xref: /linux/drivers/gpu/drm/nouveau/nouveau_bo.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 
32 #include "nouveau_drv.h"
33 #include "nouveau_chan.h"
34 #include "nouveau_fence.h"
35 
36 #include "nouveau_bo.h"
37 #include "nouveau_ttm.h"
38 #include "nouveau_gem.h"
39 #include "nouveau_mem.h"
40 #include "nouveau_vmm.h"
41 
42 #include <nvif/class.h>
43 #include <nvif/if500b.h>
44 #include <nvif/if900b.h>
45 
46 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
47 			       struct ttm_resource *reg);
48 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm);
49 
50 /*
51  * NV10-NV40 tiling helpers
52  */
53 
54 static void
55 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
56 			   u32 addr, u32 size, u32 pitch, u32 flags)
57 {
58 	struct nouveau_drm *drm = nouveau_drm(dev);
59 	int i = reg - drm->tile.reg;
60 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
61 	struct nvkm_fb_tile *tile = &fb->tile.region[i];
62 
63 	nouveau_fence_unref(&reg->fence);
64 
65 	if (tile->pitch)
66 		nvkm_fb_tile_fini(fb, i, tile);
67 
68 	if (pitch)
69 		nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
70 
71 	nvkm_fb_tile_prog(fb, i, tile);
72 }
73 
74 static struct nouveau_drm_tile *
75 nv10_bo_get_tile_region(struct drm_device *dev, int i)
76 {
77 	struct nouveau_drm *drm = nouveau_drm(dev);
78 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
79 
80 	spin_lock(&drm->tile.lock);
81 
82 	if (!tile->used &&
83 	    (!tile->fence || nouveau_fence_done(tile->fence)))
84 		tile->used = true;
85 	else
86 		tile = NULL;
87 
88 	spin_unlock(&drm->tile.lock);
89 	return tile;
90 }
91 
92 static void
93 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
94 			struct dma_fence *fence)
95 {
96 	struct nouveau_drm *drm = nouveau_drm(dev);
97 
98 	if (tile) {
99 		spin_lock(&drm->tile.lock);
100 		tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
101 		tile->used = false;
102 		spin_unlock(&drm->tile.lock);
103 	}
104 }
105 
106 static struct nouveau_drm_tile *
107 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
108 		   u32 size, u32 pitch, u32 zeta)
109 {
110 	struct nouveau_drm *drm = nouveau_drm(dev);
111 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
112 	struct nouveau_drm_tile *tile, *found = NULL;
113 	int i;
114 
115 	for (i = 0; i < fb->tile.regions; i++) {
116 		tile = nv10_bo_get_tile_region(dev, i);
117 
118 		if (pitch && !found) {
119 			found = tile;
120 			continue;
121 
122 		} else if (tile && fb->tile.region[i].pitch) {
123 			/* Kill an unused tile region. */
124 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
125 		}
126 
127 		nv10_bo_put_tile_region(dev, tile, NULL);
128 	}
129 
130 	if (found)
131 		nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
132 	return found;
133 }
134 
135 static void
136 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
137 {
138 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
139 	struct drm_device *dev = drm->dev;
140 	struct nouveau_bo *nvbo = nouveau_bo(bo);
141 
142 	WARN_ON(nvbo->bo.pin_count > 0);
143 	nouveau_bo_del_io_reserve_lru(bo);
144 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
145 
146 	/*
147 	 * If nouveau_bo_new() allocated this buffer, the GEM object was never
148 	 * initialized, so don't attempt to release it.
149 	 */
150 	if (bo->base.dev)
151 		drm_gem_object_release(&bo->base);
152 
153 	kfree(nvbo);
154 }
155 
156 static inline u64
157 roundup_64(u64 x, u32 y)
158 {
159 	x += y - 1;
160 	do_div(x, y);
161 	return x * y;
162 }
163 
164 static void
165 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size)
166 {
167 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
168 	struct nvif_device *device = &drm->client.device;
169 
170 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
171 		if (nvbo->mode) {
172 			if (device->info.chipset >= 0x40) {
173 				*align = 65536;
174 				*size = roundup_64(*size, 64 * nvbo->mode);
175 
176 			} else if (device->info.chipset >= 0x30) {
177 				*align = 32768;
178 				*size = roundup_64(*size, 64 * nvbo->mode);
179 
180 			} else if (device->info.chipset >= 0x20) {
181 				*align = 16384;
182 				*size = roundup_64(*size, 64 * nvbo->mode);
183 
184 			} else if (device->info.chipset >= 0x10) {
185 				*align = 16384;
186 				*size = roundup_64(*size, 32 * nvbo->mode);
187 			}
188 		}
189 	} else {
190 		*size = roundup_64(*size, (1 << nvbo->page));
191 		*align = max((1 <<  nvbo->page), *align);
192 	}
193 
194 	*size = roundup_64(*size, PAGE_SIZE);
195 }
196 
197 struct nouveau_bo *
198 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain,
199 		 u32 tile_mode, u32 tile_flags)
200 {
201 	struct nouveau_drm *drm = cli->drm;
202 	struct nouveau_bo *nvbo;
203 	struct nvif_mmu *mmu = &cli->mmu;
204 	struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm;
205 	int i, pi = -1;
206 
207 	if (!*size) {
208 		NV_WARN(drm, "skipped size %016llx\n", *size);
209 		return ERR_PTR(-EINVAL);
210 	}
211 
212 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
213 	if (!nvbo)
214 		return ERR_PTR(-ENOMEM);
215 	INIT_LIST_HEAD(&nvbo->head);
216 	INIT_LIST_HEAD(&nvbo->entry);
217 	INIT_LIST_HEAD(&nvbo->vma_list);
218 	nvbo->bo.bdev = &drm->ttm.bdev;
219 
220 	/* This is confusing, and doesn't actually mean we want an uncached
221 	 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
222 	 * into in nouveau_gem_new().
223 	 */
224 	if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) {
225 		/* Determine if we can get a cache-coherent map, forcing
226 		 * uncached mapping if we can't.
227 		 */
228 		if (!nouveau_drm_use_coherent_gpu_mapping(drm))
229 			nvbo->force_coherent = true;
230 	}
231 
232 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
233 		nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
234 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
235 			kfree(nvbo);
236 			return ERR_PTR(-EINVAL);
237 		}
238 
239 		nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
240 	} else
241 	if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
242 		nvbo->kind = (tile_flags & 0x00007f00) >> 8;
243 		nvbo->comp = (tile_flags & 0x00030000) >> 16;
244 		if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
245 			kfree(nvbo);
246 			return ERR_PTR(-EINVAL);
247 		}
248 	} else {
249 		nvbo->zeta = (tile_flags & 0x00000007);
250 	}
251 	nvbo->mode = tile_mode;
252 	nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
253 
254 	/* Determine the desirable target GPU page size for the buffer. */
255 	for (i = 0; i < vmm->page_nr; i++) {
256 		/* Because we cannot currently allow VMM maps to fail
257 		 * during buffer migration, we need to determine page
258 		 * size for the buffer up-front, and pre-allocate its
259 		 * page tables.
260 		 *
261 		 * Skip page sizes that can't support needed domains.
262 		 */
263 		if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
264 		    (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
265 			continue;
266 		if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
267 		    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
268 			continue;
269 
270 		/* Select this page size if it's the first that supports
271 		 * the potential memory domains, or when it's compatible
272 		 * with the requested compression settings.
273 		 */
274 		if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
275 			pi = i;
276 
277 		/* Stop once the buffer is larger than the current page size. */
278 		if (*size >= 1ULL << vmm->page[i].shift)
279 			break;
280 	}
281 
282 	if (WARN_ON(pi < 0))
283 		return ERR_PTR(-EINVAL);
284 
285 	/* Disable compression if suitable settings couldn't be found. */
286 	if (nvbo->comp && !vmm->page[pi].comp) {
287 		if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
288 			nvbo->kind = mmu->kind[nvbo->kind];
289 		nvbo->comp = 0;
290 	}
291 	nvbo->page = vmm->page[pi].shift;
292 
293 	nouveau_bo_fixup_align(nvbo, align, size);
294 
295 	return nvbo;
296 }
297 
298 int
299 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain,
300 		struct sg_table *sg, struct dma_resv *robj)
301 {
302 	int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
303 	int ret;
304 
305 	nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
306 	nouveau_bo_placement_set(nvbo, domain, 0);
307 	INIT_LIST_HEAD(&nvbo->io_reserve_lru);
308 
309 	ret = ttm_bo_init(nvbo->bo.bdev, &nvbo->bo, size, type,
310 			  &nvbo->placement, align >> PAGE_SHIFT, false, sg,
311 			  robj, nouveau_bo_del_ttm);
312 	if (ret) {
313 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
314 		return ret;
315 	}
316 
317 	return 0;
318 }
319 
320 int
321 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
322 	       uint32_t domain, uint32_t tile_mode, uint32_t tile_flags,
323 	       struct sg_table *sg, struct dma_resv *robj,
324 	       struct nouveau_bo **pnvbo)
325 {
326 	struct nouveau_bo *nvbo;
327 	int ret;
328 
329 	nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode,
330 				tile_flags);
331 	if (IS_ERR(nvbo))
332 		return PTR_ERR(nvbo);
333 
334 	ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj);
335 	if (ret)
336 		return ret;
337 
338 	*pnvbo = nvbo;
339 	return 0;
340 }
341 
342 static void
343 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain)
344 {
345 	*n = 0;
346 
347 	if (domain & NOUVEAU_GEM_DOMAIN_VRAM) {
348 		pl[*n].mem_type = TTM_PL_VRAM;
349 		pl[*n].flags = 0;
350 		(*n)++;
351 	}
352 	if (domain & NOUVEAU_GEM_DOMAIN_GART) {
353 		pl[*n].mem_type = TTM_PL_TT;
354 		pl[*n].flags = 0;
355 		(*n)++;
356 	}
357 	if (domain & NOUVEAU_GEM_DOMAIN_CPU) {
358 		pl[*n].mem_type = TTM_PL_SYSTEM;
359 		pl[(*n)++].flags = 0;
360 	}
361 }
362 
363 static void
364 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain)
365 {
366 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
367 	u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT;
368 	unsigned i, fpfn, lpfn;
369 
370 	if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
371 	    nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) &&
372 	    nvbo->bo.mem.num_pages < vram_pages / 4) {
373 		/*
374 		 * Make sure that the color and depth buffers are handled
375 		 * by independent memory controller units. Up to a 9x
376 		 * speed up when alpha-blending and depth-test are enabled
377 		 * at the same time.
378 		 */
379 		if (nvbo->zeta) {
380 			fpfn = vram_pages / 2;
381 			lpfn = ~0;
382 		} else {
383 			fpfn = 0;
384 			lpfn = vram_pages / 2;
385 		}
386 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
387 			nvbo->placements[i].fpfn = fpfn;
388 			nvbo->placements[i].lpfn = lpfn;
389 		}
390 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
391 			nvbo->busy_placements[i].fpfn = fpfn;
392 			nvbo->busy_placements[i].lpfn = lpfn;
393 		}
394 	}
395 }
396 
397 void
398 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain,
399 			 uint32_t busy)
400 {
401 	struct ttm_placement *pl = &nvbo->placement;
402 
403 	pl->placement = nvbo->placements;
404 	set_placement_list(nvbo->placements, &pl->num_placement, domain);
405 
406 	pl->busy_placement = nvbo->busy_placements;
407 	set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
408 			   domain | busy);
409 
410 	set_placement_range(nvbo, domain);
411 }
412 
413 int
414 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
415 {
416 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
417 	struct ttm_buffer_object *bo = &nvbo->bo;
418 	bool force = false, evict = false;
419 	int ret;
420 
421 	ret = ttm_bo_reserve(bo, false, false, NULL);
422 	if (ret)
423 		return ret;
424 
425 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
426 	    domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) {
427 		if (!nvbo->contig) {
428 			nvbo->contig = true;
429 			force = true;
430 			evict = true;
431 		}
432 	}
433 
434 	if (nvbo->bo.pin_count) {
435 		bool error = evict;
436 
437 		switch (bo->mem.mem_type) {
438 		case TTM_PL_VRAM:
439 			error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM);
440 			break;
441 		case TTM_PL_TT:
442 			error |= !(domain & NOUVEAU_GEM_DOMAIN_GART);
443 		default:
444 			break;
445 		}
446 
447 		if (error) {
448 			NV_ERROR(drm, "bo %p pinned elsewhere: "
449 				      "0x%08x vs 0x%08x\n", bo,
450 				 bo->mem.mem_type, domain);
451 			ret = -EBUSY;
452 		}
453 		ttm_bo_pin(&nvbo->bo);
454 		goto out;
455 	}
456 
457 	if (evict) {
458 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
459 		ret = nouveau_bo_validate(nvbo, false, false);
460 		if (ret)
461 			goto out;
462 	}
463 
464 	nouveau_bo_placement_set(nvbo, domain, 0);
465 	ret = nouveau_bo_validate(nvbo, false, false);
466 	if (ret)
467 		goto out;
468 
469 	ttm_bo_pin(&nvbo->bo);
470 
471 	switch (bo->mem.mem_type) {
472 	case TTM_PL_VRAM:
473 		drm->gem.vram_available -= bo->base.size;
474 		break;
475 	case TTM_PL_TT:
476 		drm->gem.gart_available -= bo->base.size;
477 		break;
478 	default:
479 		break;
480 	}
481 
482 out:
483 	if (force && ret)
484 		nvbo->contig = false;
485 	ttm_bo_unreserve(bo);
486 	return ret;
487 }
488 
489 int
490 nouveau_bo_unpin(struct nouveau_bo *nvbo)
491 {
492 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
493 	struct ttm_buffer_object *bo = &nvbo->bo;
494 	int ret;
495 
496 	ret = ttm_bo_reserve(bo, false, false, NULL);
497 	if (ret)
498 		return ret;
499 
500 	ttm_bo_unpin(&nvbo->bo);
501 	if (!nvbo->bo.pin_count) {
502 		switch (bo->mem.mem_type) {
503 		case TTM_PL_VRAM:
504 			drm->gem.vram_available += bo->base.size;
505 			break;
506 		case TTM_PL_TT:
507 			drm->gem.gart_available += bo->base.size;
508 			break;
509 		default:
510 			break;
511 		}
512 	}
513 
514 	ttm_bo_unreserve(bo);
515 	return 0;
516 }
517 
518 int
519 nouveau_bo_map(struct nouveau_bo *nvbo)
520 {
521 	int ret;
522 
523 	ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
524 	if (ret)
525 		return ret;
526 
527 	ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
528 
529 	ttm_bo_unreserve(&nvbo->bo);
530 	return ret;
531 }
532 
533 void
534 nouveau_bo_unmap(struct nouveau_bo *nvbo)
535 {
536 	if (!nvbo)
537 		return;
538 
539 	ttm_bo_kunmap(&nvbo->kmap);
540 }
541 
542 void
543 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
544 {
545 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
546 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
547 	int i, j;
548 
549 	if (!ttm_dma)
550 		return;
551 
552 	/* Don't waste time looping if the object is coherent */
553 	if (nvbo->force_coherent)
554 		return;
555 
556 	i = 0;
557 	while (i < ttm_dma->num_pages) {
558 		struct page *p = ttm_dma->pages[i];
559 		size_t num_pages = 1;
560 
561 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
562 			if (++p != ttm_dma->pages[j])
563 				break;
564 
565 			++num_pages;
566 		}
567 		dma_sync_single_for_device(drm->dev->dev,
568 					   ttm_dma->dma_address[i],
569 					   num_pages * PAGE_SIZE, DMA_TO_DEVICE);
570 		i += num_pages;
571 	}
572 }
573 
574 void
575 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
576 {
577 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
578 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
579 	int i, j;
580 
581 	if (!ttm_dma)
582 		return;
583 
584 	/* Don't waste time looping if the object is coherent */
585 	if (nvbo->force_coherent)
586 		return;
587 
588 	i = 0;
589 	while (i < ttm_dma->num_pages) {
590 		struct page *p = ttm_dma->pages[i];
591 		size_t num_pages = 1;
592 
593 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
594 			if (++p != ttm_dma->pages[j])
595 				break;
596 
597 			++num_pages;
598 		}
599 
600 		dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
601 					num_pages * PAGE_SIZE, DMA_FROM_DEVICE);
602 		i += num_pages;
603 	}
604 }
605 
606 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo)
607 {
608 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
609 	struct nouveau_bo *nvbo = nouveau_bo(bo);
610 
611 	mutex_lock(&drm->ttm.io_reserve_mutex);
612 	list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru);
613 	mutex_unlock(&drm->ttm.io_reserve_mutex);
614 }
615 
616 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo)
617 {
618 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
619 	struct nouveau_bo *nvbo = nouveau_bo(bo);
620 
621 	mutex_lock(&drm->ttm.io_reserve_mutex);
622 	list_del_init(&nvbo->io_reserve_lru);
623 	mutex_unlock(&drm->ttm.io_reserve_mutex);
624 }
625 
626 int
627 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
628 		    bool no_wait_gpu)
629 {
630 	struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
631 	int ret;
632 
633 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
634 	if (ret)
635 		return ret;
636 
637 	nouveau_bo_sync_for_device(nvbo);
638 
639 	return 0;
640 }
641 
642 void
643 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
644 {
645 	bool is_iomem;
646 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
647 
648 	mem += index;
649 
650 	if (is_iomem)
651 		iowrite16_native(val, (void __force __iomem *)mem);
652 	else
653 		*mem = val;
654 }
655 
656 u32
657 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
658 {
659 	bool is_iomem;
660 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
661 
662 	mem += index;
663 
664 	if (is_iomem)
665 		return ioread32_native((void __force __iomem *)mem);
666 	else
667 		return *mem;
668 }
669 
670 void
671 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
672 {
673 	bool is_iomem;
674 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
675 
676 	mem += index;
677 
678 	if (is_iomem)
679 		iowrite32_native(val, (void __force __iomem *)mem);
680 	else
681 		*mem = val;
682 }
683 
684 static struct ttm_tt *
685 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
686 {
687 #if IS_ENABLED(CONFIG_AGP)
688 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
689 
690 	if (drm->agp.bridge) {
691 		return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
692 	}
693 #endif
694 
695 	return nouveau_sgdma_create_ttm(bo, page_flags);
696 }
697 
698 static int
699 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
700 		    struct ttm_resource *reg)
701 {
702 #if IS_ENABLED(CONFIG_AGP)
703 	struct nouveau_drm *drm = nouveau_bdev(bdev);
704 #endif
705 	if (!reg)
706 		return -EINVAL;
707 #if IS_ENABLED(CONFIG_AGP)
708 	if (drm->agp.bridge)
709 		return ttm_agp_bind(ttm, reg);
710 #endif
711 	return nouveau_sgdma_bind(bdev, ttm, reg);
712 }
713 
714 static void
715 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm)
716 {
717 #if IS_ENABLED(CONFIG_AGP)
718 	struct nouveau_drm *drm = nouveau_bdev(bdev);
719 
720 	if (drm->agp.bridge) {
721 		ttm_agp_unbind(ttm);
722 		return;
723 	}
724 #endif
725 	nouveau_sgdma_unbind(bdev, ttm);
726 }
727 
728 static void
729 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
730 {
731 	struct nouveau_bo *nvbo = nouveau_bo(bo);
732 
733 	switch (bo->mem.mem_type) {
734 	case TTM_PL_VRAM:
735 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART,
736 					 NOUVEAU_GEM_DOMAIN_CPU);
737 		break;
738 	default:
739 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0);
740 		break;
741 	}
742 
743 	*pl = nvbo->placement;
744 }
745 
746 static int
747 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
748 		     struct ttm_resource *reg)
749 {
750 	struct nouveau_mem *old_mem = nouveau_mem(&bo->mem);
751 	struct nouveau_mem *new_mem = nouveau_mem(reg);
752 	struct nvif_vmm *vmm = &drm->client.vmm.vmm;
753 	int ret;
754 
755 	ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
756 			   old_mem->mem.size, &old_mem->vma[0]);
757 	if (ret)
758 		return ret;
759 
760 	ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
761 			   new_mem->mem.size, &old_mem->vma[1]);
762 	if (ret)
763 		goto done;
764 
765 	ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
766 	if (ret)
767 		goto done;
768 
769 	ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
770 done:
771 	if (ret) {
772 		nvif_vmm_put(vmm, &old_mem->vma[1]);
773 		nvif_vmm_put(vmm, &old_mem->vma[0]);
774 	}
775 	return 0;
776 }
777 
778 static int
779 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict,
780 		     struct ttm_operation_ctx *ctx,
781 		     struct ttm_resource *new_reg)
782 {
783 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
784 	struct nouveau_channel *chan = drm->ttm.chan;
785 	struct nouveau_cli *cli = (void *)chan->user.client;
786 	struct nouveau_fence *fence;
787 	int ret;
788 
789 	/* create temporary vmas for the transfer and attach them to the
790 	 * old nvkm_mem node, these will get cleaned up after ttm has
791 	 * destroyed the ttm_resource
792 	 */
793 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
794 		ret = nouveau_bo_move_prep(drm, bo, new_reg);
795 		if (ret)
796 			return ret;
797 	}
798 
799 	if (drm_drv_uses_atomic_modeset(drm->dev))
800 		mutex_lock(&cli->mutex);
801 	else
802 		mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
803 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible);
804 	if (ret == 0) {
805 		ret = drm->ttm.move(chan, bo, &bo->mem, new_reg);
806 		if (ret == 0) {
807 			ret = nouveau_fence_new(chan, false, &fence);
808 			if (ret == 0) {
809 				ret = ttm_bo_move_accel_cleanup(bo,
810 								&fence->base,
811 								evict, false,
812 								new_reg);
813 				nouveau_fence_unref(&fence);
814 			}
815 		}
816 	}
817 	mutex_unlock(&cli->mutex);
818 	return ret;
819 }
820 
821 void
822 nouveau_bo_move_init(struct nouveau_drm *drm)
823 {
824 	static const struct _method_table {
825 		const char *name;
826 		int engine;
827 		s32 oclass;
828 		int (*exec)(struct nouveau_channel *,
829 			    struct ttm_buffer_object *,
830 			    struct ttm_resource *, struct ttm_resource *);
831 		int (*init)(struct nouveau_channel *, u32 handle);
832 	} _methods[] = {
833 		{  "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
834 		{  "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
835 		{  "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
836 		{  "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
837 		{  "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
838 		{  "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
839 		{  "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
840 		{  "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
841 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
842 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
843 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
844 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
845 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
846 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
847 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
848 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
849 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
850 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
851 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
852 		{},
853 	};
854 	const struct _method_table *mthd = _methods;
855 	const char *name = "CPU";
856 	int ret;
857 
858 	do {
859 		struct nouveau_channel *chan;
860 
861 		if (mthd->engine)
862 			chan = drm->cechan;
863 		else
864 			chan = drm->channel;
865 		if (chan == NULL)
866 			continue;
867 
868 		ret = nvif_object_ctor(&chan->user, "ttmBoMove",
869 				       mthd->oclass | (mthd->engine << 16),
870 				       mthd->oclass, NULL, 0,
871 				       &drm->ttm.copy);
872 		if (ret == 0) {
873 			ret = mthd->init(chan, drm->ttm.copy.handle);
874 			if (ret) {
875 				nvif_object_dtor(&drm->ttm.copy);
876 				continue;
877 			}
878 
879 			drm->ttm.move = mthd->exec;
880 			drm->ttm.chan = chan;
881 			name = mthd->name;
882 			break;
883 		}
884 	} while ((++mthd)->exec);
885 
886 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
887 }
888 
889 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo,
890 				 struct ttm_resource *new_reg)
891 {
892 	struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
893 	struct nouveau_bo *nvbo = nouveau_bo(bo);
894 	struct nouveau_vma *vma;
895 
896 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
897 	if (bo->destroy != nouveau_bo_del_ttm)
898 		return;
899 
900 	nouveau_bo_del_io_reserve_lru(bo);
901 
902 	if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
903 	    mem->mem.page == nvbo->page) {
904 		list_for_each_entry(vma, &nvbo->vma_list, head) {
905 			nouveau_vma_map(vma, mem);
906 		}
907 	} else {
908 		list_for_each_entry(vma, &nvbo->vma_list, head) {
909 			WARN_ON(ttm_bo_wait(bo, false, false));
910 			nouveau_vma_unmap(vma);
911 		}
912 	}
913 
914 	if (new_reg) {
915 		if (new_reg->mm_node)
916 			nvbo->offset = (new_reg->start << PAGE_SHIFT);
917 		else
918 			nvbo->offset = 0;
919 	}
920 
921 }
922 
923 static int
924 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg,
925 		   struct nouveau_drm_tile **new_tile)
926 {
927 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
928 	struct drm_device *dev = drm->dev;
929 	struct nouveau_bo *nvbo = nouveau_bo(bo);
930 	u64 offset = new_reg->start << PAGE_SHIFT;
931 
932 	*new_tile = NULL;
933 	if (new_reg->mem_type != TTM_PL_VRAM)
934 		return 0;
935 
936 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
937 		*new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size,
938 					       nvbo->mode, nvbo->zeta);
939 	}
940 
941 	return 0;
942 }
943 
944 static void
945 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
946 		      struct nouveau_drm_tile *new_tile,
947 		      struct nouveau_drm_tile **old_tile)
948 {
949 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
950 	struct drm_device *dev = drm->dev;
951 	struct dma_fence *fence = dma_resv_get_excl(bo->base.resv);
952 
953 	nv10_bo_put_tile_region(dev, *old_tile, fence);
954 	*old_tile = new_tile;
955 }
956 
957 static int
958 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
959 		struct ttm_operation_ctx *ctx,
960 		struct ttm_resource *new_reg,
961 		struct ttm_place *hop)
962 {
963 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
964 	struct nouveau_bo *nvbo = nouveau_bo(bo);
965 	struct ttm_resource *old_reg = &bo->mem;
966 	struct nouveau_drm_tile *new_tile = NULL;
967 	int ret = 0;
968 
969 
970 	if (new_reg->mem_type == TTM_PL_TT) {
971 		ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg);
972 		if (ret)
973 			return ret;
974 	}
975 
976 	nouveau_bo_move_ntfy(bo, new_reg);
977 	ret = ttm_bo_wait_ctx(bo, ctx);
978 	if (ret)
979 		goto out_ntfy;
980 
981 	if (nvbo->bo.pin_count)
982 		NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
983 
984 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
985 		ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
986 		if (ret)
987 			goto out_ntfy;
988 	}
989 
990 	/* Fake bo copy. */
991 	if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
992 		ttm_bo_move_null(bo, new_reg);
993 		goto out;
994 	}
995 
996 	if (old_reg->mem_type == TTM_PL_SYSTEM &&
997 	    new_reg->mem_type == TTM_PL_TT) {
998 		ttm_bo_move_null(bo, new_reg);
999 		goto out;
1000 	}
1001 
1002 	if (old_reg->mem_type == TTM_PL_TT &&
1003 	    new_reg->mem_type == TTM_PL_SYSTEM) {
1004 		nouveau_ttm_tt_unbind(bo->bdev, bo->ttm);
1005 		ttm_resource_free(bo, &bo->mem);
1006 		ttm_bo_assign_mem(bo, new_reg);
1007 		goto out;
1008 	}
1009 
1010 	/* Hardware assisted copy. */
1011 	if (drm->ttm.move) {
1012 		if ((old_reg->mem_type == TTM_PL_SYSTEM &&
1013 		     new_reg->mem_type == TTM_PL_VRAM) ||
1014 		    (old_reg->mem_type == TTM_PL_VRAM &&
1015 		     new_reg->mem_type == TTM_PL_SYSTEM)) {
1016 			hop->fpfn = 0;
1017 			hop->lpfn = 0;
1018 			hop->mem_type = TTM_PL_TT;
1019 			hop->flags = 0;
1020 			return -EMULTIHOP;
1021 		}
1022 		ret = nouveau_bo_move_m2mf(bo, evict, ctx,
1023 					   new_reg);
1024 	} else
1025 		ret = -ENODEV;
1026 
1027 	if (ret) {
1028 		/* Fallback to software copy. */
1029 		ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1030 	}
1031 
1032 out:
1033 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1034 		if (ret)
1035 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1036 		else
1037 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1038 	}
1039 out_ntfy:
1040 	if (ret) {
1041 		nouveau_bo_move_ntfy(bo, &bo->mem);
1042 	}
1043 	return ret;
1044 }
1045 
1046 static int
1047 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1048 {
1049 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1050 
1051 	return drm_vma_node_verify_access(&nvbo->bo.base.vma_node,
1052 					  filp->private_data);
1053 }
1054 
1055 static void
1056 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm,
1057 			       struct ttm_resource *reg)
1058 {
1059 	struct nouveau_mem *mem = nouveau_mem(reg);
1060 
1061 	if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1062 		switch (reg->mem_type) {
1063 		case TTM_PL_TT:
1064 			if (mem->kind)
1065 				nvif_object_unmap_handle(&mem->mem.object);
1066 			break;
1067 		case TTM_PL_VRAM:
1068 			nvif_object_unmap_handle(&mem->mem.object);
1069 			break;
1070 		default:
1071 			break;
1072 		}
1073 	}
1074 }
1075 
1076 static int
1077 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg)
1078 {
1079 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1080 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1081 	struct nouveau_mem *mem = nouveau_mem(reg);
1082 	struct nvif_mmu *mmu = &drm->client.mmu;
1083 	int ret;
1084 
1085 	mutex_lock(&drm->ttm.io_reserve_mutex);
1086 retry:
1087 	switch (reg->mem_type) {
1088 	case TTM_PL_SYSTEM:
1089 		/* System memory */
1090 		ret = 0;
1091 		goto out;
1092 	case TTM_PL_TT:
1093 #if IS_ENABLED(CONFIG_AGP)
1094 		if (drm->agp.bridge) {
1095 			reg->bus.offset = (reg->start << PAGE_SHIFT) +
1096 				drm->agp.base;
1097 			reg->bus.is_iomem = !drm->agp.cma;
1098 			reg->bus.caching = ttm_write_combined;
1099 		}
1100 #endif
1101 		if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 ||
1102 		    !mem->kind) {
1103 			/* untiled */
1104 			ret = 0;
1105 			break;
1106 		}
1107 		fallthrough;	/* tiled memory */
1108 	case TTM_PL_VRAM:
1109 		reg->bus.offset = (reg->start << PAGE_SHIFT) +
1110 			device->func->resource_addr(device, 1);
1111 		reg->bus.is_iomem = true;
1112 
1113 		/* Some BARs do not support being ioremapped WC */
1114 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
1115 		    mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED)
1116 			reg->bus.caching = ttm_uncached;
1117 		else
1118 			reg->bus.caching = ttm_write_combined;
1119 
1120 		if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1121 			union {
1122 				struct nv50_mem_map_v0 nv50;
1123 				struct gf100_mem_map_v0 gf100;
1124 			} args;
1125 			u64 handle, length;
1126 			u32 argc = 0;
1127 
1128 			switch (mem->mem.object.oclass) {
1129 			case NVIF_CLASS_MEM_NV50:
1130 				args.nv50.version = 0;
1131 				args.nv50.ro = 0;
1132 				args.nv50.kind = mem->kind;
1133 				args.nv50.comp = mem->comp;
1134 				argc = sizeof(args.nv50);
1135 				break;
1136 			case NVIF_CLASS_MEM_GF100:
1137 				args.gf100.version = 0;
1138 				args.gf100.ro = 0;
1139 				args.gf100.kind = mem->kind;
1140 				argc = sizeof(args.gf100);
1141 				break;
1142 			default:
1143 				WARN_ON(1);
1144 				break;
1145 			}
1146 
1147 			ret = nvif_object_map_handle(&mem->mem.object,
1148 						     &args, argc,
1149 						     &handle, &length);
1150 			if (ret != 1) {
1151 				if (WARN_ON(ret == 0))
1152 					ret = -EINVAL;
1153 				goto out;
1154 			}
1155 
1156 			reg->bus.offset = handle;
1157 		}
1158 		ret = 0;
1159 		break;
1160 	default:
1161 		ret = -EINVAL;
1162 	}
1163 
1164 out:
1165 	if (ret == -ENOSPC) {
1166 		struct nouveau_bo *nvbo;
1167 
1168 		nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru,
1169 						typeof(*nvbo),
1170 						io_reserve_lru);
1171 		if (nvbo) {
1172 			list_del_init(&nvbo->io_reserve_lru);
1173 			drm_vma_node_unmap(&nvbo->bo.base.vma_node,
1174 					   bdev->dev_mapping);
1175 			nouveau_ttm_io_mem_free_locked(drm, &nvbo->bo.mem);
1176 			goto retry;
1177 		}
1178 
1179 	}
1180 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1181 	return ret;
1182 }
1183 
1184 static void
1185 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg)
1186 {
1187 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1188 
1189 	mutex_lock(&drm->ttm.io_reserve_mutex);
1190 	nouveau_ttm_io_mem_free_locked(drm, reg);
1191 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1192 }
1193 
1194 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1195 {
1196 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1197 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1198 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1199 	u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1200 	int i, ret;
1201 
1202 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1203 	 * nothing to do here.
1204 	 */
1205 	if (bo->mem.mem_type != TTM_PL_VRAM) {
1206 		if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1207 		    !nvbo->kind)
1208 			return 0;
1209 
1210 		if (bo->mem.mem_type != TTM_PL_SYSTEM)
1211 			return 0;
1212 
1213 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
1214 
1215 	} else {
1216 		/* make sure bo is in mappable vram */
1217 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1218 		    bo->mem.start + bo->mem.num_pages < mappable)
1219 			return 0;
1220 
1221 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
1222 			nvbo->placements[i].fpfn = 0;
1223 			nvbo->placements[i].lpfn = mappable;
1224 		}
1225 
1226 		for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1227 			nvbo->busy_placements[i].fpfn = 0;
1228 			nvbo->busy_placements[i].lpfn = mappable;
1229 		}
1230 
1231 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0);
1232 	}
1233 
1234 	ret = nouveau_bo_validate(nvbo, false, false);
1235 	if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS))
1236 		return VM_FAULT_NOPAGE;
1237 	else if (unlikely(ret))
1238 		return VM_FAULT_SIGBUS;
1239 
1240 	ttm_bo_move_to_lru_tail_unlocked(bo);
1241 	return 0;
1242 }
1243 
1244 static int
1245 nouveau_ttm_tt_populate(struct ttm_device *bdev,
1246 			struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1247 {
1248 	struct ttm_tt *ttm_dma = (void *)ttm;
1249 	struct nouveau_drm *drm;
1250 	struct device *dev;
1251 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1252 
1253 	if (ttm_tt_is_populated(ttm))
1254 		return 0;
1255 
1256 	if (slave && ttm->sg) {
1257 		drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address,
1258 					       ttm->num_pages);
1259 		return 0;
1260 	}
1261 
1262 	drm = nouveau_bdev(bdev);
1263 	dev = drm->dev->dev;
1264 
1265 	return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx);
1266 }
1267 
1268 static void
1269 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev,
1270 			  struct ttm_tt *ttm)
1271 {
1272 	struct nouveau_drm *drm;
1273 	struct device *dev;
1274 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1275 
1276 	if (slave)
1277 		return;
1278 
1279 	drm = nouveau_bdev(bdev);
1280 	dev = drm->dev->dev;
1281 
1282 	return ttm_pool_free(&drm->ttm.bdev.pool, ttm);
1283 }
1284 
1285 static void
1286 nouveau_ttm_tt_destroy(struct ttm_device *bdev,
1287 		       struct ttm_tt *ttm)
1288 {
1289 #if IS_ENABLED(CONFIG_AGP)
1290 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1291 	if (drm->agp.bridge) {
1292 		ttm_agp_unbind(ttm);
1293 		ttm_tt_destroy_common(bdev, ttm);
1294 		ttm_agp_destroy(ttm);
1295 		return;
1296 	}
1297 #endif
1298 	nouveau_sgdma_destroy(bdev, ttm);
1299 }
1300 
1301 void
1302 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1303 {
1304 	struct dma_resv *resv = nvbo->bo.base.resv;
1305 
1306 	if (exclusive)
1307 		dma_resv_add_excl_fence(resv, &fence->base);
1308 	else if (fence)
1309 		dma_resv_add_shared_fence(resv, &fence->base);
1310 }
1311 
1312 static void
1313 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1314 {
1315 	nouveau_bo_move_ntfy(bo, NULL);
1316 }
1317 
1318 struct ttm_device_funcs nouveau_bo_driver = {
1319 	.ttm_tt_create = &nouveau_ttm_tt_create,
1320 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1321 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1322 	.ttm_tt_destroy = &nouveau_ttm_tt_destroy,
1323 	.eviction_valuable = ttm_bo_eviction_valuable,
1324 	.evict_flags = nouveau_bo_evict_flags,
1325 	.delete_mem_notify = nouveau_bo_delete_mem_notify,
1326 	.move = nouveau_bo_move,
1327 	.verify_access = nouveau_bo_verify_access,
1328 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1329 	.io_mem_free = &nouveau_ttm_io_mem_free,
1330 };
1331