_verify_access,
1611 	.fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
1612 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1613 	.io_mem_free = &nouveau_ttm_io_mem_free,
1614 };
1615 
1616 struct nvkm_vma *
1617 nouveau_bo_vma_find(struct nouveau_bo *nvbo, struct nvkm_vm *vm)
1618 {
1619 	struct nvkm_vma *vma;
1620 	list_for_each_entry(vma, &nvbo->vma_list, head) {
1621 		if (vma->vm == vm)
1622 			return vma;
1623 	}
1624 
1625 	return NULL;
1626 }
1627 
1628 int
1629 nouveau_bo_vma_add(struct nouveau_bo *nvbo, struct nvkm_vm *vm,
1630 		   struct nvkm_vma *vma)
1631 {
1632 	const u32 size = nvbo->bo.mem.num_pages << PAGE_SHIFT;
1633 	int ret;
1634 
1635 	ret = nvkm_vm_get(vm, size, nvbo->page_shift,
1636 			     NV_MEM_ACCESS_RW, vma);
1637 	if (ret)
1638 		return ret;
1639 
1640 	if ( nvbo->bo.mem.mem_type != TTM_PL_SYSTEM &&
1641 	    (nvbo->bo.mem.mem_type == TTM_PL_VRAM ||
1642 	     nvbo->page_shift != vma->vm->mmu->lpg_shift))
1643 		nvkm_vm_map(vma, nvbo->bo.mem.mm_node);
1644 
1645 	list_add_tail(&vma->head, &nvbo->vma_list);
1646 	vma->refcount = 1;
1647 	return 0;
1648 }
1649 
1650 void
1651 nouveau_bo_vma_del(struct nouveau_bo *nvbo, struct nvkm_vma *vma)
1652 {
1653 	if (vma->node) {
1654 		if (nvbo->bo.mem.mem_type != TTM_PL_SYSTEM)
1655 			nvkm_vm_unmap(vma);
1656 		nvkm_vm_put(vma);
1657 		list_del(&vma->head);
1658 	}
1659 }
1660