xref: /linux/drivers/gpu/drm/nouveau/nouveau_bo.c (revision 1c80d50bb697f84bfbc3876e08e1a1d42bfbdddb)
1 /*
2  * Copyright 2007 Dave Airlied
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * Authors: Dave Airlied <airlied@linux.ie>
26  *	    Ben Skeggs   <darktama@iinet.net.au>
27  *	    Jeremy Kolb  <jkolb@brandeis.edu>
28  */
29 
30 #include <linux/dma-mapping.h>
31 #include <drm/ttm/ttm_tt.h>
32 
33 #include "nouveau_drv.h"
34 #include "nouveau_chan.h"
35 #include "nouveau_fence.h"
36 
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
42 
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
46 
47 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
48 			       struct ttm_resource *reg);
49 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm);
50 
51 /*
52  * NV10-NV40 tiling helpers
53  */
54 
55 static void
56 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
57 			   u32 addr, u32 size, u32 pitch, u32 flags)
58 {
59 	struct nouveau_drm *drm = nouveau_drm(dev);
60 	int i = reg - drm->tile.reg;
61 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
62 	struct nvkm_fb_tile *tile = &fb->tile.region[i];
63 
64 	nouveau_fence_unref(&reg->fence);
65 
66 	if (tile->pitch)
67 		nvkm_fb_tile_fini(fb, i, tile);
68 
69 	if (pitch)
70 		nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
71 
72 	nvkm_fb_tile_prog(fb, i, tile);
73 }
74 
75 static struct nouveau_drm_tile *
76 nv10_bo_get_tile_region(struct drm_device *dev, int i)
77 {
78 	struct nouveau_drm *drm = nouveau_drm(dev);
79 	struct nouveau_drm_tile *tile = &drm->tile.reg[i];
80 
81 	spin_lock(&drm->tile.lock);
82 
83 	if (!tile->used &&
84 	    (!tile->fence || nouveau_fence_done(tile->fence)))
85 		tile->used = true;
86 	else
87 		tile = NULL;
88 
89 	spin_unlock(&drm->tile.lock);
90 	return tile;
91 }
92 
93 static void
94 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
95 			struct dma_fence *fence)
96 {
97 	struct nouveau_drm *drm = nouveau_drm(dev);
98 
99 	if (tile) {
100 		spin_lock(&drm->tile.lock);
101 		tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
102 		tile->used = false;
103 		spin_unlock(&drm->tile.lock);
104 	}
105 }
106 
107 static struct nouveau_drm_tile *
108 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
109 		   u32 size, u32 pitch, u32 zeta)
110 {
111 	struct nouveau_drm *drm = nouveau_drm(dev);
112 	struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
113 	struct nouveau_drm_tile *tile, *found = NULL;
114 	int i;
115 
116 	for (i = 0; i < fb->tile.regions; i++) {
117 		tile = nv10_bo_get_tile_region(dev, i);
118 
119 		if (pitch && !found) {
120 			found = tile;
121 			continue;
122 
123 		} else if (tile && fb->tile.region[i].pitch) {
124 			/* Kill an unused tile region. */
125 			nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
126 		}
127 
128 		nv10_bo_put_tile_region(dev, tile, NULL);
129 	}
130 
131 	if (found)
132 		nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
133 	return found;
134 }
135 
136 static void
137 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
138 {
139 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
140 	struct drm_device *dev = drm->dev;
141 	struct nouveau_bo *nvbo = nouveau_bo(bo);
142 
143 	WARN_ON(nvbo->bo.pin_count > 0);
144 	nouveau_bo_del_io_reserve_lru(bo);
145 	nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
146 
147 	/*
148 	 * If nouveau_bo_new() allocated this buffer, the GEM object was never
149 	 * initialized, so don't attempt to release it.
150 	 */
151 	if (bo->base.dev) {
152 		/* Gem objects not being shared with other VMs get their
153 		 * dma_resv from a root GEM object.
154 		 */
155 		if (nvbo->no_share)
156 			drm_gem_object_put(nvbo->r_obj);
157 
158 		drm_gem_object_release(&bo->base);
159 	} else {
160 		dma_resv_fini(&bo->base._resv);
161 	}
162 
163 	kfree(nvbo);
164 }
165 
166 static inline u64
167 roundup_64(u64 x, u32 y)
168 {
169 	x += y - 1;
170 	do_div(x, y);
171 	return x * y;
172 }
173 
174 static void
175 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size)
176 {
177 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
178 	struct nvif_device *device = &drm->client.device;
179 
180 	if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
181 		if (nvbo->mode) {
182 			if (device->info.chipset >= 0x40) {
183 				*align = 65536;
184 				*size = roundup_64(*size, 64 * nvbo->mode);
185 
186 			} else if (device->info.chipset >= 0x30) {
187 				*align = 32768;
188 				*size = roundup_64(*size, 64 * nvbo->mode);
189 
190 			} else if (device->info.chipset >= 0x20) {
191 				*align = 16384;
192 				*size = roundup_64(*size, 64 * nvbo->mode);
193 
194 			} else if (device->info.chipset >= 0x10) {
195 				*align = 16384;
196 				*size = roundup_64(*size, 32 * nvbo->mode);
197 			}
198 		}
199 	} else {
200 		*size = roundup_64(*size, (1 << nvbo->page));
201 		*align = max((1 <<  nvbo->page), *align);
202 	}
203 
204 	*size = roundup_64(*size, PAGE_SIZE);
205 }
206 
207 struct nouveau_bo *
208 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain,
209 		 u32 tile_mode, u32 tile_flags, bool internal)
210 {
211 	struct nouveau_drm *drm = cli->drm;
212 	struct nouveau_bo *nvbo;
213 	struct nvif_mmu *mmu = &cli->mmu;
214 	struct nvif_vmm *vmm = &nouveau_cli_vmm(cli)->vmm;
215 	int i, pi = -1;
216 
217 	if (!*size) {
218 		NV_WARN(drm, "skipped size %016llx\n", *size);
219 		return ERR_PTR(-EINVAL);
220 	}
221 
222 	nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
223 	if (!nvbo)
224 		return ERR_PTR(-ENOMEM);
225 
226 	INIT_LIST_HEAD(&nvbo->head);
227 	INIT_LIST_HEAD(&nvbo->entry);
228 	INIT_LIST_HEAD(&nvbo->vma_list);
229 	nvbo->bo.bdev = &drm->ttm.bdev;
230 
231 	/* This is confusing, and doesn't actually mean we want an uncached
232 	 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
233 	 * into in nouveau_gem_new().
234 	 */
235 	if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) {
236 		/* Determine if we can get a cache-coherent map, forcing
237 		 * uncached mapping if we can't.
238 		 */
239 		if (!nouveau_drm_use_coherent_gpu_mapping(drm))
240 			nvbo->force_coherent = true;
241 	}
242 
243 	nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
244 	if (!nouveau_cli_uvmm(cli) || internal) {
245 		/* for BO noVM allocs, don't assign kinds */
246 		if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
247 			nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
248 			if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
249 				kfree(nvbo);
250 				return ERR_PTR(-EINVAL);
251 			}
252 
253 			nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
254 		} else if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
255 			nvbo->kind = (tile_flags & 0x00007f00) >> 8;
256 			nvbo->comp = (tile_flags & 0x00030000) >> 16;
257 			if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
258 				kfree(nvbo);
259 				return ERR_PTR(-EINVAL);
260 			}
261 		} else {
262 			nvbo->zeta = (tile_flags & 0x00000007);
263 		}
264 		nvbo->mode = tile_mode;
265 
266 		/* Determine the desirable target GPU page size for the buffer. */
267 		for (i = 0; i < vmm->page_nr; i++) {
268 			/* Because we cannot currently allow VMM maps to fail
269 			 * during buffer migration, we need to determine page
270 			 * size for the buffer up-front, and pre-allocate its
271 			 * page tables.
272 			 *
273 			 * Skip page sizes that can't support needed domains.
274 			 */
275 			if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
276 			    (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
277 				continue;
278 			if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
279 			    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
280 				continue;
281 
282 			/* Select this page size if it's the first that supports
283 			 * the potential memory domains, or when it's compatible
284 			 * with the requested compression settings.
285 			 */
286 			if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
287 				pi = i;
288 
289 			/* Stop once the buffer is larger than the current page size. */
290 			if (*size >= 1ULL << vmm->page[i].shift)
291 				break;
292 		}
293 
294 		if (WARN_ON(pi < 0)) {
295 			kfree(nvbo);
296 			return ERR_PTR(-EINVAL);
297 		}
298 
299 		/* Disable compression if suitable settings couldn't be found. */
300 		if (nvbo->comp && !vmm->page[pi].comp) {
301 			if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
302 				nvbo->kind = mmu->kind[nvbo->kind];
303 			nvbo->comp = 0;
304 		}
305 		nvbo->page = vmm->page[pi].shift;
306 	} else {
307 		/* reject other tile flags when in VM mode. */
308 		if (tile_mode)
309 			return ERR_PTR(-EINVAL);
310 		if (tile_flags & ~NOUVEAU_GEM_TILE_NONCONTIG)
311 			return ERR_PTR(-EINVAL);
312 
313 		/* Determine the desirable target GPU page size for the buffer. */
314 		for (i = 0; i < vmm->page_nr; i++) {
315 			/* Because we cannot currently allow VMM maps to fail
316 			 * during buffer migration, we need to determine page
317 			 * size for the buffer up-front, and pre-allocate its
318 			 * page tables.
319 			 *
320 			 * Skip page sizes that can't support needed domains.
321 			 */
322 			if ((domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
323 				continue;
324 			if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
325 			    (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
326 				continue;
327 
328 			/* pick the last one as it will be smallest. */
329 			pi = i;
330 
331 			/* Stop once the buffer is larger than the current page size. */
332 			if (*size >= 1ULL << vmm->page[i].shift)
333 				break;
334 		}
335 		if (WARN_ON(pi < 0)) {
336 			kfree(nvbo);
337 			return ERR_PTR(-EINVAL);
338 		}
339 		nvbo->page = vmm->page[pi].shift;
340 	}
341 
342 	nouveau_bo_fixup_align(nvbo, align, size);
343 
344 	return nvbo;
345 }
346 
347 int
348 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain,
349 		struct sg_table *sg, struct dma_resv *robj)
350 {
351 	int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
352 	int ret;
353 	struct ttm_operation_ctx ctx = {
354 		.interruptible = false,
355 		.no_wait_gpu = false,
356 		.resv = robj,
357 	};
358 
359 	nouveau_bo_placement_set(nvbo, domain, 0);
360 	INIT_LIST_HEAD(&nvbo->io_reserve_lru);
361 
362 	ret = ttm_bo_init_reserved(nvbo->bo.bdev, &nvbo->bo, type,
363 				   &nvbo->placement, align >> PAGE_SHIFT, &ctx,
364 				   sg, robj, nouveau_bo_del_ttm);
365 	if (ret) {
366 		/* ttm will call nouveau_bo_del_ttm if it fails.. */
367 		return ret;
368 	}
369 
370 	if (!robj)
371 		ttm_bo_unreserve(&nvbo->bo);
372 
373 	return 0;
374 }
375 
376 int
377 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
378 	       uint32_t domain, uint32_t tile_mode, uint32_t tile_flags,
379 	       struct sg_table *sg, struct dma_resv *robj,
380 	       struct nouveau_bo **pnvbo)
381 {
382 	struct nouveau_bo *nvbo;
383 	int ret;
384 
385 	nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode,
386 				tile_flags, true);
387 	if (IS_ERR(nvbo))
388 		return PTR_ERR(nvbo);
389 
390 	nvbo->bo.base.size = size;
391 	dma_resv_init(&nvbo->bo.base._resv);
392 	drm_vma_node_reset(&nvbo->bo.base.vma_node);
393 
394 	/* This must be called before ttm_bo_init_reserved(). Subsequent
395 	 * bo_move() callbacks might already iterate the GEMs GPUVA list.
396 	 */
397 	drm_gem_gpuva_init(&nvbo->bo.base);
398 
399 	ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj);
400 	if (ret)
401 		return ret;
402 
403 	*pnvbo = nvbo;
404 	return 0;
405 }
406 
407 static void
408 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain)
409 {
410 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
411 	u64 vram_size = drm->client.device.info.ram_size;
412 	unsigned i, fpfn, lpfn;
413 
414 	if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
415 	    nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) &&
416 	    nvbo->bo.base.size < vram_size / 4) {
417 		/*
418 		 * Make sure that the color and depth buffers are handled
419 		 * by independent memory controller units. Up to a 9x
420 		 * speed up when alpha-blending and depth-test are enabled
421 		 * at the same time.
422 		 */
423 		if (nvbo->zeta) {
424 			fpfn = (vram_size / 2) >> PAGE_SHIFT;
425 			lpfn = ~0;
426 		} else {
427 			fpfn = 0;
428 			lpfn = (vram_size / 2) >> PAGE_SHIFT;
429 		}
430 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
431 			nvbo->placements[i].fpfn = fpfn;
432 			nvbo->placements[i].lpfn = lpfn;
433 		}
434 	}
435 }
436 
437 void
438 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain,
439 			 uint32_t busy)
440 {
441 	unsigned int *n = &nvbo->placement.num_placement;
442 	struct ttm_place *pl = nvbo->placements;
443 
444 	domain |= busy;
445 
446 	*n = 0;
447 	if (domain & NOUVEAU_GEM_DOMAIN_VRAM) {
448 		pl[*n].mem_type = TTM_PL_VRAM;
449 		pl[*n].flags = busy & NOUVEAU_GEM_DOMAIN_VRAM ?
450 			TTM_PL_FLAG_FALLBACK : 0;
451 		(*n)++;
452 	}
453 	if (domain & NOUVEAU_GEM_DOMAIN_GART) {
454 		pl[*n].mem_type = TTM_PL_TT;
455 		pl[*n].flags = busy & NOUVEAU_GEM_DOMAIN_GART ?
456 			TTM_PL_FLAG_FALLBACK : 0;
457 		(*n)++;
458 	}
459 	if (domain & NOUVEAU_GEM_DOMAIN_CPU) {
460 		pl[*n].mem_type = TTM_PL_SYSTEM;
461 		pl[*n].flags = busy & NOUVEAU_GEM_DOMAIN_CPU ?
462 			TTM_PL_FLAG_FALLBACK : 0;
463 		(*n)++;
464 	}
465 
466 	nvbo->placement.placement = nvbo->placements;
467 	set_placement_range(nvbo, domain);
468 }
469 
470 int
471 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
472 {
473 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
474 	struct ttm_buffer_object *bo = &nvbo->bo;
475 	bool force = false, evict = false;
476 	int ret;
477 
478 	ret = ttm_bo_reserve(bo, false, false, NULL);
479 	if (ret)
480 		return ret;
481 
482 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
483 	    domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) {
484 		if (!nvbo->contig) {
485 			nvbo->contig = true;
486 			force = true;
487 			evict = true;
488 		}
489 	}
490 
491 	if (nvbo->bo.pin_count) {
492 		bool error = evict;
493 
494 		switch (bo->resource->mem_type) {
495 		case TTM_PL_VRAM:
496 			error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM);
497 			break;
498 		case TTM_PL_TT:
499 			error |= !(domain & NOUVEAU_GEM_DOMAIN_GART);
500 			break;
501 		default:
502 			break;
503 		}
504 
505 		if (error) {
506 			NV_ERROR(drm, "bo %p pinned elsewhere: "
507 				      "0x%08x vs 0x%08x\n", bo,
508 				 bo->resource->mem_type, domain);
509 			ret = -EBUSY;
510 		}
511 		ttm_bo_pin(&nvbo->bo);
512 		goto out;
513 	}
514 
515 	if (evict) {
516 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
517 		ret = nouveau_bo_validate(nvbo, false, false);
518 		if (ret)
519 			goto out;
520 	}
521 
522 	nouveau_bo_placement_set(nvbo, domain, 0);
523 	ret = nouveau_bo_validate(nvbo, false, false);
524 	if (ret)
525 		goto out;
526 
527 	ttm_bo_pin(&nvbo->bo);
528 
529 	switch (bo->resource->mem_type) {
530 	case TTM_PL_VRAM:
531 		drm->gem.vram_available -= bo->base.size;
532 		break;
533 	case TTM_PL_TT:
534 		drm->gem.gart_available -= bo->base.size;
535 		break;
536 	default:
537 		break;
538 	}
539 
540 out:
541 	if (force && ret)
542 		nvbo->contig = false;
543 	ttm_bo_unreserve(bo);
544 	return ret;
545 }
546 
547 int
548 nouveau_bo_unpin(struct nouveau_bo *nvbo)
549 {
550 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
551 	struct ttm_buffer_object *bo = &nvbo->bo;
552 	int ret;
553 
554 	ret = ttm_bo_reserve(bo, false, false, NULL);
555 	if (ret)
556 		return ret;
557 
558 	ttm_bo_unpin(&nvbo->bo);
559 	if (!nvbo->bo.pin_count) {
560 		switch (bo->resource->mem_type) {
561 		case TTM_PL_VRAM:
562 			drm->gem.vram_available += bo->base.size;
563 			break;
564 		case TTM_PL_TT:
565 			drm->gem.gart_available += bo->base.size;
566 			break;
567 		default:
568 			break;
569 		}
570 	}
571 
572 	ttm_bo_unreserve(bo);
573 	return 0;
574 }
575 
576 int
577 nouveau_bo_map(struct nouveau_bo *nvbo)
578 {
579 	int ret;
580 
581 	ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
582 	if (ret)
583 		return ret;
584 
585 	ret = ttm_bo_kmap(&nvbo->bo, 0, PFN_UP(nvbo->bo.base.size), &nvbo->kmap);
586 
587 	ttm_bo_unreserve(&nvbo->bo);
588 	return ret;
589 }
590 
591 void
592 nouveau_bo_unmap(struct nouveau_bo *nvbo)
593 {
594 	if (!nvbo)
595 		return;
596 
597 	ttm_bo_kunmap(&nvbo->kmap);
598 }
599 
600 void
601 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
602 {
603 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
604 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
605 	int i, j;
606 
607 	if (!ttm_dma || !ttm_dma->dma_address)
608 		return;
609 	if (!ttm_dma->pages) {
610 		NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
611 		return;
612 	}
613 
614 	/* Don't waste time looping if the object is coherent */
615 	if (nvbo->force_coherent)
616 		return;
617 
618 	i = 0;
619 	while (i < ttm_dma->num_pages) {
620 		struct page *p = ttm_dma->pages[i];
621 		size_t num_pages = 1;
622 
623 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
624 			if (++p != ttm_dma->pages[j])
625 				break;
626 
627 			++num_pages;
628 		}
629 		dma_sync_single_for_device(drm->dev->dev,
630 					   ttm_dma->dma_address[i],
631 					   num_pages * PAGE_SIZE, DMA_TO_DEVICE);
632 		i += num_pages;
633 	}
634 }
635 
636 void
637 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
638 {
639 	struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
640 	struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
641 	int i, j;
642 
643 	if (!ttm_dma || !ttm_dma->dma_address)
644 		return;
645 	if (!ttm_dma->pages) {
646 		NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
647 		return;
648 	}
649 
650 	/* Don't waste time looping if the object is coherent */
651 	if (nvbo->force_coherent)
652 		return;
653 
654 	i = 0;
655 	while (i < ttm_dma->num_pages) {
656 		struct page *p = ttm_dma->pages[i];
657 		size_t num_pages = 1;
658 
659 		for (j = i + 1; j < ttm_dma->num_pages; ++j) {
660 			if (++p != ttm_dma->pages[j])
661 				break;
662 
663 			++num_pages;
664 		}
665 
666 		dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
667 					num_pages * PAGE_SIZE, DMA_FROM_DEVICE);
668 		i += num_pages;
669 	}
670 }
671 
672 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo)
673 {
674 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
675 	struct nouveau_bo *nvbo = nouveau_bo(bo);
676 
677 	mutex_lock(&drm->ttm.io_reserve_mutex);
678 	list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru);
679 	mutex_unlock(&drm->ttm.io_reserve_mutex);
680 }
681 
682 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo)
683 {
684 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
685 	struct nouveau_bo *nvbo = nouveau_bo(bo);
686 
687 	mutex_lock(&drm->ttm.io_reserve_mutex);
688 	list_del_init(&nvbo->io_reserve_lru);
689 	mutex_unlock(&drm->ttm.io_reserve_mutex);
690 }
691 
692 int
693 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
694 		    bool no_wait_gpu)
695 {
696 	struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
697 	int ret;
698 
699 	ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
700 	if (ret)
701 		return ret;
702 
703 	nouveau_bo_sync_for_device(nvbo);
704 
705 	return 0;
706 }
707 
708 void
709 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
710 {
711 	bool is_iomem;
712 	u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
713 
714 	mem += index;
715 
716 	if (is_iomem)
717 		iowrite16_native(val, (void __force __iomem *)mem);
718 	else
719 		*mem = val;
720 }
721 
722 u32
723 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
724 {
725 	bool is_iomem;
726 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
727 
728 	mem += index;
729 
730 	if (is_iomem)
731 		return ioread32_native((void __force __iomem *)mem);
732 	else
733 		return *mem;
734 }
735 
736 void
737 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
738 {
739 	bool is_iomem;
740 	u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
741 
742 	mem += index;
743 
744 	if (is_iomem)
745 		iowrite32_native(val, (void __force __iomem *)mem);
746 	else
747 		*mem = val;
748 }
749 
750 static struct ttm_tt *
751 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
752 {
753 #if IS_ENABLED(CONFIG_AGP)
754 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
755 
756 	if (drm->agp.bridge) {
757 		return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
758 	}
759 #endif
760 
761 	return nouveau_sgdma_create_ttm(bo, page_flags);
762 }
763 
764 static int
765 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
766 		    struct ttm_resource *reg)
767 {
768 #if IS_ENABLED(CONFIG_AGP)
769 	struct nouveau_drm *drm = nouveau_bdev(bdev);
770 #endif
771 	if (!reg)
772 		return -EINVAL;
773 #if IS_ENABLED(CONFIG_AGP)
774 	if (drm->agp.bridge)
775 		return ttm_agp_bind(ttm, reg);
776 #endif
777 	return nouveau_sgdma_bind(bdev, ttm, reg);
778 }
779 
780 static void
781 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm)
782 {
783 #if IS_ENABLED(CONFIG_AGP)
784 	struct nouveau_drm *drm = nouveau_bdev(bdev);
785 
786 	if (drm->agp.bridge) {
787 		ttm_agp_unbind(ttm);
788 		return;
789 	}
790 #endif
791 	nouveau_sgdma_unbind(bdev, ttm);
792 }
793 
794 static void
795 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
796 {
797 	struct nouveau_bo *nvbo = nouveau_bo(bo);
798 
799 	switch (bo->resource->mem_type) {
800 	case TTM_PL_VRAM:
801 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART,
802 					 NOUVEAU_GEM_DOMAIN_CPU);
803 		break;
804 	default:
805 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0);
806 		break;
807 	}
808 
809 	*pl = nvbo->placement;
810 }
811 
812 static int
813 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
814 		     struct ttm_resource *reg)
815 {
816 	struct nouveau_mem *old_mem = nouveau_mem(bo->resource);
817 	struct nouveau_mem *new_mem = nouveau_mem(reg);
818 	struct nvif_vmm *vmm = &drm->client.vmm.vmm;
819 	int ret;
820 
821 	ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
822 			   old_mem->mem.size, &old_mem->vma[0]);
823 	if (ret)
824 		return ret;
825 
826 	ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
827 			   new_mem->mem.size, &old_mem->vma[1]);
828 	if (ret)
829 		goto done;
830 
831 	ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
832 	if (ret)
833 		goto done;
834 
835 	ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
836 done:
837 	if (ret) {
838 		nvif_vmm_put(vmm, &old_mem->vma[1]);
839 		nvif_vmm_put(vmm, &old_mem->vma[0]);
840 	}
841 	return 0;
842 }
843 
844 static int
845 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict,
846 		     struct ttm_operation_ctx *ctx,
847 		     struct ttm_resource *new_reg)
848 {
849 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
850 	struct nouveau_channel *chan = drm->ttm.chan;
851 	struct nouveau_cli *cli = (void *)chan->user.client;
852 	struct nouveau_fence *fence;
853 	int ret;
854 
855 	/* create temporary vmas for the transfer and attach them to the
856 	 * old nvkm_mem node, these will get cleaned up after ttm has
857 	 * destroyed the ttm_resource
858 	 */
859 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
860 		ret = nouveau_bo_move_prep(drm, bo, new_reg);
861 		if (ret)
862 			return ret;
863 	}
864 
865 	if (drm_drv_uses_atomic_modeset(drm->dev))
866 		mutex_lock(&cli->mutex);
867 	else
868 		mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
869 
870 	ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible);
871 	if (ret)
872 		goto out_unlock;
873 
874 	ret = drm->ttm.move(chan, bo, bo->resource, new_reg);
875 	if (ret)
876 		goto out_unlock;
877 
878 	ret = nouveau_fence_new(&fence, chan);
879 	if (ret)
880 		goto out_unlock;
881 
882 	/* TODO: figure out a better solution here
883 	 *
884 	 * wait on the fence here explicitly as going through
885 	 * ttm_bo_move_accel_cleanup somehow doesn't seem to do it.
886 	 *
887 	 * Without this the operation can timeout and we'll fallback to a
888 	 * software copy, which might take several minutes to finish.
889 	 */
890 	nouveau_fence_wait(fence, false, false);
891 	ret = ttm_bo_move_accel_cleanup(bo, &fence->base, evict, false,
892 					new_reg);
893 	nouveau_fence_unref(&fence);
894 
895 out_unlock:
896 	mutex_unlock(&cli->mutex);
897 	return ret;
898 }
899 
900 void
901 nouveau_bo_move_init(struct nouveau_drm *drm)
902 {
903 	static const struct _method_table {
904 		const char *name;
905 		int engine;
906 		s32 oclass;
907 		int (*exec)(struct nouveau_channel *,
908 			    struct ttm_buffer_object *,
909 			    struct ttm_resource *, struct ttm_resource *);
910 		int (*init)(struct nouveau_channel *, u32 handle);
911 	} _methods[] = {
912 		{  "COPY", 4, 0xc7b5, nve0_bo_move_copy, nve0_bo_move_init },
913 		{  "GRCE", 0, 0xc7b5, nve0_bo_move_copy, nvc0_bo_move_init },
914 		{  "COPY", 4, 0xc6b5, nve0_bo_move_copy, nve0_bo_move_init },
915 		{  "GRCE", 0, 0xc6b5, nve0_bo_move_copy, nvc0_bo_move_init },
916 		{  "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
917 		{  "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
918 		{  "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
919 		{  "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
920 		{  "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
921 		{  "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
922 		{  "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
923 		{  "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
924 		{  "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
925 		{  "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
926 		{  "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
927 		{  "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
928 		{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
929 		{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
930 		{  "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
931 		{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
932 		{  "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
933 		{  "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
934 		{  "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
935 		{},
936 	};
937 	const struct _method_table *mthd = _methods;
938 	const char *name = "CPU";
939 	int ret;
940 
941 	do {
942 		struct nouveau_channel *chan;
943 
944 		if (mthd->engine)
945 			chan = drm->cechan;
946 		else
947 			chan = drm->channel;
948 		if (chan == NULL)
949 			continue;
950 
951 		ret = nvif_object_ctor(&chan->user, "ttmBoMove",
952 				       mthd->oclass | (mthd->engine << 16),
953 				       mthd->oclass, NULL, 0,
954 				       &drm->ttm.copy);
955 		if (ret == 0) {
956 			ret = mthd->init(chan, drm->ttm.copy.handle);
957 			if (ret) {
958 				nvif_object_dtor(&drm->ttm.copy);
959 				continue;
960 			}
961 
962 			drm->ttm.move = mthd->exec;
963 			drm->ttm.chan = chan;
964 			name = mthd->name;
965 			break;
966 		}
967 	} while ((++mthd)->exec);
968 
969 	NV_INFO(drm, "MM: using %s for buffer copies\n", name);
970 }
971 
972 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo,
973 				 struct ttm_resource *new_reg)
974 {
975 	struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
976 	struct nouveau_bo *nvbo = nouveau_bo(bo);
977 	struct nouveau_vma *vma;
978 	long ret;
979 
980 	/* ttm can now (stupidly) pass the driver bos it didn't create... */
981 	if (bo->destroy != nouveau_bo_del_ttm)
982 		return;
983 
984 	nouveau_bo_del_io_reserve_lru(bo);
985 
986 	if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
987 	    mem->mem.page == nvbo->page) {
988 		list_for_each_entry(vma, &nvbo->vma_list, head) {
989 			nouveau_vma_map(vma, mem);
990 		}
991 		nouveau_uvmm_bo_map_all(nvbo, mem);
992 	} else {
993 		list_for_each_entry(vma, &nvbo->vma_list, head) {
994 			ret = dma_resv_wait_timeout(bo->base.resv,
995 						    DMA_RESV_USAGE_BOOKKEEP,
996 						    false, 15 * HZ);
997 			WARN_ON(ret <= 0);
998 			nouveau_vma_unmap(vma);
999 		}
1000 		nouveau_uvmm_bo_unmap_all(nvbo);
1001 	}
1002 
1003 	if (new_reg)
1004 		nvbo->offset = (new_reg->start << PAGE_SHIFT);
1005 
1006 }
1007 
1008 static int
1009 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg,
1010 		   struct nouveau_drm_tile **new_tile)
1011 {
1012 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1013 	struct drm_device *dev = drm->dev;
1014 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1015 	u64 offset = new_reg->start << PAGE_SHIFT;
1016 
1017 	*new_tile = NULL;
1018 	if (new_reg->mem_type != TTM_PL_VRAM)
1019 		return 0;
1020 
1021 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1022 		*new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size,
1023 					       nvbo->mode, nvbo->zeta);
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static void
1030 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1031 		      struct nouveau_drm_tile *new_tile,
1032 		      struct nouveau_drm_tile **old_tile)
1033 {
1034 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1035 	struct drm_device *dev = drm->dev;
1036 	struct dma_fence *fence;
1037 	int ret;
1038 
1039 	ret = dma_resv_get_singleton(bo->base.resv, DMA_RESV_USAGE_WRITE,
1040 				     &fence);
1041 	if (ret)
1042 		dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_WRITE,
1043 				      false, MAX_SCHEDULE_TIMEOUT);
1044 
1045 	nv10_bo_put_tile_region(dev, *old_tile, fence);
1046 	*old_tile = new_tile;
1047 }
1048 
1049 static int
1050 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
1051 		struct ttm_operation_ctx *ctx,
1052 		struct ttm_resource *new_reg,
1053 		struct ttm_place *hop)
1054 {
1055 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1056 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1057 	struct drm_gem_object *obj = &bo->base;
1058 	struct ttm_resource *old_reg = bo->resource;
1059 	struct nouveau_drm_tile *new_tile = NULL;
1060 	int ret = 0;
1061 
1062 	if (new_reg->mem_type == TTM_PL_TT) {
1063 		ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg);
1064 		if (ret)
1065 			return ret;
1066 	}
1067 
1068 	drm_gpuvm_bo_gem_evict(obj, evict);
1069 	nouveau_bo_move_ntfy(bo, new_reg);
1070 	ret = ttm_bo_wait_ctx(bo, ctx);
1071 	if (ret)
1072 		goto out_ntfy;
1073 
1074 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1075 		ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
1076 		if (ret)
1077 			goto out_ntfy;
1078 	}
1079 
1080 	/* Fake bo copy. */
1081 	if (!old_reg || (old_reg->mem_type == TTM_PL_SYSTEM &&
1082 			 !bo->ttm)) {
1083 		ttm_bo_move_null(bo, new_reg);
1084 		goto out;
1085 	}
1086 
1087 	if (old_reg->mem_type == TTM_PL_SYSTEM &&
1088 	    new_reg->mem_type == TTM_PL_TT) {
1089 		ttm_bo_move_null(bo, new_reg);
1090 		goto out;
1091 	}
1092 
1093 	if (old_reg->mem_type == TTM_PL_TT &&
1094 	    new_reg->mem_type == TTM_PL_SYSTEM) {
1095 		nouveau_ttm_tt_unbind(bo->bdev, bo->ttm);
1096 		ttm_resource_free(bo, &bo->resource);
1097 		ttm_bo_assign_mem(bo, new_reg);
1098 		goto out;
1099 	}
1100 
1101 	/* Hardware assisted copy. */
1102 	if (drm->ttm.move) {
1103 		if ((old_reg->mem_type == TTM_PL_SYSTEM &&
1104 		     new_reg->mem_type == TTM_PL_VRAM) ||
1105 		    (old_reg->mem_type == TTM_PL_VRAM &&
1106 		     new_reg->mem_type == TTM_PL_SYSTEM)) {
1107 			hop->fpfn = 0;
1108 			hop->lpfn = 0;
1109 			hop->mem_type = TTM_PL_TT;
1110 			hop->flags = 0;
1111 			return -EMULTIHOP;
1112 		}
1113 		ret = nouveau_bo_move_m2mf(bo, evict, ctx,
1114 					   new_reg);
1115 	} else
1116 		ret = -ENODEV;
1117 
1118 	if (ret) {
1119 		/* Fallback to software copy. */
1120 		ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1121 	}
1122 
1123 out:
1124 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1125 		if (ret)
1126 			nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1127 		else
1128 			nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1129 	}
1130 out_ntfy:
1131 	if (ret) {
1132 		nouveau_bo_move_ntfy(bo, bo->resource);
1133 		drm_gpuvm_bo_gem_evict(obj, !evict);
1134 	}
1135 	return ret;
1136 }
1137 
1138 static void
1139 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm,
1140 			       struct ttm_resource *reg)
1141 {
1142 	struct nouveau_mem *mem = nouveau_mem(reg);
1143 
1144 	if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1145 		switch (reg->mem_type) {
1146 		case TTM_PL_TT:
1147 			if (mem->kind)
1148 				nvif_object_unmap_handle(&mem->mem.object);
1149 			break;
1150 		case TTM_PL_VRAM:
1151 			nvif_object_unmap_handle(&mem->mem.object);
1152 			break;
1153 		default:
1154 			break;
1155 		}
1156 	}
1157 }
1158 
1159 static int
1160 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg)
1161 {
1162 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1163 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1164 	struct nouveau_mem *mem = nouveau_mem(reg);
1165 	struct nvif_mmu *mmu = &drm->client.mmu;
1166 	int ret;
1167 
1168 	mutex_lock(&drm->ttm.io_reserve_mutex);
1169 retry:
1170 	switch (reg->mem_type) {
1171 	case TTM_PL_SYSTEM:
1172 		/* System memory */
1173 		ret = 0;
1174 		goto out;
1175 	case TTM_PL_TT:
1176 #if IS_ENABLED(CONFIG_AGP)
1177 		if (drm->agp.bridge) {
1178 			reg->bus.offset = (reg->start << PAGE_SHIFT) +
1179 				drm->agp.base;
1180 			reg->bus.is_iomem = !drm->agp.cma;
1181 			reg->bus.caching = ttm_write_combined;
1182 		}
1183 #endif
1184 		if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 ||
1185 		    !mem->kind) {
1186 			/* untiled */
1187 			ret = 0;
1188 			break;
1189 		}
1190 		fallthrough;	/* tiled memory */
1191 	case TTM_PL_VRAM:
1192 		reg->bus.offset = (reg->start << PAGE_SHIFT) +
1193 			device->func->resource_addr(device, 1);
1194 		reg->bus.is_iomem = true;
1195 
1196 		/* Some BARs do not support being ioremapped WC */
1197 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
1198 		    mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED)
1199 			reg->bus.caching = ttm_uncached;
1200 		else
1201 			reg->bus.caching = ttm_write_combined;
1202 
1203 		if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1204 			union {
1205 				struct nv50_mem_map_v0 nv50;
1206 				struct gf100_mem_map_v0 gf100;
1207 			} args;
1208 			u64 handle, length;
1209 			u32 argc = 0;
1210 
1211 			switch (mem->mem.object.oclass) {
1212 			case NVIF_CLASS_MEM_NV50:
1213 				args.nv50.version = 0;
1214 				args.nv50.ro = 0;
1215 				args.nv50.kind = mem->kind;
1216 				args.nv50.comp = mem->comp;
1217 				argc = sizeof(args.nv50);
1218 				break;
1219 			case NVIF_CLASS_MEM_GF100:
1220 				args.gf100.version = 0;
1221 				args.gf100.ro = 0;
1222 				args.gf100.kind = mem->kind;
1223 				argc = sizeof(args.gf100);
1224 				break;
1225 			default:
1226 				WARN_ON(1);
1227 				break;
1228 			}
1229 
1230 			ret = nvif_object_map_handle(&mem->mem.object,
1231 						     &args, argc,
1232 						     &handle, &length);
1233 			if (ret != 1) {
1234 				if (WARN_ON(ret == 0))
1235 					ret = -EINVAL;
1236 				goto out;
1237 			}
1238 
1239 			reg->bus.offset = handle;
1240 		}
1241 		ret = 0;
1242 		break;
1243 	default:
1244 		ret = -EINVAL;
1245 	}
1246 
1247 out:
1248 	if (ret == -ENOSPC) {
1249 		struct nouveau_bo *nvbo;
1250 
1251 		nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru,
1252 						typeof(*nvbo),
1253 						io_reserve_lru);
1254 		if (nvbo) {
1255 			list_del_init(&nvbo->io_reserve_lru);
1256 			drm_vma_node_unmap(&nvbo->bo.base.vma_node,
1257 					   bdev->dev_mapping);
1258 			nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource);
1259 			nvbo->bo.resource->bus.offset = 0;
1260 			nvbo->bo.resource->bus.addr = NULL;
1261 			goto retry;
1262 		}
1263 
1264 	}
1265 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1266 	return ret;
1267 }
1268 
1269 static void
1270 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg)
1271 {
1272 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1273 
1274 	mutex_lock(&drm->ttm.io_reserve_mutex);
1275 	nouveau_ttm_io_mem_free_locked(drm, reg);
1276 	mutex_unlock(&drm->ttm.io_reserve_mutex);
1277 }
1278 
1279 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1280 {
1281 	struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1282 	struct nouveau_bo *nvbo = nouveau_bo(bo);
1283 	struct nvkm_device *device = nvxx_device(&drm->client.device);
1284 	u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1285 	int i, ret;
1286 
1287 	/* as long as the bo isn't in vram, and isn't tiled, we've got
1288 	 * nothing to do here.
1289 	 */
1290 	if (bo->resource->mem_type != TTM_PL_VRAM) {
1291 		if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1292 		    !nvbo->kind)
1293 			return 0;
1294 
1295 		if (bo->resource->mem_type != TTM_PL_SYSTEM)
1296 			return 0;
1297 
1298 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
1299 
1300 	} else {
1301 		/* make sure bo is in mappable vram */
1302 		if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1303 		    bo->resource->start + PFN_UP(bo->resource->size) < mappable)
1304 			return 0;
1305 
1306 		for (i = 0; i < nvbo->placement.num_placement; ++i) {
1307 			nvbo->placements[i].fpfn = 0;
1308 			nvbo->placements[i].lpfn = mappable;
1309 		}
1310 
1311 		nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0);
1312 	}
1313 
1314 	ret = nouveau_bo_validate(nvbo, false, false);
1315 	if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS))
1316 		return VM_FAULT_NOPAGE;
1317 	else if (unlikely(ret))
1318 		return VM_FAULT_SIGBUS;
1319 
1320 	ttm_bo_move_to_lru_tail_unlocked(bo);
1321 	return 0;
1322 }
1323 
1324 static int
1325 nouveau_ttm_tt_populate(struct ttm_device *bdev,
1326 			struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1327 {
1328 	struct ttm_tt *ttm_dma = (void *)ttm;
1329 	struct nouveau_drm *drm;
1330 	bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
1331 
1332 	if (ttm_tt_is_populated(ttm))
1333 		return 0;
1334 
1335 	if (slave && ttm->sg) {
1336 		drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address,
1337 					       ttm->num_pages);
1338 		return 0;
1339 	}
1340 
1341 	drm = nouveau_bdev(bdev);
1342 
1343 	return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx);
1344 }
1345 
1346 static void
1347 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev,
1348 			  struct ttm_tt *ttm)
1349 {
1350 	struct nouveau_drm *drm;
1351 	bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
1352 
1353 	if (slave)
1354 		return;
1355 
1356 	nouveau_ttm_tt_unbind(bdev, ttm);
1357 
1358 	drm = nouveau_bdev(bdev);
1359 
1360 	return ttm_pool_free(&drm->ttm.bdev.pool, ttm);
1361 }
1362 
1363 static void
1364 nouveau_ttm_tt_destroy(struct ttm_device *bdev,
1365 		       struct ttm_tt *ttm)
1366 {
1367 #if IS_ENABLED(CONFIG_AGP)
1368 	struct nouveau_drm *drm = nouveau_bdev(bdev);
1369 	if (drm->agp.bridge) {
1370 		ttm_agp_destroy(ttm);
1371 		return;
1372 	}
1373 #endif
1374 	nouveau_sgdma_destroy(bdev, ttm);
1375 }
1376 
1377 void
1378 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1379 {
1380 	struct dma_resv *resv = nvbo->bo.base.resv;
1381 
1382 	if (!fence)
1383 		return;
1384 
1385 	dma_resv_add_fence(resv, &fence->base, exclusive ?
1386 			   DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ);
1387 }
1388 
1389 static void
1390 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1391 {
1392 	nouveau_bo_move_ntfy(bo, NULL);
1393 }
1394 
1395 struct ttm_device_funcs nouveau_bo_driver = {
1396 	.ttm_tt_create = &nouveau_ttm_tt_create,
1397 	.ttm_tt_populate = &nouveau_ttm_tt_populate,
1398 	.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1399 	.ttm_tt_destroy = &nouveau_ttm_tt_destroy,
1400 	.eviction_valuable = ttm_bo_eviction_valuable,
1401 	.evict_flags = nouveau_bo_evict_flags,
1402 	.delete_mem_notify = nouveau_bo_delete_mem_notify,
1403 	.move = nouveau_bo_move,
1404 	.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1405 	.io_mem_free = &nouveau_ttm_io_mem_free,
1406 };
1407