1 /* 2 * Copyright 2007 Dave Airlied 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 /* 25 * Authors: Dave Airlied <airlied@linux.ie> 26 * Ben Skeggs <darktama@iinet.net.au> 27 * Jeremy Kolb <jkolb@brandeis.edu> 28 */ 29 30 #include <linux/dma-mapping.h> 31 #include <drm/ttm/ttm_tt.h> 32 33 #include "nouveau_drv.h" 34 #include "nouveau_chan.h" 35 #include "nouveau_fence.h" 36 37 #include "nouveau_bo.h" 38 #include "nouveau_ttm.h" 39 #include "nouveau_gem.h" 40 #include "nouveau_mem.h" 41 #include "nouveau_vmm.h" 42 43 #include <nvif/class.h> 44 #include <nvif/if500b.h> 45 #include <nvif/if900b.h> 46 47 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm, 48 struct ttm_resource *reg); 49 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm); 50 51 /* 52 * NV10-NV40 tiling helpers 53 */ 54 55 static void 56 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg, 57 u32 addr, u32 size, u32 pitch, u32 flags) 58 { 59 struct nouveau_drm *drm = nouveau_drm(dev); 60 int i = reg - drm->tile.reg; 61 struct nvkm_fb *fb = nvxx_fb(drm); 62 struct nvkm_fb_tile *tile = &fb->tile.region[i]; 63 64 nouveau_fence_unref(®->fence); 65 66 if (tile->pitch) 67 nvkm_fb_tile_fini(fb, i, tile); 68 69 if (pitch) 70 nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile); 71 72 nvkm_fb_tile_prog(fb, i, tile); 73 } 74 75 static struct nouveau_drm_tile * 76 nv10_bo_get_tile_region(struct drm_device *dev, int i) 77 { 78 struct nouveau_drm *drm = nouveau_drm(dev); 79 struct nouveau_drm_tile *tile = &drm->tile.reg[i]; 80 81 spin_lock(&drm->tile.lock); 82 83 if (!tile->used && 84 (!tile->fence || nouveau_fence_done(tile->fence))) 85 tile->used = true; 86 else 87 tile = NULL; 88 89 spin_unlock(&drm->tile.lock); 90 return tile; 91 } 92 93 static void 94 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile, 95 struct dma_fence *fence) 96 { 97 struct nouveau_drm *drm = nouveau_drm(dev); 98 99 if (tile) { 100 spin_lock(&drm->tile.lock); 101 tile->fence = (struct nouveau_fence *)dma_fence_get(fence); 102 tile->used = false; 103 spin_unlock(&drm->tile.lock); 104 } 105 } 106 107 static struct nouveau_drm_tile * 108 nv10_bo_set_tiling(struct drm_device *dev, u32 addr, 109 u32 size, u32 pitch, u32 zeta) 110 { 111 struct nouveau_drm *drm = nouveau_drm(dev); 112 struct nvkm_fb *fb = nvxx_fb(drm); 113 struct nouveau_drm_tile *tile, *found = NULL; 114 int i; 115 116 for (i = 0; i < fb->tile.regions; i++) { 117 tile = nv10_bo_get_tile_region(dev, i); 118 119 if (pitch && !found) { 120 found = tile; 121 continue; 122 123 } else if (tile && fb->tile.region[i].pitch) { 124 /* Kill an unused tile region. */ 125 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0); 126 } 127 128 nv10_bo_put_tile_region(dev, tile, NULL); 129 } 130 131 if (found) 132 nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta); 133 return found; 134 } 135 136 static void 137 nouveau_bo_del_ttm(struct ttm_buffer_object *bo) 138 { 139 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 140 struct drm_device *dev = drm->dev; 141 struct nouveau_bo *nvbo = nouveau_bo(bo); 142 143 WARN_ON(nvbo->bo.pin_count > 0); 144 nouveau_bo_del_io_reserve_lru(bo); 145 nv10_bo_put_tile_region(dev, nvbo->tile, NULL); 146 147 if (bo->base.import_attach) 148 drm_prime_gem_destroy(&bo->base, bo->sg); 149 150 /* 151 * If nouveau_bo_new() allocated this buffer, the GEM object was never 152 * initialized, so don't attempt to release it. 153 */ 154 if (bo->base.dev) { 155 /* Gem objects not being shared with other VMs get their 156 * dma_resv from a root GEM object. 157 */ 158 if (nvbo->no_share) 159 drm_gem_object_put(nvbo->r_obj); 160 161 drm_gem_object_release(&bo->base); 162 } else { 163 dma_resv_fini(&bo->base._resv); 164 } 165 166 kfree(nvbo); 167 } 168 169 static inline u64 170 roundup_64(u64 x, u32 y) 171 { 172 x += y - 1; 173 do_div(x, y); 174 return x * y; 175 } 176 177 static void 178 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size) 179 { 180 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 181 struct nvif_device *device = &drm->client.device; 182 183 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) { 184 if (nvbo->mode) { 185 if (device->info.chipset >= 0x40) { 186 *align = 65536; 187 *size = roundup_64(*size, 64 * nvbo->mode); 188 189 } else if (device->info.chipset >= 0x30) { 190 *align = 32768; 191 *size = roundup_64(*size, 64 * nvbo->mode); 192 193 } else if (device->info.chipset >= 0x20) { 194 *align = 16384; 195 *size = roundup_64(*size, 64 * nvbo->mode); 196 197 } else if (device->info.chipset >= 0x10) { 198 *align = 16384; 199 *size = roundup_64(*size, 32 * nvbo->mode); 200 } 201 } 202 } else { 203 *size = roundup_64(*size, (1 << nvbo->page)); 204 *align = max((1 << nvbo->page), *align); 205 } 206 207 *size = roundup_64(*size, PAGE_SIZE); 208 } 209 210 struct nouveau_bo * 211 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain, 212 u32 tile_mode, u32 tile_flags, bool internal) 213 { 214 struct nouveau_drm *drm = cli->drm; 215 struct nouveau_bo *nvbo; 216 struct nvif_mmu *mmu = &cli->mmu; 217 struct nvif_vmm *vmm = &nouveau_cli_vmm(cli)->vmm; 218 int i, pi = -1; 219 220 if (!*size) { 221 NV_WARN(drm, "skipped size %016llx\n", *size); 222 return ERR_PTR(-EINVAL); 223 } 224 225 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL); 226 if (!nvbo) 227 return ERR_PTR(-ENOMEM); 228 229 INIT_LIST_HEAD(&nvbo->head); 230 INIT_LIST_HEAD(&nvbo->entry); 231 INIT_LIST_HEAD(&nvbo->vma_list); 232 nvbo->bo.bdev = &drm->ttm.bdev; 233 234 /* This is confusing, and doesn't actually mean we want an uncached 235 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated 236 * into in nouveau_gem_new(). 237 */ 238 if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) { 239 /* Determine if we can get a cache-coherent map, forcing 240 * uncached mapping if we can't. 241 */ 242 if (!nouveau_drm_use_coherent_gpu_mapping(drm)) 243 nvbo->force_coherent = true; 244 } 245 246 nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG); 247 248 if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) { 249 nvbo->kind = (tile_flags & 0x0000ff00) >> 8; 250 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { 251 kfree(nvbo); 252 return ERR_PTR(-EINVAL); 253 } 254 255 nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind; 256 } else if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) { 257 nvbo->kind = (tile_flags & 0x00007f00) >> 8; 258 nvbo->comp = (tile_flags & 0x00030000) >> 16; 259 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) { 260 kfree(nvbo); 261 return ERR_PTR(-EINVAL); 262 } 263 } else { 264 nvbo->zeta = (tile_flags & 0x00000007); 265 } 266 nvbo->mode = tile_mode; 267 268 if (!nouveau_cli_uvmm(cli) || internal) { 269 /* Determine the desirable target GPU page size for the buffer. */ 270 for (i = 0; i < vmm->page_nr; i++) { 271 /* Because we cannot currently allow VMM maps to fail 272 * during buffer migration, we need to determine page 273 * size for the buffer up-front, and pre-allocate its 274 * page tables. 275 * 276 * Skip page sizes that can't support needed domains. 277 */ 278 if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE && 279 (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram) 280 continue; 281 if ((domain & NOUVEAU_GEM_DOMAIN_GART) && 282 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT)) 283 continue; 284 285 /* Select this page size if it's the first that supports 286 * the potential memory domains, or when it's compatible 287 * with the requested compression settings. 288 */ 289 if (pi < 0 || !nvbo->comp || vmm->page[i].comp) 290 pi = i; 291 292 /* Stop once the buffer is larger than the current page size. */ 293 if (*size >= 1ULL << vmm->page[i].shift) 294 break; 295 } 296 297 if (WARN_ON(pi < 0)) { 298 kfree(nvbo); 299 return ERR_PTR(-EINVAL); 300 } 301 302 /* Disable compression if suitable settings couldn't be found. */ 303 if (nvbo->comp && !vmm->page[pi].comp) { 304 if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100) 305 nvbo->kind = mmu->kind[nvbo->kind]; 306 nvbo->comp = 0; 307 } 308 nvbo->page = vmm->page[pi].shift; 309 } else { 310 /* Determine the desirable target GPU page size for the buffer. */ 311 for (i = 0; i < vmm->page_nr; i++) { 312 /* Because we cannot currently allow VMM maps to fail 313 * during buffer migration, we need to determine page 314 * size for the buffer up-front, and pre-allocate its 315 * page tables. 316 * 317 * Skip page sizes that can't support needed domains. 318 */ 319 if ((domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram) 320 continue; 321 if ((domain & NOUVEAU_GEM_DOMAIN_GART) && 322 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT)) 323 continue; 324 325 /* pick the last one as it will be smallest. */ 326 pi = i; 327 328 /* Stop once the buffer is larger than the current page size. */ 329 if (*size >= 1ULL << vmm->page[i].shift) 330 break; 331 } 332 if (WARN_ON(pi < 0)) { 333 kfree(nvbo); 334 return ERR_PTR(-EINVAL); 335 } 336 nvbo->page = vmm->page[pi].shift; 337 } 338 339 nouveau_bo_fixup_align(nvbo, align, size); 340 341 return nvbo; 342 } 343 344 int 345 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain, 346 struct sg_table *sg, struct dma_resv *robj) 347 { 348 int type = sg ? ttm_bo_type_sg : ttm_bo_type_device; 349 int ret; 350 struct ttm_operation_ctx ctx = { 351 .interruptible = false, 352 .no_wait_gpu = false, 353 .resv = robj, 354 }; 355 356 nouveau_bo_placement_set(nvbo, domain, 0); 357 INIT_LIST_HEAD(&nvbo->io_reserve_lru); 358 359 ret = ttm_bo_init_reserved(nvbo->bo.bdev, &nvbo->bo, type, 360 &nvbo->placement, align >> PAGE_SHIFT, &ctx, 361 sg, robj, nouveau_bo_del_ttm); 362 if (ret) { 363 /* ttm will call nouveau_bo_del_ttm if it fails.. */ 364 return ret; 365 } 366 367 if (!robj) 368 ttm_bo_unreserve(&nvbo->bo); 369 370 return 0; 371 } 372 373 int 374 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align, 375 uint32_t domain, uint32_t tile_mode, uint32_t tile_flags, 376 struct sg_table *sg, struct dma_resv *robj, 377 struct nouveau_bo **pnvbo) 378 { 379 struct nouveau_bo *nvbo; 380 int ret; 381 382 nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode, 383 tile_flags, true); 384 if (IS_ERR(nvbo)) 385 return PTR_ERR(nvbo); 386 387 nvbo->bo.base.size = size; 388 dma_resv_init(&nvbo->bo.base._resv); 389 drm_vma_node_reset(&nvbo->bo.base.vma_node); 390 391 /* This must be called before ttm_bo_init_reserved(). Subsequent 392 * bo_move() callbacks might already iterate the GEMs GPUVA list. 393 */ 394 drm_gem_gpuva_init(&nvbo->bo.base); 395 396 ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj); 397 if (ret) 398 return ret; 399 400 *pnvbo = nvbo; 401 return 0; 402 } 403 404 static void 405 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain) 406 { 407 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 408 u64 vram_size = drm->client.device.info.ram_size; 409 unsigned i, fpfn, lpfn; 410 411 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS && 412 nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) && 413 nvbo->bo.base.size < vram_size / 4) { 414 /* 415 * Make sure that the color and depth buffers are handled 416 * by independent memory controller units. Up to a 9x 417 * speed up when alpha-blending and depth-test are enabled 418 * at the same time. 419 */ 420 if (nvbo->zeta) { 421 fpfn = (vram_size / 2) >> PAGE_SHIFT; 422 lpfn = ~0; 423 } else { 424 fpfn = 0; 425 lpfn = (vram_size / 2) >> PAGE_SHIFT; 426 } 427 for (i = 0; i < nvbo->placement.num_placement; ++i) { 428 nvbo->placements[i].fpfn = fpfn; 429 nvbo->placements[i].lpfn = lpfn; 430 } 431 } 432 } 433 434 void 435 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain, 436 uint32_t busy) 437 { 438 unsigned int *n = &nvbo->placement.num_placement; 439 struct ttm_place *pl = nvbo->placements; 440 441 domain |= busy; 442 443 *n = 0; 444 if (domain & NOUVEAU_GEM_DOMAIN_VRAM) { 445 pl[*n].mem_type = TTM_PL_VRAM; 446 pl[*n].flags = busy & NOUVEAU_GEM_DOMAIN_VRAM ? 447 TTM_PL_FLAG_FALLBACK : 0; 448 (*n)++; 449 } 450 if (domain & NOUVEAU_GEM_DOMAIN_GART) { 451 pl[*n].mem_type = TTM_PL_TT; 452 pl[*n].flags = busy & NOUVEAU_GEM_DOMAIN_GART ? 453 TTM_PL_FLAG_FALLBACK : 0; 454 (*n)++; 455 } 456 if (domain & NOUVEAU_GEM_DOMAIN_CPU) { 457 pl[*n].mem_type = TTM_PL_SYSTEM; 458 pl[*n].flags = busy & NOUVEAU_GEM_DOMAIN_CPU ? 459 TTM_PL_FLAG_FALLBACK : 0; 460 (*n)++; 461 } 462 463 nvbo->placement.placement = nvbo->placements; 464 set_placement_range(nvbo, domain); 465 } 466 467 int nouveau_bo_pin_locked(struct nouveau_bo *nvbo, uint32_t domain, bool contig) 468 { 469 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 470 struct ttm_buffer_object *bo = &nvbo->bo; 471 bool force = false, evict = false; 472 int ret = 0; 473 474 dma_resv_assert_held(bo->base.resv); 475 476 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && 477 domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) { 478 if (!nvbo->contig) { 479 nvbo->contig = true; 480 force = true; 481 evict = true; 482 } 483 } 484 485 if (nvbo->bo.pin_count) { 486 bool error = evict; 487 488 switch (bo->resource->mem_type) { 489 case TTM_PL_VRAM: 490 error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM); 491 break; 492 case TTM_PL_TT: 493 error |= !(domain & NOUVEAU_GEM_DOMAIN_GART); 494 break; 495 default: 496 break; 497 } 498 499 if (error) { 500 NV_ERROR(drm, "bo %p pinned elsewhere: " 501 "0x%08x vs 0x%08x\n", bo, 502 bo->resource->mem_type, domain); 503 ret = -EBUSY; 504 } 505 ttm_bo_pin(&nvbo->bo); 506 goto out; 507 } 508 509 if (evict) { 510 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0); 511 ret = nouveau_bo_validate(nvbo, false, false); 512 if (ret) 513 goto out; 514 } 515 516 nouveau_bo_placement_set(nvbo, domain, 0); 517 ret = nouveau_bo_validate(nvbo, false, false); 518 if (ret) 519 goto out; 520 521 ttm_bo_pin(&nvbo->bo); 522 523 switch (bo->resource->mem_type) { 524 case TTM_PL_VRAM: 525 drm->gem.vram_available -= bo->base.size; 526 break; 527 case TTM_PL_TT: 528 drm->gem.gart_available -= bo->base.size; 529 break; 530 default: 531 break; 532 } 533 534 out: 535 if (force && ret) 536 nvbo->contig = false; 537 return ret; 538 } 539 540 void nouveau_bo_unpin_locked(struct nouveau_bo *nvbo) 541 { 542 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 543 struct ttm_buffer_object *bo = &nvbo->bo; 544 545 dma_resv_assert_held(bo->base.resv); 546 547 ttm_bo_unpin(&nvbo->bo); 548 if (!nvbo->bo.pin_count) { 549 switch (bo->resource->mem_type) { 550 case TTM_PL_VRAM: 551 drm->gem.vram_available += bo->base.size; 552 break; 553 case TTM_PL_TT: 554 drm->gem.gart_available += bo->base.size; 555 break; 556 default: 557 break; 558 } 559 } 560 } 561 562 int nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig) 563 { 564 struct ttm_buffer_object *bo = &nvbo->bo; 565 int ret; 566 567 ret = ttm_bo_reserve(bo, false, false, NULL); 568 if (ret) 569 return ret; 570 ret = nouveau_bo_pin_locked(nvbo, domain, contig); 571 ttm_bo_unreserve(bo); 572 573 return ret; 574 } 575 576 int nouveau_bo_unpin(struct nouveau_bo *nvbo) 577 { 578 struct ttm_buffer_object *bo = &nvbo->bo; 579 int ret; 580 581 ret = ttm_bo_reserve(bo, false, false, NULL); 582 if (ret) 583 return ret; 584 nouveau_bo_unpin_locked(nvbo); 585 ttm_bo_unreserve(bo); 586 587 return 0; 588 } 589 590 int 591 nouveau_bo_map(struct nouveau_bo *nvbo) 592 { 593 int ret; 594 595 ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL); 596 if (ret) 597 return ret; 598 599 ret = ttm_bo_kmap(&nvbo->bo, 0, PFN_UP(nvbo->bo.base.size), &nvbo->kmap); 600 601 ttm_bo_unreserve(&nvbo->bo); 602 return ret; 603 } 604 605 void 606 nouveau_bo_unmap(struct nouveau_bo *nvbo) 607 { 608 if (!nvbo) 609 return; 610 611 ttm_bo_kunmap(&nvbo->kmap); 612 } 613 614 void 615 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo) 616 { 617 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 618 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm; 619 int i, j; 620 621 if (!ttm_dma || !ttm_dma->dma_address) 622 return; 623 if (!ttm_dma->pages) { 624 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma); 625 return; 626 } 627 628 /* Don't waste time looping if the object is coherent */ 629 if (nvbo->force_coherent) 630 return; 631 632 i = 0; 633 while (i < ttm_dma->num_pages) { 634 struct page *p = ttm_dma->pages[i]; 635 size_t num_pages = 1; 636 637 for (j = i + 1; j < ttm_dma->num_pages; ++j) { 638 if (++p != ttm_dma->pages[j]) 639 break; 640 641 ++num_pages; 642 } 643 dma_sync_single_for_device(drm->dev->dev, 644 ttm_dma->dma_address[i], 645 num_pages * PAGE_SIZE, DMA_TO_DEVICE); 646 i += num_pages; 647 } 648 } 649 650 void 651 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo) 652 { 653 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); 654 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm; 655 int i, j; 656 657 if (!ttm_dma || !ttm_dma->dma_address) 658 return; 659 if (!ttm_dma->pages) { 660 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma); 661 return; 662 } 663 664 /* Don't waste time looping if the object is coherent */ 665 if (nvbo->force_coherent) 666 return; 667 668 i = 0; 669 while (i < ttm_dma->num_pages) { 670 struct page *p = ttm_dma->pages[i]; 671 size_t num_pages = 1; 672 673 for (j = i + 1; j < ttm_dma->num_pages; ++j) { 674 if (++p != ttm_dma->pages[j]) 675 break; 676 677 ++num_pages; 678 } 679 680 dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i], 681 num_pages * PAGE_SIZE, DMA_FROM_DEVICE); 682 i += num_pages; 683 } 684 } 685 686 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo) 687 { 688 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 689 struct nouveau_bo *nvbo = nouveau_bo(bo); 690 691 mutex_lock(&drm->ttm.io_reserve_mutex); 692 list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru); 693 mutex_unlock(&drm->ttm.io_reserve_mutex); 694 } 695 696 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo) 697 { 698 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 699 struct nouveau_bo *nvbo = nouveau_bo(bo); 700 701 mutex_lock(&drm->ttm.io_reserve_mutex); 702 list_del_init(&nvbo->io_reserve_lru); 703 mutex_unlock(&drm->ttm.io_reserve_mutex); 704 } 705 706 int 707 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible, 708 bool no_wait_gpu) 709 { 710 struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu }; 711 int ret; 712 713 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx); 714 if (ret) 715 return ret; 716 717 nouveau_bo_sync_for_device(nvbo); 718 719 return 0; 720 } 721 722 void 723 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val) 724 { 725 bool is_iomem; 726 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 727 728 mem += index; 729 730 if (is_iomem) 731 iowrite16_native(val, (void __force __iomem *)mem); 732 else 733 *mem = val; 734 } 735 736 u32 737 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index) 738 { 739 bool is_iomem; 740 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 741 742 mem += index; 743 744 if (is_iomem) 745 return ioread32_native((void __force __iomem *)mem); 746 else 747 return *mem; 748 } 749 750 void 751 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val) 752 { 753 bool is_iomem; 754 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); 755 756 mem += index; 757 758 if (is_iomem) 759 iowrite32_native(val, (void __force __iomem *)mem); 760 else 761 *mem = val; 762 } 763 764 static struct ttm_tt * 765 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) 766 { 767 #if IS_ENABLED(CONFIG_AGP) 768 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 769 770 if (drm->agp.bridge) { 771 return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags); 772 } 773 #endif 774 775 return nouveau_sgdma_create_ttm(bo, page_flags); 776 } 777 778 static int 779 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm, 780 struct ttm_resource *reg) 781 { 782 #if IS_ENABLED(CONFIG_AGP) 783 struct nouveau_drm *drm = nouveau_bdev(bdev); 784 #endif 785 if (!reg) 786 return -EINVAL; 787 #if IS_ENABLED(CONFIG_AGP) 788 if (drm->agp.bridge) 789 return ttm_agp_bind(ttm, reg); 790 #endif 791 return nouveau_sgdma_bind(bdev, ttm, reg); 792 } 793 794 static void 795 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm) 796 { 797 #if IS_ENABLED(CONFIG_AGP) 798 struct nouveau_drm *drm = nouveau_bdev(bdev); 799 800 if (drm->agp.bridge) { 801 ttm_agp_unbind(ttm); 802 return; 803 } 804 #endif 805 nouveau_sgdma_unbind(bdev, ttm); 806 } 807 808 static void 809 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl) 810 { 811 struct nouveau_bo *nvbo = nouveau_bo(bo); 812 813 switch (bo->resource->mem_type) { 814 case TTM_PL_VRAM: 815 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 816 NOUVEAU_GEM_DOMAIN_CPU); 817 break; 818 default: 819 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0); 820 break; 821 } 822 823 *pl = nvbo->placement; 824 } 825 826 static int 827 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo, 828 struct ttm_resource *reg) 829 { 830 struct nouveau_mem *old_mem = nouveau_mem(bo->resource); 831 struct nouveau_mem *new_mem = nouveau_mem(reg); 832 struct nvif_vmm *vmm = &drm->client.vmm.vmm; 833 int ret; 834 835 ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0, 836 old_mem->mem.size, &old_mem->vma[0]); 837 if (ret) 838 return ret; 839 840 ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0, 841 new_mem->mem.size, &old_mem->vma[1]); 842 if (ret) 843 goto done; 844 845 ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]); 846 if (ret) 847 goto done; 848 849 ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]); 850 done: 851 if (ret) { 852 nvif_vmm_put(vmm, &old_mem->vma[1]); 853 nvif_vmm_put(vmm, &old_mem->vma[0]); 854 } 855 return 0; 856 } 857 858 static int 859 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, 860 struct ttm_operation_ctx *ctx, 861 struct ttm_resource *new_reg) 862 { 863 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 864 struct nouveau_channel *chan = drm->ttm.chan; 865 struct nouveau_cli *cli = chan->cli; 866 struct nouveau_fence *fence; 867 int ret; 868 869 /* create temporary vmas for the transfer and attach them to the 870 * old nvkm_mem node, these will get cleaned up after ttm has 871 * destroyed the ttm_resource 872 */ 873 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) { 874 ret = nouveau_bo_move_prep(drm, bo, new_reg); 875 if (ret) 876 return ret; 877 } 878 879 if (drm_drv_uses_atomic_modeset(drm->dev)) 880 mutex_lock(&cli->mutex); 881 else 882 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING); 883 884 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible); 885 if (ret) 886 goto out_unlock; 887 888 ret = drm->ttm.move(chan, bo, bo->resource, new_reg); 889 if (ret) 890 goto out_unlock; 891 892 ret = nouveau_fence_new(&fence, chan); 893 if (ret) 894 goto out_unlock; 895 896 /* TODO: figure out a better solution here 897 * 898 * wait on the fence here explicitly as going through 899 * ttm_bo_move_accel_cleanup somehow doesn't seem to do it. 900 * 901 * Without this the operation can timeout and we'll fallback to a 902 * software copy, which might take several minutes to finish. 903 */ 904 nouveau_fence_wait(fence, false, false); 905 ret = ttm_bo_move_accel_cleanup(bo, &fence->base, evict, false, 906 new_reg); 907 nouveau_fence_unref(&fence); 908 909 out_unlock: 910 mutex_unlock(&cli->mutex); 911 return ret; 912 } 913 914 void 915 nouveau_bo_move_init(struct nouveau_drm *drm) 916 { 917 static const struct _method_table { 918 const char *name; 919 int engine; 920 s32 oclass; 921 int (*exec)(struct nouveau_channel *, 922 struct ttm_buffer_object *, 923 struct ttm_resource *, struct ttm_resource *); 924 int (*init)(struct nouveau_channel *, u32 handle); 925 } _methods[] = { 926 { "COPY", 4, 0xc7b5, nve0_bo_move_copy, nve0_bo_move_init }, 927 { "GRCE", 0, 0xc7b5, nve0_bo_move_copy, nvc0_bo_move_init }, 928 { "COPY", 4, 0xc6b5, nve0_bo_move_copy, nve0_bo_move_init }, 929 { "GRCE", 0, 0xc6b5, nve0_bo_move_copy, nvc0_bo_move_init }, 930 { "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init }, 931 { "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init }, 932 { "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init }, 933 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init }, 934 { "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init }, 935 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init }, 936 { "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init }, 937 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 938 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init }, 939 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 940 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init }, 941 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init }, 942 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init }, 943 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init }, 944 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init }, 945 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init }, 946 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init }, 947 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init }, 948 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init }, 949 {}, 950 }; 951 const struct _method_table *mthd = _methods; 952 const char *name = "CPU"; 953 int ret; 954 955 do { 956 struct nouveau_channel *chan; 957 958 if (mthd->engine) 959 chan = drm->cechan; 960 else 961 chan = drm->channel; 962 if (chan == NULL) 963 continue; 964 965 ret = nvif_object_ctor(&chan->user, "ttmBoMove", 966 mthd->oclass | (mthd->engine << 16), 967 mthd->oclass, NULL, 0, 968 &drm->ttm.copy); 969 if (ret == 0) { 970 ret = mthd->init(chan, drm->ttm.copy.handle); 971 if (ret) { 972 nvif_object_dtor(&drm->ttm.copy); 973 continue; 974 } 975 976 drm->ttm.move = mthd->exec; 977 drm->ttm.chan = chan; 978 name = mthd->name; 979 break; 980 } 981 } while ((++mthd)->exec); 982 983 NV_INFO(drm, "MM: using %s for buffer copies\n", name); 984 } 985 986 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, 987 struct ttm_resource *new_reg) 988 { 989 struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL; 990 struct nouveau_bo *nvbo = nouveau_bo(bo); 991 struct nouveau_vma *vma; 992 long ret; 993 994 /* ttm can now (stupidly) pass the driver bos it didn't create... */ 995 if (bo->destroy != nouveau_bo_del_ttm) 996 return; 997 998 nouveau_bo_del_io_reserve_lru(bo); 999 1000 if (mem && new_reg->mem_type != TTM_PL_SYSTEM && 1001 mem->mem.page == nvbo->page) { 1002 list_for_each_entry(vma, &nvbo->vma_list, head) { 1003 nouveau_vma_map(vma, mem); 1004 } 1005 nouveau_uvmm_bo_map_all(nvbo, mem); 1006 } else { 1007 list_for_each_entry(vma, &nvbo->vma_list, head) { 1008 ret = dma_resv_wait_timeout(bo->base.resv, 1009 DMA_RESV_USAGE_BOOKKEEP, 1010 false, 15 * HZ); 1011 WARN_ON(ret <= 0); 1012 nouveau_vma_unmap(vma); 1013 } 1014 nouveau_uvmm_bo_unmap_all(nvbo); 1015 } 1016 1017 if (new_reg) 1018 nvbo->offset = (new_reg->start << PAGE_SHIFT); 1019 1020 } 1021 1022 static int 1023 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg, 1024 struct nouveau_drm_tile **new_tile) 1025 { 1026 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1027 struct drm_device *dev = drm->dev; 1028 struct nouveau_bo *nvbo = nouveau_bo(bo); 1029 u64 offset = new_reg->start << PAGE_SHIFT; 1030 1031 *new_tile = NULL; 1032 if (new_reg->mem_type != TTM_PL_VRAM) 1033 return 0; 1034 1035 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { 1036 *new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size, 1037 nvbo->mode, nvbo->zeta); 1038 } 1039 1040 return 0; 1041 } 1042 1043 static void 1044 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo, 1045 struct nouveau_drm_tile *new_tile, 1046 struct nouveau_drm_tile **old_tile) 1047 { 1048 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1049 struct drm_device *dev = drm->dev; 1050 struct dma_fence *fence; 1051 int ret; 1052 1053 ret = dma_resv_get_singleton(bo->base.resv, DMA_RESV_USAGE_WRITE, 1054 &fence); 1055 if (ret) 1056 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_WRITE, 1057 false, MAX_SCHEDULE_TIMEOUT); 1058 1059 nv10_bo_put_tile_region(dev, *old_tile, fence); 1060 *old_tile = new_tile; 1061 } 1062 1063 static int 1064 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, 1065 struct ttm_operation_ctx *ctx, 1066 struct ttm_resource *new_reg, 1067 struct ttm_place *hop) 1068 { 1069 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1070 struct nouveau_bo *nvbo = nouveau_bo(bo); 1071 struct drm_gem_object *obj = &bo->base; 1072 struct ttm_resource *old_reg = bo->resource; 1073 struct nouveau_drm_tile *new_tile = NULL; 1074 int ret = 0; 1075 1076 if (new_reg->mem_type == TTM_PL_TT) { 1077 ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg); 1078 if (ret) 1079 return ret; 1080 } 1081 1082 drm_gpuvm_bo_gem_evict(obj, evict); 1083 nouveau_bo_move_ntfy(bo, new_reg); 1084 ret = ttm_bo_wait_ctx(bo, ctx); 1085 if (ret) 1086 goto out_ntfy; 1087 1088 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { 1089 ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile); 1090 if (ret) 1091 goto out_ntfy; 1092 } 1093 1094 /* Fake bo copy. */ 1095 if (!old_reg || (old_reg->mem_type == TTM_PL_SYSTEM && 1096 !bo->ttm)) { 1097 ttm_bo_move_null(bo, new_reg); 1098 goto out; 1099 } 1100 1101 if (old_reg->mem_type == TTM_PL_SYSTEM && 1102 new_reg->mem_type == TTM_PL_TT) { 1103 ttm_bo_move_null(bo, new_reg); 1104 goto out; 1105 } 1106 1107 if (old_reg->mem_type == TTM_PL_TT && 1108 new_reg->mem_type == TTM_PL_SYSTEM) { 1109 nouveau_ttm_tt_unbind(bo->bdev, bo->ttm); 1110 ttm_resource_free(bo, &bo->resource); 1111 ttm_bo_assign_mem(bo, new_reg); 1112 goto out; 1113 } 1114 1115 /* Hardware assisted copy. */ 1116 if (drm->ttm.move) { 1117 if ((old_reg->mem_type == TTM_PL_SYSTEM && 1118 new_reg->mem_type == TTM_PL_VRAM) || 1119 (old_reg->mem_type == TTM_PL_VRAM && 1120 new_reg->mem_type == TTM_PL_SYSTEM)) { 1121 hop->fpfn = 0; 1122 hop->lpfn = 0; 1123 hop->mem_type = TTM_PL_TT; 1124 hop->flags = 0; 1125 return -EMULTIHOP; 1126 } 1127 ret = nouveau_bo_move_m2mf(bo, evict, ctx, 1128 new_reg); 1129 } else 1130 ret = -ENODEV; 1131 1132 if (ret) { 1133 /* Fallback to software copy. */ 1134 ret = ttm_bo_move_memcpy(bo, ctx, new_reg); 1135 } 1136 1137 out: 1138 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) { 1139 if (ret) 1140 nouveau_bo_vm_cleanup(bo, NULL, &new_tile); 1141 else 1142 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile); 1143 } 1144 out_ntfy: 1145 if (ret) { 1146 nouveau_bo_move_ntfy(bo, bo->resource); 1147 drm_gpuvm_bo_gem_evict(obj, !evict); 1148 } 1149 return ret; 1150 } 1151 1152 static void 1153 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm, 1154 struct ttm_resource *reg) 1155 { 1156 struct nouveau_mem *mem = nouveau_mem(reg); 1157 1158 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { 1159 switch (reg->mem_type) { 1160 case TTM_PL_TT: 1161 if (mem->kind) 1162 nvif_object_unmap_handle(&mem->mem.object); 1163 break; 1164 case TTM_PL_VRAM: 1165 nvif_object_unmap_handle(&mem->mem.object); 1166 break; 1167 default: 1168 break; 1169 } 1170 } 1171 } 1172 1173 static int 1174 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg) 1175 { 1176 struct nouveau_drm *drm = nouveau_bdev(bdev); 1177 struct nvkm_device *device = nvxx_device(drm); 1178 struct nouveau_mem *mem = nouveau_mem(reg); 1179 struct nvif_mmu *mmu = &drm->client.mmu; 1180 int ret; 1181 1182 mutex_lock(&drm->ttm.io_reserve_mutex); 1183 retry: 1184 switch (reg->mem_type) { 1185 case TTM_PL_SYSTEM: 1186 /* System memory */ 1187 ret = 0; 1188 goto out; 1189 case TTM_PL_TT: 1190 #if IS_ENABLED(CONFIG_AGP) 1191 if (drm->agp.bridge) { 1192 reg->bus.offset = (reg->start << PAGE_SHIFT) + 1193 drm->agp.base; 1194 reg->bus.is_iomem = !drm->agp.cma; 1195 reg->bus.caching = ttm_write_combined; 1196 } 1197 #endif 1198 if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || 1199 !mem->kind) { 1200 /* untiled */ 1201 ret = 0; 1202 break; 1203 } 1204 fallthrough; /* tiled memory */ 1205 case TTM_PL_VRAM: 1206 reg->bus.offset = (reg->start << PAGE_SHIFT) + 1207 device->func->resource_addr(device, 1); 1208 reg->bus.is_iomem = true; 1209 1210 /* Some BARs do not support being ioremapped WC */ 1211 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA && 1212 mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED) 1213 reg->bus.caching = ttm_uncached; 1214 else 1215 reg->bus.caching = ttm_write_combined; 1216 1217 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) { 1218 union { 1219 struct nv50_mem_map_v0 nv50; 1220 struct gf100_mem_map_v0 gf100; 1221 } args; 1222 u64 handle, length; 1223 u32 argc = 0; 1224 1225 switch (mem->mem.object.oclass) { 1226 case NVIF_CLASS_MEM_NV50: 1227 args.nv50.version = 0; 1228 args.nv50.ro = 0; 1229 args.nv50.kind = mem->kind; 1230 args.nv50.comp = mem->comp; 1231 argc = sizeof(args.nv50); 1232 break; 1233 case NVIF_CLASS_MEM_GF100: 1234 args.gf100.version = 0; 1235 args.gf100.ro = 0; 1236 args.gf100.kind = mem->kind; 1237 argc = sizeof(args.gf100); 1238 break; 1239 default: 1240 WARN_ON(1); 1241 break; 1242 } 1243 1244 ret = nvif_object_map_handle(&mem->mem.object, 1245 &args, argc, 1246 &handle, &length); 1247 if (ret != 1) { 1248 if (WARN_ON(ret == 0)) 1249 ret = -EINVAL; 1250 goto out; 1251 } 1252 1253 reg->bus.offset = handle; 1254 } 1255 ret = 0; 1256 break; 1257 default: 1258 ret = -EINVAL; 1259 } 1260 1261 out: 1262 if (ret == -ENOSPC) { 1263 struct nouveau_bo *nvbo; 1264 1265 nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru, 1266 typeof(*nvbo), 1267 io_reserve_lru); 1268 if (nvbo) { 1269 list_del_init(&nvbo->io_reserve_lru); 1270 drm_vma_node_unmap(&nvbo->bo.base.vma_node, 1271 bdev->dev_mapping); 1272 nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource); 1273 nvbo->bo.resource->bus.offset = 0; 1274 nvbo->bo.resource->bus.addr = NULL; 1275 goto retry; 1276 } 1277 1278 } 1279 mutex_unlock(&drm->ttm.io_reserve_mutex); 1280 return ret; 1281 } 1282 1283 static void 1284 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg) 1285 { 1286 struct nouveau_drm *drm = nouveau_bdev(bdev); 1287 1288 mutex_lock(&drm->ttm.io_reserve_mutex); 1289 nouveau_ttm_io_mem_free_locked(drm, reg); 1290 mutex_unlock(&drm->ttm.io_reserve_mutex); 1291 } 1292 1293 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo) 1294 { 1295 struct nouveau_drm *drm = nouveau_bdev(bo->bdev); 1296 struct nouveau_bo *nvbo = nouveau_bo(bo); 1297 struct nvkm_device *device = nvxx_device(drm); 1298 u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT; 1299 int i, ret; 1300 1301 /* as long as the bo isn't in vram, and isn't tiled, we've got 1302 * nothing to do here. 1303 */ 1304 if (bo->resource->mem_type != TTM_PL_VRAM) { 1305 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA || 1306 !nvbo->kind) 1307 return 0; 1308 1309 if (bo->resource->mem_type != TTM_PL_SYSTEM) 1310 return 0; 1311 1312 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0); 1313 1314 } else { 1315 /* make sure bo is in mappable vram */ 1316 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA || 1317 bo->resource->start + PFN_UP(bo->resource->size) < mappable) 1318 return 0; 1319 1320 for (i = 0; i < nvbo->placement.num_placement; ++i) { 1321 nvbo->placements[i].fpfn = 0; 1322 nvbo->placements[i].lpfn = mappable; 1323 } 1324 1325 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0); 1326 } 1327 1328 ret = nouveau_bo_validate(nvbo, false, false); 1329 if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS)) 1330 return VM_FAULT_NOPAGE; 1331 else if (unlikely(ret)) 1332 return VM_FAULT_SIGBUS; 1333 1334 ttm_bo_move_to_lru_tail_unlocked(bo); 1335 return 0; 1336 } 1337 1338 static int 1339 nouveau_ttm_tt_populate(struct ttm_device *bdev, 1340 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) 1341 { 1342 struct ttm_tt *ttm_dma = (void *)ttm; 1343 struct nouveau_drm *drm; 1344 bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL); 1345 1346 if (ttm_tt_is_populated(ttm)) 1347 return 0; 1348 1349 if (slave && ttm->sg) { 1350 drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address, 1351 ttm->num_pages); 1352 return 0; 1353 } 1354 1355 drm = nouveau_bdev(bdev); 1356 1357 return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx); 1358 } 1359 1360 static void 1361 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev, 1362 struct ttm_tt *ttm) 1363 { 1364 struct nouveau_drm *drm; 1365 bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL); 1366 1367 if (slave) 1368 return; 1369 1370 nouveau_ttm_tt_unbind(bdev, ttm); 1371 1372 drm = nouveau_bdev(bdev); 1373 1374 return ttm_pool_free(&drm->ttm.bdev.pool, ttm); 1375 } 1376 1377 static void 1378 nouveau_ttm_tt_destroy(struct ttm_device *bdev, 1379 struct ttm_tt *ttm) 1380 { 1381 #if IS_ENABLED(CONFIG_AGP) 1382 struct nouveau_drm *drm = nouveau_bdev(bdev); 1383 if (drm->agp.bridge) { 1384 ttm_agp_destroy(ttm); 1385 return; 1386 } 1387 #endif 1388 nouveau_sgdma_destroy(bdev, ttm); 1389 } 1390 1391 void 1392 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive) 1393 { 1394 struct dma_resv *resv = nvbo->bo.base.resv; 1395 1396 if (!fence) 1397 return; 1398 1399 dma_resv_add_fence(resv, &fence->base, exclusive ? 1400 DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ); 1401 } 1402 1403 static void 1404 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1405 { 1406 nouveau_bo_move_ntfy(bo, NULL); 1407 } 1408 1409 struct ttm_device_funcs nouveau_bo_driver = { 1410 .ttm_tt_create = &nouveau_ttm_tt_create, 1411 .ttm_tt_populate = &nouveau_ttm_tt_populate, 1412 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate, 1413 .ttm_tt_destroy = &nouveau_ttm_tt_destroy, 1414 .eviction_valuable = ttm_bo_eviction_valuable, 1415 .evict_flags = nouveau_bo_evict_flags, 1416 .delete_mem_notify = nouveau_bo_delete_mem_notify, 1417 .move = nouveau_bo_move, 1418 .io_mem_reserve = &nouveau_ttm_io_mem_reserve, 1419 .io_mem_free = &nouveau_ttm_io_mem_free, 1420 }; 1421