xref: /linux/drivers/gpu/drm/nouveau/nouveau_bo.c (revision 3027ce13e04eee76539ca65c2cb1028a01c8c508)
1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 #include <drm/ttm/ttm_tt.h>
32 
33 #include "nouveau_drv.h"
34 #include "nouveau_chan.h"
35 #include "nouveau_fence.h"
36 
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
42 
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
46 
47 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
48 			       struct ttm_resource *reg);
49 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm);
50 
51 /*
52  * NV10-NV40 tiling helpers
53  */
54 
55 static void
56 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
57 			   u32 addr, u32 size, u32 pitch, u32 flags)
58 {
59 	struct nouveau_drm *drm = nouveau_drm(dev);
60 	int i = reg - drm->tile.reg;
61 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
62 	struct nvkm_fb_tile *tile = &fb->tile.region[i];
63 
64 	nouveau_fence_unref(&reg->fence);
65 
66 	if (tile->pitch)
67 		nvkm_fb_tile_fini(fb, i, tile);
68 
69 	if (pitch)
70 		nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
71 
72 	nvkm_fb_tile_prog(fb, i, tile);
73 }
74 
75 static struct nouveau_drm_tile *
76 nv10_bo_get_tile_region(struct drm_device *dev, int i)
77 {
78 	struct nouveau_drm *drm = nouveau_drm(dev);
79 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
80 
81 	spin_lock(&drm->tile.lock);
82 
83 	if (!tile->used &&
84 	    (!tile->fence || nouveau_fence_done(tile->fence)))
85 		tile->used = true;
86 	else
87 		tile = NULL;
88 
89 	spin_unlock(&drm->tile.lock);
90 	return tile;
91 }
92 
93 static void
94 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
95 			struct dma_fence *fence)
96 {
97 	struct nouveau_drm *drm = nouveau_drm(dev);
98 
99 	if (tile) {
100 		spin_lock(&drm->tile.lock);
101 		tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
102 		tile->used = false;
103 		spin_unlock(&drm->tile.lock);
104 	}
105 }
106 
107 static struct nouveau_drm_tile *
108 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
109 		   u32 size, u32 pitch, u32 zeta)
110 {
111 	struct nouveau_drm *drm = nouveau_drm(dev);
112 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
113 	struct nouveau_drm_tile *tile, *found = NULL;
114 	int i;
115 
116 	for (i = 0; i < fb->tile.regions; i++) {
117 		tile = nv10_bo_get_tile_region(dev, i);
118 
119 		if (pitch && !found) {
120 			found = tile;
121 			continue;
122 
123 		} else if (tile && fb->tile.region[i].pitch) {
124 			/* Kill an unused tile region. */
125 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
126 		}
127 
128 		nv10_bo_put_tile_region(dev, tile, NULL);
129 	}
130 
131 	if (found)
132 		nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
133 	return found;
134 }
135 
136 static void
137 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
138 {
139 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
140 	struct drm_device *dev = drm->dev;
141 	struct nouveau_bo *nvbo = nouveau_bo(bo);
142 
143 	WARN_ON(nvbo->bo.pin_count > 0);
144 	nouveau_bo_del_io_reserve_lru(bo);
145 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
146 
147 	/*
148 	 * If nouveau_bo_new() allocated this buffer, the GEM object was never
149 	 * initialized, so don't attempt to release it.
150 	 */
151 	if (bo->base.dev) {
152 		/* Gem objects not being shared with other VMs get their
153 		 * dma_resv from a root GEM object.
154 		 */
155 		if (nvbo->no_share)
156 			drm_gem_object_put(nvbo->r_obj);
157 
158 		drm_gem_object_release(&bo->base);
159 	} else {
160 		dma_resv_fini(&bo->base._resv);
161 	}
162 
163 	kfree(nvbo);
164 }
165 
166 static inline u64
167 roundup_64(u64 x, u32 y)
168 {
169 	x += y - 1;
170 	do_div(x, y);
171 	return x * y;
172 }
173 
174 static void
175 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size)
176 {
177 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
178 	struct nvif_device *device = &drm->client.device;
179 
180 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
181 		if (nvbo->mode) {
182 			if (device->info.chipset >= 0x40) {
183 				*align = 65536;
184 				*size = roundup_64(*size, 64 * nvbo->mode);
185 
186 			} else if (device->info.chipset >= 0x30) {
187 				*align = 32768;
188 				*size = roundup_64(*size, 64 * nvbo->mode);
189 
190 			} else if (device->info.chipset >= 0x20) {
191 				*align = 16384;
192 				*size = roundup_64(*size, 64 * nvbo->mode);
193 
194 			} else if (device->info.chipset >= 0x10) {
195 				*align = 16384;
196 				*size = roundup_64(*size, 32 * nvbo->mode);
197 			}
198 		}
199 	} else {
200 		*size = roundup_64(*size, (1 << nvbo->page));
201 		*align = max((1 <<  nvbo->page), *align);
202 	}
203 
204 	*size = roundup_64(*size, PAGE_SIZE);
205 }
206 
207 struct nouveau_bo *
208 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain,
209 		 u32 tile_mode, u32 tile_flags, bool internal)
210 {
211 	struct nouveau_drm *drm = cli->drm;
212 	struct nouveau_bo *nvbo;
213 	struct nvif_mmu *mmu = &cli->mmu;
214 	struct nvif_vmm *vmm = &nouveau_cli_vmm(cli)->vmm;
215 	int i, pi = -1;
216 
217 	if (!*size) {
218 		NV_WARN(drm, "skipped size %016llx\n", *size);
219 		return ERR_PTR(-EINVAL);
220 	}
221 
222 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
223 	if (!nvbo)
224 		return ERR_PTR(-ENOMEM);
225 
226 	INIT_LIST_HEAD(&nvbo->head);
227 	INIT_LIST_HEAD(&nvbo->entry);
228 	INIT_LIST_HEAD(&nvbo->vma_list);
229 	nvbo->bo.bdev = &drm->ttm.bdev;
230 
231 	/* This is confusing, and doesn't actually mean we want an uncached
232 	 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
233 	 * into in nouveau_gem_new().
234 	 */
235 	if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) {
236 		/* Determine if we can get a cache-coherent map, forcing
237 		 * uncached mapping if we can't.
238 		 */
239 		if (!nouveau_drm_use_coherent_gpu_mapping(drm))
240 			nvbo->force_coherent = true;
241 	}
242 
243 	nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
244 	if (!nouveau_cli_uvmm(cli) || internal) {
245 		/* for BO noVM allocs, don't assign kinds */
246 		if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
247 			nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
248 			if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
249 				kfree(nvbo);
250 				return ERR_PTR(-EINVAL);
251 			}
252 
253 			nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
254 		} else if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
255 			nvbo->kind = (tile_flags & 0x00007f00) >> 8;
256 			nvbo->comp = (tile_flags & 0x00030000) >> 16;
257 			if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
258 				kfree(nvbo);
259 				return ERR_PTR(-EINVAL);
260 			}
261 		} else {
262 			nvbo->zeta = (tile_flags & 0x00000007);
263 		}
264 		nvbo->mode = tile_mode;
265 
266 		/* Determine the desirable target GPU page size for the buffer. */
267 		for (i = 0; i < vmm->page_nr; i++) {
268 			/* Because we cannot currently allow VMM maps to fail
269 			 * during buffer migration, we need to determine page
270 			 * size for the buffer up-front, and pre-allocate its
271 			 * page tables.
272 			 *
273 			 * Skip page sizes that can't support needed domains.
274 			 */
275 			if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
276 			    (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
277 				continue;
278 			if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
279 			    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
280 				continue;
281 
282 			/* Select this page size if it's the first that supports
283 			 * the potential memory domains, or when it's compatible
284 			 * with the requested compression settings.
285 			 */
286 			if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
287 				pi = i;
288 
289 			/* Stop once the buffer is larger than the current page size. */
290 			if (*size >= 1ULL << vmm->page[i].shift)
291 				break;
292 		}
293 
294 		if (WARN_ON(pi < 0)) {
295 			kfree(nvbo);
296 			return ERR_PTR(-EINVAL);
297 		}
298 
299 		/* Disable compression if suitable settings couldn't be found. */
300 		if (nvbo->comp && !vmm->page[pi].comp) {
301 			if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
302 				nvbo->kind = mmu->kind[nvbo->kind];
303 			nvbo->comp = 0;
304 		}
305 		nvbo->page = vmm->page[pi].shift;
306 	} else {
307 		/* reject other tile flags when in VM mode. */
308 		if (tile_mode)
309 			return ERR_PTR(-EINVAL);
310 		if (tile_flags & ~NOUVEAU_GEM_TILE_NONCONTIG)
311 			return ERR_PTR(-EINVAL);
312 
313 		/* Determine the desirable target GPU page size for the buffer. */
314 		for (i = 0; i < vmm->page_nr; i++) {
315 			/* Because we cannot currently allow VMM maps to fail
316 			 * during buffer migration, we need to determine page
317 			 * size for the buffer up-front, and pre-allocate its
318 			 * page tables.
319 			 *
320 			 * Skip page sizes that can't support needed domains.
321 			 */
322 			if ((domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
323 				continue;
324 			if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
325 			    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
326 				continue;
327 
328 			/* pick the last one as it will be smallest. */
329 			pi = i;
330 
331 			/* Stop once the buffer is larger than the current page size. */
332 			if (*size >= 1ULL << vmm->page[i].shift)
333 				break;
334 		}
335 		if (WARN_ON(pi < 0)) {
336 			kfree(nvbo);
337 			return ERR_PTR(-EINVAL);
338 		}
339 		nvbo->page = vmm->page[pi].shift;
340 	}
341 
342 	nouveau_bo_fixup_align(nvbo, align, size);
343 
344 	return nvbo;
345 }
346 
347 int
348 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain,
349 		struct sg_table *sg, struct dma_resv *robj)
350 {
351 	int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
352 	int ret;
353 	struct ttm_operation_ctx ctx = {
354 		.interruptible = false,
355 		.no_wait_gpu = false,
356 		.resv = robj,
357 	};
358 
359 	nouveau_bo_placement_set(nvbo, domain, 0);
360 	INIT_LIST_HEAD(&nvbo->io_reserve_lru);
361 
362 	ret = ttm_bo_init_reserved(nvbo->bo.bdev, &nvbo->bo, type,
363 				   &nvbo->placement, align >> PAGE_SHIFT, &ctx,
364 				   sg, robj, nouveau_bo_del_ttm);
365 	if (ret) {
366 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
367 		return ret;
368 	}
369 
370 	if (!robj)
371 		ttm_bo_unreserve(&nvbo->bo);
372 
373 	return 0;
374 }
375 
376 int
377 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
378 	       uint32_t domain, uint32_t tile_mode, uint32_t tile_flags,
379 	       struct sg_table *sg, struct dma_resv *robj,
380 	       struct nouveau_bo **pnvbo)
381 {
382 	struct nouveau_bo *nvbo;
383 	int ret;
384 
385 	nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode,
386 				tile_flags, true);
387 	if (IS_ERR(nvbo))
388 		return PTR_ERR(nvbo);
389 
390 	nvbo->bo.base.size = size;
391 	dma_resv_init(&nvbo->bo.base._resv);
392 	drm_vma_node_reset(&nvbo->bo.base.vma_node);
393 
394 	/* This must be called before ttm_bo_init_reserved(). Subsequent
395 	 * bo_move() callbacks might already iterate the GEMs GPUVA list.
396 	 */
397 	drm_gem_gpuva_init(&nvbo->bo.base);
398 
399 	ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj);
400 	if (ret)
401 		return ret;
402 
403 	*pnvbo = nvbo;
404 	return 0;
405 }
406 
407 static void
408 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain)
409 {
410 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
411 	u64 vram_size = drm->client.device.info.ram_size;
412 	unsigned i, fpfn, lpfn;
413 
414 	if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
415 	    nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) &&
416 	    nvbo->bo.base.size < vram_size / 4) {
417 		/*
418 		 * Make sure that the color and depth buffers are handled
419 		 * by independent memory controller units. Up to a 9x
420 		 * speed up when alpha-blending and depth-test are enabled
421 		 * at the same time.
422 		 */
423 		if (nvbo->zeta) {
424 			fpfn = (vram_size / 2) >> PAGE_SHIFT;
425 			lpfn = ~0;
426 		} else {
427 			fpfn = 0;
428 			lpfn = (vram_size / 2) >> PAGE_SHIFT;
429 		}
430 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
431 			nvbo->placements[i].fpfn = fpfn;
432 			nvbo->placements[i].lpfn = lpfn;
433 		}
434 	}
435 }
436 
437 void
438 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain,
439 			 uint32_t busy)
440 {
441 	unsigned int *n = &nvbo->placement.num_placement;
442 	struct ttm_place *pl = nvbo->placements;
443 
444 	domain |= busy;
445 
446 	*n = 0;
447 	if (domain & NOUVEAU_GEM_DOMAIN_VRAM) {
448 		pl[*n].mem_type = TTM_PL_VRAM;
449 		pl[*n].flags = busy & NOUVEAU_GEM_DOMAIN_VRAM ?
450 			TTM_PL_FLAG_FALLBACK : 0;
451 		(*n)++;
452 	}
453 	if (domain & NOUVEAU_GEM_DOMAIN_GART) {
454 		pl[*n].mem_type = TTM_PL_TT;
455 		pl[*n].flags = busy & NOUVEAU_GEM_DOMAIN_GART ?
456 			TTM_PL_FLAG_FALLBACK : 0;
457 		(*n)++;
458 	}
459 	if (domain & NOUVEAU_GEM_DOMAIN_CPU) {
460 		pl[*n].mem_type = TTM_PL_SYSTEM;
461 		pl[*n].flags = busy & NOUVEAU_GEM_DOMAIN_CPU ?
462 			TTM_PL_FLAG_FALLBACK : 0;
463 		(*n)++;
464 	}
465 
466 	nvbo->placement.placement = nvbo->placements;
467 	set_placement_range(nvbo, domain);
468 }
469 
470 int nouveau_bo_pin_locked(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
471 {
472 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
473 	struct ttm_buffer_object *bo = &nvbo->bo;
474 	bool force = false, evict = false;
475 	int ret = 0;
476 
477 	dma_resv_assert_held(bo->base.resv);
478 
479 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
480 	    domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) {
481 		if (!nvbo->contig) {
482 			nvbo->contig = true;
483 			force = true;
484 			evict = true;
485 		}
486 	}
487 
488 	if (nvbo->bo.pin_count) {
489 		bool error = evict;
490 
491 		switch (bo->resource->mem_type) {
492 		case TTM_PL_VRAM:
493 			error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM);
494 			break;
495 		case TTM_PL_TT:
496 			error |= !(domain & NOUVEAU_GEM_DOMAIN_GART);
497 			break;
498 		default:
499 			break;
500 		}
501 
502 		if (error) {
503 			NV_ERROR(drm, "bo %p pinned elsewhere: "
504 				      "0x%08x vs 0x%08x\n", bo,
505 				 bo->resource->mem_type, domain);
506 			ret = -EBUSY;
507 		}
508 		ttm_bo_pin(&nvbo->bo);
509 		goto out;
510 	}
511 
512 	if (evict) {
513 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
514 		ret = nouveau_bo_validate(nvbo, false, false);
515 		if (ret)
516 			goto out;
517 	}
518 
519 	nouveau_bo_placement_set(nvbo, domain, 0);
520 	ret = nouveau_bo_validate(nvbo, false, false);
521 	if (ret)
522 		goto out;
523 
524 	ttm_bo_pin(&nvbo->bo);
525 
526 	switch (bo->resource->mem_type) {
527 	case TTM_PL_VRAM:
528 		drm->gem.vram_available -= bo->base.size;
529 		break;
530 	case TTM_PL_TT:
531 		drm->gem.gart_available -= bo->base.size;
532 		break;
533 	default:
534 		break;
535 	}
536 
537 out:
538 	if (force && ret)
539 		nvbo->contig = false;
540 	return ret;
541 }
542 
543 void nouveau_bo_unpin_locked(struct nouveau_bo *nvbo)
544 {
545 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
546 	struct ttm_buffer_object *bo = &nvbo->bo;
547 
548 	dma_resv_assert_held(bo->base.resv);
549 
550 	ttm_bo_unpin(&nvbo->bo);
551 	if (!nvbo->bo.pin_count) {
552 		switch (bo->resource->mem_type) {
553 		case TTM_PL_VRAM:
554 			drm->gem.vram_available += bo->base.size;
555 			break;
556 		case TTM_PL_TT:
557 			drm->gem.gart_available += bo->base.size;
558 			break;
559 		default:
560 			break;
561 		}
562 	}
563 }
564 
565 int nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
566 {
567 	struct ttm_buffer_object *bo = &nvbo->bo;
568 	int ret;
569 
570 	ret = ttm_bo_reserve(bo, false, false, NULL);
571 	if (ret)
572 		return ret;
573 	ret = nouveau_bo_pin_locked(nvbo, domain, contig);
574 	ttm_bo_unreserve(bo);
575 
576 	return ret;
577 }
578 
579 int nouveau_bo_unpin(struct nouveau_bo *nvbo)
580 {
581 	struct ttm_buffer_object *bo = &nvbo->bo;
582 	int ret;
583 
584 	ret = ttm_bo_reserve(bo, false, false, NULL);
585 	if (ret)
586 		return ret;
587 	nouveau_bo_unpin_locked(nvbo);
588 	ttm_bo_unreserve(bo);
589 
590 	return 0;
591 }
592 
593 int
594 nouveau_bo_map(struct nouveau_bo *nvbo)
595 {
596 	int ret;
597 
598 	ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
599 	if (ret)
600 		return ret;
601 
602 	ret = ttm_bo_kmap(&nvbo->bo, 0, PFN_UP(nvbo->bo.base.size), &nvbo->kmap);
603 
604 	ttm_bo_unreserve(&nvbo->bo);
605 	return ret;
606 }
607 
608 void
609 nouveau_bo_unmap(struct nouveau_bo *nvbo)
610 {
611 	if (!nvbo)
612 		return;
613 
614 	ttm_bo_kunmap(&nvbo->kmap);
615 }
616 
617 void
618 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
619 {
620 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
621 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
622 	int i, j;
623 
624 	if (!ttm_dma || !ttm_dma->dma_address)
625 		return;
626 	if (!ttm_dma->pages) {
627 		NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
628 		return;
629 	}
630 
631 	/* Don't waste time looping if the object is coherent */
632 	if (nvbo->force_coherent)
633 		return;
634 
635 	i = 0;
636 	while (i < ttm_dma->num_pages) {
637 		struct page *p = ttm_dma->pages[i];
638 		size_t num_pages = 1;
639 
640 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
641 			if (++p != ttm_dma->pages[j])
642 				break;
643 
644 			++num_pages;
645 		}
646 		dma_sync_single_for_device(drm->dev->dev,
647 					   ttm_dma->dma_address[i],
648 					   num_pages * PAGE_SIZE, DMA_TO_DEVICE);
649 		i += num_pages;
650 	}
651 }
652 
653 void
654 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
655 {
656 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
657 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
658 	int i, j;
659 
660 	if (!ttm_dma || !ttm_dma->dma_address)
661 		return;
662 	if (!ttm_dma->pages) {
663 		NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
664 		return;
665 	}
666 
667 	/* Don't waste time looping if the object is coherent */
668 	if (nvbo->force_coherent)
669 		return;
670 
671 	i = 0;
672 	while (i < ttm_dma->num_pages) {
673 		struct page *p = ttm_dma->pages[i];
674 		size_t num_pages = 1;
675 
676 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
677 			if (++p != ttm_dma->pages[j])
678 				break;
679 
680 			++num_pages;
681 		}
682 
683 		dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
684 					num_pages * PAGE_SIZE, DMA_FROM_DEVICE);
685 		i += num_pages;
686 	}
687 }
688 
689 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo)
690 {
691 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
692 	struct nouveau_bo *nvbo = nouveau_bo(bo);
693 
694 	mutex_lock(&drm->ttm.io_reserve_mutex);
695 	list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru);
696 	mutex_unlock(&drm->ttm.io_reserve_mutex);
697 }
698 
699 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo)
700 {
701 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
702 	struct nouveau_bo *nvbo = nouveau_bo(bo);
703 
704 	mutex_lock(&drm->ttm.io_reserve_mutex);
705 	list_del_init(&nvbo->io_reserve_lru);
706 	mutex_unlock(&drm->ttm.io_reserve_mutex);
707 }
708 
709 int
710 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
711 		    bool no_wait_gpu)
712 {
713 	struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
714 	int ret;
715 
716 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
717 	if (ret)
718 		return ret;
719 
720 	nouveau_bo_sync_for_device(nvbo);
721 
722 	return 0;
723 }
724 
725 void
726 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
727 {
728 	bool is_iomem;
729 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
730 
731 	mem += index;
732 
733 	if (is_iomem)
734 		iowrite16_native(val, (void __force __iomem *)mem);
735 	else
736 		*mem = val;
737 }
738 
739 u32
740 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
741 {
742 	bool is_iomem;
743 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
744 
745 	mem += index;
746 
747 	if (is_iomem)
748 		return ioread32_native((void __force __iomem *)mem);
749 	else
750 		return *mem;
751 }
752 
753 void
754 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
755 {
756 	bool is_iomem;
757 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
758 
759 	mem += index;
760 
761 	if (is_iomem)
762 		iowrite32_native(val, (void __force __iomem *)mem);
763 	else
764 		*mem = val;
765 }
766 
767 static struct ttm_tt *
768 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
769 {
770 #if IS_ENABLED(CONFIG_AGP)
771 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
772 
773 	if (drm->agp.bridge) {
774 		return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
775 	}
776 #endif
777 
778 	return nouveau_sgdma_create_ttm(bo, page_flags);
779 }
780 
781 static int
782 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
783 		    struct ttm_resource *reg)
784 {
785 #if IS_ENABLED(CONFIG_AGP)
786 	struct nouveau_drm *drm = nouveau_bdev(bdev);
787 #endif
788 	if (!reg)
789 		return -EINVAL;
790 #if IS_ENABLED(CONFIG_AGP)
791 	if (drm->agp.bridge)
792 		return ttm_agp_bind(ttm, reg);
793 #endif
794 	return nouveau_sgdma_bind(bdev, ttm, reg);
795 }
796 
797 static void
798 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm)
799 {
800 #if IS_ENABLED(CONFIG_AGP)
801 	struct nouveau_drm *drm = nouveau_bdev(bdev);
802 
803 	if (drm->agp.bridge) {
804 		ttm_agp_unbind(ttm);
805 		return;
806 	}
807 #endif
808 	nouveau_sgdma_unbind(bdev, ttm);
809 }
810 
811 static void
812 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
813 {
814 	struct nouveau_bo *nvbo = nouveau_bo(bo);
815 
816 	switch (bo->resource->mem_type) {
817 	case TTM_PL_VRAM:
818 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART,
819 					 NOUVEAU_GEM_DOMAIN_CPU);
820 		break;
821 	default:
822 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0);
823 		break;
824 	}
825 
826 	*pl = nvbo->placement;
827 }
828 
829 static int
830 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
831 		     struct ttm_resource *reg)
832 {
833 	struct nouveau_mem *old_mem = nouveau_mem(bo->resource);
834 	struct nouveau_mem *new_mem = nouveau_mem(reg);
835 	struct nvif_vmm *vmm = &drm->client.vmm.vmm;
836 	int ret;
837 
838 	ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
839 			   old_mem->mem.size, &old_mem->vma[0]);
840 	if (ret)
841 		return ret;
842 
843 	ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
844 			   new_mem->mem.size, &old_mem->vma[1]);
845 	if (ret)
846 		goto done;
847 
848 	ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
849 	if (ret)
850 		goto done;
851 
852 	ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
853 done:
854 	if (ret) {
855 		nvif_vmm_put(vmm, &old_mem->vma[1]);
856 		nvif_vmm_put(vmm, &old_mem->vma[0]);
857 	}
858 	return 0;
859 }
860 
861 static int
862 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict,
863 		     struct ttm_operation_ctx *ctx,
864 		     struct ttm_resource *new_reg)
865 {
866 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
867 	struct nouveau_channel *chan = drm->ttm.chan;
868 	struct nouveau_cli *cli = (void *)chan->user.client;
869 	struct nouveau_fence *fence;
870 	int ret;
871 
872 	/* create temporary vmas for the transfer and attach them to the
873 	 * old nvkm_mem node, these will get cleaned up after ttm has
874 	 * destroyed the ttm_resource
875 	 */
876 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
877 		ret = nouveau_bo_move_prep(drm, bo, new_reg);
878 		if (ret)
879 			return ret;
880 	}
881 
882 	if (drm_drv_uses_atomic_modeset(drm->dev))
883 		mutex_lock(&cli->mutex);
884 	else
885 		mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
886 
887 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible);
888 	if (ret)
889 		goto out_unlock;
890 
891 	ret = drm->ttm.move(chan, bo, bo->resource, new_reg);
892 	if (ret)
893 		goto out_unlock;
894 
895 	ret = nouveau_fence_new(&fence, chan);
896 	if (ret)
897 		goto out_unlock;
898 
899 	/* TODO: figure out a better solution here
900 	 *
901 	 * wait on the fence here explicitly as going through
902 	 * ttm_bo_move_accel_cleanup somehow doesn't seem to do it.
903 	 *
904 	 * Without this the operation can timeout and we'll fallback to a
905 	 * software copy, which might take several minutes to finish.
906 	 */
907 	nouveau_fence_wait(fence, false, false);
908 	ret = ttm_bo_move_accel_cleanup(bo, &fence->base, evict, false,
909 					new_reg);
910 	nouveau_fence_unref(&fence);
911 
912 out_unlock:
913 	mutex_unlock(&cli->mutex);
914 	return ret;
915 }
916 
917 void
918 nouveau_bo_move_init(struct nouveau_drm *drm)
919 {
920 	static const struct _method_table {
921 		const char *name;
922 		int engine;
923 		s32 oclass;
924 		int (*exec)(struct nouveau_channel *,
925 			    struct ttm_buffer_object *,
926 			    struct ttm_resource *, struct ttm_resource *);
927 		int (*init)(struct nouveau_channel *, u32 handle);
928 	} _methods[] = {
929 		{  "COPY", 4, 0xc7b5, nve0_bo_move_copy, nve0_bo_move_init },
930 		{  "GRCE", 0, 0xc7b5, nve0_bo_move_copy, nvc0_bo_move_init },
931 		{  "COPY", 4, 0xc6b5, nve0_bo_move_copy, nve0_bo_move_init },
932 		{  "GRCE", 0, 0xc6b5, nve0_bo_move_copy, nvc0_bo_move_init },
933 		{  "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
934 		{  "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
935 		{  "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
936 		{  "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
937 		{  "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
938 		{  "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
939 		{  "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
940 		{  "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
941 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
942 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
943 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
944 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
945 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
946 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
947 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
948 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
949 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
950 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
951 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
952 		{},
953 	};
954 	const struct _method_table *mthd = _methods;
955 	const char *name = "CPU";
956 	int ret;
957 
958 	do {
959 		struct nouveau_channel *chan;
960 
961 		if (mthd->engine)
962 			chan = drm->cechan;
963 		else
964 			chan = drm->channel;
965 		if (chan == NULL)
966 			continue;
967 
968 		ret = nvif_object_ctor(&chan->user, "ttmBoMove",
969 				       mthd->oclass | (mthd->engine << 16),
970 				       mthd->oclass, NULL, 0,
971 				       &drm->ttm.copy);
972 		if (ret == 0) {
973 			ret = mthd->init(chan, drm->ttm.copy.handle);
974 			if (ret) {
975 				nvif_object_dtor(&drm->ttm.copy);
976 				continue;
977 			}
978 
979 			drm->ttm.move = mthd->exec;
980 			drm->ttm.chan = chan;
981 			name = mthd->name;
982 			break;
983 		}
984 	} while ((++mthd)->exec);
985 
986 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
987 }
988 
989 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo,
990 				 struct ttm_resource *new_reg)
991 {
992 	struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
993 	struct nouveau_bo *nvbo = nouveau_bo(bo);
994 	struct nouveau_vma *vma;
995 	long ret;
996 
997 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
998 	if (bo->destroy != nouveau_bo_del_ttm)
999 		return;
1000 
1001 	nouveau_bo_del_io_reserve_lru(bo);
1002 
1003 	if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
1004 	    mem->mem.page == nvbo->page) {
1005 		list_for_each_entry(vma, &nvbo->vma_list, head) {
1006 			nouveau_vma_map(vma, mem);
1007 		}
1008 		nouveau_uvmm_bo_map_all(nvbo, mem);
1009 	} else {
1010 		list_for_each_entry(vma, &nvbo->vma_list, head) {
1011 			ret = dma_resv_wait_timeout(bo->base.resv,
1012 						    DMA_RESV_USAGE_BOOKKEEP,
1013 						    false, 15 * HZ);
1014 			WARN_ON(ret <= 0);
1015 			nouveau_vma_unmap(vma);
1016 		}
1017 		nouveau_uvmm_bo_unmap_all(nvbo);
1018 	}
1019 
1020 	if (new_reg)
1021 		nvbo->offset = (new_reg->start << PAGE_SHIFT);
1022 
1023 }
1024 
1025 static int
1026 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg,
1027 		   struct nouveau_drm_tile **new_tile)
1028 {
1029 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1030 	struct drm_device *dev = drm->dev;
1031 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1032 	u64 offset = new_reg->start << PAGE_SHIFT;
1033 
1034 	*new_tile = NULL;
1035 	if (new_reg->mem_type != TTM_PL_VRAM)
1036 		return 0;
1037 
1038 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1039 		*new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size,
1040 					       nvbo->mode, nvbo->zeta);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static void
1047 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1048 		      struct nouveau_drm_tile *new_tile,
1049 		      struct nouveau_drm_tile **old_tile)
1050 {
1051 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1052 	struct drm_device *dev = drm->dev;
1053 	struct dma_fence *fence;
1054 	int ret;
1055 
1056 	ret = dma_resv_get_singleton(bo->base.resv, DMA_RESV_USAGE_WRITE,
1057 				     &fence);
1058 	if (ret)
1059 		dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_WRITE,
1060 				      false, MAX_SCHEDULE_TIMEOUT);
1061 
1062 	nv10_bo_put_tile_region(dev, *old_tile, fence);
1063 	*old_tile = new_tile;
1064 }
1065 
1066 static int
1067 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
1068 		struct ttm_operation_ctx *ctx,
1069 		struct ttm_resource *new_reg,
1070 		struct ttm_place *hop)
1071 {
1072 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1073 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1074 	struct drm_gem_object *obj = &bo->base;
1075 	struct ttm_resource *old_reg = bo->resource;
1076 	struct nouveau_drm_tile *new_tile = NULL;
1077 	int ret = 0;
1078 
1079 	if (new_reg->mem_type == TTM_PL_TT) {
1080 		ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg);
1081 		if (ret)
1082 			return ret;
1083 	}
1084 
1085 	drm_gpuvm_bo_gem_evict(obj, evict);
1086 	nouveau_bo_move_ntfy(bo, new_reg);
1087 	ret = ttm_bo_wait_ctx(bo, ctx);
1088 	if (ret)
1089 		goto out_ntfy;
1090 
1091 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1092 		ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
1093 		if (ret)
1094 			goto out_ntfy;
1095 	}
1096 
1097 	/* Fake bo copy. */
1098 	if (!old_reg || (old_reg->mem_type == TTM_PL_SYSTEM &&
1099 			 !bo->ttm)) {
1100 		ttm_bo_move_null(bo, new_reg);
1101 		goto out;
1102 	}
1103 
1104 	if (old_reg->mem_type == TTM_PL_SYSTEM &&
1105 	    new_reg->mem_type == TTM_PL_TT) {
1106 		ttm_bo_move_null(bo, new_reg);
1107 		goto out;
1108 	}
1109 
1110 	if (old_reg->mem_type == TTM_PL_TT &&
1111 	    new_reg->mem_type == TTM_PL_SYSTEM) {
1112 		nouveau_ttm_tt_unbind(bo->bdev, bo->ttm);
1113 		ttm_resource_free(bo, &bo->resource);
1114 		ttm_bo_assign_mem(bo, new_reg);
1115 		goto out;
1116 	}
1117 
1118 	/* Hardware assisted copy. */
1119 	if (drm->ttm.move) {
1120 		if ((old_reg->mem_type == TTM_PL_SYSTEM &&
1121 		     new_reg->mem_type == TTM_PL_VRAM) ||
1122 		    (old_reg->mem_type == TTM_PL_VRAM &&
1123 		     new_reg->mem_type == TTM_PL_SYSTEM)) {
1124 			hop->fpfn = 0;
1125 			hop->lpfn = 0;
1126 			hop->mem_type = TTM_PL_TT;
1127 			hop->flags = 0;
1128 			return -EMULTIHOP;
1129 		}
1130 		ret = nouveau_bo_move_m2mf(bo, evict, ctx,
1131 					   new_reg);
1132 	} else
1133 		ret = -ENODEV;
1134 
1135 	if (ret) {
1136 		/* Fallback to software copy. */
1137 		ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1138 	}
1139 
1140 out:
1141 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1142 		if (ret)
1143 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1144 		else
1145 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1146 	}
1147 out_ntfy:
1148 	if (ret) {
1149 		nouveau_bo_move_ntfy(bo, bo->resource);
1150 		drm_gpuvm_bo_gem_evict(obj, !evict);
1151 	}
1152 	return ret;
1153 }
1154 
1155 static void
1156 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm,
1157 			       struct ttm_resource *reg)
1158 {
1159 	struct nouveau_mem *mem = nouveau_mem(reg);
1160 
1161 	if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1162 		switch (reg->mem_type) {
1163 		case TTM_PL_TT:
1164 			if (mem->kind)
1165 				nvif_object_unmap_handle(&mem->mem.object);
1166 			break;
1167 		case TTM_PL_VRAM:
1168 			nvif_object_unmap_handle(&mem->mem.object);
1169 			break;
1170 		default:
1171 			break;
1172 		}
1173 	}
1174 }
1175 
1176 static int
1177 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg)
1178 {
1179 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1180 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1181 	struct nouveau_mem *mem = nouveau_mem(reg);
1182 	struct nvif_mmu *mmu = &drm->client.mmu;
1183 	int ret;
1184 
1185 	mutex_lock(&drm->ttm.io_reserve_mutex);
1186 retry:
1187 	switch (reg->mem_type) {
1188 	case TTM_PL_SYSTEM:
1189 		/* System memory */
1190 		ret = 0;
1191 		goto out;
1192 	case TTM_PL_TT:
1193 #if IS_ENABLED(CONFIG_AGP)
1194 		if (drm->agp.bridge) {
1195 			reg->bus.offset = (reg->start << PAGE_SHIFT) +
1196 				drm->agp.base;
1197 			reg->bus.is_iomem = !drm->agp.cma;
1198 			reg->bus.caching = ttm_write_combined;
1199 		}
1200 #endif
1201 		if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 ||
1202 		    !mem->kind) {
1203 			/* untiled */
1204 			ret = 0;
1205 			break;
1206 		}
1207 		fallthrough;	/* tiled memory */
1208 	case TTM_PL_VRAM:
1209 		reg->bus.offset = (reg->start << PAGE_SHIFT) +
1210 			device->func->resource_addr(device, 1);
1211 		reg->bus.is_iomem = true;
1212 
1213 		/* Some BARs do not support being ioremapped WC */
1214 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
1215 		    mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED)
1216 			reg->bus.caching = ttm_uncached;
1217 		else
1218 			reg->bus.caching = ttm_write_combined;
1219 
1220 		if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1221 			union {
1222 				struct nv50_mem_map_v0 nv50;
1223 				struct gf100_mem_map_v0 gf100;
1224 			} args;
1225 			u64 handle, length;
1226 			u32 argc = 0;
1227 
1228 			switch (mem->mem.object.oclass) {
1229 			case NVIF_CLASS_MEM_NV50:
1230 				args.nv50.version = 0;
1231 				args.nv50.ro = 0;
1232 				args.nv50.kind = mem->kind;
1233 				args.nv50.comp = mem->comp;
1234 				argc = sizeof(args.nv50);
1235 				break;
1236 			case NVIF_CLASS_MEM_GF100:
1237 				args.gf100.version = 0;
1238 				args.gf100.ro = 0;
1239 				args.gf100.kind = mem->kind;
1240 				argc = sizeof(args.gf100);
1241 				break;
1242 			default:
1243 				WARN_ON(1);
1244 				break;
1245 			}
1246 
1247 			ret = nvif_object_map_handle(&mem->mem.object,
1248 						     &args, argc,
1249 						     &handle, &length);
1250 			if (ret != 1) {
1251 				if (WARN_ON(ret == 0))
1252 					ret = -EINVAL;
1253 				goto out;
1254 			}
1255 
1256 			reg->bus.offset = handle;
1257 		}
1258 		ret = 0;
1259 		break;
1260 	default:
1261 		ret = -EINVAL;
1262 	}
1263 
1264 out:
1265 	if (ret == -ENOSPC) {
1266 		struct nouveau_bo *nvbo;
1267 
1268 		nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru,
1269 						typeof(*nvbo),
1270 						io_reserve_lru);
1271 		if (nvbo) {
1272 			list_del_init(&nvbo->io_reserve_lru);
1273 			drm_vma_node_unmap(&nvbo->bo.base.vma_node,
1274 					   bdev->dev_mapping);
1275 			nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource);
1276 			nvbo->bo.resource->bus.offset = 0;
1277 			nvbo->bo.resource->bus.addr = NULL;
1278 			goto retry;
1279 		}
1280 
1281 	}
1282 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1283 	return ret;
1284 }
1285 
1286 static void
1287 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg)
1288 {
1289 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1290 
1291 	mutex_lock(&drm->ttm.io_reserve_mutex);
1292 	nouveau_ttm_io_mem_free_locked(drm, reg);
1293 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1294 }
1295 
1296 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1297 {
1298 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1299 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1300 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1301 	u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1302 	int i, ret;
1303 
1304 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1305 	 * nothing to do here.
1306 	 */
1307 	if (bo->resource->mem_type != TTM_PL_VRAM) {
1308 		if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1309 		    !nvbo->kind)
1310 			return 0;
1311 
1312 		if (bo->resource->mem_type != TTM_PL_SYSTEM)
1313 			return 0;
1314 
1315 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
1316 
1317 	} else {
1318 		/* make sure bo is in mappable vram */
1319 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1320 		    bo->resource->start + PFN_UP(bo->resource->size) < mappable)
1321 			return 0;
1322 
1323 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
1324 			nvbo->placements[i].fpfn = 0;
1325 			nvbo->placements[i].lpfn = mappable;
1326 		}
1327 
1328 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0);
1329 	}
1330 
1331 	ret = nouveau_bo_validate(nvbo, false, false);
1332 	if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS))
1333 		return VM_FAULT_NOPAGE;
1334 	else if (unlikely(ret))
1335 		return VM_FAULT_SIGBUS;
1336 
1337 	ttm_bo_move_to_lru_tail_unlocked(bo);
1338 	return 0;
1339 }
1340 
1341 static int
1342 nouveau_ttm_tt_populate(struct ttm_device *bdev,
1343 			struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1344 {
1345 	struct ttm_tt *ttm_dma = (void *)ttm;
1346 	struct nouveau_drm *drm;
1347 	bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
1348 
1349 	if (ttm_tt_is_populated(ttm))
1350 		return 0;
1351 
1352 	if (slave && ttm->sg) {
1353 		drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address,
1354 					       ttm->num_pages);
1355 		return 0;
1356 	}
1357 
1358 	drm = nouveau_bdev(bdev);
1359 
1360 	return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx);
1361 }
1362 
1363 static void
1364 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev,
1365 			  struct ttm_tt *ttm)
1366 {
1367 	struct nouveau_drm *drm;
1368 	bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
1369 
1370 	if (slave)
1371 		return;
1372 
1373 	nouveau_ttm_tt_unbind(bdev, ttm);
1374 
1375 	drm = nouveau_bdev(bdev);
1376 
1377 	return ttm_pool_free(&drm->ttm.bdev.pool, ttm);
1378 }
1379 
1380 static void
1381 nouveau_ttm_tt_destroy(struct ttm_device *bdev,
1382 		       struct ttm_tt *ttm)
1383 {
1384 #if IS_ENABLED(CONFIG_AGP)
1385 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1386 	if (drm->agp.bridge) {
1387 		ttm_agp_destroy(ttm);
1388 		return;
1389 	}
1390 #endif
1391 	nouveau_sgdma_destroy(bdev, ttm);
1392 }
1393 
1394 void
1395 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1396 {
1397 	struct dma_resv *resv = nvbo->bo.base.resv;
1398 
1399 	if (!fence)
1400 		return;
1401 
1402 	dma_resv_add_fence(resv, &fence->base, exclusive ?
1403 			   DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ);
1404 }
1405 
1406 static void
1407 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1408 {
1409 	nouveau_bo_move_ntfy(bo, NULL);
1410 }
1411 
1412 struct ttm_device_funcs nouveau_bo_driver = {
1413 	.ttm_tt_create = &nouveau_ttm_tt_create,
1414 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1415 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1416 	.ttm_tt_destroy = &nouveau_ttm_tt_destroy,
1417 	.eviction_valuable = ttm_bo_eviction_valuable,
1418 	.evict_flags = nouveau_bo_evict_flags,
1419 	.delete_mem_notify = nouveau_bo_delete_mem_notify,
1420 	.move = nouveau_bo_move,
1421 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1422 	.io_mem_free = &nouveau_ttm_io_mem_free,
1423 };
1424