xref: /linux/drivers/gpu/drm/nouveau/nouveau_bios.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright 2005-2006 Erik Waling
3  * Copyright 2006 Stephane Marchesin
4  * Copyright 2007-2009 Stuart Bennett
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
20  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
21  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "drmP.h"
26 #define NV_DEBUG_NOTRACE
27 #include "nouveau_drv.h"
28 #include "nouveau_hw.h"
29 #include "nouveau_encoder.h"
30 
31 #include <linux/io-mapping.h>
32 
33 /* these defines are made up */
34 #define NV_CIO_CRE_44_HEADA 0x0
35 #define NV_CIO_CRE_44_HEADB 0x3
36 #define FEATURE_MOBILE 0x10	/* also FEATURE_QUADRO for BMP */
37 #define LEGACY_I2C_CRT 0x80
38 #define LEGACY_I2C_PANEL 0x81
39 #define LEGACY_I2C_TV 0x82
40 
41 #define EDID1_LEN 128
42 
43 #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg)
44 #define LOG_OLD_VALUE(x)
45 
46 struct init_exec {
47 	bool execute;
48 	bool repeat;
49 };
50 
51 static bool nv_cksum(const uint8_t *data, unsigned int length)
52 {
53 	/*
54 	 * There's a few checksums in the BIOS, so here's a generic checking
55 	 * function.
56 	 */
57 	int i;
58 	uint8_t sum = 0;
59 
60 	for (i = 0; i < length; i++)
61 		sum += data[i];
62 
63 	if (sum)
64 		return true;
65 
66 	return false;
67 }
68 
69 static int
70 score_vbios(struct drm_device *dev, const uint8_t *data, const bool writeable)
71 {
72 	if (!(data[0] == 0x55 && data[1] == 0xAA)) {
73 		NV_TRACEWARN(dev, "... BIOS signature not found\n");
74 		return 0;
75 	}
76 
77 	if (nv_cksum(data, data[2] * 512)) {
78 		NV_TRACEWARN(dev, "... BIOS checksum invalid\n");
79 		/* if a ro image is somewhat bad, it's probably all rubbish */
80 		return writeable ? 2 : 1;
81 	} else
82 		NV_TRACE(dev, "... appears to be valid\n");
83 
84 	return 3;
85 }
86 
87 static void load_vbios_prom(struct drm_device *dev, uint8_t *data)
88 {
89 	struct drm_nouveau_private *dev_priv = dev->dev_private;
90 	uint32_t pci_nv_20, save_pci_nv_20;
91 	int pcir_ptr;
92 	int i;
93 
94 	if (dev_priv->card_type >= NV_50)
95 		pci_nv_20 = 0x88050;
96 	else
97 		pci_nv_20 = NV_PBUS_PCI_NV_20;
98 
99 	/* enable ROM access */
100 	save_pci_nv_20 = nvReadMC(dev, pci_nv_20);
101 	nvWriteMC(dev, pci_nv_20,
102 		  save_pci_nv_20 & ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
103 
104 	/* bail if no rom signature */
105 	if (nv_rd08(dev, NV_PROM_OFFSET) != 0x55 ||
106 	    nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa)
107 		goto out;
108 
109 	/* additional check (see note below) - read PCI record header */
110 	pcir_ptr = nv_rd08(dev, NV_PROM_OFFSET + 0x18) |
111 		   nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8;
112 	if (nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr) != 'P' ||
113 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 1) != 'C' ||
114 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 2) != 'I' ||
115 	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 3) != 'R')
116 		goto out;
117 
118 	/* on some 6600GT/6800LE prom reads are messed up.  nvclock alleges a
119 	 * a good read may be obtained by waiting or re-reading (cargocult: 5x)
120 	 * each byte.  we'll hope pramin has something usable instead
121 	 */
122 	for (i = 0; i < NV_PROM_SIZE; i++)
123 		data[i] = nv_rd08(dev, NV_PROM_OFFSET + i);
124 
125 out:
126 	/* disable ROM access */
127 	nvWriteMC(dev, pci_nv_20,
128 		  save_pci_nv_20 | NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
129 }
130 
131 static void load_vbios_pramin(struct drm_device *dev, uint8_t *data)
132 {
133 	struct drm_nouveau_private *dev_priv = dev->dev_private;
134 	uint32_t old_bar0_pramin = 0;
135 	int i;
136 
137 	if (dev_priv->card_type >= NV_50) {
138 		u64 addr = (u64)(nv_rd32(dev, 0x619f04) & 0xffffff00) << 8;
139 		if (!addr) {
140 			addr  = (u64)nv_rd32(dev, 0x1700) << 16;
141 			addr += 0xf0000;
142 		}
143 
144 		old_bar0_pramin = nv_rd32(dev, 0x1700);
145 		nv_wr32(dev, 0x1700, addr >> 16);
146 	}
147 
148 	/* bail if no rom signature */
149 	if (nv_rd08(dev, NV_PRAMIN_OFFSET) != 0x55 ||
150 	    nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa)
151 		goto out;
152 
153 	for (i = 0; i < NV_PROM_SIZE; i++)
154 		data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i);
155 
156 out:
157 	if (dev_priv->card_type >= NV_50)
158 		nv_wr32(dev, 0x1700, old_bar0_pramin);
159 }
160 
161 static void load_vbios_pci(struct drm_device *dev, uint8_t *data)
162 {
163 	void __iomem *rom = NULL;
164 	size_t rom_len;
165 	int ret;
166 
167 	ret = pci_enable_rom(dev->pdev);
168 	if (ret)
169 		return;
170 
171 	rom = pci_map_rom(dev->pdev, &rom_len);
172 	if (!rom)
173 		goto out;
174 	memcpy_fromio(data, rom, rom_len);
175 	pci_unmap_rom(dev->pdev, rom);
176 
177 out:
178 	pci_disable_rom(dev->pdev);
179 }
180 
181 static void load_vbios_acpi(struct drm_device *dev, uint8_t *data)
182 {
183 	int i;
184 	int ret;
185 	int size = 64 * 1024;
186 
187 	if (!nouveau_acpi_rom_supported(dev->pdev))
188 		return;
189 
190 	for (i = 0; i < (size / ROM_BIOS_PAGE); i++) {
191 		ret = nouveau_acpi_get_bios_chunk(data,
192 						  (i * ROM_BIOS_PAGE),
193 						  ROM_BIOS_PAGE);
194 		if (ret <= 0)
195 			break;
196 	}
197 	return;
198 }
199 
200 struct methods {
201 	const char desc[8];
202 	void (*loadbios)(struct drm_device *, uint8_t *);
203 	const bool rw;
204 };
205 
206 static struct methods shadow_methods[] = {
207 	{ "PRAMIN", load_vbios_pramin, true },
208 	{ "PROM", load_vbios_prom, false },
209 	{ "PCIROM", load_vbios_pci, true },
210 	{ "ACPI", load_vbios_acpi, true },
211 };
212 #define NUM_SHADOW_METHODS ARRAY_SIZE(shadow_methods)
213 
214 static bool NVShadowVBIOS(struct drm_device *dev, uint8_t *data)
215 {
216 	struct methods *methods = shadow_methods;
217 	int testscore = 3;
218 	int scores[NUM_SHADOW_METHODS], i;
219 
220 	if (nouveau_vbios) {
221 		for (i = 0; i < NUM_SHADOW_METHODS; i++)
222 			if (!strcasecmp(nouveau_vbios, methods[i].desc))
223 				break;
224 
225 		if (i < NUM_SHADOW_METHODS) {
226 			NV_INFO(dev, "Attempting to use BIOS image from %s\n",
227 				methods[i].desc);
228 
229 			methods[i].loadbios(dev, data);
230 			if (score_vbios(dev, data, methods[i].rw))
231 				return true;
232 		}
233 
234 		NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios);
235 	}
236 
237 	for (i = 0; i < NUM_SHADOW_METHODS; i++) {
238 		NV_TRACE(dev, "Attempting to load BIOS image from %s\n",
239 			 methods[i].desc);
240 		data[0] = data[1] = 0;	/* avoid reuse of previous image */
241 		methods[i].loadbios(dev, data);
242 		scores[i] = score_vbios(dev, data, methods[i].rw);
243 		if (scores[i] == testscore)
244 			return true;
245 	}
246 
247 	while (--testscore > 0) {
248 		for (i = 0; i < NUM_SHADOW_METHODS; i++) {
249 			if (scores[i] == testscore) {
250 				NV_TRACE(dev, "Using BIOS image from %s\n",
251 					 methods[i].desc);
252 				methods[i].loadbios(dev, data);
253 				return true;
254 			}
255 		}
256 	}
257 
258 	NV_ERROR(dev, "No valid BIOS image found\n");
259 	return false;
260 }
261 
262 struct init_tbl_entry {
263 	char *name;
264 	uint8_t id;
265 	/* Return:
266 	 *  > 0: success, length of opcode
267 	 *    0: success, but abort further parsing of table (INIT_DONE etc)
268 	 *  < 0: failure, table parsing will be aborted
269 	 */
270 	int (*handler)(struct nvbios *, uint16_t, struct init_exec *);
271 };
272 
273 static int parse_init_table(struct nvbios *, uint16_t, struct init_exec *);
274 
275 #define MACRO_INDEX_SIZE	2
276 #define MACRO_SIZE		8
277 #define CONDITION_SIZE		12
278 #define IO_FLAG_CONDITION_SIZE	9
279 #define IO_CONDITION_SIZE	5
280 #define MEM_INIT_SIZE		66
281 
282 static void still_alive(void)
283 {
284 #if 0
285 	sync();
286 	mdelay(2);
287 #endif
288 }
289 
290 static uint32_t
291 munge_reg(struct nvbios *bios, uint32_t reg)
292 {
293 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
294 	struct dcb_entry *dcbent = bios->display.output;
295 
296 	if (dev_priv->card_type < NV_50)
297 		return reg;
298 
299 	if (reg & 0x80000000) {
300 		BUG_ON(bios->display.crtc < 0);
301 		reg += bios->display.crtc * 0x800;
302 	}
303 
304 	if (reg & 0x40000000) {
305 		BUG_ON(!dcbent);
306 
307 		reg += (ffs(dcbent->or) - 1) * 0x800;
308 		if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1))
309 			reg += 0x00000080;
310 	}
311 
312 	reg &= ~0xe0000000;
313 	return reg;
314 }
315 
316 static int
317 valid_reg(struct nvbios *bios, uint32_t reg)
318 {
319 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
320 	struct drm_device *dev = bios->dev;
321 
322 	/* C51 has misaligned regs on purpose. Marvellous */
323 	if (reg & 0x2 ||
324 	    (reg & 0x1 && dev_priv->vbios.chip_version != 0x51))
325 		NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg);
326 
327 	/* warn on C51 regs that haven't been verified accessible in tracing */
328 	if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 &&
329 	    reg != 0x130d && reg != 0x1311 && reg != 0x60081d)
330 		NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n",
331 			reg);
332 
333 	if (reg >= (8*1024*1024)) {
334 		NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg);
335 		return 0;
336 	}
337 
338 	return 1;
339 }
340 
341 static bool
342 valid_idx_port(struct nvbios *bios, uint16_t port)
343 {
344 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
345 	struct drm_device *dev = bios->dev;
346 
347 	/*
348 	 * If adding more ports here, the read/write functions below will need
349 	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
350 	 * used for the port in question
351 	 */
352 	if (dev_priv->card_type < NV_50) {
353 		if (port == NV_CIO_CRX__COLOR)
354 			return true;
355 		if (port == NV_VIO_SRX)
356 			return true;
357 	} else {
358 		if (port == NV_CIO_CRX__COLOR)
359 			return true;
360 	}
361 
362 	NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n",
363 		 port);
364 
365 	return false;
366 }
367 
368 static bool
369 valid_port(struct nvbios *bios, uint16_t port)
370 {
371 	struct drm_device *dev = bios->dev;
372 
373 	/*
374 	 * If adding more ports here, the read/write functions below will need
375 	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
376 	 * used for the port in question
377 	 */
378 	if (port == NV_VIO_VSE2)
379 		return true;
380 
381 	NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port);
382 
383 	return false;
384 }
385 
386 static uint32_t
387 bios_rd32(struct nvbios *bios, uint32_t reg)
388 {
389 	uint32_t data;
390 
391 	reg = munge_reg(bios, reg);
392 	if (!valid_reg(bios, reg))
393 		return 0;
394 
395 	/*
396 	 * C51 sometimes uses regs with bit0 set in the address. For these
397 	 * cases there should exist a translation in a BIOS table to an IO
398 	 * port address which the BIOS uses for accessing the reg
399 	 *
400 	 * These only seem to appear for the power control regs to a flat panel,
401 	 * and the GPIO regs at 0x60081*.  In C51 mmio traces the normal regs
402 	 * for 0x1308 and 0x1310 are used - hence the mask below.  An S3
403 	 * suspend-resume mmio trace from a C51 will be required to see if this
404 	 * is true for the power microcode in 0x14.., or whether the direct IO
405 	 * port access method is needed
406 	 */
407 	if (reg & 0x1)
408 		reg &= ~0x1;
409 
410 	data = nv_rd32(bios->dev, reg);
411 
412 	BIOSLOG(bios, "	Read:  Reg: 0x%08X, Data: 0x%08X\n", reg, data);
413 
414 	return data;
415 }
416 
417 static void
418 bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data)
419 {
420 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
421 
422 	reg = munge_reg(bios, reg);
423 	if (!valid_reg(bios, reg))
424 		return;
425 
426 	/* see note in bios_rd32 */
427 	if (reg & 0x1)
428 		reg &= 0xfffffffe;
429 
430 	LOG_OLD_VALUE(bios_rd32(bios, reg));
431 	BIOSLOG(bios, "	Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data);
432 
433 	if (dev_priv->vbios.execute) {
434 		still_alive();
435 		nv_wr32(bios->dev, reg, data);
436 	}
437 }
438 
439 static uint8_t
440 bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index)
441 {
442 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
443 	struct drm_device *dev = bios->dev;
444 	uint8_t data;
445 
446 	if (!valid_idx_port(bios, port))
447 		return 0;
448 
449 	if (dev_priv->card_type < NV_50) {
450 		if (port == NV_VIO_SRX)
451 			data = NVReadVgaSeq(dev, bios->state.crtchead, index);
452 		else	/* assume NV_CIO_CRX__COLOR */
453 			data = NVReadVgaCrtc(dev, bios->state.crtchead, index);
454 	} else {
455 		uint32_t data32;
456 
457 		data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
458 		data = (data32 >> ((index & 3) << 3)) & 0xff;
459 	}
460 
461 	BIOSLOG(bios, "	Indexed IO read:  Port: 0x%04X, Index: 0x%02X, "
462 		      "Head: 0x%02X, Data: 0x%02X\n",
463 		port, index, bios->state.crtchead, data);
464 	return data;
465 }
466 
467 static void
468 bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data)
469 {
470 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
471 	struct drm_device *dev = bios->dev;
472 
473 	if (!valid_idx_port(bios, port))
474 		return;
475 
476 	/*
477 	 * The current head is maintained in the nvbios member  state.crtchead.
478 	 * We trap changes to CR44 and update the head variable and hence the
479 	 * register set written.
480 	 * As CR44 only exists on CRTC0, we update crtchead to head0 in advance
481 	 * of the write, and to head1 after the write
482 	 */
483 	if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 &&
484 	    data != NV_CIO_CRE_44_HEADB)
485 		bios->state.crtchead = 0;
486 
487 	LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index));
488 	BIOSLOG(bios, "	Indexed IO write: Port: 0x%04X, Index: 0x%02X, "
489 		      "Head: 0x%02X, Data: 0x%02X\n",
490 		port, index, bios->state.crtchead, data);
491 
492 	if (bios->execute && dev_priv->card_type < NV_50) {
493 		still_alive();
494 		if (port == NV_VIO_SRX)
495 			NVWriteVgaSeq(dev, bios->state.crtchead, index, data);
496 		else	/* assume NV_CIO_CRX__COLOR */
497 			NVWriteVgaCrtc(dev, bios->state.crtchead, index, data);
498 	} else
499 	if (bios->execute) {
500 		uint32_t data32, shift = (index & 3) << 3;
501 
502 		still_alive();
503 
504 		data32  = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
505 		data32 &= ~(0xff << shift);
506 		data32 |= (data << shift);
507 		bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32);
508 	}
509 
510 	if (port == NV_CIO_CRX__COLOR &&
511 	    index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB)
512 		bios->state.crtchead = 1;
513 }
514 
515 static uint8_t
516 bios_port_rd(struct nvbios *bios, uint16_t port)
517 {
518 	uint8_t data, head = bios->state.crtchead;
519 
520 	if (!valid_port(bios, port))
521 		return 0;
522 
523 	data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port);
524 
525 	BIOSLOG(bios, "	IO read:  Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
526 		port, head, data);
527 
528 	return data;
529 }
530 
531 static void
532 bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data)
533 {
534 	int head = bios->state.crtchead;
535 
536 	if (!valid_port(bios, port))
537 		return;
538 
539 	LOG_OLD_VALUE(bios_port_rd(bios, port));
540 	BIOSLOG(bios, "	IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
541 		port, head, data);
542 
543 	if (!bios->execute)
544 		return;
545 
546 	still_alive();
547 	NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data);
548 }
549 
550 static bool
551 io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
552 {
553 	/*
554 	 * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte
555 	 * for the CRTC index; 1 byte for the mask to apply to the value
556 	 * retrieved from the CRTC; 1 byte for the shift right to apply to the
557 	 * masked CRTC value; 2 bytes for the offset to the flag array, to
558 	 * which the shifted value is added; 1 byte for the mask applied to the
559 	 * value read from the flag array; and 1 byte for the value to compare
560 	 * against the masked byte from the flag table.
561 	 */
562 
563 	uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE;
564 	uint16_t crtcport = ROM16(bios->data[condptr]);
565 	uint8_t crtcindex = bios->data[condptr + 2];
566 	uint8_t mask = bios->data[condptr + 3];
567 	uint8_t shift = bios->data[condptr + 4];
568 	uint16_t flagarray = ROM16(bios->data[condptr + 5]);
569 	uint8_t flagarraymask = bios->data[condptr + 7];
570 	uint8_t cmpval = bios->data[condptr + 8];
571 	uint8_t data;
572 
573 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
574 		      "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, "
575 		      "Cmpval: 0x%02X\n",
576 		offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval);
577 
578 	data = bios_idxprt_rd(bios, crtcport, crtcindex);
579 
580 	data = bios->data[flagarray + ((data & mask) >> shift)];
581 	data &= flagarraymask;
582 
583 	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
584 		offset, data, cmpval);
585 
586 	return (data == cmpval);
587 }
588 
589 static bool
590 bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
591 {
592 	/*
593 	 * The condition table entry has 4 bytes for the address of the
594 	 * register to check, 4 bytes for a mask to apply to the register and
595 	 * 4 for a test comparison value
596 	 */
597 
598 	uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE;
599 	uint32_t reg = ROM32(bios->data[condptr]);
600 	uint32_t mask = ROM32(bios->data[condptr + 4]);
601 	uint32_t cmpval = ROM32(bios->data[condptr + 8]);
602 	uint32_t data;
603 
604 	BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n",
605 		offset, cond, reg, mask);
606 
607 	data = bios_rd32(bios, reg) & mask;
608 
609 	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
610 		offset, data, cmpval);
611 
612 	return (data == cmpval);
613 }
614 
615 static bool
616 io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
617 {
618 	/*
619 	 * The IO condition entry has 2 bytes for the IO port address; 1 byte
620 	 * for the index to write to io_port; 1 byte for the mask to apply to
621 	 * the byte read from io_port+1; and 1 byte for the value to compare
622 	 * against the masked byte.
623 	 */
624 
625 	uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE;
626 	uint16_t io_port = ROM16(bios->data[condptr]);
627 	uint8_t port_index = bios->data[condptr + 2];
628 	uint8_t mask = bios->data[condptr + 3];
629 	uint8_t cmpval = bios->data[condptr + 4];
630 
631 	uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask;
632 
633 	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
634 		offset, data, cmpval);
635 
636 	return (data == cmpval);
637 }
638 
639 static int
640 nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk)
641 {
642 	struct drm_nouveau_private *dev_priv = dev->dev_private;
643 	struct nouveau_pll_vals pll;
644 	struct pll_lims pll_limits;
645 	u32 ctrl, mask, coef;
646 	int ret;
647 
648 	ret = get_pll_limits(dev, reg, &pll_limits);
649 	if (ret)
650 		return ret;
651 
652 	clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll);
653 	if (!clk)
654 		return -ERANGE;
655 
656 	coef = pll.N1 << 8 | pll.M1;
657 	ctrl = pll.log2P << 16;
658 	mask = 0x00070000;
659 	if (reg == 0x004008) {
660 		mask |= 0x01f80000;
661 		ctrl |= (pll_limits.log2p_bias << 19);
662 		ctrl |= (pll.log2P << 22);
663 	}
664 
665 	if (!dev_priv->vbios.execute)
666 		return 0;
667 
668 	nv_mask(dev, reg + 0, mask, ctrl);
669 	nv_wr32(dev, reg + 4, coef);
670 	return 0;
671 }
672 
673 static int
674 setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk)
675 {
676 	struct drm_device *dev = bios->dev;
677 	struct drm_nouveau_private *dev_priv = dev->dev_private;
678 	/* clk in kHz */
679 	struct pll_lims pll_lim;
680 	struct nouveau_pll_vals pllvals;
681 	int ret;
682 
683 	if (dev_priv->card_type >= NV_50)
684 		return nv50_pll_set(dev, reg, clk);
685 
686 	/* high regs (such as in the mac g5 table) are not -= 4 */
687 	ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim);
688 	if (ret)
689 		return ret;
690 
691 	clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals);
692 	if (!clk)
693 		return -ERANGE;
694 
695 	if (bios->execute) {
696 		still_alive();
697 		nouveau_hw_setpll(dev, reg, &pllvals);
698 	}
699 
700 	return 0;
701 }
702 
703 static int dcb_entry_idx_from_crtchead(struct drm_device *dev)
704 {
705 	struct drm_nouveau_private *dev_priv = dev->dev_private;
706 	struct nvbios *bios = &dev_priv->vbios;
707 
708 	/*
709 	 * For the results of this function to be correct, CR44 must have been
710 	 * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0,
711 	 * and the DCB table parsed, before the script calling the function is
712 	 * run.  run_digital_op_script is example of how to do such setup
713 	 */
714 
715 	uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0);
716 
717 	if (dcb_entry > bios->dcb.entries) {
718 		NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently "
719 				"(%02X)\n", dcb_entry);
720 		dcb_entry = 0x7f;	/* unused / invalid marker */
721 	}
722 
723 	return dcb_entry;
724 }
725 
726 static int
727 read_dcb_i2c_entry(struct drm_device *dev, int dcb_version, uint8_t *i2ctable, int index, struct dcb_i2c_entry *i2c)
728 {
729 	uint8_t dcb_i2c_ver = dcb_version, headerlen = 0, entry_len = 4;
730 	int i2c_entries = DCB_MAX_NUM_I2C_ENTRIES;
731 	int recordoffset = 0, rdofs = 1, wrofs = 0;
732 	uint8_t port_type = 0;
733 
734 	if (!i2ctable)
735 		return -EINVAL;
736 
737 	if (dcb_version >= 0x30) {
738 		if (i2ctable[0] != dcb_version) /* necessary? */
739 			NV_WARN(dev,
740 				"DCB I2C table version mismatch (%02X vs %02X)\n",
741 				i2ctable[0], dcb_version);
742 		dcb_i2c_ver = i2ctable[0];
743 		headerlen = i2ctable[1];
744 		if (i2ctable[2] <= DCB_MAX_NUM_I2C_ENTRIES)
745 			i2c_entries = i2ctable[2];
746 		else
747 			NV_WARN(dev,
748 				"DCB I2C table has more entries than indexable "
749 				"(%d entries, max %d)\n", i2ctable[2],
750 				DCB_MAX_NUM_I2C_ENTRIES);
751 		entry_len = i2ctable[3];
752 		/* [4] is i2c_default_indices, read in parse_dcb_table() */
753 	}
754 	/*
755 	 * It's your own fault if you call this function on a DCB 1.1 BIOS --
756 	 * the test below is for DCB 1.2
757 	 */
758 	if (dcb_version < 0x14) {
759 		recordoffset = 2;
760 		rdofs = 0;
761 		wrofs = 1;
762 	}
763 
764 	if (index == 0xf)
765 		return 0;
766 	if (index >= i2c_entries) {
767 		NV_ERROR(dev, "DCB I2C index too big (%d >= %d)\n",
768 			 index, i2ctable[2]);
769 		return -ENOENT;
770 	}
771 	if (i2ctable[headerlen + entry_len * index + 3] == 0xff) {
772 		NV_ERROR(dev, "DCB I2C entry invalid\n");
773 		return -EINVAL;
774 	}
775 
776 	if (dcb_i2c_ver >= 0x30) {
777 		port_type = i2ctable[headerlen + recordoffset + 3 + entry_len * index];
778 
779 		/*
780 		 * Fixup for chips using same address offset for read and
781 		 * write.
782 		 */
783 		if (port_type == 4)	/* seen on C51 */
784 			rdofs = wrofs = 1;
785 		if (port_type >= 5)	/* G80+ */
786 			rdofs = wrofs = 0;
787 	}
788 
789 	if (dcb_i2c_ver >= 0x40) {
790 		if (port_type != 5 && port_type != 6)
791 			NV_WARN(dev, "DCB I2C table has port type %d\n", port_type);
792 
793 		i2c->entry = ROM32(i2ctable[headerlen + recordoffset + entry_len * index]);
794 	}
795 
796 	i2c->port_type = port_type;
797 	i2c->read = i2ctable[headerlen + recordoffset + rdofs + entry_len * index];
798 	i2c->write = i2ctable[headerlen + recordoffset + wrofs + entry_len * index];
799 
800 	return 0;
801 }
802 
803 static struct nouveau_i2c_chan *
804 init_i2c_device_find(struct drm_device *dev, int i2c_index)
805 {
806 	struct drm_nouveau_private *dev_priv = dev->dev_private;
807 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
808 
809 	if (i2c_index == 0xff) {
810 		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
811 		int idx = dcb_entry_idx_from_crtchead(dev), shift = 0;
812 		int default_indices = dcb->i2c_default_indices;
813 
814 		if (idx != 0x7f && dcb->entry[idx].i2c_upper_default)
815 			shift = 4;
816 
817 		i2c_index = (default_indices >> shift) & 0xf;
818 	}
819 	if (i2c_index == 0x80)	/* g80+ */
820 		i2c_index = dcb->i2c_default_indices & 0xf;
821 	else
822 	if (i2c_index == 0x81)
823 		i2c_index = (dcb->i2c_default_indices & 0xf0) >> 4;
824 
825 	if (i2c_index >= DCB_MAX_NUM_I2C_ENTRIES) {
826 		NV_ERROR(dev, "invalid i2c_index 0x%x\n", i2c_index);
827 		return NULL;
828 	}
829 
830 	/* Make sure i2c table entry has been parsed, it may not
831 	 * have been if this is a bus not referenced by a DCB encoder
832 	 */
833 	read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
834 			   i2c_index, &dcb->i2c[i2c_index]);
835 
836 	return nouveau_i2c_find(dev, i2c_index);
837 }
838 
839 static uint32_t
840 get_tmds_index_reg(struct drm_device *dev, uint8_t mlv)
841 {
842 	/*
843 	 * For mlv < 0x80, it is an index into a table of TMDS base addresses.
844 	 * For mlv == 0x80 use the "or" value of the dcb_entry indexed by
845 	 * CR58 for CR57 = 0 to index a table of offsets to the basic
846 	 * 0x6808b0 address.
847 	 * For mlv == 0x81 use the "or" value of the dcb_entry indexed by
848 	 * CR58 for CR57 = 0 to index a table of offsets to the basic
849 	 * 0x6808b0 address, and then flip the offset by 8.
850 	 */
851 
852 	struct drm_nouveau_private *dev_priv = dev->dev_private;
853 	struct nvbios *bios = &dev_priv->vbios;
854 	const int pramdac_offset[13] = {
855 		0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 };
856 	const uint32_t pramdac_table[4] = {
857 		0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 };
858 
859 	if (mlv >= 0x80) {
860 		int dcb_entry, dacoffset;
861 
862 		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
863 		dcb_entry = dcb_entry_idx_from_crtchead(dev);
864 		if (dcb_entry == 0x7f)
865 			return 0;
866 		dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or];
867 		if (mlv == 0x81)
868 			dacoffset ^= 8;
869 		return 0x6808b0 + dacoffset;
870 	} else {
871 		if (mlv >= ARRAY_SIZE(pramdac_table)) {
872 			NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n",
873 									mlv);
874 			return 0;
875 		}
876 		return pramdac_table[mlv];
877 	}
878 }
879 
880 static int
881 init_io_restrict_prog(struct nvbios *bios, uint16_t offset,
882 		      struct init_exec *iexec)
883 {
884 	/*
885 	 * INIT_IO_RESTRICT_PROG   opcode: 0x32 ('2')
886 	 *
887 	 * offset      (8  bit): opcode
888 	 * offset + 1  (16 bit): CRTC port
889 	 * offset + 3  (8  bit): CRTC index
890 	 * offset + 4  (8  bit): mask
891 	 * offset + 5  (8  bit): shift
892 	 * offset + 6  (8  bit): count
893 	 * offset + 7  (32 bit): register
894 	 * offset + 11 (32 bit): configuration 1
895 	 * ...
896 	 *
897 	 * Starting at offset + 11 there are "count" 32 bit values.
898 	 * To find out which value to use read index "CRTC index" on "CRTC
899 	 * port", AND this value with "mask" and then bit shift right "shift"
900 	 * bits.  Read the appropriate value using this index and write to
901 	 * "register"
902 	 */
903 
904 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
905 	uint8_t crtcindex = bios->data[offset + 3];
906 	uint8_t mask = bios->data[offset + 4];
907 	uint8_t shift = bios->data[offset + 5];
908 	uint8_t count = bios->data[offset + 6];
909 	uint32_t reg = ROM32(bios->data[offset + 7]);
910 	uint8_t config;
911 	uint32_t configval;
912 	int len = 11 + count * 4;
913 
914 	if (!iexec->execute)
915 		return len;
916 
917 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
918 		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
919 		offset, crtcport, crtcindex, mask, shift, count, reg);
920 
921 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
922 	if (config > count) {
923 		NV_ERROR(bios->dev,
924 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
925 			 offset, config, count);
926 		return len;
927 	}
928 
929 	configval = ROM32(bios->data[offset + 11 + config * 4]);
930 
931 	BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config);
932 
933 	bios_wr32(bios, reg, configval);
934 
935 	return len;
936 }
937 
938 static int
939 init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
940 {
941 	/*
942 	 * INIT_REPEAT   opcode: 0x33 ('3')
943 	 *
944 	 * offset      (8 bit): opcode
945 	 * offset + 1  (8 bit): count
946 	 *
947 	 * Execute script following this opcode up to INIT_REPEAT_END
948 	 * "count" times
949 	 */
950 
951 	uint8_t count = bios->data[offset + 1];
952 	uint8_t i;
953 
954 	/* no iexec->execute check by design */
955 
956 	BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n",
957 		offset, count);
958 
959 	iexec->repeat = true;
960 
961 	/*
962 	 * count - 1, as the script block will execute once when we leave this
963 	 * opcode -- this is compatible with bios behaviour as:
964 	 * a) the block is always executed at least once, even if count == 0
965 	 * b) the bios interpreter skips to the op following INIT_END_REPEAT,
966 	 * while we don't
967 	 */
968 	for (i = 0; i < count - 1; i++)
969 		parse_init_table(bios, offset + 2, iexec);
970 
971 	iexec->repeat = false;
972 
973 	return 2;
974 }
975 
976 static int
977 init_io_restrict_pll(struct nvbios *bios, uint16_t offset,
978 		     struct init_exec *iexec)
979 {
980 	/*
981 	 * INIT_IO_RESTRICT_PLL   opcode: 0x34 ('4')
982 	 *
983 	 * offset      (8  bit): opcode
984 	 * offset + 1  (16 bit): CRTC port
985 	 * offset + 3  (8  bit): CRTC index
986 	 * offset + 4  (8  bit): mask
987 	 * offset + 5  (8  bit): shift
988 	 * offset + 6  (8  bit): IO flag condition index
989 	 * offset + 7  (8  bit): count
990 	 * offset + 8  (32 bit): register
991 	 * offset + 12 (16 bit): frequency 1
992 	 * ...
993 	 *
994 	 * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz).
995 	 * Set PLL register "register" to coefficients for frequency n,
996 	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
997 	 * "mask" and shifted right by "shift".
998 	 *
999 	 * If "IO flag condition index" > 0, and condition met, double
1000 	 * frequency before setting it.
1001 	 */
1002 
1003 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
1004 	uint8_t crtcindex = bios->data[offset + 3];
1005 	uint8_t mask = bios->data[offset + 4];
1006 	uint8_t shift = bios->data[offset + 5];
1007 	int8_t io_flag_condition_idx = bios->data[offset + 6];
1008 	uint8_t count = bios->data[offset + 7];
1009 	uint32_t reg = ROM32(bios->data[offset + 8]);
1010 	uint8_t config;
1011 	uint16_t freq;
1012 	int len = 12 + count * 2;
1013 
1014 	if (!iexec->execute)
1015 		return len;
1016 
1017 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
1018 		      "Shift: 0x%02X, IO Flag Condition: 0x%02X, "
1019 		      "Count: 0x%02X, Reg: 0x%08X\n",
1020 		offset, crtcport, crtcindex, mask, shift,
1021 		io_flag_condition_idx, count, reg);
1022 
1023 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
1024 	if (config > count) {
1025 		NV_ERROR(bios->dev,
1026 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
1027 			 offset, config, count);
1028 		return len;
1029 	}
1030 
1031 	freq = ROM16(bios->data[offset + 12 + config * 2]);
1032 
1033 	if (io_flag_condition_idx > 0) {
1034 		if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) {
1035 			BIOSLOG(bios, "0x%04X: Condition fulfilled -- "
1036 				      "frequency doubled\n", offset);
1037 			freq *= 2;
1038 		} else
1039 			BIOSLOG(bios, "0x%04X: Condition not fulfilled -- "
1040 				      "frequency unchanged\n", offset);
1041 	}
1042 
1043 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n",
1044 		offset, reg, config, freq);
1045 
1046 	setPLL(bios, reg, freq * 10);
1047 
1048 	return len;
1049 }
1050 
1051 static int
1052 init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1053 {
1054 	/*
1055 	 * INIT_END_REPEAT   opcode: 0x36 ('6')
1056 	 *
1057 	 * offset      (8 bit): opcode
1058 	 *
1059 	 * Marks the end of the block for INIT_REPEAT to repeat
1060 	 */
1061 
1062 	/* no iexec->execute check by design */
1063 
1064 	/*
1065 	 * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when
1066 	 * we're not in repeat mode
1067 	 */
1068 	if (iexec->repeat)
1069 		return 0;
1070 
1071 	return 1;
1072 }
1073 
1074 static int
1075 init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1076 {
1077 	/*
1078 	 * INIT_COPY   opcode: 0x37 ('7')
1079 	 *
1080 	 * offset      (8  bit): opcode
1081 	 * offset + 1  (32 bit): register
1082 	 * offset + 5  (8  bit): shift
1083 	 * offset + 6  (8  bit): srcmask
1084 	 * offset + 7  (16 bit): CRTC port
1085 	 * offset + 9  (8 bit): CRTC index
1086 	 * offset + 10  (8 bit): mask
1087 	 *
1088 	 * Read index "CRTC index" on "CRTC port", AND with "mask", OR with
1089 	 * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC
1090 	 * port
1091 	 */
1092 
1093 	uint32_t reg = ROM32(bios->data[offset + 1]);
1094 	uint8_t shift = bios->data[offset + 5];
1095 	uint8_t srcmask = bios->data[offset + 6];
1096 	uint16_t crtcport = ROM16(bios->data[offset + 7]);
1097 	uint8_t crtcindex = bios->data[offset + 9];
1098 	uint8_t mask = bios->data[offset + 10];
1099 	uint32_t data;
1100 	uint8_t crtcdata;
1101 
1102 	if (!iexec->execute)
1103 		return 11;
1104 
1105 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, "
1106 		      "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n",
1107 		offset, reg, shift, srcmask, crtcport, crtcindex, mask);
1108 
1109 	data = bios_rd32(bios, reg);
1110 
1111 	if (shift < 0x80)
1112 		data >>= shift;
1113 	else
1114 		data <<= (0x100 - shift);
1115 
1116 	data &= srcmask;
1117 
1118 	crtcdata  = bios_idxprt_rd(bios, crtcport, crtcindex) & mask;
1119 	crtcdata |= (uint8_t)data;
1120 	bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata);
1121 
1122 	return 11;
1123 }
1124 
1125 static int
1126 init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1127 {
1128 	/*
1129 	 * INIT_NOT   opcode: 0x38 ('8')
1130 	 *
1131 	 * offset      (8  bit): opcode
1132 	 *
1133 	 * Invert the current execute / no-execute condition (i.e. "else")
1134 	 */
1135 	if (iexec->execute)
1136 		BIOSLOG(bios, "0x%04X: ------ Skipping following commands  ------\n", offset);
1137 	else
1138 		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset);
1139 
1140 	iexec->execute = !iexec->execute;
1141 	return 1;
1142 }
1143 
1144 static int
1145 init_io_flag_condition(struct nvbios *bios, uint16_t offset,
1146 		       struct init_exec *iexec)
1147 {
1148 	/*
1149 	 * INIT_IO_FLAG_CONDITION   opcode: 0x39 ('9')
1150 	 *
1151 	 * offset      (8 bit): opcode
1152 	 * offset + 1  (8 bit): condition number
1153 	 *
1154 	 * Check condition "condition number" in the IO flag condition table.
1155 	 * If condition not met skip subsequent opcodes until condition is
1156 	 * inverted (INIT_NOT), or we hit INIT_RESUME
1157 	 */
1158 
1159 	uint8_t cond = bios->data[offset + 1];
1160 
1161 	if (!iexec->execute)
1162 		return 2;
1163 
1164 	if (io_flag_condition_met(bios, offset, cond))
1165 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
1166 	else {
1167 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
1168 		iexec->execute = false;
1169 	}
1170 
1171 	return 2;
1172 }
1173 
1174 static int
1175 init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1176 {
1177 	/*
1178 	 * INIT_DP_CONDITION   opcode: 0x3A ('')
1179 	 *
1180 	 * offset      (8 bit): opcode
1181 	 * offset + 1  (8 bit): "sub" opcode
1182 	 * offset + 2  (8 bit): unknown
1183 	 *
1184 	 */
1185 
1186 	struct dcb_entry *dcb = bios->display.output;
1187 	struct drm_device *dev = bios->dev;
1188 	uint8_t cond = bios->data[offset + 1];
1189 	uint8_t *table, *entry;
1190 
1191 	BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond);
1192 
1193 	if (!iexec->execute)
1194 		return 3;
1195 
1196 	table = nouveau_dp_bios_data(dev, dcb, &entry);
1197 	if (!table)
1198 		return 3;
1199 
1200 	switch (cond) {
1201 	case 0:
1202 	{
1203 		struct dcb_connector_table_entry *ent =
1204 			&bios->dcb.connector.entry[dcb->connector];
1205 
1206 		if (ent->type != DCB_CONNECTOR_eDP)
1207 			iexec->execute = false;
1208 	}
1209 		break;
1210 	case 1:
1211 	case 2:
1212 		if (!(entry[5] & cond))
1213 			iexec->execute = false;
1214 		break;
1215 	case 5:
1216 	{
1217 		struct nouveau_i2c_chan *auxch;
1218 		int ret;
1219 
1220 		auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index);
1221 		if (!auxch) {
1222 			NV_ERROR(dev, "0x%04X: couldn't get auxch\n", offset);
1223 			return 3;
1224 		}
1225 
1226 		ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1);
1227 		if (ret) {
1228 			NV_ERROR(dev, "0x%04X: auxch rd fail: %d\n", offset, ret);
1229 			return 3;
1230 		}
1231 
1232 		if (!(cond & 1))
1233 			iexec->execute = false;
1234 	}
1235 		break;
1236 	default:
1237 		NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond);
1238 		break;
1239 	}
1240 
1241 	if (iexec->execute)
1242 		BIOSLOG(bios, "0x%04X: continuing to execute\n", offset);
1243 	else
1244 		BIOSLOG(bios, "0x%04X: skipping following commands\n", offset);
1245 
1246 	return 3;
1247 }
1248 
1249 static int
1250 init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1251 {
1252 	/*
1253 	 * INIT_3B   opcode: 0x3B ('')
1254 	 *
1255 	 * offset      (8 bit): opcode
1256 	 * offset + 1  (8 bit): crtc index
1257 	 *
1258 	 */
1259 
1260 	uint8_t or = ffs(bios->display.output->or) - 1;
1261 	uint8_t index = bios->data[offset + 1];
1262 	uint8_t data;
1263 
1264 	if (!iexec->execute)
1265 		return 2;
1266 
1267 	data = bios_idxprt_rd(bios, 0x3d4, index);
1268 	bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or));
1269 	return 2;
1270 }
1271 
1272 static int
1273 init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1274 {
1275 	/*
1276 	 * INIT_3C   opcode: 0x3C ('')
1277 	 *
1278 	 * offset      (8 bit): opcode
1279 	 * offset + 1  (8 bit): crtc index
1280 	 *
1281 	 */
1282 
1283 	uint8_t or = ffs(bios->display.output->or) - 1;
1284 	uint8_t index = bios->data[offset + 1];
1285 	uint8_t data;
1286 
1287 	if (!iexec->execute)
1288 		return 2;
1289 
1290 	data = bios_idxprt_rd(bios, 0x3d4, index);
1291 	bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or));
1292 	return 2;
1293 }
1294 
1295 static int
1296 init_idx_addr_latched(struct nvbios *bios, uint16_t offset,
1297 		      struct init_exec *iexec)
1298 {
1299 	/*
1300 	 * INIT_INDEX_ADDRESS_LATCHED   opcode: 0x49 ('I')
1301 	 *
1302 	 * offset      (8  bit): opcode
1303 	 * offset + 1  (32 bit): control register
1304 	 * offset + 5  (32 bit): data register
1305 	 * offset + 9  (32 bit): mask
1306 	 * offset + 13 (32 bit): data
1307 	 * offset + 17 (8  bit): count
1308 	 * offset + 18 (8  bit): address 1
1309 	 * offset + 19 (8  bit): data 1
1310 	 * ...
1311 	 *
1312 	 * For each of "count" address and data pairs, write "data n" to
1313 	 * "data register", read the current value of "control register",
1314 	 * and write it back once ANDed with "mask", ORed with "data",
1315 	 * and ORed with "address n"
1316 	 */
1317 
1318 	uint32_t controlreg = ROM32(bios->data[offset + 1]);
1319 	uint32_t datareg = ROM32(bios->data[offset + 5]);
1320 	uint32_t mask = ROM32(bios->data[offset + 9]);
1321 	uint32_t data = ROM32(bios->data[offset + 13]);
1322 	uint8_t count = bios->data[offset + 17];
1323 	int len = 18 + count * 2;
1324 	uint32_t value;
1325 	int i;
1326 
1327 	if (!iexec->execute)
1328 		return len;
1329 
1330 	BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, "
1331 		      "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n",
1332 		offset, controlreg, datareg, mask, data, count);
1333 
1334 	for (i = 0; i < count; i++) {
1335 		uint8_t instaddress = bios->data[offset + 18 + i * 2];
1336 		uint8_t instdata = bios->data[offset + 19 + i * 2];
1337 
1338 		BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n",
1339 			offset, instaddress, instdata);
1340 
1341 		bios_wr32(bios, datareg, instdata);
1342 		value  = bios_rd32(bios, controlreg) & mask;
1343 		value |= data;
1344 		value |= instaddress;
1345 		bios_wr32(bios, controlreg, value);
1346 	}
1347 
1348 	return len;
1349 }
1350 
1351 static int
1352 init_io_restrict_pll2(struct nvbios *bios, uint16_t offset,
1353 		      struct init_exec *iexec)
1354 {
1355 	/*
1356 	 * INIT_IO_RESTRICT_PLL2   opcode: 0x4A ('J')
1357 	 *
1358 	 * offset      (8  bit): opcode
1359 	 * offset + 1  (16 bit): CRTC port
1360 	 * offset + 3  (8  bit): CRTC index
1361 	 * offset + 4  (8  bit): mask
1362 	 * offset + 5  (8  bit): shift
1363 	 * offset + 6  (8  bit): count
1364 	 * offset + 7  (32 bit): register
1365 	 * offset + 11 (32 bit): frequency 1
1366 	 * ...
1367 	 *
1368 	 * Starting at offset + 11 there are "count" 32 bit frequencies (kHz).
1369 	 * Set PLL register "register" to coefficients for frequency n,
1370 	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
1371 	 * "mask" and shifted right by "shift".
1372 	 */
1373 
1374 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
1375 	uint8_t crtcindex = bios->data[offset + 3];
1376 	uint8_t mask = bios->data[offset + 4];
1377 	uint8_t shift = bios->data[offset + 5];
1378 	uint8_t count = bios->data[offset + 6];
1379 	uint32_t reg = ROM32(bios->data[offset + 7]);
1380 	int len = 11 + count * 4;
1381 	uint8_t config;
1382 	uint32_t freq;
1383 
1384 	if (!iexec->execute)
1385 		return len;
1386 
1387 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
1388 		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
1389 		offset, crtcport, crtcindex, mask, shift, count, reg);
1390 
1391 	if (!reg)
1392 		return len;
1393 
1394 	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
1395 	if (config > count) {
1396 		NV_ERROR(bios->dev,
1397 			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
1398 			 offset, config, count);
1399 		return len;
1400 	}
1401 
1402 	freq = ROM32(bios->data[offset + 11 + config * 4]);
1403 
1404 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n",
1405 		offset, reg, config, freq);
1406 
1407 	setPLL(bios, reg, freq);
1408 
1409 	return len;
1410 }
1411 
1412 static int
1413 init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1414 {
1415 	/*
1416 	 * INIT_PLL2   opcode: 0x4B ('K')
1417 	 *
1418 	 * offset      (8  bit): opcode
1419 	 * offset + 1  (32 bit): register
1420 	 * offset + 5  (32 bit): freq
1421 	 *
1422 	 * Set PLL register "register" to coefficients for frequency "freq"
1423 	 */
1424 
1425 	uint32_t reg = ROM32(bios->data[offset + 1]);
1426 	uint32_t freq = ROM32(bios->data[offset + 5]);
1427 
1428 	if (!iexec->execute)
1429 		return 9;
1430 
1431 	BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n",
1432 		offset, reg, freq);
1433 
1434 	setPLL(bios, reg, freq);
1435 	return 9;
1436 }
1437 
1438 static int
1439 init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1440 {
1441 	/*
1442 	 * INIT_I2C_BYTE   opcode: 0x4C ('L')
1443 	 *
1444 	 * offset      (8 bit): opcode
1445 	 * offset + 1  (8 bit): DCB I2C table entry index
1446 	 * offset + 2  (8 bit): I2C slave address
1447 	 * offset + 3  (8 bit): count
1448 	 * offset + 4  (8 bit): I2C register 1
1449 	 * offset + 5  (8 bit): mask 1
1450 	 * offset + 6  (8 bit): data 1
1451 	 * ...
1452 	 *
1453 	 * For each of "count" registers given by "I2C register n" on the device
1454 	 * addressed by "I2C slave address" on the I2C bus given by
1455 	 * "DCB I2C table entry index", read the register, AND the result with
1456 	 * "mask n" and OR it with "data n" before writing it back to the device
1457 	 */
1458 
1459 	struct drm_device *dev = bios->dev;
1460 	uint8_t i2c_index = bios->data[offset + 1];
1461 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1462 	uint8_t count = bios->data[offset + 3];
1463 	struct nouveau_i2c_chan *chan;
1464 	int len = 4 + count * 3;
1465 	int ret, i;
1466 
1467 	if (!iexec->execute)
1468 		return len;
1469 
1470 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1471 		      "Count: 0x%02X\n",
1472 		offset, i2c_index, i2c_address, count);
1473 
1474 	chan = init_i2c_device_find(dev, i2c_index);
1475 	if (!chan) {
1476 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1477 		return len;
1478 	}
1479 
1480 	for (i = 0; i < count; i++) {
1481 		uint8_t reg = bios->data[offset + 4 + i * 3];
1482 		uint8_t mask = bios->data[offset + 5 + i * 3];
1483 		uint8_t data = bios->data[offset + 6 + i * 3];
1484 		union i2c_smbus_data val;
1485 
1486 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1487 				     I2C_SMBUS_READ, reg,
1488 				     I2C_SMBUS_BYTE_DATA, &val);
1489 		if (ret < 0) {
1490 			NV_ERROR(dev, "0x%04X: i2c rd fail: %d\n", offset, ret);
1491 			return len;
1492 		}
1493 
1494 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
1495 			      "Mask: 0x%02X, Data: 0x%02X\n",
1496 			offset, reg, val.byte, mask, data);
1497 
1498 		if (!bios->execute)
1499 			continue;
1500 
1501 		val.byte &= mask;
1502 		val.byte |= data;
1503 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1504 				     I2C_SMBUS_WRITE, reg,
1505 				     I2C_SMBUS_BYTE_DATA, &val);
1506 		if (ret < 0) {
1507 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1508 			return len;
1509 		}
1510 	}
1511 
1512 	return len;
1513 }
1514 
1515 static int
1516 init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1517 {
1518 	/*
1519 	 * INIT_ZM_I2C_BYTE   opcode: 0x4D ('M')
1520 	 *
1521 	 * offset      (8 bit): opcode
1522 	 * offset + 1  (8 bit): DCB I2C table entry index
1523 	 * offset + 2  (8 bit): I2C slave address
1524 	 * offset + 3  (8 bit): count
1525 	 * offset + 4  (8 bit): I2C register 1
1526 	 * offset + 5  (8 bit): data 1
1527 	 * ...
1528 	 *
1529 	 * For each of "count" registers given by "I2C register n" on the device
1530 	 * addressed by "I2C slave address" on the I2C bus given by
1531 	 * "DCB I2C table entry index", set the register to "data n"
1532 	 */
1533 
1534 	struct drm_device *dev = bios->dev;
1535 	uint8_t i2c_index = bios->data[offset + 1];
1536 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1537 	uint8_t count = bios->data[offset + 3];
1538 	struct nouveau_i2c_chan *chan;
1539 	int len = 4 + count * 2;
1540 	int ret, i;
1541 
1542 	if (!iexec->execute)
1543 		return len;
1544 
1545 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1546 		      "Count: 0x%02X\n",
1547 		offset, i2c_index, i2c_address, count);
1548 
1549 	chan = init_i2c_device_find(dev, i2c_index);
1550 	if (!chan) {
1551 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1552 		return len;
1553 	}
1554 
1555 	for (i = 0; i < count; i++) {
1556 		uint8_t reg = bios->data[offset + 4 + i * 2];
1557 		union i2c_smbus_data val;
1558 
1559 		val.byte = bios->data[offset + 5 + i * 2];
1560 
1561 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n",
1562 			offset, reg, val.byte);
1563 
1564 		if (!bios->execute)
1565 			continue;
1566 
1567 		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1568 				     I2C_SMBUS_WRITE, reg,
1569 				     I2C_SMBUS_BYTE_DATA, &val);
1570 		if (ret < 0) {
1571 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1572 			return len;
1573 		}
1574 	}
1575 
1576 	return len;
1577 }
1578 
1579 static int
1580 init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1581 {
1582 	/*
1583 	 * INIT_ZM_I2C   opcode: 0x4E ('N')
1584 	 *
1585 	 * offset      (8 bit): opcode
1586 	 * offset + 1  (8 bit): DCB I2C table entry index
1587 	 * offset + 2  (8 bit): I2C slave address
1588 	 * offset + 3  (8 bit): count
1589 	 * offset + 4  (8 bit): data 1
1590 	 * ...
1591 	 *
1592 	 * Send "count" bytes ("data n") to the device addressed by "I2C slave
1593 	 * address" on the I2C bus given by "DCB I2C table entry index"
1594 	 */
1595 
1596 	struct drm_device *dev = bios->dev;
1597 	uint8_t i2c_index = bios->data[offset + 1];
1598 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1599 	uint8_t count = bios->data[offset + 3];
1600 	int len = 4 + count;
1601 	struct nouveau_i2c_chan *chan;
1602 	struct i2c_msg msg;
1603 	uint8_t data[256];
1604 	int ret, i;
1605 
1606 	if (!iexec->execute)
1607 		return len;
1608 
1609 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1610 		      "Count: 0x%02X\n",
1611 		offset, i2c_index, i2c_address, count);
1612 
1613 	chan = init_i2c_device_find(dev, i2c_index);
1614 	if (!chan) {
1615 		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1616 		return len;
1617 	}
1618 
1619 	for (i = 0; i < count; i++) {
1620 		data[i] = bios->data[offset + 4 + i];
1621 
1622 		BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]);
1623 	}
1624 
1625 	if (bios->execute) {
1626 		msg.addr = i2c_address;
1627 		msg.flags = 0;
1628 		msg.len = count;
1629 		msg.buf = data;
1630 		ret = i2c_transfer(&chan->adapter, &msg, 1);
1631 		if (ret != 1) {
1632 			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1633 			return len;
1634 		}
1635 	}
1636 
1637 	return len;
1638 }
1639 
1640 static int
1641 init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1642 {
1643 	/*
1644 	 * INIT_TMDS   opcode: 0x4F ('O')	(non-canon name)
1645 	 *
1646 	 * offset      (8 bit): opcode
1647 	 * offset + 1  (8 bit): magic lookup value
1648 	 * offset + 2  (8 bit): TMDS address
1649 	 * offset + 3  (8 bit): mask
1650 	 * offset + 4  (8 bit): data
1651 	 *
1652 	 * Read the data reg for TMDS address "TMDS address", AND it with mask
1653 	 * and OR it with data, then write it back
1654 	 * "magic lookup value" determines which TMDS base address register is
1655 	 * used -- see get_tmds_index_reg()
1656 	 */
1657 
1658 	struct drm_device *dev = bios->dev;
1659 	uint8_t mlv = bios->data[offset + 1];
1660 	uint32_t tmdsaddr = bios->data[offset + 2];
1661 	uint8_t mask = bios->data[offset + 3];
1662 	uint8_t data = bios->data[offset + 4];
1663 	uint32_t reg, value;
1664 
1665 	if (!iexec->execute)
1666 		return 5;
1667 
1668 	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, "
1669 		      "Mask: 0x%02X, Data: 0x%02X\n",
1670 		offset, mlv, tmdsaddr, mask, data);
1671 
1672 	reg = get_tmds_index_reg(bios->dev, mlv);
1673 	if (!reg) {
1674 		NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
1675 		return 5;
1676 	}
1677 
1678 	bios_wr32(bios, reg,
1679 		  tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE);
1680 	value = (bios_rd32(bios, reg + 4) & mask) | data;
1681 	bios_wr32(bios, reg + 4, value);
1682 	bios_wr32(bios, reg, tmdsaddr);
1683 
1684 	return 5;
1685 }
1686 
1687 static int
1688 init_zm_tmds_group(struct nvbios *bios, uint16_t offset,
1689 		   struct init_exec *iexec)
1690 {
1691 	/*
1692 	 * INIT_ZM_TMDS_GROUP   opcode: 0x50 ('P')	(non-canon name)
1693 	 *
1694 	 * offset      (8 bit): opcode
1695 	 * offset + 1  (8 bit): magic lookup value
1696 	 * offset + 2  (8 bit): count
1697 	 * offset + 3  (8 bit): addr 1
1698 	 * offset + 4  (8 bit): data 1
1699 	 * ...
1700 	 *
1701 	 * For each of "count" TMDS address and data pairs write "data n" to
1702 	 * "addr n".  "magic lookup value" determines which TMDS base address
1703 	 * register is used -- see get_tmds_index_reg()
1704 	 */
1705 
1706 	struct drm_device *dev = bios->dev;
1707 	uint8_t mlv = bios->data[offset + 1];
1708 	uint8_t count = bios->data[offset + 2];
1709 	int len = 3 + count * 2;
1710 	uint32_t reg;
1711 	int i;
1712 
1713 	if (!iexec->execute)
1714 		return len;
1715 
1716 	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n",
1717 		offset, mlv, count);
1718 
1719 	reg = get_tmds_index_reg(bios->dev, mlv);
1720 	if (!reg) {
1721 		NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
1722 		return len;
1723 	}
1724 
1725 	for (i = 0; i < count; i++) {
1726 		uint8_t tmdsaddr = bios->data[offset + 3 + i * 2];
1727 		uint8_t tmdsdata = bios->data[offset + 4 + i * 2];
1728 
1729 		bios_wr32(bios, reg + 4, tmdsdata);
1730 		bios_wr32(bios, reg, tmdsaddr);
1731 	}
1732 
1733 	return len;
1734 }
1735 
1736 static int
1737 init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset,
1738 		      struct init_exec *iexec)
1739 {
1740 	/*
1741 	 * INIT_CR_INDEX_ADDRESS_LATCHED   opcode: 0x51 ('Q')
1742 	 *
1743 	 * offset      (8 bit): opcode
1744 	 * offset + 1  (8 bit): CRTC index1
1745 	 * offset + 2  (8 bit): CRTC index2
1746 	 * offset + 3  (8 bit): baseaddr
1747 	 * offset + 4  (8 bit): count
1748 	 * offset + 5  (8 bit): data 1
1749 	 * ...
1750 	 *
1751 	 * For each of "count" address and data pairs, write "baseaddr + n" to
1752 	 * "CRTC index1" and "data n" to "CRTC index2"
1753 	 * Once complete, restore initial value read from "CRTC index1"
1754 	 */
1755 	uint8_t crtcindex1 = bios->data[offset + 1];
1756 	uint8_t crtcindex2 = bios->data[offset + 2];
1757 	uint8_t baseaddr = bios->data[offset + 3];
1758 	uint8_t count = bios->data[offset + 4];
1759 	int len = 5 + count;
1760 	uint8_t oldaddr, data;
1761 	int i;
1762 
1763 	if (!iexec->execute)
1764 		return len;
1765 
1766 	BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, "
1767 		      "BaseAddr: 0x%02X, Count: 0x%02X\n",
1768 		offset, crtcindex1, crtcindex2, baseaddr, count);
1769 
1770 	oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1);
1771 
1772 	for (i = 0; i < count; i++) {
1773 		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1,
1774 				     baseaddr + i);
1775 		data = bios->data[offset + 5 + i];
1776 		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data);
1777 	}
1778 
1779 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr);
1780 
1781 	return len;
1782 }
1783 
1784 static int
1785 init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1786 {
1787 	/*
1788 	 * INIT_CR   opcode: 0x52 ('R')
1789 	 *
1790 	 * offset      (8  bit): opcode
1791 	 * offset + 1  (8  bit): CRTC index
1792 	 * offset + 2  (8  bit): mask
1793 	 * offset + 3  (8  bit): data
1794 	 *
1795 	 * Assign the value of at "CRTC index" ANDed with mask and ORed with
1796 	 * data back to "CRTC index"
1797 	 */
1798 
1799 	uint8_t crtcindex = bios->data[offset + 1];
1800 	uint8_t mask = bios->data[offset + 2];
1801 	uint8_t data = bios->data[offset + 3];
1802 	uint8_t value;
1803 
1804 	if (!iexec->execute)
1805 		return 4;
1806 
1807 	BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n",
1808 		offset, crtcindex, mask, data);
1809 
1810 	value  = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask;
1811 	value |= data;
1812 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value);
1813 
1814 	return 4;
1815 }
1816 
1817 static int
1818 init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1819 {
1820 	/*
1821 	 * INIT_ZM_CR   opcode: 0x53 ('S')
1822 	 *
1823 	 * offset      (8 bit): opcode
1824 	 * offset + 1  (8 bit): CRTC index
1825 	 * offset + 2  (8 bit): value
1826 	 *
1827 	 * Assign "value" to CRTC register with index "CRTC index".
1828 	 */
1829 
1830 	uint8_t crtcindex = ROM32(bios->data[offset + 1]);
1831 	uint8_t data = bios->data[offset + 2];
1832 
1833 	if (!iexec->execute)
1834 		return 3;
1835 
1836 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data);
1837 
1838 	return 3;
1839 }
1840 
1841 static int
1842 init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1843 {
1844 	/*
1845 	 * INIT_ZM_CR_GROUP   opcode: 0x54 ('T')
1846 	 *
1847 	 * offset      (8 bit): opcode
1848 	 * offset + 1  (8 bit): count
1849 	 * offset + 2  (8 bit): CRTC index 1
1850 	 * offset + 3  (8 bit): value 1
1851 	 * ...
1852 	 *
1853 	 * For "count", assign "value n" to CRTC register with index
1854 	 * "CRTC index n".
1855 	 */
1856 
1857 	uint8_t count = bios->data[offset + 1];
1858 	int len = 2 + count * 2;
1859 	int i;
1860 
1861 	if (!iexec->execute)
1862 		return len;
1863 
1864 	for (i = 0; i < count; i++)
1865 		init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec);
1866 
1867 	return len;
1868 }
1869 
1870 static int
1871 init_condition_time(struct nvbios *bios, uint16_t offset,
1872 		    struct init_exec *iexec)
1873 {
1874 	/*
1875 	 * INIT_CONDITION_TIME   opcode: 0x56 ('V')
1876 	 *
1877 	 * offset      (8 bit): opcode
1878 	 * offset + 1  (8 bit): condition number
1879 	 * offset + 2  (8 bit): retries / 50
1880 	 *
1881 	 * Check condition "condition number" in the condition table.
1882 	 * Bios code then sleeps for 2ms if the condition is not met, and
1883 	 * repeats up to "retries" times, but on one C51 this has proved
1884 	 * insufficient.  In mmiotraces the driver sleeps for 20ms, so we do
1885 	 * this, and bail after "retries" times, or 2s, whichever is less.
1886 	 * If still not met after retries, clear execution flag for this table.
1887 	 */
1888 
1889 	uint8_t cond = bios->data[offset + 1];
1890 	uint16_t retries = bios->data[offset + 2] * 50;
1891 	unsigned cnt;
1892 
1893 	if (!iexec->execute)
1894 		return 3;
1895 
1896 	if (retries > 100)
1897 		retries = 100;
1898 
1899 	BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n",
1900 		offset, cond, retries);
1901 
1902 	if (!bios->execute) /* avoid 2s delays when "faking" execution */
1903 		retries = 1;
1904 
1905 	for (cnt = 0; cnt < retries; cnt++) {
1906 		if (bios_condition_met(bios, offset, cond)) {
1907 			BIOSLOG(bios, "0x%04X: Condition met, continuing\n",
1908 								offset);
1909 			break;
1910 		} else {
1911 			BIOSLOG(bios, "0x%04X: "
1912 				"Condition not met, sleeping for 20ms\n",
1913 								offset);
1914 			mdelay(20);
1915 		}
1916 	}
1917 
1918 	if (!bios_condition_met(bios, offset, cond)) {
1919 		NV_WARN(bios->dev,
1920 			"0x%04X: Condition still not met after %dms, "
1921 			"skipping following opcodes\n", offset, 20 * retries);
1922 		iexec->execute = false;
1923 	}
1924 
1925 	return 3;
1926 }
1927 
1928 static int
1929 init_ltime(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1930 {
1931 	/*
1932 	 * INIT_LTIME   opcode: 0x57 ('V')
1933 	 *
1934 	 * offset      (8  bit): opcode
1935 	 * offset + 1  (16 bit): time
1936 	 *
1937 	 * Sleep for "time" milliseconds.
1938 	 */
1939 
1940 	unsigned time = ROM16(bios->data[offset + 1]);
1941 
1942 	if (!iexec->execute)
1943 		return 3;
1944 
1945 	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X milliseconds\n",
1946 		offset, time);
1947 
1948 	mdelay(time);
1949 
1950 	return 3;
1951 }
1952 
1953 static int
1954 init_zm_reg_sequence(struct nvbios *bios, uint16_t offset,
1955 		     struct init_exec *iexec)
1956 {
1957 	/*
1958 	 * INIT_ZM_REG_SEQUENCE   opcode: 0x58 ('X')
1959 	 *
1960 	 * offset      (8  bit): opcode
1961 	 * offset + 1  (32 bit): base register
1962 	 * offset + 5  (8  bit): count
1963 	 * offset + 6  (32 bit): value 1
1964 	 * ...
1965 	 *
1966 	 * Starting at offset + 6 there are "count" 32 bit values.
1967 	 * For "count" iterations set "base register" + 4 * current_iteration
1968 	 * to "value current_iteration"
1969 	 */
1970 
1971 	uint32_t basereg = ROM32(bios->data[offset + 1]);
1972 	uint32_t count = bios->data[offset + 5];
1973 	int len = 6 + count * 4;
1974 	int i;
1975 
1976 	if (!iexec->execute)
1977 		return len;
1978 
1979 	BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n",
1980 		offset, basereg, count);
1981 
1982 	for (i = 0; i < count; i++) {
1983 		uint32_t reg = basereg + i * 4;
1984 		uint32_t data = ROM32(bios->data[offset + 6 + i * 4]);
1985 
1986 		bios_wr32(bios, reg, data);
1987 	}
1988 
1989 	return len;
1990 }
1991 
1992 static int
1993 init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1994 {
1995 	/*
1996 	 * INIT_SUB_DIRECT   opcode: 0x5B ('[')
1997 	 *
1998 	 * offset      (8  bit): opcode
1999 	 * offset + 1  (16 bit): subroutine offset (in bios)
2000 	 *
2001 	 * Calls a subroutine that will execute commands until INIT_DONE
2002 	 * is found.
2003 	 */
2004 
2005 	uint16_t sub_offset = ROM16(bios->data[offset + 1]);
2006 
2007 	if (!iexec->execute)
2008 		return 3;
2009 
2010 	BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n",
2011 		offset, sub_offset);
2012 
2013 	parse_init_table(bios, sub_offset, iexec);
2014 
2015 	BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset);
2016 
2017 	return 3;
2018 }
2019 
2020 static int
2021 init_jump(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2022 {
2023 	/*
2024 	 * INIT_JUMP   opcode: 0x5C ('\')
2025 	 *
2026 	 * offset      (8  bit): opcode
2027 	 * offset + 1  (16 bit): offset (in bios)
2028 	 *
2029 	 * Continue execution of init table from 'offset'
2030 	 */
2031 
2032 	uint16_t jmp_offset = ROM16(bios->data[offset + 1]);
2033 
2034 	if (!iexec->execute)
2035 		return 3;
2036 
2037 	BIOSLOG(bios, "0x%04X: Jump to 0x%04X\n", offset, jmp_offset);
2038 	return jmp_offset - offset;
2039 }
2040 
2041 static int
2042 init_i2c_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2043 {
2044 	/*
2045 	 * INIT_I2C_IF   opcode: 0x5E ('^')
2046 	 *
2047 	 * offset      (8 bit): opcode
2048 	 * offset + 1  (8 bit): DCB I2C table entry index
2049 	 * offset + 2  (8 bit): I2C slave address
2050 	 * offset + 3  (8 bit): I2C register
2051 	 * offset + 4  (8 bit): mask
2052 	 * offset + 5  (8 bit): data
2053 	 *
2054 	 * Read the register given by "I2C register" on the device addressed
2055 	 * by "I2C slave address" on the I2C bus given by "DCB I2C table
2056 	 * entry index". Compare the result AND "mask" to "data".
2057 	 * If they're not equal, skip subsequent opcodes until condition is
2058 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2059 	 */
2060 
2061 	uint8_t i2c_index = bios->data[offset + 1];
2062 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
2063 	uint8_t reg = bios->data[offset + 3];
2064 	uint8_t mask = bios->data[offset + 4];
2065 	uint8_t data = bios->data[offset + 5];
2066 	struct nouveau_i2c_chan *chan;
2067 	union i2c_smbus_data val;
2068 	int ret;
2069 
2070 	/* no execute check by design */
2071 
2072 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
2073 		offset, i2c_index, i2c_address);
2074 
2075 	chan = init_i2c_device_find(bios->dev, i2c_index);
2076 	if (!chan)
2077 		return -ENODEV;
2078 
2079 	ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
2080 			     I2C_SMBUS_READ, reg,
2081 			     I2C_SMBUS_BYTE_DATA, &val);
2082 	if (ret < 0) {
2083 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: [no device], "
2084 			      "Mask: 0x%02X, Data: 0x%02X\n",
2085 			offset, reg, mask, data);
2086 		iexec->execute = 0;
2087 		return 6;
2088 	}
2089 
2090 	BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
2091 		      "Mask: 0x%02X, Data: 0x%02X\n",
2092 		offset, reg, val.byte, mask, data);
2093 
2094 	iexec->execute = ((val.byte & mask) == data);
2095 
2096 	return 6;
2097 }
2098 
2099 static int
2100 init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2101 {
2102 	/*
2103 	 * INIT_COPY_NV_REG   opcode: 0x5F ('_')
2104 	 *
2105 	 * offset      (8  bit): opcode
2106 	 * offset + 1  (32 bit): src reg
2107 	 * offset + 5  (8  bit): shift
2108 	 * offset + 6  (32 bit): src mask
2109 	 * offset + 10 (32 bit): xor
2110 	 * offset + 14 (32 bit): dst reg
2111 	 * offset + 18 (32 bit): dst mask
2112 	 *
2113 	 * Shift REGVAL("src reg") right by (signed) "shift", AND result with
2114 	 * "src mask", then XOR with "xor". Write this OR'd with
2115 	 * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg"
2116 	 */
2117 
2118 	uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1]));
2119 	uint8_t shift = bios->data[offset + 5];
2120 	uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6]));
2121 	uint32_t xor = *((uint32_t *)(&bios->data[offset + 10]));
2122 	uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14]));
2123 	uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18]));
2124 	uint32_t srcvalue, dstvalue;
2125 
2126 	if (!iexec->execute)
2127 		return 22;
2128 
2129 	BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, "
2130 		      "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n",
2131 		offset, srcreg, shift, srcmask, xor, dstreg, dstmask);
2132 
2133 	srcvalue = bios_rd32(bios, srcreg);
2134 
2135 	if (shift < 0x80)
2136 		srcvalue >>= shift;
2137 	else
2138 		srcvalue <<= (0x100 - shift);
2139 
2140 	srcvalue = (srcvalue & srcmask) ^ xor;
2141 
2142 	dstvalue = bios_rd32(bios, dstreg) & dstmask;
2143 
2144 	bios_wr32(bios, dstreg, dstvalue | srcvalue);
2145 
2146 	return 22;
2147 }
2148 
2149 static int
2150 init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2151 {
2152 	/*
2153 	 * INIT_ZM_INDEX_IO   opcode: 0x62 ('b')
2154 	 *
2155 	 * offset      (8  bit): opcode
2156 	 * offset + 1  (16 bit): CRTC port
2157 	 * offset + 3  (8  bit): CRTC index
2158 	 * offset + 4  (8  bit): data
2159 	 *
2160 	 * Write "data" to index "CRTC index" of "CRTC port"
2161 	 */
2162 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2163 	uint8_t crtcindex = bios->data[offset + 3];
2164 	uint8_t data = bios->data[offset + 4];
2165 
2166 	if (!iexec->execute)
2167 		return 5;
2168 
2169 	bios_idxprt_wr(bios, crtcport, crtcindex, data);
2170 
2171 	return 5;
2172 }
2173 
2174 static inline void
2175 bios_md32(struct nvbios *bios, uint32_t reg,
2176 	  uint32_t mask, uint32_t val)
2177 {
2178 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & ~mask) | val);
2179 }
2180 
2181 static uint32_t
2182 peek_fb(struct drm_device *dev, struct io_mapping *fb,
2183 	uint32_t off)
2184 {
2185 	uint32_t val = 0;
2186 
2187 	if (off < pci_resource_len(dev->pdev, 1)) {
2188 		uint8_t __iomem *p =
2189 			io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2190 
2191 		val = ioread32(p + (off & ~PAGE_MASK));
2192 
2193 		io_mapping_unmap_atomic(p);
2194 	}
2195 
2196 	return val;
2197 }
2198 
2199 static void
2200 poke_fb(struct drm_device *dev, struct io_mapping *fb,
2201 	uint32_t off, uint32_t val)
2202 {
2203 	if (off < pci_resource_len(dev->pdev, 1)) {
2204 		uint8_t __iomem *p =
2205 			io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2206 
2207 		iowrite32(val, p + (off & ~PAGE_MASK));
2208 		wmb();
2209 
2210 		io_mapping_unmap_atomic(p);
2211 	}
2212 }
2213 
2214 static inline bool
2215 read_back_fb(struct drm_device *dev, struct io_mapping *fb,
2216 	     uint32_t off, uint32_t val)
2217 {
2218 	poke_fb(dev, fb, off, val);
2219 	return val == peek_fb(dev, fb, off);
2220 }
2221 
2222 static int
2223 nv04_init_compute_mem(struct nvbios *bios)
2224 {
2225 	struct drm_device *dev = bios->dev;
2226 	uint32_t patt = 0xdeadbeef;
2227 	struct io_mapping *fb;
2228 	int i;
2229 
2230 	/* Map the framebuffer aperture */
2231 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2232 				  pci_resource_len(dev->pdev, 1));
2233 	if (!fb)
2234 		return -ENOMEM;
2235 
2236 	/* Sequencer and refresh off */
2237 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
2238 	bios_md32(bios, NV04_PFB_DEBUG_0, 0, NV04_PFB_DEBUG_0_REFRESH_OFF);
2239 
2240 	bios_md32(bios, NV04_PFB_BOOT_0, ~0,
2241 		  NV04_PFB_BOOT_0_RAM_AMOUNT_16MB |
2242 		  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2243 		  NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_16MBIT);
2244 
2245 	for (i = 0; i < 4; i++)
2246 		poke_fb(dev, fb, 4 * i, patt);
2247 
2248 	poke_fb(dev, fb, 0x400000, patt + 1);
2249 
2250 	if (peek_fb(dev, fb, 0) == patt + 1) {
2251 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
2252 			  NV04_PFB_BOOT_0_RAM_TYPE_SDRAM_16MBIT);
2253 		bios_md32(bios, NV04_PFB_DEBUG_0,
2254 			  NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2255 
2256 		for (i = 0; i < 4; i++)
2257 			poke_fb(dev, fb, 4 * i, patt);
2258 
2259 		if ((peek_fb(dev, fb, 0xc) & 0xffff) != (patt & 0xffff))
2260 			bios_md32(bios, NV04_PFB_BOOT_0,
2261 				  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2262 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2263 				  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2264 
2265 	} else if ((peek_fb(dev, fb, 0xc) & 0xffff0000) !=
2266 		   (patt & 0xffff0000)) {
2267 		bios_md32(bios, NV04_PFB_BOOT_0,
2268 			  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2269 			  NV04_PFB_BOOT_0_RAM_AMOUNT,
2270 			  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2271 
2272 	} else if (peek_fb(dev, fb, 0) != patt) {
2273 		if (read_back_fb(dev, fb, 0x800000, patt))
2274 			bios_md32(bios, NV04_PFB_BOOT_0,
2275 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2276 				  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2277 		else
2278 			bios_md32(bios, NV04_PFB_BOOT_0,
2279 				  NV04_PFB_BOOT_0_RAM_AMOUNT,
2280 				  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2281 
2282 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
2283 			  NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_8MBIT);
2284 
2285 	} else if (!read_back_fb(dev, fb, 0x800000, patt)) {
2286 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2287 			  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2288 
2289 	}
2290 
2291 	/* Refresh on, sequencer on */
2292 	bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2293 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
2294 
2295 	io_mapping_free(fb);
2296 	return 0;
2297 }
2298 
2299 static const uint8_t *
2300 nv05_memory_config(struct nvbios *bios)
2301 {
2302 	/* Defaults for BIOSes lacking a memory config table */
2303 	static const uint8_t default_config_tab[][2] = {
2304 		{ 0x24, 0x00 },
2305 		{ 0x28, 0x00 },
2306 		{ 0x24, 0x01 },
2307 		{ 0x1f, 0x00 },
2308 		{ 0x0f, 0x00 },
2309 		{ 0x17, 0x00 },
2310 		{ 0x06, 0x00 },
2311 		{ 0x00, 0x00 }
2312 	};
2313 	int i = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) &
2314 		 NV_PEXTDEV_BOOT_0_RAMCFG) >> 2;
2315 
2316 	if (bios->legacy.mem_init_tbl_ptr)
2317 		return &bios->data[bios->legacy.mem_init_tbl_ptr + 2 * i];
2318 	else
2319 		return default_config_tab[i];
2320 }
2321 
2322 static int
2323 nv05_init_compute_mem(struct nvbios *bios)
2324 {
2325 	struct drm_device *dev = bios->dev;
2326 	const uint8_t *ramcfg = nv05_memory_config(bios);
2327 	uint32_t patt = 0xdeadbeef;
2328 	struct io_mapping *fb;
2329 	int i, v;
2330 
2331 	/* Map the framebuffer aperture */
2332 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2333 				  pci_resource_len(dev->pdev, 1));
2334 	if (!fb)
2335 		return -ENOMEM;
2336 
2337 	/* Sequencer off */
2338 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
2339 
2340 	if (bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_UMA_ENABLE)
2341 		goto out;
2342 
2343 	bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2344 
2345 	/* If present load the hardcoded scrambling table */
2346 	if (bios->legacy.mem_init_tbl_ptr) {
2347 		uint32_t *scramble_tab = (uint32_t *)&bios->data[
2348 			bios->legacy.mem_init_tbl_ptr + 0x10];
2349 
2350 		for (i = 0; i < 8; i++)
2351 			bios_wr32(bios, NV04_PFB_SCRAMBLE(i),
2352 				  ROM32(scramble_tab[i]));
2353 	}
2354 
2355 	/* Set memory type/width/length defaults depending on the straps */
2356 	bios_md32(bios, NV04_PFB_BOOT_0, 0x3f, ramcfg[0]);
2357 
2358 	if (ramcfg[1] & 0x80)
2359 		bios_md32(bios, NV04_PFB_CFG0, 0, NV04_PFB_CFG0_SCRAMBLE);
2360 
2361 	bios_md32(bios, NV04_PFB_CFG1, 0x700001, (ramcfg[1] & 1) << 20);
2362 	bios_md32(bios, NV04_PFB_CFG1, 0, 1);
2363 
2364 	/* Probe memory bus width */
2365 	for (i = 0; i < 4; i++)
2366 		poke_fb(dev, fb, 4 * i, patt);
2367 
2368 	if (peek_fb(dev, fb, 0xc) != patt)
2369 		bios_md32(bios, NV04_PFB_BOOT_0,
2370 			  NV04_PFB_BOOT_0_RAM_WIDTH_128, 0);
2371 
2372 	/* Probe memory length */
2373 	v = bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_RAM_AMOUNT;
2374 
2375 	if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_32MB &&
2376 	    (!read_back_fb(dev, fb, 0x1000000, ++patt) ||
2377 	     !read_back_fb(dev, fb, 0, ++patt)))
2378 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2379 			  NV04_PFB_BOOT_0_RAM_AMOUNT_16MB);
2380 
2381 	if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_16MB &&
2382 	    !read_back_fb(dev, fb, 0x800000, ++patt))
2383 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2384 			  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2385 
2386 	if (!read_back_fb(dev, fb, 0x400000, ++patt))
2387 		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2388 			  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2389 
2390 out:
2391 	/* Sequencer on */
2392 	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
2393 
2394 	io_mapping_free(fb);
2395 	return 0;
2396 }
2397 
2398 static int
2399 nv10_init_compute_mem(struct nvbios *bios)
2400 {
2401 	struct drm_device *dev = bios->dev;
2402 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2403 	const int mem_width[] = { 0x10, 0x00, 0x20 };
2404 	const int mem_width_count = (dev_priv->chipset >= 0x17 ? 3 : 2);
2405 	uint32_t patt = 0xdeadbeef;
2406 	struct io_mapping *fb;
2407 	int i, j, k;
2408 
2409 	/* Map the framebuffer aperture */
2410 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2411 				  pci_resource_len(dev->pdev, 1));
2412 	if (!fb)
2413 		return -ENOMEM;
2414 
2415 	bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
2416 
2417 	/* Probe memory bus width */
2418 	for (i = 0; i < mem_width_count; i++) {
2419 		bios_md32(bios, NV04_PFB_CFG0, 0x30, mem_width[i]);
2420 
2421 		for (j = 0; j < 4; j++) {
2422 			for (k = 0; k < 4; k++)
2423 				poke_fb(dev, fb, 0x1c, 0);
2424 
2425 			poke_fb(dev, fb, 0x1c, patt);
2426 			poke_fb(dev, fb, 0x3c, 0);
2427 
2428 			if (peek_fb(dev, fb, 0x1c) == patt)
2429 				goto mem_width_found;
2430 		}
2431 	}
2432 
2433 mem_width_found:
2434 	patt <<= 1;
2435 
2436 	/* Probe amount of installed memory */
2437 	for (i = 0; i < 4; i++) {
2438 		int off = bios_rd32(bios, NV04_PFB_FIFO_DATA) - 0x100000;
2439 
2440 		poke_fb(dev, fb, off, patt);
2441 		poke_fb(dev, fb, 0, 0);
2442 
2443 		peek_fb(dev, fb, 0);
2444 		peek_fb(dev, fb, 0);
2445 		peek_fb(dev, fb, 0);
2446 		peek_fb(dev, fb, 0);
2447 
2448 		if (peek_fb(dev, fb, off) == patt)
2449 			goto amount_found;
2450 	}
2451 
2452 	/* IC missing - disable the upper half memory space. */
2453 	bios_md32(bios, NV04_PFB_CFG0, 0x1000, 0);
2454 
2455 amount_found:
2456 	io_mapping_free(fb);
2457 	return 0;
2458 }
2459 
2460 static int
2461 nv20_init_compute_mem(struct nvbios *bios)
2462 {
2463 	struct drm_device *dev = bios->dev;
2464 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2465 	uint32_t mask = (dev_priv->chipset >= 0x25 ? 0x300 : 0x900);
2466 	uint32_t amount, off;
2467 	struct io_mapping *fb;
2468 
2469 	/* Map the framebuffer aperture */
2470 	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2471 				  pci_resource_len(dev->pdev, 1));
2472 	if (!fb)
2473 		return -ENOMEM;
2474 
2475 	bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
2476 
2477 	/* Allow full addressing */
2478 	bios_md32(bios, NV04_PFB_CFG0, 0, mask);
2479 
2480 	amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
2481 	for (off = amount; off > 0x2000000; off -= 0x2000000)
2482 		poke_fb(dev, fb, off - 4, off);
2483 
2484 	amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
2485 	if (amount != peek_fb(dev, fb, amount - 4))
2486 		/* IC missing - disable the upper half memory space. */
2487 		bios_md32(bios, NV04_PFB_CFG0, mask, 0);
2488 
2489 	io_mapping_free(fb);
2490 	return 0;
2491 }
2492 
2493 static int
2494 init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2495 {
2496 	/*
2497 	 * INIT_COMPUTE_MEM   opcode: 0x63 ('c')
2498 	 *
2499 	 * offset      (8 bit): opcode
2500 	 *
2501 	 * This opcode is meant to set the PFB memory config registers
2502 	 * appropriately so that we can correctly calculate how much VRAM it
2503 	 * has (on nv10 and better chipsets the amount of installed VRAM is
2504 	 * subsequently reported in NV_PFB_CSTATUS (0x10020C)).
2505 	 *
2506 	 * The implementation of this opcode in general consists of several
2507 	 * parts:
2508 	 *
2509 	 * 1) Determination of memory type and density. Only necessary for
2510 	 *    really old chipsets, the memory type reported by the strap bits
2511 	 *    (0x101000) is assumed to be accurate on nv05 and newer.
2512 	 *
2513 	 * 2) Determination of the memory bus width. Usually done by a cunning
2514 	 *    combination of writes to offsets 0x1c and 0x3c in the fb, and
2515 	 *    seeing whether the written values are read back correctly.
2516 	 *
2517 	 *    Only necessary on nv0x-nv1x and nv34, on the other cards we can
2518 	 *    trust the straps.
2519 	 *
2520 	 * 3) Determination of how many of the card's RAM pads have ICs
2521 	 *    attached, usually done by a cunning combination of writes to an
2522 	 *    offset slightly less than the maximum memory reported by
2523 	 *    NV_PFB_CSTATUS, then seeing if the test pattern can be read back.
2524 	 *
2525 	 * This appears to be a NOP on IGPs and NV4x or newer chipsets, both io
2526 	 * logs of the VBIOS and kmmio traces of the binary driver POSTing the
2527 	 * card show nothing being done for this opcode. Why is it still listed
2528 	 * in the table?!
2529 	 */
2530 
2531 	/* no iexec->execute check by design */
2532 
2533 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2534 	int ret;
2535 
2536 	if (dev_priv->chipset >= 0x40 ||
2537 	    dev_priv->chipset == 0x1a ||
2538 	    dev_priv->chipset == 0x1f)
2539 		ret = 0;
2540 	else if (dev_priv->chipset >= 0x20 &&
2541 		 dev_priv->chipset != 0x34)
2542 		ret = nv20_init_compute_mem(bios);
2543 	else if (dev_priv->chipset >= 0x10)
2544 		ret = nv10_init_compute_mem(bios);
2545 	else if (dev_priv->chipset >= 0x5)
2546 		ret = nv05_init_compute_mem(bios);
2547 	else
2548 		ret = nv04_init_compute_mem(bios);
2549 
2550 	if (ret)
2551 		return ret;
2552 
2553 	return 1;
2554 }
2555 
2556 static int
2557 init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2558 {
2559 	/*
2560 	 * INIT_RESET   opcode: 0x65 ('e')
2561 	 *
2562 	 * offset      (8  bit): opcode
2563 	 * offset + 1  (32 bit): register
2564 	 * offset + 5  (32 bit): value1
2565 	 * offset + 9  (32 bit): value2
2566 	 *
2567 	 * Assign "value1" to "register", then assign "value2" to "register"
2568 	 */
2569 
2570 	uint32_t reg = ROM32(bios->data[offset + 1]);
2571 	uint32_t value1 = ROM32(bios->data[offset + 5]);
2572 	uint32_t value2 = ROM32(bios->data[offset + 9]);
2573 	uint32_t pci_nv_19, pci_nv_20;
2574 
2575 	/* no iexec->execute check by design */
2576 
2577 	pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19);
2578 	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19 & ~0xf00);
2579 
2580 	bios_wr32(bios, reg, value1);
2581 
2582 	udelay(10);
2583 
2584 	bios_wr32(bios, reg, value2);
2585 	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19);
2586 
2587 	pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20);
2588 	pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED;	/* 0xfffffffe */
2589 	bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20);
2590 
2591 	return 13;
2592 }
2593 
2594 static int
2595 init_configure_mem(struct nvbios *bios, uint16_t offset,
2596 		   struct init_exec *iexec)
2597 {
2598 	/*
2599 	 * INIT_CONFIGURE_MEM   opcode: 0x66 ('f')
2600 	 *
2601 	 * offset      (8 bit): opcode
2602 	 *
2603 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2604 	 * For early bios versions, sets up the memory registers, using values
2605 	 * taken from the memory init table
2606 	 */
2607 
2608 	/* no iexec->execute check by design */
2609 
2610 	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2611 	uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6;
2612 	uint32_t reg, data;
2613 
2614 	if (bios->major_version > 2)
2615 		return 0;
2616 
2617 	bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd(
2618 		       bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20);
2619 
2620 	if (bios->data[meminitoffs] & 1)
2621 		seqtbloffs = bios->legacy.ddr_seq_tbl_ptr;
2622 
2623 	for (reg = ROM32(bios->data[seqtbloffs]);
2624 	     reg != 0xffffffff;
2625 	     reg = ROM32(bios->data[seqtbloffs += 4])) {
2626 
2627 		switch (reg) {
2628 		case NV04_PFB_PRE:
2629 			data = NV04_PFB_PRE_CMD_PRECHARGE;
2630 			break;
2631 		case NV04_PFB_PAD:
2632 			data = NV04_PFB_PAD_CKE_NORMAL;
2633 			break;
2634 		case NV04_PFB_REF:
2635 			data = NV04_PFB_REF_CMD_REFRESH;
2636 			break;
2637 		default:
2638 			data = ROM32(bios->data[meminitdata]);
2639 			meminitdata += 4;
2640 			if (data == 0xffffffff)
2641 				continue;
2642 		}
2643 
2644 		bios_wr32(bios, reg, data);
2645 	}
2646 
2647 	return 1;
2648 }
2649 
2650 static int
2651 init_configure_clk(struct nvbios *bios, uint16_t offset,
2652 		   struct init_exec *iexec)
2653 {
2654 	/*
2655 	 * INIT_CONFIGURE_CLK   opcode: 0x67 ('g')
2656 	 *
2657 	 * offset      (8 bit): opcode
2658 	 *
2659 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2660 	 * For early bios versions, sets up the NVClk and MClk PLLs, using
2661 	 * values taken from the memory init table
2662 	 */
2663 
2664 	/* no iexec->execute check by design */
2665 
2666 	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2667 	int clock;
2668 
2669 	if (bios->major_version > 2)
2670 		return 0;
2671 
2672 	clock = ROM16(bios->data[meminitoffs + 4]) * 10;
2673 	setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock);
2674 
2675 	clock = ROM16(bios->data[meminitoffs + 2]) * 10;
2676 	if (bios->data[meminitoffs] & 1) /* DDR */
2677 		clock *= 2;
2678 	setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock);
2679 
2680 	return 1;
2681 }
2682 
2683 static int
2684 init_configure_preinit(struct nvbios *bios, uint16_t offset,
2685 		       struct init_exec *iexec)
2686 {
2687 	/*
2688 	 * INIT_CONFIGURE_PREINIT   opcode: 0x68 ('h')
2689 	 *
2690 	 * offset      (8 bit): opcode
2691 	 *
2692 	 * Equivalent to INIT_DONE on bios version 3 or greater.
2693 	 * For early bios versions, does early init, loading ram and crystal
2694 	 * configuration from straps into CR3C
2695 	 */
2696 
2697 	/* no iexec->execute check by design */
2698 
2699 	uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
2700 	uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & 0x40) >> 6;
2701 
2702 	if (bios->major_version > 2)
2703 		return 0;
2704 
2705 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR,
2706 			     NV_CIO_CRE_SCRATCH4__INDEX, cr3c);
2707 
2708 	return 1;
2709 }
2710 
2711 static int
2712 init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2713 {
2714 	/*
2715 	 * INIT_IO   opcode: 0x69 ('i')
2716 	 *
2717 	 * offset      (8  bit): opcode
2718 	 * offset + 1  (16 bit): CRTC port
2719 	 * offset + 3  (8  bit): mask
2720 	 * offset + 4  (8  bit): data
2721 	 *
2722 	 * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port"
2723 	 */
2724 
2725 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2726 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
2727 	uint8_t mask = bios->data[offset + 3];
2728 	uint8_t data = bios->data[offset + 4];
2729 
2730 	if (!iexec->execute)
2731 		return 5;
2732 
2733 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n",
2734 		offset, crtcport, mask, data);
2735 
2736 	/*
2737 	 * I have no idea what this does, but NVIDIA do this magic sequence
2738 	 * in the places where this INIT_IO happens..
2739 	 */
2740 	if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) {
2741 		int i;
2742 
2743 		bios_wr32(bios, 0x614100, (bios_rd32(
2744 			  bios, 0x614100) & 0x0fffffff) | 0x00800000);
2745 
2746 		bios_wr32(bios, 0x00e18c, bios_rd32(
2747 			  bios, 0x00e18c) | 0x00020000);
2748 
2749 		bios_wr32(bios, 0x614900, (bios_rd32(
2750 			  bios, 0x614900) & 0x0fffffff) | 0x00800000);
2751 
2752 		bios_wr32(bios, 0x000200, bios_rd32(
2753 			  bios, 0x000200) & ~0x40000000);
2754 
2755 		mdelay(10);
2756 
2757 		bios_wr32(bios, 0x00e18c, bios_rd32(
2758 			  bios, 0x00e18c) & ~0x00020000);
2759 
2760 		bios_wr32(bios, 0x000200, bios_rd32(
2761 			  bios, 0x000200) | 0x40000000);
2762 
2763 		bios_wr32(bios, 0x614100, 0x00800018);
2764 		bios_wr32(bios, 0x614900, 0x00800018);
2765 
2766 		mdelay(10);
2767 
2768 		bios_wr32(bios, 0x614100, 0x10000018);
2769 		bios_wr32(bios, 0x614900, 0x10000018);
2770 
2771 		for (i = 0; i < 3; i++)
2772 			bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32(
2773 				  bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0);
2774 
2775 		for (i = 0; i < 2; i++)
2776 			bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32(
2777 				  bios, 0x614300 + (i*0x800)) & 0xfffff0f0);
2778 
2779 		for (i = 0; i < 3; i++)
2780 			bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32(
2781 				  bios, 0x614380 + (i*0x800)) & 0xfffff0f0);
2782 
2783 		for (i = 0; i < 2; i++)
2784 			bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32(
2785 				  bios, 0x614200 + (i*0x800)) & 0xfffffff0);
2786 
2787 		for (i = 0; i < 2; i++)
2788 			bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32(
2789 				  bios, 0x614108 + (i*0x800)) & 0x0fffffff);
2790 		return 5;
2791 	}
2792 
2793 	bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) |
2794 									data);
2795 	return 5;
2796 }
2797 
2798 static int
2799 init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2800 {
2801 	/*
2802 	 * INIT_SUB   opcode: 0x6B ('k')
2803 	 *
2804 	 * offset      (8 bit): opcode
2805 	 * offset + 1  (8 bit): script number
2806 	 *
2807 	 * Execute script number "script number", as a subroutine
2808 	 */
2809 
2810 	uint8_t sub = bios->data[offset + 1];
2811 
2812 	if (!iexec->execute)
2813 		return 2;
2814 
2815 	BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub);
2816 
2817 	parse_init_table(bios,
2818 			 ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]),
2819 			 iexec);
2820 
2821 	BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub);
2822 
2823 	return 2;
2824 }
2825 
2826 static int
2827 init_ram_condition(struct nvbios *bios, uint16_t offset,
2828 		   struct init_exec *iexec)
2829 {
2830 	/*
2831 	 * INIT_RAM_CONDITION   opcode: 0x6D ('m')
2832 	 *
2833 	 * offset      (8 bit): opcode
2834 	 * offset + 1  (8 bit): mask
2835 	 * offset + 2  (8 bit): cmpval
2836 	 *
2837 	 * Test if (NV04_PFB_BOOT_0 & "mask") equals "cmpval".
2838 	 * If condition not met skip subsequent opcodes until condition is
2839 	 * inverted (INIT_NOT), or we hit INIT_RESUME
2840 	 */
2841 
2842 	uint8_t mask = bios->data[offset + 1];
2843 	uint8_t cmpval = bios->data[offset + 2];
2844 	uint8_t data;
2845 
2846 	if (!iexec->execute)
2847 		return 3;
2848 
2849 	data = bios_rd32(bios, NV04_PFB_BOOT_0) & mask;
2850 
2851 	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
2852 		offset, data, cmpval);
2853 
2854 	if (data == cmpval)
2855 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2856 	else {
2857 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2858 		iexec->execute = false;
2859 	}
2860 
2861 	return 3;
2862 }
2863 
2864 static int
2865 init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2866 {
2867 	/*
2868 	 * INIT_NV_REG   opcode: 0x6E ('n')
2869 	 *
2870 	 * offset      (8  bit): opcode
2871 	 * offset + 1  (32 bit): register
2872 	 * offset + 5  (32 bit): mask
2873 	 * offset + 9  (32 bit): data
2874 	 *
2875 	 * Assign ((REGVAL("register") & "mask") | "data") to "register"
2876 	 */
2877 
2878 	uint32_t reg = ROM32(bios->data[offset + 1]);
2879 	uint32_t mask = ROM32(bios->data[offset + 5]);
2880 	uint32_t data = ROM32(bios->data[offset + 9]);
2881 
2882 	if (!iexec->execute)
2883 		return 13;
2884 
2885 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n",
2886 		offset, reg, mask, data);
2887 
2888 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data);
2889 
2890 	return 13;
2891 }
2892 
2893 static int
2894 init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2895 {
2896 	/*
2897 	 * INIT_MACRO   opcode: 0x6F ('o')
2898 	 *
2899 	 * offset      (8 bit): opcode
2900 	 * offset + 1  (8 bit): macro number
2901 	 *
2902 	 * Look up macro index "macro number" in the macro index table.
2903 	 * The macro index table entry has 1 byte for the index in the macro
2904 	 * table, and 1 byte for the number of times to repeat the macro.
2905 	 * The macro table entry has 4 bytes for the register address and
2906 	 * 4 bytes for the value to write to that register
2907 	 */
2908 
2909 	uint8_t macro_index_tbl_idx = bios->data[offset + 1];
2910 	uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE);
2911 	uint8_t macro_tbl_idx = bios->data[tmp];
2912 	uint8_t count = bios->data[tmp + 1];
2913 	uint32_t reg, data;
2914 	int i;
2915 
2916 	if (!iexec->execute)
2917 		return 2;
2918 
2919 	BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, "
2920 		      "Count: 0x%02X\n",
2921 		offset, macro_index_tbl_idx, macro_tbl_idx, count);
2922 
2923 	for (i = 0; i < count; i++) {
2924 		uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE;
2925 
2926 		reg = ROM32(bios->data[macroentryptr]);
2927 		data = ROM32(bios->data[macroentryptr + 4]);
2928 
2929 		bios_wr32(bios, reg, data);
2930 	}
2931 
2932 	return 2;
2933 }
2934 
2935 static int
2936 init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2937 {
2938 	/*
2939 	 * INIT_DONE   opcode: 0x71 ('q')
2940 	 *
2941 	 * offset      (8  bit): opcode
2942 	 *
2943 	 * End the current script
2944 	 */
2945 
2946 	/* mild retval abuse to stop parsing this table */
2947 	return 0;
2948 }
2949 
2950 static int
2951 init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2952 {
2953 	/*
2954 	 * INIT_RESUME   opcode: 0x72 ('r')
2955 	 *
2956 	 * offset      (8  bit): opcode
2957 	 *
2958 	 * End the current execute / no-execute condition
2959 	 */
2960 
2961 	if (iexec->execute)
2962 		return 1;
2963 
2964 	iexec->execute = true;
2965 	BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset);
2966 
2967 	return 1;
2968 }
2969 
2970 static int
2971 init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2972 {
2973 	/*
2974 	 * INIT_TIME   opcode: 0x74 ('t')
2975 	 *
2976 	 * offset      (8  bit): opcode
2977 	 * offset + 1  (16 bit): time
2978 	 *
2979 	 * Sleep for "time" microseconds.
2980 	 */
2981 
2982 	unsigned time = ROM16(bios->data[offset + 1]);
2983 
2984 	if (!iexec->execute)
2985 		return 3;
2986 
2987 	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n",
2988 		offset, time);
2989 
2990 	if (time < 1000)
2991 		udelay(time);
2992 	else
2993 		mdelay((time + 900) / 1000);
2994 
2995 	return 3;
2996 }
2997 
2998 static int
2999 init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3000 {
3001 	/*
3002 	 * INIT_CONDITION   opcode: 0x75 ('u')
3003 	 *
3004 	 * offset      (8 bit): opcode
3005 	 * offset + 1  (8 bit): condition number
3006 	 *
3007 	 * Check condition "condition number" in the condition table.
3008 	 * If condition not met skip subsequent opcodes until condition is
3009 	 * inverted (INIT_NOT), or we hit INIT_RESUME
3010 	 */
3011 
3012 	uint8_t cond = bios->data[offset + 1];
3013 
3014 	if (!iexec->execute)
3015 		return 2;
3016 
3017 	BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond);
3018 
3019 	if (bios_condition_met(bios, offset, cond))
3020 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
3021 	else {
3022 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
3023 		iexec->execute = false;
3024 	}
3025 
3026 	return 2;
3027 }
3028 
3029 static int
3030 init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3031 {
3032 	/*
3033 	 * INIT_IO_CONDITION  opcode: 0x76
3034 	 *
3035 	 * offset      (8 bit): opcode
3036 	 * offset + 1  (8 bit): condition number
3037 	 *
3038 	 * Check condition "condition number" in the io condition table.
3039 	 * If condition not met skip subsequent opcodes until condition is
3040 	 * inverted (INIT_NOT), or we hit INIT_RESUME
3041 	 */
3042 
3043 	uint8_t cond = bios->data[offset + 1];
3044 
3045 	if (!iexec->execute)
3046 		return 2;
3047 
3048 	BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond);
3049 
3050 	if (io_condition_met(bios, offset, cond))
3051 		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
3052 	else {
3053 		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
3054 		iexec->execute = false;
3055 	}
3056 
3057 	return 2;
3058 }
3059 
3060 static int
3061 init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3062 {
3063 	/*
3064 	 * INIT_INDEX_IO   opcode: 0x78 ('x')
3065 	 *
3066 	 * offset      (8  bit): opcode
3067 	 * offset + 1  (16 bit): CRTC port
3068 	 * offset + 3  (8  bit): CRTC index
3069 	 * offset + 4  (8  bit): mask
3070 	 * offset + 5  (8  bit): data
3071 	 *
3072 	 * Read value at index "CRTC index" on "CRTC port", AND with "mask",
3073 	 * OR with "data", write-back
3074 	 */
3075 
3076 	uint16_t crtcport = ROM16(bios->data[offset + 1]);
3077 	uint8_t crtcindex = bios->data[offset + 3];
3078 	uint8_t mask = bios->data[offset + 4];
3079 	uint8_t data = bios->data[offset + 5];
3080 	uint8_t value;
3081 
3082 	if (!iexec->execute)
3083 		return 6;
3084 
3085 	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
3086 		      "Data: 0x%02X\n",
3087 		offset, crtcport, crtcindex, mask, data);
3088 
3089 	value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data;
3090 	bios_idxprt_wr(bios, crtcport, crtcindex, value);
3091 
3092 	return 6;
3093 }
3094 
3095 static int
3096 init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3097 {
3098 	/*
3099 	 * INIT_PLL   opcode: 0x79 ('y')
3100 	 *
3101 	 * offset      (8  bit): opcode
3102 	 * offset + 1  (32 bit): register
3103 	 * offset + 5  (16 bit): freq
3104 	 *
3105 	 * Set PLL register "register" to coefficients for frequency (10kHz)
3106 	 * "freq"
3107 	 */
3108 
3109 	uint32_t reg = ROM32(bios->data[offset + 1]);
3110 	uint16_t freq = ROM16(bios->data[offset + 5]);
3111 
3112 	if (!iexec->execute)
3113 		return 7;
3114 
3115 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq);
3116 
3117 	setPLL(bios, reg, freq * 10);
3118 
3119 	return 7;
3120 }
3121 
3122 static int
3123 init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3124 {
3125 	/*
3126 	 * INIT_ZM_REG   opcode: 0x7A ('z')
3127 	 *
3128 	 * offset      (8  bit): opcode
3129 	 * offset + 1  (32 bit): register
3130 	 * offset + 5  (32 bit): value
3131 	 *
3132 	 * Assign "value" to "register"
3133 	 */
3134 
3135 	uint32_t reg = ROM32(bios->data[offset + 1]);
3136 	uint32_t value = ROM32(bios->data[offset + 5]);
3137 
3138 	if (!iexec->execute)
3139 		return 9;
3140 
3141 	if (reg == 0x000200)
3142 		value |= 1;
3143 
3144 	bios_wr32(bios, reg, value);
3145 
3146 	return 9;
3147 }
3148 
3149 static int
3150 init_ram_restrict_pll(struct nvbios *bios, uint16_t offset,
3151 		      struct init_exec *iexec)
3152 {
3153 	/*
3154 	 * INIT_RAM_RESTRICT_PLL   opcode: 0x87 ('')
3155 	 *
3156 	 * offset      (8 bit): opcode
3157 	 * offset + 1  (8 bit): PLL type
3158 	 * offset + 2 (32 bit): frequency 0
3159 	 *
3160 	 * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
3161 	 * ram_restrict_table_ptr.  The value read from there is used to select
3162 	 * a frequency from the table starting at 'frequency 0' to be
3163 	 * programmed into the PLL corresponding to 'type'.
3164 	 *
3165 	 * The PLL limits table on cards using this opcode has a mapping of
3166 	 * 'type' to the relevant registers.
3167 	 */
3168 
3169 	struct drm_device *dev = bios->dev;
3170 	uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2;
3171 	uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap];
3172 	uint8_t type = bios->data[offset + 1];
3173 	uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]);
3174 	uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry;
3175 	int len = 2 + bios->ram_restrict_group_count * 4;
3176 	int i;
3177 
3178 	if (!iexec->execute)
3179 		return len;
3180 
3181 	if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) {
3182 		NV_ERROR(dev, "PLL limits table not version 3.x\n");
3183 		return len; /* deliberate, allow default clocks to remain */
3184 	}
3185 
3186 	entry = pll_limits + pll_limits[1];
3187 	for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) {
3188 		if (entry[0] == type) {
3189 			uint32_t reg = ROM32(entry[3]);
3190 
3191 			BIOSLOG(bios, "0x%04X: "
3192 				      "Type %02x Reg 0x%08x Freq %dKHz\n",
3193 				offset, type, reg, freq);
3194 
3195 			setPLL(bios, reg, freq);
3196 			return len;
3197 		}
3198 	}
3199 
3200 	NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type);
3201 	return len;
3202 }
3203 
3204 static int
3205 init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3206 {
3207 	/*
3208 	 * INIT_8C   opcode: 0x8C ('')
3209 	 *
3210 	 * NOP so far....
3211 	 *
3212 	 */
3213 
3214 	return 1;
3215 }
3216 
3217 static int
3218 init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3219 {
3220 	/*
3221 	 * INIT_8D   opcode: 0x8D ('')
3222 	 *
3223 	 * NOP so far....
3224 	 *
3225 	 */
3226 
3227 	return 1;
3228 }
3229 
3230 static void
3231 init_gpio_unknv50(struct nvbios *bios, struct dcb_gpio_entry *gpio)
3232 {
3233 	const uint32_t nv50_gpio_ctl[2] = { 0xe100, 0xe28c };
3234 	u32 r, s, v;
3235 
3236 	/* Not a clue, needs de-magicing */
3237 	r = nv50_gpio_ctl[gpio->line >> 4];
3238 	s = (gpio->line & 0x0f);
3239 	v = bios_rd32(bios, r) & ~(0x00010001 << s);
3240 	switch ((gpio->entry & 0x06000000) >> 25) {
3241 	case 1:
3242 		v |= (0x00000001 << s);
3243 		break;
3244 	case 2:
3245 		v |= (0x00010000 << s);
3246 		break;
3247 	default:
3248 		break;
3249 	}
3250 
3251 	bios_wr32(bios, r, v);
3252 }
3253 
3254 static void
3255 init_gpio_unknvd0(struct nvbios *bios, struct dcb_gpio_entry *gpio)
3256 {
3257 	u32 v, i;
3258 
3259 	v  = bios_rd32(bios, 0x00d610 + (gpio->line * 4));
3260 	v &= 0xffffff00;
3261 	v |= (gpio->entry & 0x00ff0000) >> 16;
3262 	bios_wr32(bios, 0x00d610 + (gpio->line * 4), v);
3263 
3264 	i = (gpio->entry & 0x1f000000) >> 24;
3265 	if (i) {
3266 		v  = bios_rd32(bios, 0x00d640 + ((i - 1) * 4));
3267 		v &= 0xffffff00;
3268 		v |= gpio->line;
3269 		bios_wr32(bios, 0x00d640 + ((i - 1) * 4), v);
3270 	}
3271 }
3272 
3273 static int
3274 init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3275 {
3276 	/*
3277 	 * INIT_GPIO   opcode: 0x8E ('')
3278 	 *
3279 	 * offset      (8 bit): opcode
3280 	 *
3281 	 * Loop over all entries in the DCB GPIO table, and initialise
3282 	 * each GPIO according to various values listed in each entry
3283 	 */
3284 
3285 	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
3286 	struct nouveau_gpio_engine *pgpio = &dev_priv->engine.gpio;
3287 	int i;
3288 
3289 	if (dev_priv->card_type < NV_50) {
3290 		NV_ERROR(bios->dev, "INIT_GPIO on unsupported chipset\n");
3291 		return 1;
3292 	}
3293 
3294 	if (!iexec->execute)
3295 		return 1;
3296 
3297 	for (i = 0; i < bios->dcb.gpio.entries; i++) {
3298 		struct dcb_gpio_entry *gpio = &bios->dcb.gpio.entry[i];
3299 
3300 		BIOSLOG(bios, "0x%04X: Entry: 0x%08X\n", offset, gpio->entry);
3301 
3302 		BIOSLOG(bios, "0x%04X: set gpio 0x%02x, state %d\n",
3303 			offset, gpio->tag, gpio->state_default);
3304 
3305 		if (!bios->execute)
3306 			continue;
3307 
3308 		pgpio->set(bios->dev, gpio->tag, gpio->state_default);
3309 		if (dev_priv->card_type < NV_D0)
3310 			init_gpio_unknv50(bios, gpio);
3311 		else
3312 			init_gpio_unknvd0(bios, gpio);
3313 	}
3314 
3315 	return 1;
3316 }
3317 
3318 static int
3319 init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset,
3320 			       struct init_exec *iexec)
3321 {
3322 	/*
3323 	 * INIT_RAM_RESTRICT_ZM_REG_GROUP   opcode: 0x8F ('')
3324 	 *
3325 	 * offset      (8  bit): opcode
3326 	 * offset + 1  (32 bit): reg
3327 	 * offset + 5  (8  bit): regincrement
3328 	 * offset + 6  (8  bit): count
3329 	 * offset + 7  (32 bit): value 1,1
3330 	 * ...
3331 	 *
3332 	 * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
3333 	 * ram_restrict_table_ptr. The value read from here is 'n', and
3334 	 * "value 1,n" gets written to "reg". This repeats "count" times and on
3335 	 * each iteration 'm', "reg" increases by "regincrement" and
3336 	 * "value m,n" is used. The extent of n is limited by a number read
3337 	 * from the 'M' BIT table, herein called "blocklen"
3338 	 */
3339 
3340 	uint32_t reg = ROM32(bios->data[offset + 1]);
3341 	uint8_t regincrement = bios->data[offset + 5];
3342 	uint8_t count = bios->data[offset + 6];
3343 	uint32_t strap_ramcfg, data;
3344 	/* previously set by 'M' BIT table */
3345 	uint16_t blocklen = bios->ram_restrict_group_count * 4;
3346 	int len = 7 + count * blocklen;
3347 	uint8_t index;
3348 	int i;
3349 
3350 	/* critical! to know the length of the opcode */;
3351 	if (!blocklen) {
3352 		NV_ERROR(bios->dev,
3353 			 "0x%04X: Zero block length - has the M table "
3354 			 "been parsed?\n", offset);
3355 		return -EINVAL;
3356 	}
3357 
3358 	if (!iexec->execute)
3359 		return len;
3360 
3361 	strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf;
3362 	index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg];
3363 
3364 	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, "
3365 		      "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n",
3366 		offset, reg, regincrement, count, strap_ramcfg, index);
3367 
3368 	for (i = 0; i < count; i++) {
3369 		data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]);
3370 
3371 		bios_wr32(bios, reg, data);
3372 
3373 		reg += regincrement;
3374 	}
3375 
3376 	return len;
3377 }
3378 
3379 static int
3380 init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3381 {
3382 	/*
3383 	 * INIT_COPY_ZM_REG   opcode: 0x90 ('')
3384 	 *
3385 	 * offset      (8  bit): opcode
3386 	 * offset + 1  (32 bit): src reg
3387 	 * offset + 5  (32 bit): dst reg
3388 	 *
3389 	 * Put contents of "src reg" into "dst reg"
3390 	 */
3391 
3392 	uint32_t srcreg = ROM32(bios->data[offset + 1]);
3393 	uint32_t dstreg = ROM32(bios->data[offset + 5]);
3394 
3395 	if (!iexec->execute)
3396 		return 9;
3397 
3398 	bios_wr32(bios, dstreg, bios_rd32(bios, srcreg));
3399 
3400 	return 9;
3401 }
3402 
3403 static int
3404 init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset,
3405 			       struct init_exec *iexec)
3406 {
3407 	/*
3408 	 * INIT_ZM_REG_GROUP_ADDRESS_LATCHED   opcode: 0x91 ('')
3409 	 *
3410 	 * offset      (8  bit): opcode
3411 	 * offset + 1  (32 bit): dst reg
3412 	 * offset + 5  (8  bit): count
3413 	 * offset + 6  (32 bit): data 1
3414 	 * ...
3415 	 *
3416 	 * For each of "count" values write "data n" to "dst reg"
3417 	 */
3418 
3419 	uint32_t reg = ROM32(bios->data[offset + 1]);
3420 	uint8_t count = bios->data[offset + 5];
3421 	int len = 6 + count * 4;
3422 	int i;
3423 
3424 	if (!iexec->execute)
3425 		return len;
3426 
3427 	for (i = 0; i < count; i++) {
3428 		uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]);
3429 		bios_wr32(bios, reg, data);
3430 	}
3431 
3432 	return len;
3433 }
3434 
3435 static int
3436 init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3437 {
3438 	/*
3439 	 * INIT_RESERVED   opcode: 0x92 ('')
3440 	 *
3441 	 * offset      (8 bit): opcode
3442 	 *
3443 	 * Seemingly does nothing
3444 	 */
3445 
3446 	return 1;
3447 }
3448 
3449 static int
3450 init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3451 {
3452 	/*
3453 	 * INIT_96   opcode: 0x96 ('')
3454 	 *
3455 	 * offset      (8  bit): opcode
3456 	 * offset + 1  (32 bit): sreg
3457 	 * offset + 5  (8  bit): sshift
3458 	 * offset + 6  (8  bit): smask
3459 	 * offset + 7  (8  bit): index
3460 	 * offset + 8  (32 bit): reg
3461 	 * offset + 12 (32 bit): mask
3462 	 * offset + 16 (8  bit): shift
3463 	 *
3464 	 */
3465 
3466 	uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2);
3467 	uint32_t reg = ROM32(bios->data[offset + 8]);
3468 	uint32_t mask = ROM32(bios->data[offset + 12]);
3469 	uint32_t val;
3470 
3471 	val = bios_rd32(bios, ROM32(bios->data[offset + 1]));
3472 	if (bios->data[offset + 5] < 0x80)
3473 		val >>= bios->data[offset + 5];
3474 	else
3475 		val <<= (0x100 - bios->data[offset + 5]);
3476 	val &= bios->data[offset + 6];
3477 
3478 	val   = bios->data[ROM16(bios->data[xlatptr]) + val];
3479 	val <<= bios->data[offset + 16];
3480 
3481 	if (!iexec->execute)
3482 		return 17;
3483 
3484 	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val);
3485 	return 17;
3486 }
3487 
3488 static int
3489 init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3490 {
3491 	/*
3492 	 * INIT_97   opcode: 0x97 ('')
3493 	 *
3494 	 * offset      (8  bit): opcode
3495 	 * offset + 1  (32 bit): register
3496 	 * offset + 5  (32 bit): mask
3497 	 * offset + 9  (32 bit): value
3498 	 *
3499 	 * Adds "value" to "register" preserving the fields specified
3500 	 * by "mask"
3501 	 */
3502 
3503 	uint32_t reg = ROM32(bios->data[offset + 1]);
3504 	uint32_t mask = ROM32(bios->data[offset + 5]);
3505 	uint32_t add = ROM32(bios->data[offset + 9]);
3506 	uint32_t val;
3507 
3508 	val = bios_rd32(bios, reg);
3509 	val = (val & mask) | ((val + add) & ~mask);
3510 
3511 	if (!iexec->execute)
3512 		return 13;
3513 
3514 	bios_wr32(bios, reg, val);
3515 	return 13;
3516 }
3517 
3518 static int
3519 init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3520 {
3521 	/*
3522 	 * INIT_AUXCH   opcode: 0x98 ('')
3523 	 *
3524 	 * offset      (8  bit): opcode
3525 	 * offset + 1  (32 bit): address
3526 	 * offset + 5  (8  bit): count
3527 	 * offset + 6  (8  bit): mask 0
3528 	 * offset + 7  (8  bit): data 0
3529 	 *  ...
3530 	 *
3531 	 */
3532 
3533 	struct drm_device *dev = bios->dev;
3534 	struct nouveau_i2c_chan *auxch;
3535 	uint32_t addr = ROM32(bios->data[offset + 1]);
3536 	uint8_t count = bios->data[offset + 5];
3537 	int len = 6 + count * 2;
3538 	int ret, i;
3539 
3540 	if (!bios->display.output) {
3541 		NV_ERROR(dev, "INIT_AUXCH: no active output\n");
3542 		return len;
3543 	}
3544 
3545 	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3546 	if (!auxch) {
3547 		NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n",
3548 			 bios->display.output->i2c_index);
3549 		return len;
3550 	}
3551 
3552 	if (!iexec->execute)
3553 		return len;
3554 
3555 	offset += 6;
3556 	for (i = 0; i < count; i++, offset += 2) {
3557 		uint8_t data;
3558 
3559 		ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1);
3560 		if (ret) {
3561 			NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret);
3562 			return len;
3563 		}
3564 
3565 		data &= bios->data[offset + 0];
3566 		data |= bios->data[offset + 1];
3567 
3568 		ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1);
3569 		if (ret) {
3570 			NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret);
3571 			return len;
3572 		}
3573 	}
3574 
3575 	return len;
3576 }
3577 
3578 static int
3579 init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3580 {
3581 	/*
3582 	 * INIT_ZM_AUXCH   opcode: 0x99 ('')
3583 	 *
3584 	 * offset      (8  bit): opcode
3585 	 * offset + 1  (32 bit): address
3586 	 * offset + 5  (8  bit): count
3587 	 * offset + 6  (8  bit): data 0
3588 	 *  ...
3589 	 *
3590 	 */
3591 
3592 	struct drm_device *dev = bios->dev;
3593 	struct nouveau_i2c_chan *auxch;
3594 	uint32_t addr = ROM32(bios->data[offset + 1]);
3595 	uint8_t count = bios->data[offset + 5];
3596 	int len = 6 + count;
3597 	int ret, i;
3598 
3599 	if (!bios->display.output) {
3600 		NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n");
3601 		return len;
3602 	}
3603 
3604 	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3605 	if (!auxch) {
3606 		NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n",
3607 			 bios->display.output->i2c_index);
3608 		return len;
3609 	}
3610 
3611 	if (!iexec->execute)
3612 		return len;
3613 
3614 	offset += 6;
3615 	for (i = 0; i < count; i++, offset++) {
3616 		ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1);
3617 		if (ret) {
3618 			NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret);
3619 			return len;
3620 		}
3621 	}
3622 
3623 	return len;
3624 }
3625 
3626 static int
3627 init_i2c_long_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3628 {
3629 	/*
3630 	 * INIT_I2C_LONG_IF   opcode: 0x9A ('')
3631 	 *
3632 	 * offset      (8 bit): opcode
3633 	 * offset + 1  (8 bit): DCB I2C table entry index
3634 	 * offset + 2  (8 bit): I2C slave address
3635 	 * offset + 3  (16 bit): I2C register
3636 	 * offset + 5  (8 bit): mask
3637 	 * offset + 6  (8 bit): data
3638 	 *
3639 	 * Read the register given by "I2C register" on the device addressed
3640 	 * by "I2C slave address" on the I2C bus given by "DCB I2C table
3641 	 * entry index". Compare the result AND "mask" to "data".
3642 	 * If they're not equal, skip subsequent opcodes until condition is
3643 	 * inverted (INIT_NOT), or we hit INIT_RESUME
3644 	 */
3645 
3646 	uint8_t i2c_index = bios->data[offset + 1];
3647 	uint8_t i2c_address = bios->data[offset + 2] >> 1;
3648 	uint8_t reglo = bios->data[offset + 3];
3649 	uint8_t reghi = bios->data[offset + 4];
3650 	uint8_t mask = bios->data[offset + 5];
3651 	uint8_t data = bios->data[offset + 6];
3652 	struct nouveau_i2c_chan *chan;
3653 	uint8_t buf0[2] = { reghi, reglo };
3654 	uint8_t buf1[1];
3655 	struct i2c_msg msg[2] = {
3656 		{ i2c_address, 0, 1, buf0 },
3657 		{ i2c_address, I2C_M_RD, 1, buf1 },
3658 	};
3659 	int ret;
3660 
3661 	/* no execute check by design */
3662 
3663 	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
3664 		offset, i2c_index, i2c_address);
3665 
3666 	chan = init_i2c_device_find(bios->dev, i2c_index);
3667 	if (!chan)
3668 		return -ENODEV;
3669 
3670 
3671 	ret = i2c_transfer(&chan->adapter, msg, 2);
3672 	if (ret < 0) {
3673 		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: [no device], "
3674 			      "Mask: 0x%02X, Data: 0x%02X\n",
3675 			offset, reghi, reglo, mask, data);
3676 		iexec->execute = 0;
3677 		return 7;
3678 	}
3679 
3680 	BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: 0x%02X, "
3681 		      "Mask: 0x%02X, Data: 0x%02X\n",
3682 		offset, reghi, reglo, buf1[0], mask, data);
3683 
3684 	iexec->execute = ((buf1[0] & mask) == data);
3685 
3686 	return 7;
3687 }
3688 
3689 static struct init_tbl_entry itbl_entry[] = {
3690 	/* command name                       , id  , length  , offset  , mult    , command handler                 */
3691 	/* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */
3692 	{ "INIT_IO_RESTRICT_PROG"             , 0x32, init_io_restrict_prog           },
3693 	{ "INIT_REPEAT"                       , 0x33, init_repeat                     },
3694 	{ "INIT_IO_RESTRICT_PLL"              , 0x34, init_io_restrict_pll            },
3695 	{ "INIT_END_REPEAT"                   , 0x36, init_end_repeat                 },
3696 	{ "INIT_COPY"                         , 0x37, init_copy                       },
3697 	{ "INIT_NOT"                          , 0x38, init_not                        },
3698 	{ "INIT_IO_FLAG_CONDITION"            , 0x39, init_io_flag_condition          },
3699 	{ "INIT_DP_CONDITION"                 , 0x3A, init_dp_condition               },
3700 	{ "INIT_OP_3B"                        , 0x3B, init_op_3b                      },
3701 	{ "INIT_OP_3C"                        , 0x3C, init_op_3c                      },
3702 	{ "INIT_INDEX_ADDRESS_LATCHED"        , 0x49, init_idx_addr_latched           },
3703 	{ "INIT_IO_RESTRICT_PLL2"             , 0x4A, init_io_restrict_pll2           },
3704 	{ "INIT_PLL2"                         , 0x4B, init_pll2                       },
3705 	{ "INIT_I2C_BYTE"                     , 0x4C, init_i2c_byte                   },
3706 	{ "INIT_ZM_I2C_BYTE"                  , 0x4D, init_zm_i2c_byte                },
3707 	{ "INIT_ZM_I2C"                       , 0x4E, init_zm_i2c                     },
3708 	{ "INIT_TMDS"                         , 0x4F, init_tmds                       },
3709 	{ "INIT_ZM_TMDS_GROUP"                , 0x50, init_zm_tmds_group              },
3710 	{ "INIT_CR_INDEX_ADDRESS_LATCHED"     , 0x51, init_cr_idx_adr_latch           },
3711 	{ "INIT_CR"                           , 0x52, init_cr                         },
3712 	{ "INIT_ZM_CR"                        , 0x53, init_zm_cr                      },
3713 	{ "INIT_ZM_CR_GROUP"                  , 0x54, init_zm_cr_group                },
3714 	{ "INIT_CONDITION_TIME"               , 0x56, init_condition_time             },
3715 	{ "INIT_LTIME"                        , 0x57, init_ltime                      },
3716 	{ "INIT_ZM_REG_SEQUENCE"              , 0x58, init_zm_reg_sequence            },
3717 	/* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */
3718 	{ "INIT_SUB_DIRECT"                   , 0x5B, init_sub_direct                 },
3719 	{ "INIT_JUMP"                         , 0x5C, init_jump                       },
3720 	{ "INIT_I2C_IF"                       , 0x5E, init_i2c_if                     },
3721 	{ "INIT_COPY_NV_REG"                  , 0x5F, init_copy_nv_reg                },
3722 	{ "INIT_ZM_INDEX_IO"                  , 0x62, init_zm_index_io                },
3723 	{ "INIT_COMPUTE_MEM"                  , 0x63, init_compute_mem                },
3724 	{ "INIT_RESET"                        , 0x65, init_reset                      },
3725 	{ "INIT_CONFIGURE_MEM"                , 0x66, init_configure_mem              },
3726 	{ "INIT_CONFIGURE_CLK"                , 0x67, init_configure_clk              },
3727 	{ "INIT_CONFIGURE_PREINIT"            , 0x68, init_configure_preinit          },
3728 	{ "INIT_IO"                           , 0x69, init_io                         },
3729 	{ "INIT_SUB"                          , 0x6B, init_sub                        },
3730 	{ "INIT_RAM_CONDITION"                , 0x6D, init_ram_condition              },
3731 	{ "INIT_NV_REG"                       , 0x6E, init_nv_reg                     },
3732 	{ "INIT_MACRO"                        , 0x6F, init_macro                      },
3733 	{ "INIT_DONE"                         , 0x71, init_done                       },
3734 	{ "INIT_RESUME"                       , 0x72, init_resume                     },
3735 	/* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */
3736 	{ "INIT_TIME"                         , 0x74, init_time                       },
3737 	{ "INIT_CONDITION"                    , 0x75, init_condition                  },
3738 	{ "INIT_IO_CONDITION"                 , 0x76, init_io_condition               },
3739 	{ "INIT_INDEX_IO"                     , 0x78, init_index_io                   },
3740 	{ "INIT_PLL"                          , 0x79, init_pll                        },
3741 	{ "INIT_ZM_REG"                       , 0x7A, init_zm_reg                     },
3742 	{ "INIT_RAM_RESTRICT_PLL"             , 0x87, init_ram_restrict_pll           },
3743 	{ "INIT_8C"                           , 0x8C, init_8c                         },
3744 	{ "INIT_8D"                           , 0x8D, init_8d                         },
3745 	{ "INIT_GPIO"                         , 0x8E, init_gpio                       },
3746 	{ "INIT_RAM_RESTRICT_ZM_REG_GROUP"    , 0x8F, init_ram_restrict_zm_reg_group  },
3747 	{ "INIT_COPY_ZM_REG"                  , 0x90, init_copy_zm_reg                },
3748 	{ "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched  },
3749 	{ "INIT_RESERVED"                     , 0x92, init_reserved                   },
3750 	{ "INIT_96"                           , 0x96, init_96                         },
3751 	{ "INIT_97"                           , 0x97, init_97                         },
3752 	{ "INIT_AUXCH"                        , 0x98, init_auxch                      },
3753 	{ "INIT_ZM_AUXCH"                     , 0x99, init_zm_auxch                   },
3754 	{ "INIT_I2C_LONG_IF"                  , 0x9A, init_i2c_long_if                },
3755 	{ NULL                                , 0   , NULL                            }
3756 };
3757 
3758 #define MAX_TABLE_OPS 1000
3759 
3760 static int
3761 parse_init_table(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3762 {
3763 	/*
3764 	 * Parses all commands in an init table.
3765 	 *
3766 	 * We start out executing all commands found in the init table. Some
3767 	 * opcodes may change the status of iexec->execute to SKIP, which will
3768 	 * cause the following opcodes to perform no operation until the value
3769 	 * is changed back to EXECUTE.
3770 	 */
3771 
3772 	int count = 0, i, ret;
3773 	uint8_t id;
3774 
3775 	/* catch NULL script pointers */
3776 	if (offset == 0)
3777 		return 0;
3778 
3779 	/*
3780 	 * Loop until INIT_DONE causes us to break out of the loop
3781 	 * (or until offset > bios length just in case... )
3782 	 * (and no more than MAX_TABLE_OPS iterations, just in case... )
3783 	 */
3784 	while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) {
3785 		id = bios->data[offset];
3786 
3787 		/* Find matching id in itbl_entry */
3788 		for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++)
3789 			;
3790 
3791 		if (!itbl_entry[i].name) {
3792 			NV_ERROR(bios->dev,
3793 				 "0x%04X: Init table command not found: "
3794 				 "0x%02X\n", offset, id);
3795 			return -ENOENT;
3796 		}
3797 
3798 		BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset,
3799 			itbl_entry[i].id, itbl_entry[i].name);
3800 
3801 		/* execute eventual command handler */
3802 		ret = (*itbl_entry[i].handler)(bios, offset, iexec);
3803 		if (ret < 0) {
3804 			NV_ERROR(bios->dev, "0x%04X: Failed parsing init "
3805 				 "table opcode: %s %d\n", offset,
3806 				 itbl_entry[i].name, ret);
3807 		}
3808 
3809 		if (ret <= 0)
3810 			break;
3811 
3812 		/*
3813 		 * Add the offset of the current command including all data
3814 		 * of that command. The offset will then be pointing on the
3815 		 * next op code.
3816 		 */
3817 		offset += ret;
3818 	}
3819 
3820 	if (offset >= bios->length)
3821 		NV_WARN(bios->dev,
3822 			"Offset 0x%04X greater than known bios image length.  "
3823 			"Corrupt image?\n", offset);
3824 	if (count >= MAX_TABLE_OPS)
3825 		NV_WARN(bios->dev,
3826 			"More than %d opcodes to a table is unlikely, "
3827 			"is the bios image corrupt?\n", MAX_TABLE_OPS);
3828 
3829 	return 0;
3830 }
3831 
3832 static void
3833 parse_init_tables(struct nvbios *bios)
3834 {
3835 	/* Loops and calls parse_init_table() for each present table. */
3836 
3837 	int i = 0;
3838 	uint16_t table;
3839 	struct init_exec iexec = {true, false};
3840 
3841 	if (bios->old_style_init) {
3842 		if (bios->init_script_tbls_ptr)
3843 			parse_init_table(bios, bios->init_script_tbls_ptr, &iexec);
3844 		if (bios->extra_init_script_tbl_ptr)
3845 			parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec);
3846 
3847 		return;
3848 	}
3849 
3850 	while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) {
3851 		NV_INFO(bios->dev,
3852 			"Parsing VBIOS init table %d at offset 0x%04X\n",
3853 			i / 2, table);
3854 		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table);
3855 
3856 		parse_init_table(bios, table, &iexec);
3857 		i += 2;
3858 	}
3859 }
3860 
3861 static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk)
3862 {
3863 	int compare_record_len, i = 0;
3864 	uint16_t compareclk, scriptptr = 0;
3865 
3866 	if (bios->major_version < 5) /* pre BIT */
3867 		compare_record_len = 3;
3868 	else
3869 		compare_record_len = 4;
3870 
3871 	do {
3872 		compareclk = ROM16(bios->data[clktable + compare_record_len * i]);
3873 		if (pxclk >= compareclk * 10) {
3874 			if (bios->major_version < 5) {
3875 				uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i];
3876 				scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]);
3877 			} else
3878 				scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]);
3879 			break;
3880 		}
3881 		i++;
3882 	} while (compareclk);
3883 
3884 	return scriptptr;
3885 }
3886 
3887 static void
3888 run_digital_op_script(struct drm_device *dev, uint16_t scriptptr,
3889 		      struct dcb_entry *dcbent, int head, bool dl)
3890 {
3891 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3892 	struct nvbios *bios = &dev_priv->vbios;
3893 	struct init_exec iexec = {true, false};
3894 
3895 	NV_TRACE(dev, "0x%04X: Parsing digital output script table\n",
3896 		 scriptptr);
3897 	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44,
3898 		       head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA);
3899 	/* note: if dcb entries have been merged, index may be misleading */
3900 	NVWriteVgaCrtc5758(dev, head, 0, dcbent->index);
3901 	parse_init_table(bios, scriptptr, &iexec);
3902 
3903 	nv04_dfp_bind_head(dev, dcbent, head, dl);
3904 }
3905 
3906 static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script)
3907 {
3908 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3909 	struct nvbios *bios = &dev_priv->vbios;
3910 	uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0);
3911 	uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]);
3912 
3913 	if (!bios->fp.xlated_entry || !sub || !scriptofs)
3914 		return -EINVAL;
3915 
3916 	run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link);
3917 
3918 	if (script == LVDS_PANEL_OFF) {
3919 		/* off-on delay in ms */
3920 		mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7]));
3921 	}
3922 #ifdef __powerpc__
3923 	/* Powerbook specific quirks */
3924 	if (script == LVDS_RESET &&
3925 	    (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 ||
3926 	     dev->pci_device == 0x0329))
3927 		nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72);
3928 #endif
3929 
3930 	return 0;
3931 }
3932 
3933 static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3934 {
3935 	/*
3936 	 * The BIT LVDS table's header has the information to setup the
3937 	 * necessary registers. Following the standard 4 byte header are:
3938 	 * A bitmask byte and a dual-link transition pxclk value for use in
3939 	 * selecting the init script when not using straps; 4 script pointers
3940 	 * for panel power, selected by output and on/off; and 8 table pointers
3941 	 * for panel init, the needed one determined by output, and bits in the
3942 	 * conf byte. These tables are similar to the TMDS tables, consisting
3943 	 * of a list of pxclks and script pointers.
3944 	 */
3945 	struct drm_nouveau_private *dev_priv = dev->dev_private;
3946 	struct nvbios *bios = &dev_priv->vbios;
3947 	unsigned int outputset = (dcbent->or == 4) ? 1 : 0;
3948 	uint16_t scriptptr = 0, clktable;
3949 
3950 	/*
3951 	 * For now we assume version 3.0 table - g80 support will need some
3952 	 * changes
3953 	 */
3954 
3955 	switch (script) {
3956 	case LVDS_INIT:
3957 		return -ENOSYS;
3958 	case LVDS_BACKLIGHT_ON:
3959 	case LVDS_PANEL_ON:
3960 		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]);
3961 		break;
3962 	case LVDS_BACKLIGHT_OFF:
3963 	case LVDS_PANEL_OFF:
3964 		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]);
3965 		break;
3966 	case LVDS_RESET:
3967 		clktable = bios->fp.lvdsmanufacturerpointer + 15;
3968 		if (dcbent->or == 4)
3969 			clktable += 8;
3970 
3971 		if (dcbent->lvdsconf.use_straps_for_mode) {
3972 			if (bios->fp.dual_link)
3973 				clktable += 4;
3974 			if (bios->fp.if_is_24bit)
3975 				clktable += 2;
3976 		} else {
3977 			/* using EDID */
3978 			int cmpval_24bit = (dcbent->or == 4) ? 4 : 1;
3979 
3980 			if (bios->fp.dual_link) {
3981 				clktable += 4;
3982 				cmpval_24bit <<= 1;
3983 			}
3984 
3985 			if (bios->fp.strapless_is_24bit & cmpval_24bit)
3986 				clktable += 2;
3987 		}
3988 
3989 		clktable = ROM16(bios->data[clktable]);
3990 		if (!clktable) {
3991 			NV_ERROR(dev, "Pixel clock comparison table not found\n");
3992 			return -ENOENT;
3993 		}
3994 		scriptptr = clkcmptable(bios, clktable, pxclk);
3995 	}
3996 
3997 	if (!scriptptr) {
3998 		NV_ERROR(dev, "LVDS output init script not found\n");
3999 		return -ENOENT;
4000 	}
4001 	run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link);
4002 
4003 	return 0;
4004 }
4005 
4006 int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
4007 {
4008 	/*
4009 	 * LVDS operations are multiplexed in an effort to present a single API
4010 	 * which works with two vastly differing underlying structures.
4011 	 * This acts as the demux
4012 	 */
4013 
4014 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4015 	struct nvbios *bios = &dev_priv->vbios;
4016 	uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
4017 	uint32_t sel_clk_binding, sel_clk;
4018 	int ret;
4019 
4020 	if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver ||
4021 	    (lvds_ver >= 0x30 && script == LVDS_INIT))
4022 		return 0;
4023 
4024 	if (!bios->fp.lvds_init_run) {
4025 		bios->fp.lvds_init_run = true;
4026 		call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk);
4027 	}
4028 
4029 	if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change)
4030 		call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk);
4031 	if (script == LVDS_RESET && bios->fp.power_off_for_reset)
4032 		call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk);
4033 
4034 	NV_TRACE(dev, "Calling LVDS script %d:\n", script);
4035 
4036 	/* don't let script change pll->head binding */
4037 	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
4038 
4039 	if (lvds_ver < 0x30)
4040 		ret = call_lvds_manufacturer_script(dev, dcbent, head, script);
4041 	else
4042 		ret = run_lvds_table(dev, dcbent, head, script, pxclk);
4043 
4044 	bios->fp.last_script_invoc = (script << 1 | head);
4045 
4046 	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
4047 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
4048 	/* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */
4049 	nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);
4050 
4051 	return ret;
4052 }
4053 
4054 struct lvdstableheader {
4055 	uint8_t lvds_ver, headerlen, recordlen;
4056 };
4057 
4058 static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth)
4059 {
4060 	/*
4061 	 * BMP version (0xa) LVDS table has a simple header of version and
4062 	 * record length. The BIT LVDS table has the typical BIT table header:
4063 	 * version byte, header length byte, record length byte, and a byte for
4064 	 * the maximum number of records that can be held in the table.
4065 	 */
4066 
4067 	uint8_t lvds_ver, headerlen, recordlen;
4068 
4069 	memset(lth, 0, sizeof(struct lvdstableheader));
4070 
4071 	if (bios->fp.lvdsmanufacturerpointer == 0x0) {
4072 		NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n");
4073 		return -EINVAL;
4074 	}
4075 
4076 	lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
4077 
4078 	switch (lvds_ver) {
4079 	case 0x0a:	/* pre NV40 */
4080 		headerlen = 2;
4081 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
4082 		break;
4083 	case 0x30:	/* NV4x */
4084 		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
4085 		if (headerlen < 0x1f) {
4086 			NV_ERROR(dev, "LVDS table header not understood\n");
4087 			return -EINVAL;
4088 		}
4089 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
4090 		break;
4091 	case 0x40:	/* G80/G90 */
4092 		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
4093 		if (headerlen < 0x7) {
4094 			NV_ERROR(dev, "LVDS table header not understood\n");
4095 			return -EINVAL;
4096 		}
4097 		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
4098 		break;
4099 	default:
4100 		NV_ERROR(dev,
4101 			 "LVDS table revision %d.%d not currently supported\n",
4102 			 lvds_ver >> 4, lvds_ver & 0xf);
4103 		return -ENOSYS;
4104 	}
4105 
4106 	lth->lvds_ver = lvds_ver;
4107 	lth->headerlen = headerlen;
4108 	lth->recordlen = recordlen;
4109 
4110 	return 0;
4111 }
4112 
4113 static int
4114 get_fp_strap(struct drm_device *dev, struct nvbios *bios)
4115 {
4116 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4117 
4118 	/*
4119 	 * The fp strap is normally dictated by the "User Strap" in
4120 	 * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the
4121 	 * Internal_Flags struct at 0x48 is set, the user strap gets overriden
4122 	 * by the PCI subsystem ID during POST, but not before the previous user
4123 	 * strap has been committed to CR58 for CR57=0xf on head A, which may be
4124 	 * read and used instead
4125 	 */
4126 
4127 	if (bios->major_version < 5 && bios->data[0x48] & 0x4)
4128 		return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf;
4129 
4130 	if (dev_priv->card_type >= NV_50)
4131 		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf;
4132 	else
4133 		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf;
4134 }
4135 
4136 static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios)
4137 {
4138 	uint8_t *fptable;
4139 	uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex;
4140 	int ret, ofs, fpstrapping;
4141 	struct lvdstableheader lth;
4142 
4143 	if (bios->fp.fptablepointer == 0x0) {
4144 		/* Apple cards don't have the fp table; the laptops use DDC */
4145 		/* The table is also missing on some x86 IGPs */
4146 #ifndef __powerpc__
4147 		NV_ERROR(dev, "Pointer to flat panel table invalid\n");
4148 #endif
4149 		bios->digital_min_front_porch = 0x4b;
4150 		return 0;
4151 	}
4152 
4153 	fptable = &bios->data[bios->fp.fptablepointer];
4154 	fptable_ver = fptable[0];
4155 
4156 	switch (fptable_ver) {
4157 	/*
4158 	 * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no
4159 	 * version field, and miss one of the spread spectrum/PWM bytes.
4160 	 * This could affect early GF2Go parts (not seen any appropriate ROMs
4161 	 * though). Here we assume that a version of 0x05 matches this case
4162 	 * (combining with a BMP version check would be better), as the
4163 	 * common case for the panel type field is 0x0005, and that is in
4164 	 * fact what we are reading the first byte of.
4165 	 */
4166 	case 0x05:	/* some NV10, 11, 15, 16 */
4167 		recordlen = 42;
4168 		ofs = -1;
4169 		break;
4170 	case 0x10:	/* some NV15/16, and NV11+ */
4171 		recordlen = 44;
4172 		ofs = 0;
4173 		break;
4174 	case 0x20:	/* NV40+ */
4175 		headerlen = fptable[1];
4176 		recordlen = fptable[2];
4177 		fpentries = fptable[3];
4178 		/*
4179 		 * fptable[4] is the minimum
4180 		 * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap
4181 		 */
4182 		bios->digital_min_front_porch = fptable[4];
4183 		ofs = -7;
4184 		break;
4185 	default:
4186 		NV_ERROR(dev,
4187 			 "FP table revision %d.%d not currently supported\n",
4188 			 fptable_ver >> 4, fptable_ver & 0xf);
4189 		return -ENOSYS;
4190 	}
4191 
4192 	if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */
4193 		return 0;
4194 
4195 	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
4196 	if (ret)
4197 		return ret;
4198 
4199 	if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) {
4200 		bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer +
4201 							lth.headerlen + 1;
4202 		bios->fp.xlatwidth = lth.recordlen;
4203 	}
4204 	if (bios->fp.fpxlatetableptr == 0x0) {
4205 		NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n");
4206 		return -EINVAL;
4207 	}
4208 
4209 	fpstrapping = get_fp_strap(dev, bios);
4210 
4211 	fpindex = bios->data[bios->fp.fpxlatetableptr +
4212 					fpstrapping * bios->fp.xlatwidth];
4213 
4214 	if (fpindex > fpentries) {
4215 		NV_ERROR(dev, "Bad flat panel table index\n");
4216 		return -ENOENT;
4217 	}
4218 
4219 	/* nv4x cards need both a strap value and fpindex of 0xf to use DDC */
4220 	if (lth.lvds_ver > 0x10)
4221 		bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf;
4222 
4223 	/*
4224 	 * If either the strap or xlated fpindex value are 0xf there is no
4225 	 * panel using a strap-derived bios mode present.  this condition
4226 	 * includes, but is different from, the DDC panel indicator above
4227 	 */
4228 	if (fpstrapping == 0xf || fpindex == 0xf)
4229 		return 0;
4230 
4231 	bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen +
4232 			    recordlen * fpindex + ofs;
4233 
4234 	NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n",
4235 		 ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1,
4236 		 ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1,
4237 		 ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10);
4238 
4239 	return 0;
4240 }
4241 
4242 bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode)
4243 {
4244 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4245 	struct nvbios *bios = &dev_priv->vbios;
4246 	uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr];
4247 
4248 	if (!mode)	/* just checking whether we can produce a mode */
4249 		return bios->fp.mode_ptr;
4250 
4251 	memset(mode, 0, sizeof(struct drm_display_mode));
4252 	/*
4253 	 * For version 1.0 (version in byte 0):
4254 	 * bytes 1-2 are "panel type", including bits on whether Colour/mono,
4255 	 * single/dual link, and type (TFT etc.)
4256 	 * bytes 3-6 are bits per colour in RGBX
4257 	 */
4258 	mode->clock = ROM16(mode_entry[7]) * 10;
4259 	/* bytes 9-10 is HActive */
4260 	mode->hdisplay = ROM16(mode_entry[11]) + 1;
4261 	/*
4262 	 * bytes 13-14 is HValid Start
4263 	 * bytes 15-16 is HValid End
4264 	 */
4265 	mode->hsync_start = ROM16(mode_entry[17]) + 1;
4266 	mode->hsync_end = ROM16(mode_entry[19]) + 1;
4267 	mode->htotal = ROM16(mode_entry[21]) + 1;
4268 	/* bytes 23-24, 27-30 similarly, but vertical */
4269 	mode->vdisplay = ROM16(mode_entry[25]) + 1;
4270 	mode->vsync_start = ROM16(mode_entry[31]) + 1;
4271 	mode->vsync_end = ROM16(mode_entry[33]) + 1;
4272 	mode->vtotal = ROM16(mode_entry[35]) + 1;
4273 	mode->flags |= (mode_entry[37] & 0x10) ?
4274 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4275 	mode->flags |= (mode_entry[37] & 0x1) ?
4276 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4277 	/*
4278 	 * bytes 38-39 relate to spread spectrum settings
4279 	 * bytes 40-43 are something to do with PWM
4280 	 */
4281 
4282 	mode->status = MODE_OK;
4283 	mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED;
4284 	drm_mode_set_name(mode);
4285 	return bios->fp.mode_ptr;
4286 }
4287 
4288 int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit)
4289 {
4290 	/*
4291 	 * The LVDS table header is (mostly) described in
4292 	 * parse_lvds_manufacturer_table_header(): the BIT header additionally
4293 	 * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if
4294 	 * straps are not being used for the panel, this specifies the frequency
4295 	 * at which modes should be set up in the dual link style.
4296 	 *
4297 	 * Following the header, the BMP (ver 0xa) table has several records,
4298 	 * indexed by a separate xlat table, indexed in turn by the fp strap in
4299 	 * EXTDEV_BOOT. Each record had a config byte, followed by 6 script
4300 	 * numbers for use by INIT_SUB which controlled panel init and power,
4301 	 * and finally a dword of ms to sleep between power off and on
4302 	 * operations.
4303 	 *
4304 	 * In the BIT versions, the table following the header serves as an
4305 	 * integrated config and xlat table: the records in the table are
4306 	 * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has
4307 	 * two bytes - the first as a config byte, the second for indexing the
4308 	 * fp mode table pointed to by the BIT 'D' table
4309 	 *
4310 	 * DDC is not used until after card init, so selecting the correct table
4311 	 * entry and setting the dual link flag for EDID equipped panels,
4312 	 * requiring tests against the native-mode pixel clock, cannot be done
4313 	 * until later, when this function should be called with non-zero pxclk
4314 	 */
4315 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4316 	struct nvbios *bios = &dev_priv->vbios;
4317 	int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0;
4318 	struct lvdstableheader lth;
4319 	uint16_t lvdsofs;
4320 	int ret, chip_version = bios->chip_version;
4321 
4322 	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
4323 	if (ret)
4324 		return ret;
4325 
4326 	switch (lth.lvds_ver) {
4327 	case 0x0a:	/* pre NV40 */
4328 		lvdsmanufacturerindex = bios->data[
4329 					bios->fp.fpxlatemanufacturertableptr +
4330 					fpstrapping];
4331 
4332 		/* we're done if this isn't the EDID panel case */
4333 		if (!pxclk)
4334 			break;
4335 
4336 		if (chip_version < 0x25) {
4337 			/* nv17 behaviour
4338 			 *
4339 			 * It seems the old style lvds script pointer is reused
4340 			 * to select 18/24 bit colour depth for EDID panels.
4341 			 */
4342 			lvdsmanufacturerindex =
4343 				(bios->legacy.lvds_single_a_script_ptr & 1) ?
4344 									2 : 0;
4345 			if (pxclk >= bios->fp.duallink_transition_clk)
4346 				lvdsmanufacturerindex++;
4347 		} else if (chip_version < 0x30) {
4348 			/* nv28 behaviour (off-chip encoder)
4349 			 *
4350 			 * nv28 does a complex dance of first using byte 121 of
4351 			 * the EDID to choose the lvdsmanufacturerindex, then
4352 			 * later attempting to match the EDID manufacturer and
4353 			 * product IDs in a table (signature 'pidt' (panel id
4354 			 * table?)), setting an lvdsmanufacturerindex of 0 and
4355 			 * an fp strap of the match index (or 0xf if none)
4356 			 */
4357 			lvdsmanufacturerindex = 0;
4358 		} else {
4359 			/* nv31, nv34 behaviour */
4360 			lvdsmanufacturerindex = 0;
4361 			if (pxclk >= bios->fp.duallink_transition_clk)
4362 				lvdsmanufacturerindex = 2;
4363 			if (pxclk >= 140000)
4364 				lvdsmanufacturerindex = 3;
4365 		}
4366 
4367 		/*
4368 		 * nvidia set the high nibble of (cr57=f, cr58) to
4369 		 * lvdsmanufacturerindex in this case; we don't
4370 		 */
4371 		break;
4372 	case 0x30:	/* NV4x */
4373 	case 0x40:	/* G80/G90 */
4374 		lvdsmanufacturerindex = fpstrapping;
4375 		break;
4376 	default:
4377 		NV_ERROR(dev, "LVDS table revision not currently supported\n");
4378 		return -ENOSYS;
4379 	}
4380 
4381 	lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex;
4382 	switch (lth.lvds_ver) {
4383 	case 0x0a:
4384 		bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1;
4385 		bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2;
4386 		bios->fp.dual_link = bios->data[lvdsofs] & 4;
4387 		bios->fp.link_c_increment = bios->data[lvdsofs] & 8;
4388 		*if_is_24bit = bios->data[lvdsofs] & 16;
4389 		break;
4390 	case 0x30:
4391 	case 0x40:
4392 		/*
4393 		 * No sign of the "power off for reset" or "reset for panel
4394 		 * on" bits, but it's safer to assume we should
4395 		 */
4396 		bios->fp.power_off_for_reset = true;
4397 		bios->fp.reset_after_pclk_change = true;
4398 
4399 		/*
4400 		 * It's ok lvdsofs is wrong for nv4x edid case; dual_link is
4401 		 * over-written, and if_is_24bit isn't used
4402 		 */
4403 		bios->fp.dual_link = bios->data[lvdsofs] & 1;
4404 		bios->fp.if_is_24bit = bios->data[lvdsofs] & 2;
4405 		bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4];
4406 		bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10;
4407 		break;
4408 	}
4409 
4410 	/* Dell Latitude D620 reports a too-high value for the dual-link
4411 	 * transition freq, causing us to program the panel incorrectly.
4412 	 *
4413 	 * It doesn't appear the VBIOS actually uses its transition freq
4414 	 * (90000kHz), instead it uses the "Number of LVDS channels" field
4415 	 * out of the panel ID structure (http://www.spwg.org/).
4416 	 *
4417 	 * For the moment, a quirk will do :)
4418 	 */
4419 	if (nv_match_device(dev, 0x01d7, 0x1028, 0x01c2))
4420 		bios->fp.duallink_transition_clk = 80000;
4421 
4422 	/* set dual_link flag for EDID case */
4423 	if (pxclk && (chip_version < 0x25 || chip_version > 0x28))
4424 		bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk);
4425 
4426 	*dl = bios->fp.dual_link;
4427 
4428 	return 0;
4429 }
4430 
4431 /* BIT 'U'/'d' table encoder subtables have hashes matching them to
4432  * a particular set of encoders.
4433  *
4434  * This function returns true if a particular DCB entry matches.
4435  */
4436 bool
4437 bios_encoder_match(struct dcb_entry *dcb, u32 hash)
4438 {
4439 	if ((hash & 0x000000f0) != (dcb->location << 4))
4440 		return false;
4441 	if ((hash & 0x0000000f) != dcb->type)
4442 		return false;
4443 	if (!(hash & (dcb->or << 16)))
4444 		return false;
4445 
4446 	switch (dcb->type) {
4447 	case OUTPUT_TMDS:
4448 	case OUTPUT_LVDS:
4449 	case OUTPUT_DP:
4450 		if (hash & 0x00c00000) {
4451 			if (!(hash & (dcb->sorconf.link << 22)))
4452 				return false;
4453 		}
4454 	default:
4455 		return true;
4456 	}
4457 }
4458 
4459 int
4460 nouveau_bios_run_display_table(struct drm_device *dev, u16 type, int pclk,
4461 			       struct dcb_entry *dcbent, int crtc)
4462 {
4463 	/*
4464 	 * The display script table is located by the BIT 'U' table.
4465 	 *
4466 	 * It contains an array of pointers to various tables describing
4467 	 * a particular output type.  The first 32-bits of the output
4468 	 * tables contains similar information to a DCB entry, and is
4469 	 * used to decide whether that particular table is suitable for
4470 	 * the output you want to access.
4471 	 *
4472 	 * The "record header length" field here seems to indicate the
4473 	 * offset of the first configuration entry in the output tables.
4474 	 * This is 10 on most cards I've seen, but 12 has been witnessed
4475 	 * on DP cards, and there's another script pointer within the
4476 	 * header.
4477 	 *
4478 	 * offset + 0   ( 8 bits): version
4479 	 * offset + 1   ( 8 bits): header length
4480 	 * offset + 2   ( 8 bits): record length
4481 	 * offset + 3   ( 8 bits): number of records
4482 	 * offset + 4   ( 8 bits): record header length
4483 	 * offset + 5   (16 bits): pointer to first output script table
4484 	 */
4485 
4486 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4487 	struct nvbios *bios = &dev_priv->vbios;
4488 	uint8_t *table = &bios->data[bios->display.script_table_ptr];
4489 	uint8_t *otable = NULL;
4490 	uint16_t script;
4491 	int i;
4492 
4493 	if (!bios->display.script_table_ptr) {
4494 		NV_ERROR(dev, "No pointer to output script table\n");
4495 		return 1;
4496 	}
4497 
4498 	/*
4499 	 * Nothing useful has been in any of the pre-2.0 tables I've seen,
4500 	 * so until they are, we really don't need to care.
4501 	 */
4502 	if (table[0] < 0x20)
4503 		return 1;
4504 
4505 	if (table[0] != 0x20 && table[0] != 0x21) {
4506 		NV_ERROR(dev, "Output script table version 0x%02x unknown\n",
4507 			 table[0]);
4508 		return 1;
4509 	}
4510 
4511 	/*
4512 	 * The output script tables describing a particular output type
4513 	 * look as follows:
4514 	 *
4515 	 * offset + 0   (32 bits): output this table matches (hash of DCB)
4516 	 * offset + 4   ( 8 bits): unknown
4517 	 * offset + 5   ( 8 bits): number of configurations
4518 	 * offset + 6   (16 bits): pointer to some script
4519 	 * offset + 8   (16 bits): pointer to some script
4520 	 *
4521 	 * headerlen == 10
4522 	 * offset + 10           : configuration 0
4523 	 *
4524 	 * headerlen == 12
4525 	 * offset + 10           : pointer to some script
4526 	 * offset + 12           : configuration 0
4527 	 *
4528 	 * Each config entry is as follows:
4529 	 *
4530 	 * offset + 0   (16 bits): unknown, assumed to be a match value
4531 	 * offset + 2   (16 bits): pointer to script table (clock set?)
4532 	 * offset + 4   (16 bits): pointer to script table (reset?)
4533 	 *
4534 	 * There doesn't appear to be a count value to say how many
4535 	 * entries exist in each script table, instead, a 0 value in
4536 	 * the first 16-bit word seems to indicate both the end of the
4537 	 * list and the default entry.  The second 16-bit word in the
4538 	 * script tables is a pointer to the script to execute.
4539 	 */
4540 
4541 	NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n",
4542 			dcbent->type, dcbent->location, dcbent->or);
4543 	for (i = 0; i < table[3]; i++) {
4544 		otable = ROMPTR(bios, table[table[1] + (i * table[2])]);
4545 		if (otable && bios_encoder_match(dcbent, ROM32(otable[0])))
4546 			break;
4547 	}
4548 
4549 	if (!otable) {
4550 		NV_DEBUG_KMS(dev, "failed to match any output table\n");
4551 		return 1;
4552 	}
4553 
4554 	if (pclk < -2 || pclk > 0) {
4555 		/* Try to find matching script table entry */
4556 		for (i = 0; i < otable[5]; i++) {
4557 			if (ROM16(otable[table[4] + i*6]) == type)
4558 				break;
4559 		}
4560 
4561 		if (i == otable[5]) {
4562 			NV_ERROR(dev, "Table 0x%04x not found for %d/%d, "
4563 				      "using first\n",
4564 				 type, dcbent->type, dcbent->or);
4565 			i = 0;
4566 		}
4567 	}
4568 
4569 	if (pclk == 0) {
4570 		script = ROM16(otable[6]);
4571 		if (!script) {
4572 			NV_DEBUG_KMS(dev, "output script 0 not found\n");
4573 			return 1;
4574 		}
4575 
4576 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 0\n", script);
4577 		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4578 	} else
4579 	if (pclk == -1) {
4580 		script = ROM16(otable[8]);
4581 		if (!script) {
4582 			NV_DEBUG_KMS(dev, "output script 1 not found\n");
4583 			return 1;
4584 		}
4585 
4586 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 1\n", script);
4587 		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4588 	} else
4589 	if (pclk == -2) {
4590 		if (table[4] >= 12)
4591 			script = ROM16(otable[10]);
4592 		else
4593 			script = 0;
4594 		if (!script) {
4595 			NV_DEBUG_KMS(dev, "output script 2 not found\n");
4596 			return 1;
4597 		}
4598 
4599 		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 2\n", script);
4600 		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4601 	} else
4602 	if (pclk > 0) {
4603 		script = ROM16(otable[table[4] + i*6 + 2]);
4604 		if (script)
4605 			script = clkcmptable(bios, script, pclk);
4606 		if (!script) {
4607 			NV_DEBUG_KMS(dev, "clock script 0 not found\n");
4608 			return 1;
4609 		}
4610 
4611 		NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 0\n", script);
4612 		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4613 	} else
4614 	if (pclk < 0) {
4615 		script = ROM16(otable[table[4] + i*6 + 4]);
4616 		if (script)
4617 			script = clkcmptable(bios, script, -pclk);
4618 		if (!script) {
4619 			NV_DEBUG_KMS(dev, "clock script 1 not found\n");
4620 			return 1;
4621 		}
4622 
4623 		NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 1\n", script);
4624 		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4625 	}
4626 
4627 	return 0;
4628 }
4629 
4630 
4631 int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk)
4632 {
4633 	/*
4634 	 * the pxclk parameter is in kHz
4635 	 *
4636 	 * This runs the TMDS regs setting code found on BIT bios cards
4637 	 *
4638 	 * For ffs(or) == 1 use the first table, for ffs(or) == 2 and
4639 	 * ffs(or) == 3, use the second.
4640 	 */
4641 
4642 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4643 	struct nvbios *bios = &dev_priv->vbios;
4644 	int cv = bios->chip_version;
4645 	uint16_t clktable = 0, scriptptr;
4646 	uint32_t sel_clk_binding, sel_clk;
4647 
4648 	/* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */
4649 	if (cv >= 0x17 && cv != 0x1a && cv != 0x20 &&
4650 	    dcbent->location != DCB_LOC_ON_CHIP)
4651 		return 0;
4652 
4653 	switch (ffs(dcbent->or)) {
4654 	case 1:
4655 		clktable = bios->tmds.output0_script_ptr;
4656 		break;
4657 	case 2:
4658 	case 3:
4659 		clktable = bios->tmds.output1_script_ptr;
4660 		break;
4661 	}
4662 
4663 	if (!clktable) {
4664 		NV_ERROR(dev, "Pixel clock comparison table not found\n");
4665 		return -EINVAL;
4666 	}
4667 
4668 	scriptptr = clkcmptable(bios, clktable, pxclk);
4669 
4670 	if (!scriptptr) {
4671 		NV_ERROR(dev, "TMDS output init script not found\n");
4672 		return -ENOENT;
4673 	}
4674 
4675 	/* don't let script change pll->head binding */
4676 	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
4677 	run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000);
4678 	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
4679 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
4680 
4681 	return 0;
4682 }
4683 
4684 struct pll_mapping {
4685 	u8  type;
4686 	u32 reg;
4687 };
4688 
4689 static struct pll_mapping nv04_pll_mapping[] = {
4690 	{ PLL_CORE  , NV_PRAMDAC_NVPLL_COEFF },
4691 	{ PLL_MEMORY, NV_PRAMDAC_MPLL_COEFF },
4692 	{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
4693 	{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
4694 	{}
4695 };
4696 
4697 static struct pll_mapping nv40_pll_mapping[] = {
4698 	{ PLL_CORE  , 0x004000 },
4699 	{ PLL_MEMORY, 0x004020 },
4700 	{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
4701 	{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
4702 	{}
4703 };
4704 
4705 static struct pll_mapping nv50_pll_mapping[] = {
4706 	{ PLL_CORE  , 0x004028 },
4707 	{ PLL_SHADER, 0x004020 },
4708 	{ PLL_UNK03 , 0x004000 },
4709 	{ PLL_MEMORY, 0x004008 },
4710 	{ PLL_UNK40 , 0x00e810 },
4711 	{ PLL_UNK41 , 0x00e818 },
4712 	{ PLL_UNK42 , 0x00e824 },
4713 	{ PLL_VPLL0 , 0x614100 },
4714 	{ PLL_VPLL1 , 0x614900 },
4715 	{}
4716 };
4717 
4718 static struct pll_mapping nv84_pll_mapping[] = {
4719 	{ PLL_CORE  , 0x004028 },
4720 	{ PLL_SHADER, 0x004020 },
4721 	{ PLL_MEMORY, 0x004008 },
4722 	{ PLL_UNK05 , 0x004030 },
4723 	{ PLL_UNK41 , 0x00e818 },
4724 	{ PLL_VPLL0 , 0x614100 },
4725 	{ PLL_VPLL1 , 0x614900 },
4726 	{}
4727 };
4728 
4729 u32
4730 get_pll_register(struct drm_device *dev, enum pll_types type)
4731 {
4732 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4733 	struct nvbios *bios = &dev_priv->vbios;
4734 	struct pll_mapping *map;
4735 	int i;
4736 
4737 	if (dev_priv->card_type < NV_40)
4738 		map = nv04_pll_mapping;
4739 	else
4740 	if (dev_priv->card_type < NV_50)
4741 		map = nv40_pll_mapping;
4742 	else {
4743 		u8 *plim = &bios->data[bios->pll_limit_tbl_ptr];
4744 
4745 		if (plim[0] >= 0x30) {
4746 			u8 *entry = plim + plim[1];
4747 			for (i = 0; i < plim[3]; i++, entry += plim[2]) {
4748 				if (entry[0] == type)
4749 					return ROM32(entry[3]);
4750 			}
4751 
4752 			return 0;
4753 		}
4754 
4755 		if (dev_priv->chipset == 0x50)
4756 			map = nv50_pll_mapping;
4757 		else
4758 			map = nv84_pll_mapping;
4759 	}
4760 
4761 	while (map->reg) {
4762 		if (map->type == type)
4763 			return map->reg;
4764 		map++;
4765 	}
4766 
4767 	return 0;
4768 }
4769 
4770 int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim)
4771 {
4772 	/*
4773 	 * PLL limits table
4774 	 *
4775 	 * Version 0x10: NV30, NV31
4776 	 * One byte header (version), one record of 24 bytes
4777 	 * Version 0x11: NV36 - Not implemented
4778 	 * Seems to have same record style as 0x10, but 3 records rather than 1
4779 	 * Version 0x20: Found on Geforce 6 cards
4780 	 * Trivial 4 byte BIT header. 31 (0x1f) byte record length
4781 	 * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards
4782 	 * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record
4783 	 * length in general, some (integrated) have an extra configuration byte
4784 	 * Version 0x30: Found on Geforce 8, separates the register mapping
4785 	 * from the limits tables.
4786 	 */
4787 
4788 	struct drm_nouveau_private *dev_priv = dev->dev_private;
4789 	struct nvbios *bios = &dev_priv->vbios;
4790 	int cv = bios->chip_version, pllindex = 0;
4791 	uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0;
4792 	uint32_t crystal_strap_mask, crystal_straps;
4793 
4794 	if (!bios->pll_limit_tbl_ptr) {
4795 		if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 ||
4796 		    cv >= 0x40) {
4797 			NV_ERROR(dev, "Pointer to PLL limits table invalid\n");
4798 			return -EINVAL;
4799 		}
4800 	} else
4801 		pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr];
4802 
4803 	crystal_strap_mask = 1 << 6;
4804 	/* open coded dev->twoHeads test */
4805 	if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20)
4806 		crystal_strap_mask |= 1 << 22;
4807 	crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) &
4808 							crystal_strap_mask;
4809 
4810 	switch (pll_lim_ver) {
4811 	/*
4812 	 * We use version 0 to indicate a pre limit table bios (single stage
4813 	 * pll) and load the hard coded limits instead.
4814 	 */
4815 	case 0:
4816 		break;
4817 	case 0x10:
4818 	case 0x11:
4819 		/*
4820 		 * Strictly v0x11 has 3 entries, but the last two don't seem
4821 		 * to get used.
4822 		 */
4823 		headerlen = 1;
4824 		recordlen = 0x18;
4825 		entries = 1;
4826 		pllindex = 0;
4827 		break;
4828 	case 0x20:
4829 	case 0x21:
4830 	case 0x30:
4831 	case 0x40:
4832 		headerlen = bios->data[bios->pll_limit_tbl_ptr + 1];
4833 		recordlen = bios->data[bios->pll_limit_tbl_ptr + 2];
4834 		entries = bios->data[bios->pll_limit_tbl_ptr + 3];
4835 		break;
4836 	default:
4837 		NV_ERROR(dev, "PLL limits table revision 0x%X not currently "
4838 				"supported\n", pll_lim_ver);
4839 		return -ENOSYS;
4840 	}
4841 
4842 	/* initialize all members to zero */
4843 	memset(pll_lim, 0, sizeof(struct pll_lims));
4844 
4845 	/* if we were passed a type rather than a register, figure
4846 	 * out the register and store it
4847 	 */
4848 	if (limit_match > PLL_MAX)
4849 		pll_lim->reg = limit_match;
4850 	else {
4851 		pll_lim->reg = get_pll_register(dev, limit_match);
4852 		if (!pll_lim->reg)
4853 			return -ENOENT;
4854 	}
4855 
4856 	if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) {
4857 		uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex];
4858 
4859 		pll_lim->vco1.minfreq = ROM32(pll_rec[0]);
4860 		pll_lim->vco1.maxfreq = ROM32(pll_rec[4]);
4861 		pll_lim->vco2.minfreq = ROM32(pll_rec[8]);
4862 		pll_lim->vco2.maxfreq = ROM32(pll_rec[12]);
4863 		pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]);
4864 		pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]);
4865 		pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX;
4866 
4867 		/* these values taken from nv30/31/36 */
4868 		pll_lim->vco1.min_n = 0x1;
4869 		if (cv == 0x36)
4870 			pll_lim->vco1.min_n = 0x5;
4871 		pll_lim->vco1.max_n = 0xff;
4872 		pll_lim->vco1.min_m = 0x1;
4873 		pll_lim->vco1.max_m = 0xd;
4874 		pll_lim->vco2.min_n = 0x4;
4875 		/*
4876 		 * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this
4877 		 * table version (apart from nv35)), N2 is compared to
4878 		 * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and
4879 		 * save a comparison
4880 		 */
4881 		pll_lim->vco2.max_n = 0x28;
4882 		if (cv == 0x30 || cv == 0x35)
4883 			/* only 5 bits available for N2 on nv30/35 */
4884 			pll_lim->vco2.max_n = 0x1f;
4885 		pll_lim->vco2.min_m = 0x1;
4886 		pll_lim->vco2.max_m = 0x4;
4887 		pll_lim->max_log2p = 0x7;
4888 		pll_lim->max_usable_log2p = 0x6;
4889 	} else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) {
4890 		uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen;
4891 		uint8_t *pll_rec;
4892 		int i;
4893 
4894 		/*
4895 		 * First entry is default match, if nothing better. warn if
4896 		 * reg field nonzero
4897 		 */
4898 		if (ROM32(bios->data[plloffs]))
4899 			NV_WARN(dev, "Default PLL limit entry has non-zero "
4900 				       "register field\n");
4901 
4902 		for (i = 1; i < entries; i++)
4903 			if (ROM32(bios->data[plloffs + recordlen * i]) == pll_lim->reg) {
4904 				pllindex = i;
4905 				break;
4906 			}
4907 
4908 		if ((dev_priv->card_type >= NV_50) && (pllindex == 0)) {
4909 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4910 				 "limits table", pll_lim->reg);
4911 			return -ENOENT;
4912 		}
4913 
4914 		pll_rec = &bios->data[plloffs + recordlen * pllindex];
4915 
4916 		BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n",
4917 			pllindex ? pll_lim->reg : 0);
4918 
4919 		/*
4920 		 * Frequencies are stored in tables in MHz, kHz are more
4921 		 * useful, so we convert.
4922 		 */
4923 
4924 		/* What output frequencies can each VCO generate? */
4925 		pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000;
4926 		pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000;
4927 		pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000;
4928 		pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000;
4929 
4930 		/* What input frequencies they accept (past the m-divider)? */
4931 		pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000;
4932 		pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000;
4933 		pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000;
4934 		pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000;
4935 
4936 		/* What values are accepted as multiplier and divider? */
4937 		pll_lim->vco1.min_n = pll_rec[20];
4938 		pll_lim->vco1.max_n = pll_rec[21];
4939 		pll_lim->vco1.min_m = pll_rec[22];
4940 		pll_lim->vco1.max_m = pll_rec[23];
4941 		pll_lim->vco2.min_n = pll_rec[24];
4942 		pll_lim->vco2.max_n = pll_rec[25];
4943 		pll_lim->vco2.min_m = pll_rec[26];
4944 		pll_lim->vco2.max_m = pll_rec[27];
4945 
4946 		pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29];
4947 		if (pll_lim->max_log2p > 0x7)
4948 			/* pll decoding in nv_hw.c assumes never > 7 */
4949 			NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n",
4950 				pll_lim->max_log2p);
4951 		if (cv < 0x60)
4952 			pll_lim->max_usable_log2p = 0x6;
4953 		pll_lim->log2p_bias = pll_rec[30];
4954 
4955 		if (recordlen > 0x22)
4956 			pll_lim->refclk = ROM32(pll_rec[31]);
4957 
4958 		if (recordlen > 0x23 && pll_rec[35])
4959 			NV_WARN(dev,
4960 				"Bits set in PLL configuration byte (%x)\n",
4961 				pll_rec[35]);
4962 
4963 		/* C51 special not seen elsewhere */
4964 		if (cv == 0x51 && !pll_lim->refclk) {
4965 			uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK);
4966 
4967 			if ((pll_lim->reg == NV_PRAMDAC_VPLL_COEFF && sel_clk & 0x20) ||
4968 			    (pll_lim->reg == NV_RAMDAC_VPLL2 && sel_clk & 0x80)) {
4969 				if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3)
4970 					pll_lim->refclk = 200000;
4971 				else
4972 					pll_lim->refclk = 25000;
4973 			}
4974 		}
4975 	} else if (pll_lim_ver == 0x30) { /* ver 0x30 */
4976 		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
4977 		uint8_t *record = NULL;
4978 		int i;
4979 
4980 		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4981 			pll_lim->reg);
4982 
4983 		for (i = 0; i < entries; i++, entry += recordlen) {
4984 			if (ROM32(entry[3]) == pll_lim->reg) {
4985 				record = &bios->data[ROM16(entry[1])];
4986 				break;
4987 			}
4988 		}
4989 
4990 		if (!record) {
4991 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4992 				 "limits table", pll_lim->reg);
4993 			return -ENOENT;
4994 		}
4995 
4996 		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
4997 		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
4998 		pll_lim->vco2.minfreq = ROM16(record[4]) * 1000;
4999 		pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000;
5000 		pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000;
5001 		pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000;
5002 		pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000;
5003 		pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000;
5004 		pll_lim->vco1.min_n = record[16];
5005 		pll_lim->vco1.max_n = record[17];
5006 		pll_lim->vco1.min_m = record[18];
5007 		pll_lim->vco1.max_m = record[19];
5008 		pll_lim->vco2.min_n = record[20];
5009 		pll_lim->vco2.max_n = record[21];
5010 		pll_lim->vco2.min_m = record[22];
5011 		pll_lim->vco2.max_m = record[23];
5012 		pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25];
5013 		pll_lim->log2p_bias = record[27];
5014 		pll_lim->refclk = ROM32(record[28]);
5015 	} else if (pll_lim_ver) { /* ver 0x40 */
5016 		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
5017 		uint8_t *record = NULL;
5018 		int i;
5019 
5020 		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
5021 			pll_lim->reg);
5022 
5023 		for (i = 0; i < entries; i++, entry += recordlen) {
5024 			if (ROM32(entry[3]) == pll_lim->reg) {
5025 				record = &bios->data[ROM16(entry[1])];
5026 				break;
5027 			}
5028 		}
5029 
5030 		if (!record) {
5031 			NV_ERROR(dev, "Register 0x%08x not found in PLL "
5032 				 "limits table", pll_lim->reg);
5033 			return -ENOENT;
5034 		}
5035 
5036 		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
5037 		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
5038 		pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000;
5039 		pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000;
5040 		pll_lim->vco1.min_m = record[8];
5041 		pll_lim->vco1.max_m = record[9];
5042 		pll_lim->vco1.min_n = record[10];
5043 		pll_lim->vco1.max_n = record[11];
5044 		pll_lim->min_p = record[12];
5045 		pll_lim->max_p = record[13];
5046 		pll_lim->refclk = ROM16(entry[9]) * 1000;
5047 	}
5048 
5049 	/*
5050 	 * By now any valid limit table ought to have set a max frequency for
5051 	 * vco1, so if it's zero it's either a pre limit table bios, or one
5052 	 * with an empty limit table (seen on nv18)
5053 	 */
5054 	if (!pll_lim->vco1.maxfreq) {
5055 		pll_lim->vco1.minfreq = bios->fminvco;
5056 		pll_lim->vco1.maxfreq = bios->fmaxvco;
5057 		pll_lim->vco1.min_inputfreq = 0;
5058 		pll_lim->vco1.max_inputfreq = INT_MAX;
5059 		pll_lim->vco1.min_n = 0x1;
5060 		pll_lim->vco1.max_n = 0xff;
5061 		pll_lim->vco1.min_m = 0x1;
5062 		if (crystal_straps == 0) {
5063 			/* nv05 does this, nv11 doesn't, nv10 unknown */
5064 			if (cv < 0x11)
5065 				pll_lim->vco1.min_m = 0x7;
5066 			pll_lim->vco1.max_m = 0xd;
5067 		} else {
5068 			if (cv < 0x11)
5069 				pll_lim->vco1.min_m = 0x8;
5070 			pll_lim->vco1.max_m = 0xe;
5071 		}
5072 		if (cv < 0x17 || cv == 0x1a || cv == 0x20)
5073 			pll_lim->max_log2p = 4;
5074 		else
5075 			pll_lim->max_log2p = 5;
5076 		pll_lim->max_usable_log2p = pll_lim->max_log2p;
5077 	}
5078 
5079 	if (!pll_lim->refclk)
5080 		switch (crystal_straps) {
5081 		case 0:
5082 			pll_lim->refclk = 13500;
5083 			break;
5084 		case (1 << 6):
5085 			pll_lim->refclk = 14318;
5086 			break;
5087 		case (1 << 22):
5088 			pll_lim->refclk = 27000;
5089 			break;
5090 		case (1 << 22 | 1 << 6):
5091 			pll_lim->refclk = 25000;
5092 			break;
5093 		}
5094 
5095 	NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq);
5096 	NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq);
5097 	NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq);
5098 	NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq);
5099 	NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n);
5100 	NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n);
5101 	NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m);
5102 	NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m);
5103 	if (pll_lim->vco2.maxfreq) {
5104 		NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq);
5105 		NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq);
5106 		NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq);
5107 		NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq);
5108 		NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n);
5109 		NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n);
5110 		NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m);
5111 		NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m);
5112 	}
5113 	if (!pll_lim->max_p) {
5114 		NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p);
5115 		NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias);
5116 	} else {
5117 		NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p);
5118 		NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p);
5119 	}
5120 	NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk);
5121 
5122 	return 0;
5123 }
5124 
5125 static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset)
5126 {
5127 	/*
5128 	 * offset + 0  (8 bits): Micro version
5129 	 * offset + 1  (8 bits): Minor version
5130 	 * offset + 2  (8 bits): Chip version
5131 	 * offset + 3  (8 bits): Major version
5132 	 */
5133 
5134 	bios->major_version = bios->data[offset + 3];
5135 	bios->chip_version = bios->data[offset + 2];
5136 	NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n",
5137 		 bios->data[offset + 3], bios->data[offset + 2],
5138 		 bios->data[offset + 1], bios->data[offset]);
5139 }
5140 
5141 static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset)
5142 {
5143 	/*
5144 	 * Parses the init table segment for pointers used in script execution.
5145 	 *
5146 	 * offset + 0  (16 bits): init script tables pointer
5147 	 * offset + 2  (16 bits): macro index table pointer
5148 	 * offset + 4  (16 bits): macro table pointer
5149 	 * offset + 6  (16 bits): condition table pointer
5150 	 * offset + 8  (16 bits): io condition table pointer
5151 	 * offset + 10 (16 bits): io flag condition table pointer
5152 	 * offset + 12 (16 bits): init function table pointer
5153 	 */
5154 
5155 	bios->init_script_tbls_ptr = ROM16(bios->data[offset]);
5156 	bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]);
5157 	bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]);
5158 	bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]);
5159 	bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]);
5160 	bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]);
5161 	bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]);
5162 }
5163 
5164 static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5165 {
5166 	/*
5167 	 * Parses the load detect values for g80 cards.
5168 	 *
5169 	 * offset + 0 (16 bits): loadval table pointer
5170 	 */
5171 
5172 	uint16_t load_table_ptr;
5173 	uint8_t version, headerlen, entrylen, num_entries;
5174 
5175 	if (bitentry->length != 3) {
5176 		NV_ERROR(dev, "Do not understand BIT A table\n");
5177 		return -EINVAL;
5178 	}
5179 
5180 	load_table_ptr = ROM16(bios->data[bitentry->offset]);
5181 
5182 	if (load_table_ptr == 0x0) {
5183 		NV_DEBUG(dev, "Pointer to BIT loadval table invalid\n");
5184 		return -EINVAL;
5185 	}
5186 
5187 	version = bios->data[load_table_ptr];
5188 
5189 	if (version != 0x10) {
5190 		NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n",
5191 			 version >> 4, version & 0xF);
5192 		return -ENOSYS;
5193 	}
5194 
5195 	headerlen = bios->data[load_table_ptr + 1];
5196 	entrylen = bios->data[load_table_ptr + 2];
5197 	num_entries = bios->data[load_table_ptr + 3];
5198 
5199 	if (headerlen != 4 || entrylen != 4 || num_entries != 2) {
5200 		NV_ERROR(dev, "Do not understand BIT loadval table\n");
5201 		return -EINVAL;
5202 	}
5203 
5204 	/* First entry is normal dac, 2nd tv-out perhaps? */
5205 	bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff;
5206 
5207 	return 0;
5208 }
5209 
5210 static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5211 {
5212 	/*
5213 	 * offset + 8  (16 bits): PLL limits table pointer
5214 	 *
5215 	 * There's more in here, but that's unknown.
5216 	 */
5217 
5218 	if (bitentry->length < 10) {
5219 		NV_ERROR(dev, "Do not understand BIT C table\n");
5220 		return -EINVAL;
5221 	}
5222 
5223 	bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]);
5224 
5225 	return 0;
5226 }
5227 
5228 static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5229 {
5230 	/*
5231 	 * Parses the flat panel table segment that the bit entry points to.
5232 	 * Starting at bitentry->offset:
5233 	 *
5234 	 * offset + 0  (16 bits): ??? table pointer - seems to have 18 byte
5235 	 * records beginning with a freq.
5236 	 * offset + 2  (16 bits): mode table pointer
5237 	 */
5238 
5239 	if (bitentry->length != 4) {
5240 		NV_ERROR(dev, "Do not understand BIT display table\n");
5241 		return -EINVAL;
5242 	}
5243 
5244 	bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]);
5245 
5246 	return 0;
5247 }
5248 
5249 static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5250 {
5251 	/*
5252 	 * Parses the init table segment that the bit entry points to.
5253 	 *
5254 	 * See parse_script_table_pointers for layout
5255 	 */
5256 
5257 	if (bitentry->length < 14) {
5258 		NV_ERROR(dev, "Do not understand init table\n");
5259 		return -EINVAL;
5260 	}
5261 
5262 	parse_script_table_pointers(bios, bitentry->offset);
5263 
5264 	if (bitentry->length >= 16)
5265 		bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]);
5266 	if (bitentry->length >= 18)
5267 		bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]);
5268 
5269 	return 0;
5270 }
5271 
5272 static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5273 {
5274 	/*
5275 	 * BIT 'i' (info?) table
5276 	 *
5277 	 * offset + 0  (32 bits): BIOS version dword (as in B table)
5278 	 * offset + 5  (8  bits): BIOS feature byte (same as for BMP?)
5279 	 * offset + 13 (16 bits): pointer to table containing DAC load
5280 	 * detection comparison values
5281 	 *
5282 	 * There's other things in the table, purpose unknown
5283 	 */
5284 
5285 	uint16_t daccmpoffset;
5286 	uint8_t dacver, dacheaderlen;
5287 
5288 	if (bitentry->length < 6) {
5289 		NV_ERROR(dev, "BIT i table too short for needed information\n");
5290 		return -EINVAL;
5291 	}
5292 
5293 	parse_bios_version(dev, bios, bitentry->offset);
5294 
5295 	/*
5296 	 * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's
5297 	 * Quadro identity crisis), other bits possibly as for BMP feature byte
5298 	 */
5299 	bios->feature_byte = bios->data[bitentry->offset + 5];
5300 	bios->is_mobile = bios->feature_byte & FEATURE_MOBILE;
5301 
5302 	if (bitentry->length < 15) {
5303 		NV_WARN(dev, "BIT i table not long enough for DAC load "
5304 			       "detection comparison table\n");
5305 		return -EINVAL;
5306 	}
5307 
5308 	daccmpoffset = ROM16(bios->data[bitentry->offset + 13]);
5309 
5310 	/* doesn't exist on g80 */
5311 	if (!daccmpoffset)
5312 		return 0;
5313 
5314 	/*
5315 	 * The first value in the table, following the header, is the
5316 	 * comparison value, the second entry is a comparison value for
5317 	 * TV load detection.
5318 	 */
5319 
5320 	dacver = bios->data[daccmpoffset];
5321 	dacheaderlen = bios->data[daccmpoffset + 1];
5322 
5323 	if (dacver != 0x00 && dacver != 0x10) {
5324 		NV_WARN(dev, "DAC load detection comparison table version "
5325 			       "%d.%d not known\n", dacver >> 4, dacver & 0xf);
5326 		return -ENOSYS;
5327 	}
5328 
5329 	bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]);
5330 	bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]);
5331 
5332 	return 0;
5333 }
5334 
5335 static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5336 {
5337 	/*
5338 	 * Parses the LVDS table segment that the bit entry points to.
5339 	 * Starting at bitentry->offset:
5340 	 *
5341 	 * offset + 0  (16 bits): LVDS strap xlate table pointer
5342 	 */
5343 
5344 	if (bitentry->length != 2) {
5345 		NV_ERROR(dev, "Do not understand BIT LVDS table\n");
5346 		return -EINVAL;
5347 	}
5348 
5349 	/*
5350 	 * No idea if it's still called the LVDS manufacturer table, but
5351 	 * the concept's close enough.
5352 	 */
5353 	bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]);
5354 
5355 	return 0;
5356 }
5357 
5358 static int
5359 parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5360 		      struct bit_entry *bitentry)
5361 {
5362 	/*
5363 	 * offset + 2  (8  bits): number of options in an
5364 	 * 	INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set
5365 	 * offset + 3  (16 bits): pointer to strap xlate table for RAM
5366 	 * 	restrict option selection
5367 	 *
5368 	 * There's a bunch of bits in this table other than the RAM restrict
5369 	 * stuff that we don't use - their use currently unknown
5370 	 */
5371 
5372 	/*
5373 	 * Older bios versions don't have a sufficiently long table for
5374 	 * what we want
5375 	 */
5376 	if (bitentry->length < 0x5)
5377 		return 0;
5378 
5379 	if (bitentry->version < 2) {
5380 		bios->ram_restrict_group_count = bios->data[bitentry->offset + 2];
5381 		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]);
5382 	} else {
5383 		bios->ram_restrict_group_count = bios->data[bitentry->offset + 0];
5384 		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]);
5385 	}
5386 
5387 	return 0;
5388 }
5389 
5390 static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5391 {
5392 	/*
5393 	 * Parses the pointer to the TMDS table
5394 	 *
5395 	 * Starting at bitentry->offset:
5396 	 *
5397 	 * offset + 0  (16 bits): TMDS table pointer
5398 	 *
5399 	 * The TMDS table is typically found just before the DCB table, with a
5400 	 * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being
5401 	 * length?)
5402 	 *
5403 	 * At offset +7 is a pointer to a script, which I don't know how to
5404 	 * run yet.
5405 	 * At offset +9 is a pointer to another script, likewise
5406 	 * Offset +11 has a pointer to a table where the first word is a pxclk
5407 	 * frequency and the second word a pointer to a script, which should be
5408 	 * run if the comparison pxclk frequency is less than the pxclk desired.
5409 	 * This repeats for decreasing comparison frequencies
5410 	 * Offset +13 has a pointer to a similar table
5411 	 * The selection of table (and possibly +7/+9 script) is dictated by
5412 	 * "or" from the DCB.
5413 	 */
5414 
5415 	uint16_t tmdstableptr, script1, script2;
5416 
5417 	if (bitentry->length != 2) {
5418 		NV_ERROR(dev, "Do not understand BIT TMDS table\n");
5419 		return -EINVAL;
5420 	}
5421 
5422 	tmdstableptr = ROM16(bios->data[bitentry->offset]);
5423 	if (!tmdstableptr) {
5424 		NV_ERROR(dev, "Pointer to TMDS table invalid\n");
5425 		return -EINVAL;
5426 	}
5427 
5428 	NV_INFO(dev, "TMDS table version %d.%d\n",
5429 		bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf);
5430 
5431 	/* nv50+ has v2.0, but we don't parse it atm */
5432 	if (bios->data[tmdstableptr] != 0x11)
5433 		return -ENOSYS;
5434 
5435 	/*
5436 	 * These two scripts are odd: they don't seem to get run even when
5437 	 * they are not stubbed.
5438 	 */
5439 	script1 = ROM16(bios->data[tmdstableptr + 7]);
5440 	script2 = ROM16(bios->data[tmdstableptr + 9]);
5441 	if (bios->data[script1] != 'q' || bios->data[script2] != 'q')
5442 		NV_WARN(dev, "TMDS table script pointers not stubbed\n");
5443 
5444 	bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]);
5445 	bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]);
5446 
5447 	return 0;
5448 }
5449 
5450 static int
5451 parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5452 		      struct bit_entry *bitentry)
5453 {
5454 	/*
5455 	 * Parses the pointer to the G80 output script tables
5456 	 *
5457 	 * Starting at bitentry->offset:
5458 	 *
5459 	 * offset + 0  (16 bits): output script table pointer
5460 	 */
5461 
5462 	uint16_t outputscripttableptr;
5463 
5464 	if (bitentry->length != 3) {
5465 		NV_ERROR(dev, "Do not understand BIT U table\n");
5466 		return -EINVAL;
5467 	}
5468 
5469 	outputscripttableptr = ROM16(bios->data[bitentry->offset]);
5470 	bios->display.script_table_ptr = outputscripttableptr;
5471 	return 0;
5472 }
5473 
5474 struct bit_table {
5475 	const char id;
5476 	int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *);
5477 };
5478 
5479 #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry })
5480 
5481 int
5482 bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit)
5483 {
5484 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5485 	struct nvbios *bios = &dev_priv->vbios;
5486 	u8 entries, *entry;
5487 
5488 	entries = bios->data[bios->offset + 10];
5489 	entry   = &bios->data[bios->offset + 12];
5490 	while (entries--) {
5491 		if (entry[0] == id) {
5492 			bit->id = entry[0];
5493 			bit->version = entry[1];
5494 			bit->length = ROM16(entry[2]);
5495 			bit->offset = ROM16(entry[4]);
5496 			bit->data = ROMPTR(bios, entry[4]);
5497 			return 0;
5498 		}
5499 
5500 		entry += bios->data[bios->offset + 9];
5501 	}
5502 
5503 	return -ENOENT;
5504 }
5505 
5506 static int
5507 parse_bit_table(struct nvbios *bios, const uint16_t bitoffset,
5508 		struct bit_table *table)
5509 {
5510 	struct drm_device *dev = bios->dev;
5511 	struct bit_entry bitentry;
5512 
5513 	if (bit_table(dev, table->id, &bitentry) == 0)
5514 		return table->parse_fn(dev, bios, &bitentry);
5515 
5516 	NV_INFO(dev, "BIT table '%c' not found\n", table->id);
5517 	return -ENOSYS;
5518 }
5519 
5520 static int
5521 parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset)
5522 {
5523 	int ret;
5524 
5525 	/*
5526 	 * The only restriction on parsing order currently is having 'i' first
5527 	 * for use of bios->*_version or bios->feature_byte while parsing;
5528 	 * functions shouldn't be actually *doing* anything apart from pulling
5529 	 * data from the image into the bios struct, thus no interdependencies
5530 	 */
5531 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i));
5532 	if (ret) /* info? */
5533 		return ret;
5534 	if (bios->major_version >= 0x60) /* g80+ */
5535 		parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A));
5536 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C));
5537 	if (ret)
5538 		return ret;
5539 	parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display));
5540 	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init));
5541 	if (ret)
5542 		return ret;
5543 	parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */
5544 	parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds));
5545 	parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds));
5546 	parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U));
5547 
5548 	return 0;
5549 }
5550 
5551 static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset)
5552 {
5553 	/*
5554 	 * Parses the BMP structure for useful things, but does not act on them
5555 	 *
5556 	 * offset +   5: BMP major version
5557 	 * offset +   6: BMP minor version
5558 	 * offset +   9: BMP feature byte
5559 	 * offset +  10: BCD encoded BIOS version
5560 	 *
5561 	 * offset +  18: init script table pointer (for bios versions < 5.10h)
5562 	 * offset +  20: extra init script table pointer (for bios
5563 	 * versions < 5.10h)
5564 	 *
5565 	 * offset +  24: memory init table pointer (used on early bios versions)
5566 	 * offset +  26: SDR memory sequencing setup data table
5567 	 * offset +  28: DDR memory sequencing setup data table
5568 	 *
5569 	 * offset +  54: index of I2C CRTC pair to use for CRT output
5570 	 * offset +  55: index of I2C CRTC pair to use for TV output
5571 	 * offset +  56: index of I2C CRTC pair to use for flat panel output
5572 	 * offset +  58: write CRTC index for I2C pair 0
5573 	 * offset +  59: read CRTC index for I2C pair 0
5574 	 * offset +  60: write CRTC index for I2C pair 1
5575 	 * offset +  61: read CRTC index for I2C pair 1
5576 	 *
5577 	 * offset +  67: maximum internal PLL frequency (single stage PLL)
5578 	 * offset +  71: minimum internal PLL frequency (single stage PLL)
5579 	 *
5580 	 * offset +  75: script table pointers, as described in
5581 	 * parse_script_table_pointers
5582 	 *
5583 	 * offset +  89: TMDS single link output A table pointer
5584 	 * offset +  91: TMDS single link output B table pointer
5585 	 * offset +  95: LVDS single link output A table pointer
5586 	 * offset + 105: flat panel timings table pointer
5587 	 * offset + 107: flat panel strapping translation table pointer
5588 	 * offset + 117: LVDS manufacturer panel config table pointer
5589 	 * offset + 119: LVDS manufacturer strapping translation table pointer
5590 	 *
5591 	 * offset + 142: PLL limits table pointer
5592 	 *
5593 	 * offset + 156: minimum pixel clock for LVDS dual link
5594 	 */
5595 
5596 	uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor;
5597 	uint16_t bmplength;
5598 	uint16_t legacy_scripts_offset, legacy_i2c_offset;
5599 
5600 	/* load needed defaults in case we can't parse this info */
5601 	bios->dcb.i2c[0].write = NV_CIO_CRE_DDC_WR__INDEX;
5602 	bios->dcb.i2c[0].read = NV_CIO_CRE_DDC_STATUS__INDEX;
5603 	bios->dcb.i2c[1].write = NV_CIO_CRE_DDC0_WR__INDEX;
5604 	bios->dcb.i2c[1].read = NV_CIO_CRE_DDC0_STATUS__INDEX;
5605 	bios->digital_min_front_porch = 0x4b;
5606 	bios->fmaxvco = 256000;
5607 	bios->fminvco = 128000;
5608 	bios->fp.duallink_transition_clk = 90000;
5609 
5610 	bmp_version_major = bmp[5];
5611 	bmp_version_minor = bmp[6];
5612 
5613 	NV_TRACE(dev, "BMP version %d.%d\n",
5614 		 bmp_version_major, bmp_version_minor);
5615 
5616 	/*
5617 	 * Make sure that 0x36 is blank and can't be mistaken for a DCB
5618 	 * pointer on early versions
5619 	 */
5620 	if (bmp_version_major < 5)
5621 		*(uint16_t *)&bios->data[0x36] = 0;
5622 
5623 	/*
5624 	 * Seems that the minor version was 1 for all major versions prior
5625 	 * to 5. Version 6 could theoretically exist, but I suspect BIT
5626 	 * happened instead.
5627 	 */
5628 	if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) {
5629 		NV_ERROR(dev, "You have an unsupported BMP version. "
5630 				"Please send in your bios\n");
5631 		return -ENOSYS;
5632 	}
5633 
5634 	if (bmp_version_major == 0)
5635 		/* nothing that's currently useful in this version */
5636 		return 0;
5637 	else if (bmp_version_major == 1)
5638 		bmplength = 44; /* exact for 1.01 */
5639 	else if (bmp_version_major == 2)
5640 		bmplength = 48; /* exact for 2.01 */
5641 	else if (bmp_version_major == 3)
5642 		bmplength = 54;
5643 		/* guessed - mem init tables added in this version */
5644 	else if (bmp_version_major == 4 || bmp_version_minor < 0x1)
5645 		/* don't know if 5.0 exists... */
5646 		bmplength = 62;
5647 		/* guessed - BMP I2C indices added in version 4*/
5648 	else if (bmp_version_minor < 0x6)
5649 		bmplength = 67; /* exact for 5.01 */
5650 	else if (bmp_version_minor < 0x10)
5651 		bmplength = 75; /* exact for 5.06 */
5652 	else if (bmp_version_minor == 0x10)
5653 		bmplength = 89; /* exact for 5.10h */
5654 	else if (bmp_version_minor < 0x14)
5655 		bmplength = 118; /* exact for 5.11h */
5656 	else if (bmp_version_minor < 0x24)
5657 		/*
5658 		 * Not sure of version where pll limits came in;
5659 		 * certainly exist by 0x24 though.
5660 		 */
5661 		/* length not exact: this is long enough to get lvds members */
5662 		bmplength = 123;
5663 	else if (bmp_version_minor < 0x27)
5664 		/*
5665 		 * Length not exact: this is long enough to get pll limit
5666 		 * member
5667 		 */
5668 		bmplength = 144;
5669 	else
5670 		/*
5671 		 * Length not exact: this is long enough to get dual link
5672 		 * transition clock.
5673 		 */
5674 		bmplength = 158;
5675 
5676 	/* checksum */
5677 	if (nv_cksum(bmp, 8)) {
5678 		NV_ERROR(dev, "Bad BMP checksum\n");
5679 		return -EINVAL;
5680 	}
5681 
5682 	/*
5683 	 * Bit 4 seems to indicate either a mobile bios or a quadro card --
5684 	 * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl
5685 	 * (not nv10gl), bit 5 that the flat panel tables are present, and
5686 	 * bit 6 a tv bios.
5687 	 */
5688 	bios->feature_byte = bmp[9];
5689 
5690 	parse_bios_version(dev, bios, offset + 10);
5691 
5692 	if (bmp_version_major < 5 || bmp_version_minor < 0x10)
5693 		bios->old_style_init = true;
5694 	legacy_scripts_offset = 18;
5695 	if (bmp_version_major < 2)
5696 		legacy_scripts_offset -= 4;
5697 	bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]);
5698 	bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]);
5699 
5700 	if (bmp_version_major > 2) {	/* appears in BMP 3 */
5701 		bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]);
5702 		bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]);
5703 		bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]);
5704 	}
5705 
5706 	legacy_i2c_offset = 0x48;	/* BMP version 2 & 3 */
5707 	if (bmplength > 61)
5708 		legacy_i2c_offset = offset + 54;
5709 	bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset];
5710 	bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1];
5711 	bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2];
5712 	if (bios->data[legacy_i2c_offset + 4])
5713 		bios->dcb.i2c[0].write = bios->data[legacy_i2c_offset + 4];
5714 	if (bios->data[legacy_i2c_offset + 5])
5715 		bios->dcb.i2c[0].read = bios->data[legacy_i2c_offset + 5];
5716 	if (bios->data[legacy_i2c_offset + 6])
5717 		bios->dcb.i2c[1].write = bios->data[legacy_i2c_offset + 6];
5718 	if (bios->data[legacy_i2c_offset + 7])
5719 		bios->dcb.i2c[1].read = bios->data[legacy_i2c_offset + 7];
5720 
5721 	if (bmplength > 74) {
5722 		bios->fmaxvco = ROM32(bmp[67]);
5723 		bios->fminvco = ROM32(bmp[71]);
5724 	}
5725 	if (bmplength > 88)
5726 		parse_script_table_pointers(bios, offset + 75);
5727 	if (bmplength > 94) {
5728 		bios->tmds.output0_script_ptr = ROM16(bmp[89]);
5729 		bios->tmds.output1_script_ptr = ROM16(bmp[91]);
5730 		/*
5731 		 * Never observed in use with lvds scripts, but is reused for
5732 		 * 18/24 bit panel interface default for EDID equipped panels
5733 		 * (if_is_24bit not set directly to avoid any oscillation).
5734 		 */
5735 		bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]);
5736 	}
5737 	if (bmplength > 108) {
5738 		bios->fp.fptablepointer = ROM16(bmp[105]);
5739 		bios->fp.fpxlatetableptr = ROM16(bmp[107]);
5740 		bios->fp.xlatwidth = 1;
5741 	}
5742 	if (bmplength > 120) {
5743 		bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]);
5744 		bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]);
5745 	}
5746 	if (bmplength > 143)
5747 		bios->pll_limit_tbl_ptr = ROM16(bmp[142]);
5748 
5749 	if (bmplength > 157)
5750 		bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10;
5751 
5752 	return 0;
5753 }
5754 
5755 static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len)
5756 {
5757 	int i, j;
5758 
5759 	for (i = 0; i <= (n - len); i++) {
5760 		for (j = 0; j < len; j++)
5761 			if (data[i + j] != str[j])
5762 				break;
5763 		if (j == len)
5764 			return i;
5765 	}
5766 
5767 	return 0;
5768 }
5769 
5770 static struct dcb_gpio_entry *
5771 new_gpio_entry(struct nvbios *bios)
5772 {
5773 	struct drm_device *dev = bios->dev;
5774 	struct dcb_gpio_table *gpio = &bios->dcb.gpio;
5775 
5776 	if (gpio->entries >= DCB_MAX_NUM_GPIO_ENTRIES) {
5777 		NV_ERROR(dev, "exceeded maximum number of gpio entries!!\n");
5778 		return NULL;
5779 	}
5780 
5781 	return &gpio->entry[gpio->entries++];
5782 }
5783 
5784 struct dcb_gpio_entry *
5785 nouveau_bios_gpio_entry(struct drm_device *dev, enum dcb_gpio_tag tag)
5786 {
5787 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5788 	struct nvbios *bios = &dev_priv->vbios;
5789 	int i;
5790 
5791 	for (i = 0; i < bios->dcb.gpio.entries; i++) {
5792 		if (bios->dcb.gpio.entry[i].tag != tag)
5793 			continue;
5794 
5795 		return &bios->dcb.gpio.entry[i];
5796 	}
5797 
5798 	return NULL;
5799 }
5800 
5801 static void
5802 parse_dcb_gpio_table(struct nvbios *bios)
5803 {
5804 	struct drm_device *dev = bios->dev;
5805 	struct dcb_gpio_entry *e;
5806 	u8 headerlen, entries, recordlen;
5807 	u8 *dcb, *gpio = NULL, *entry;
5808 	int i;
5809 
5810 	dcb = ROMPTR(bios, bios->data[0x36]);
5811 	if (dcb[0] >= 0x30) {
5812 		gpio = ROMPTR(bios, dcb[10]);
5813 		if (!gpio)
5814 			goto no_table;
5815 
5816 		headerlen = gpio[1];
5817 		entries   = gpio[2];
5818 		recordlen = gpio[3];
5819 	} else
5820 	if (dcb[0] >= 0x22 && dcb[-1] >= 0x13) {
5821 		gpio = ROMPTR(bios, dcb[-15]);
5822 		if (!gpio)
5823 			goto no_table;
5824 
5825 		headerlen = 3;
5826 		entries   = gpio[2];
5827 		recordlen = gpio[1];
5828 	} else
5829 	if (dcb[0] >= 0x22) {
5830 		/* No GPIO table present, parse the TVDAC GPIO data. */
5831 		uint8_t *tvdac_gpio = &dcb[-5];
5832 
5833 		if (tvdac_gpio[0] & 1) {
5834 			e = new_gpio_entry(bios);
5835 			e->tag = DCB_GPIO_TVDAC0;
5836 			e->line = tvdac_gpio[1] >> 4;
5837 			e->invert = tvdac_gpio[0] & 2;
5838 		}
5839 
5840 		goto no_table;
5841 	} else {
5842 		NV_DEBUG(dev, "no/unknown gpio table on DCB 0x%02x\n", dcb[0]);
5843 		goto no_table;
5844 	}
5845 
5846 	entry = gpio + headerlen;
5847 	for (i = 0; i < entries; i++, entry += recordlen) {
5848 		e = new_gpio_entry(bios);
5849 		if (!e)
5850 			break;
5851 
5852 		if (gpio[0] < 0x40) {
5853 			e->entry = ROM16(entry[0]);
5854 			e->tag = (e->entry & 0x07e0) >> 5;
5855 			if (e->tag == 0x3f) {
5856 				bios->dcb.gpio.entries--;
5857 				continue;
5858 			}
5859 
5860 			e->line = (e->entry & 0x001f);
5861 			e->invert = ((e->entry & 0xf800) >> 11) != 4;
5862 		} else {
5863 			e->entry = ROM32(entry[0]);
5864 			e->tag = (e->entry & 0x0000ff00) >> 8;
5865 			if (e->tag == 0xff) {
5866 				bios->dcb.gpio.entries--;
5867 				continue;
5868 			}
5869 
5870 			e->line = (e->entry & 0x0000001f) >> 0;
5871 			if (gpio[0] == 0x40) {
5872 				e->state_default = (e->entry & 0x01000000) >> 24;
5873 				e->state[0] = (e->entry & 0x18000000) >> 27;
5874 				e->state[1] = (e->entry & 0x60000000) >> 29;
5875 			} else {
5876 				e->state_default = (e->entry & 0x00000080) >> 7;
5877 				e->state[0] = (entry[4] >> 4) & 3;
5878 				e->state[1] = (entry[4] >> 6) & 3;
5879 			}
5880 		}
5881 	}
5882 
5883 no_table:
5884 	/* Apple iMac G4 NV18 */
5885 	if (nv_match_device(dev, 0x0189, 0x10de, 0x0010)) {
5886 		e = new_gpio_entry(bios);
5887 		if (e) {
5888 			e->tag = DCB_GPIO_TVDAC0;
5889 			e->line = 4;
5890 		}
5891 	}
5892 }
5893 
5894 struct dcb_connector_table_entry *
5895 nouveau_bios_connector_entry(struct drm_device *dev, int index)
5896 {
5897 	struct drm_nouveau_private *dev_priv = dev->dev_private;
5898 	struct nvbios *bios = &dev_priv->vbios;
5899 	struct dcb_connector_table_entry *cte;
5900 
5901 	if (index >= bios->dcb.connector.entries)
5902 		return NULL;
5903 
5904 	cte = &bios->dcb.connector.entry[index];
5905 	if (cte->type == 0xff)
5906 		return NULL;
5907 
5908 	return cte;
5909 }
5910 
5911 static enum dcb_connector_type
5912 divine_connector_type(struct nvbios *bios, int index)
5913 {
5914 	struct dcb_table *dcb = &bios->dcb;
5915 	unsigned encoders = 0, type = DCB_CONNECTOR_NONE;
5916 	int i;
5917 
5918 	for (i = 0; i < dcb->entries; i++) {
5919 		if (dcb->entry[i].connector == index)
5920 			encoders |= (1 << dcb->entry[i].type);
5921 	}
5922 
5923 	if (encoders & (1 << OUTPUT_DP)) {
5924 		if (encoders & (1 << OUTPUT_TMDS))
5925 			type = DCB_CONNECTOR_DP;
5926 		else
5927 			type = DCB_CONNECTOR_eDP;
5928 	} else
5929 	if (encoders & (1 << OUTPUT_TMDS)) {
5930 		if (encoders & (1 << OUTPUT_ANALOG))
5931 			type = DCB_CONNECTOR_DVI_I;
5932 		else
5933 			type = DCB_CONNECTOR_DVI_D;
5934 	} else
5935 	if (encoders & (1 << OUTPUT_ANALOG)) {
5936 		type = DCB_CONNECTOR_VGA;
5937 	} else
5938 	if (encoders & (1 << OUTPUT_LVDS)) {
5939 		type = DCB_CONNECTOR_LVDS;
5940 	} else
5941 	if (encoders & (1 << OUTPUT_TV)) {
5942 		type = DCB_CONNECTOR_TV_0;
5943 	}
5944 
5945 	return type;
5946 }
5947 
5948 static void
5949 apply_dcb_connector_quirks(struct nvbios *bios, int idx)
5950 {
5951 	struct dcb_connector_table_entry *cte = &bios->dcb.connector.entry[idx];
5952 	struct drm_device *dev = bios->dev;
5953 
5954 	/* Gigabyte NX85T */
5955 	if (nv_match_device(dev, 0x0421, 0x1458, 0x344c)) {
5956 		if (cte->type == DCB_CONNECTOR_HDMI_1)
5957 			cte->type = DCB_CONNECTOR_DVI_I;
5958 	}
5959 
5960 	/* Gigabyte GV-NX86T512H */
5961 	if (nv_match_device(dev, 0x0402, 0x1458, 0x3455)) {
5962 		if (cte->type == DCB_CONNECTOR_HDMI_1)
5963 			cte->type = DCB_CONNECTOR_DVI_I;
5964 	}
5965 }
5966 
5967 static const u8 hpd_gpio[16] = {
5968 	0xff, 0x07, 0x08, 0xff, 0xff, 0x51, 0x52, 0xff,
5969 	0xff, 0xff, 0xff, 0xff, 0xff, 0x5e, 0x5f, 0x60,
5970 };
5971 
5972 static void
5973 parse_dcb_connector_table(struct nvbios *bios)
5974 {
5975 	struct drm_device *dev = bios->dev;
5976 	struct dcb_connector_table *ct = &bios->dcb.connector;
5977 	struct dcb_connector_table_entry *cte;
5978 	uint8_t *conntab = &bios->data[bios->dcb.connector_table_ptr];
5979 	uint8_t *entry;
5980 	int i;
5981 
5982 	if (!bios->dcb.connector_table_ptr) {
5983 		NV_DEBUG_KMS(dev, "No DCB connector table present\n");
5984 		return;
5985 	}
5986 
5987 	NV_INFO(dev, "DCB connector table: VHER 0x%02x %d %d %d\n",
5988 		conntab[0], conntab[1], conntab[2], conntab[3]);
5989 	if ((conntab[0] != 0x30 && conntab[0] != 0x40) ||
5990 	    (conntab[3] != 2 && conntab[3] != 4)) {
5991 		NV_ERROR(dev, "  Unknown!  Please report.\n");
5992 		return;
5993 	}
5994 
5995 	ct->entries = conntab[2];
5996 
5997 	entry = conntab + conntab[1];
5998 	cte = &ct->entry[0];
5999 	for (i = 0; i < conntab[2]; i++, entry += conntab[3], cte++) {
6000 		cte->index = i;
6001 		if (conntab[3] == 2)
6002 			cte->entry = ROM16(entry[0]);
6003 		else
6004 			cte->entry = ROM32(entry[0]);
6005 
6006 		cte->type  = (cte->entry & 0x000000ff) >> 0;
6007 		cte->index2 = (cte->entry & 0x00000f00) >> 8;
6008 
6009 		cte->gpio_tag = ffs((cte->entry & 0x07033000) >> 12);
6010 		cte->gpio_tag = hpd_gpio[cte->gpio_tag];
6011 
6012 		if (cte->type == 0xff)
6013 			continue;
6014 
6015 		apply_dcb_connector_quirks(bios, i);
6016 
6017 		NV_INFO(dev, "  %d: 0x%08x: type 0x%02x idx %d tag 0x%02x\n",
6018 			i, cte->entry, cte->type, cte->index, cte->gpio_tag);
6019 
6020 		/* check for known types, fallback to guessing the type
6021 		 * from attached encoders if we hit an unknown.
6022 		 */
6023 		switch (cte->type) {
6024 		case DCB_CONNECTOR_VGA:
6025 		case DCB_CONNECTOR_TV_0:
6026 		case DCB_CONNECTOR_TV_1:
6027 		case DCB_CONNECTOR_TV_3:
6028 		case DCB_CONNECTOR_DVI_I:
6029 		case DCB_CONNECTOR_DVI_D:
6030 		case DCB_CONNECTOR_LVDS:
6031 		case DCB_CONNECTOR_LVDS_SPWG:
6032 		case DCB_CONNECTOR_DP:
6033 		case DCB_CONNECTOR_eDP:
6034 		case DCB_CONNECTOR_HDMI_0:
6035 		case DCB_CONNECTOR_HDMI_1:
6036 			break;
6037 		default:
6038 			cte->type = divine_connector_type(bios, cte->index);
6039 			NV_WARN(dev, "unknown type, using 0x%02x\n", cte->type);
6040 			break;
6041 		}
6042 
6043 		if (nouveau_override_conntype) {
6044 			int type = divine_connector_type(bios, cte->index);
6045 			if (type != cte->type)
6046 				NV_WARN(dev, " -> type 0x%02x\n", cte->type);
6047 		}
6048 
6049 	}
6050 }
6051 
6052 static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb)
6053 {
6054 	struct dcb_entry *entry = &dcb->entry[dcb->entries];
6055 
6056 	memset(entry, 0, sizeof(struct dcb_entry));
6057 	entry->index = dcb->entries++;
6058 
6059 	return entry;
6060 }
6061 
6062 static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c,
6063 				 int heads, int or)
6064 {
6065 	struct dcb_entry *entry = new_dcb_entry(dcb);
6066 
6067 	entry->type = type;
6068 	entry->i2c_index = i2c;
6069 	entry->heads = heads;
6070 	if (type != OUTPUT_ANALOG)
6071 		entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */
6072 	entry->or = or;
6073 }
6074 
6075 static bool
6076 parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb,
6077 		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
6078 {
6079 	entry->type = conn & 0xf;
6080 	entry->i2c_index = (conn >> 4) & 0xf;
6081 	entry->heads = (conn >> 8) & 0xf;
6082 	if (dcb->version >= 0x40)
6083 		entry->connector = (conn >> 12) & 0xf;
6084 	entry->bus = (conn >> 16) & 0xf;
6085 	entry->location = (conn >> 20) & 0x3;
6086 	entry->or = (conn >> 24) & 0xf;
6087 
6088 	switch (entry->type) {
6089 	case OUTPUT_ANALOG:
6090 		/*
6091 		 * Although the rest of a CRT conf dword is usually
6092 		 * zeros, mac biosen have stuff there so we must mask
6093 		 */
6094 		entry->crtconf.maxfreq = (dcb->version < 0x30) ?
6095 					 (conf & 0xffff) * 10 :
6096 					 (conf & 0xff) * 10000;
6097 		break;
6098 	case OUTPUT_LVDS:
6099 		{
6100 		uint32_t mask;
6101 		if (conf & 0x1)
6102 			entry->lvdsconf.use_straps_for_mode = true;
6103 		if (dcb->version < 0x22) {
6104 			mask = ~0xd;
6105 			/*
6106 			 * The laptop in bug 14567 lies and claims to not use
6107 			 * straps when it does, so assume all DCB 2.0 laptops
6108 			 * use straps, until a broken EDID using one is produced
6109 			 */
6110 			entry->lvdsconf.use_straps_for_mode = true;
6111 			/*
6112 			 * Both 0x4 and 0x8 show up in v2.0 tables; assume they
6113 			 * mean the same thing (probably wrong, but might work)
6114 			 */
6115 			if (conf & 0x4 || conf & 0x8)
6116 				entry->lvdsconf.use_power_scripts = true;
6117 		} else {
6118 			mask = ~0x7;
6119 			if (conf & 0x2)
6120 				entry->lvdsconf.use_acpi_for_edid = true;
6121 			if (conf & 0x4)
6122 				entry->lvdsconf.use_power_scripts = true;
6123 			entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4;
6124 		}
6125 		if (conf & mask) {
6126 			/*
6127 			 * Until we even try to use these on G8x, it's
6128 			 * useless reporting unknown bits.  They all are.
6129 			 */
6130 			if (dcb->version >= 0x40)
6131 				break;
6132 
6133 			NV_ERROR(dev, "Unknown LVDS configuration bits, "
6134 				      "please report\n");
6135 		}
6136 		break;
6137 		}
6138 	case OUTPUT_TV:
6139 	{
6140 		if (dcb->version >= 0x30)
6141 			entry->tvconf.has_component_output = conf & (0x8 << 4);
6142 		else
6143 			entry->tvconf.has_component_output = false;
6144 
6145 		break;
6146 	}
6147 	case OUTPUT_DP:
6148 		entry->dpconf.sor.link = (conf & 0x00000030) >> 4;
6149 		switch ((conf & 0x00e00000) >> 21) {
6150 		case 0:
6151 			entry->dpconf.link_bw = 162000;
6152 			break;
6153 		default:
6154 			entry->dpconf.link_bw = 270000;
6155 			break;
6156 		}
6157 		switch ((conf & 0x0f000000) >> 24) {
6158 		case 0xf:
6159 			entry->dpconf.link_nr = 4;
6160 			break;
6161 		case 0x3:
6162 			entry->dpconf.link_nr = 2;
6163 			break;
6164 		default:
6165 			entry->dpconf.link_nr = 1;
6166 			break;
6167 		}
6168 		break;
6169 	case OUTPUT_TMDS:
6170 		if (dcb->version >= 0x40)
6171 			entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4;
6172 		else if (dcb->version >= 0x30)
6173 			entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8;
6174 		else if (dcb->version >= 0x22)
6175 			entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4;
6176 
6177 		break;
6178 	case OUTPUT_EOL:
6179 		/* weird g80 mobile type that "nv" treats as a terminator */
6180 		dcb->entries--;
6181 		return false;
6182 	default:
6183 		break;
6184 	}
6185 
6186 	if (dcb->version < 0x40) {
6187 		/* Normal entries consist of a single bit, but dual link has
6188 		 * the next most significant bit set too
6189 		 */
6190 		entry->duallink_possible =
6191 			((1 << (ffs(entry->or) - 1)) * 3 == entry->or);
6192 	} else {
6193 		entry->duallink_possible = (entry->sorconf.link == 3);
6194 	}
6195 
6196 	/* unsure what DCB version introduces this, 3.0? */
6197 	if (conf & 0x100000)
6198 		entry->i2c_upper_default = true;
6199 
6200 	return true;
6201 }
6202 
6203 static bool
6204 parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb,
6205 		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
6206 {
6207 	switch (conn & 0x0000000f) {
6208 	case 0:
6209 		entry->type = OUTPUT_ANALOG;
6210 		break;
6211 	case 1:
6212 		entry->type = OUTPUT_TV;
6213 		break;
6214 	case 2:
6215 	case 4:
6216 		if (conn & 0x10)
6217 			entry->type = OUTPUT_LVDS;
6218 		else
6219 			entry->type = OUTPUT_TMDS;
6220 		break;
6221 	case 3:
6222 		entry->type = OUTPUT_LVDS;
6223 		break;
6224 	default:
6225 		NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f);
6226 		return false;
6227 	}
6228 
6229 	entry->i2c_index = (conn & 0x0003c000) >> 14;
6230 	entry->heads = ((conn & 0x001c0000) >> 18) + 1;
6231 	entry->or = entry->heads; /* same as heads, hopefully safe enough */
6232 	entry->location = (conn & 0x01e00000) >> 21;
6233 	entry->bus = (conn & 0x0e000000) >> 25;
6234 	entry->duallink_possible = false;
6235 
6236 	switch (entry->type) {
6237 	case OUTPUT_ANALOG:
6238 		entry->crtconf.maxfreq = (conf & 0xffff) * 10;
6239 		break;
6240 	case OUTPUT_TV:
6241 		entry->tvconf.has_component_output = false;
6242 		break;
6243 	case OUTPUT_LVDS:
6244 		if ((conn & 0x00003f00) >> 8 != 0x10)
6245 			entry->lvdsconf.use_straps_for_mode = true;
6246 		entry->lvdsconf.use_power_scripts = true;
6247 		break;
6248 	default:
6249 		break;
6250 	}
6251 
6252 	return true;
6253 }
6254 
6255 static bool parse_dcb_entry(struct drm_device *dev, struct dcb_table *dcb,
6256 			    uint32_t conn, uint32_t conf)
6257 {
6258 	struct dcb_entry *entry = new_dcb_entry(dcb);
6259 	bool ret;
6260 
6261 	if (dcb->version >= 0x20)
6262 		ret = parse_dcb20_entry(dev, dcb, conn, conf, entry);
6263 	else
6264 		ret = parse_dcb15_entry(dev, dcb, conn, conf, entry);
6265 	if (!ret)
6266 		return ret;
6267 
6268 	read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
6269 			   entry->i2c_index, &dcb->i2c[entry->i2c_index]);
6270 
6271 	return true;
6272 }
6273 
6274 static
6275 void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb)
6276 {
6277 	/*
6278 	 * DCB v2.0 lists each output combination separately.
6279 	 * Here we merge compatible entries to have fewer outputs, with
6280 	 * more options
6281 	 */
6282 
6283 	int i, newentries = 0;
6284 
6285 	for (i = 0; i < dcb->entries; i++) {
6286 		struct dcb_entry *ient = &dcb->entry[i];
6287 		int j;
6288 
6289 		for (j = i + 1; j < dcb->entries; j++) {
6290 			struct dcb_entry *jent = &dcb->entry[j];
6291 
6292 			if (jent->type == 100) /* already merged entry */
6293 				continue;
6294 
6295 			/* merge heads field when all other fields the same */
6296 			if (jent->i2c_index == ient->i2c_index &&
6297 			    jent->type == ient->type &&
6298 			    jent->location == ient->location &&
6299 			    jent->or == ient->or) {
6300 				NV_TRACE(dev, "Merging DCB entries %d and %d\n",
6301 					 i, j);
6302 				ient->heads |= jent->heads;
6303 				jent->type = 100; /* dummy value */
6304 			}
6305 		}
6306 	}
6307 
6308 	/* Compact entries merged into others out of dcb */
6309 	for (i = 0; i < dcb->entries; i++) {
6310 		if (dcb->entry[i].type == 100)
6311 			continue;
6312 
6313 		if (newentries != i) {
6314 			dcb->entry[newentries] = dcb->entry[i];
6315 			dcb->entry[newentries].index = newentries;
6316 		}
6317 		newentries++;
6318 	}
6319 
6320 	dcb->entries = newentries;
6321 }
6322 
6323 static bool
6324 apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf)
6325 {
6326 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6327 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
6328 
6329 	/* Dell Precision M6300
6330 	 *   DCB entry 2: 02025312 00000010
6331 	 *   DCB entry 3: 02026312 00000020
6332 	 *
6333 	 * Identical, except apparently a different connector on a
6334 	 * different SOR link.  Not a clue how we're supposed to know
6335 	 * which one is in use if it even shares an i2c line...
6336 	 *
6337 	 * Ignore the connector on the second SOR link to prevent
6338 	 * nasty problems until this is sorted (assuming it's not a
6339 	 * VBIOS bug).
6340 	 */
6341 	if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) {
6342 		if (*conn == 0x02026312 && *conf == 0x00000020)
6343 			return false;
6344 	}
6345 
6346 	/* GeForce3 Ti 200
6347 	 *
6348 	 * DCB reports an LVDS output that should be TMDS:
6349 	 *   DCB entry 1: f2005014 ffffffff
6350 	 */
6351 	if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) {
6352 		if (*conn == 0xf2005014 && *conf == 0xffffffff) {
6353 			fabricate_dcb_output(dcb, OUTPUT_TMDS, 1, 1, 1);
6354 			return false;
6355 		}
6356 	}
6357 
6358 	/* XFX GT-240X-YA
6359 	 *
6360 	 * So many things wrong here, replace the entire encoder table..
6361 	 */
6362 	if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) {
6363 		if (idx == 0) {
6364 			*conn = 0x02001300; /* VGA, connector 1 */
6365 			*conf = 0x00000028;
6366 		} else
6367 		if (idx == 1) {
6368 			*conn = 0x01010312; /* DVI, connector 0 */
6369 			*conf = 0x00020030;
6370 		} else
6371 		if (idx == 2) {
6372 			*conn = 0x01010310; /* VGA, connector 0 */
6373 			*conf = 0x00000028;
6374 		} else
6375 		if (idx == 3) {
6376 			*conn = 0x02022362; /* HDMI, connector 2 */
6377 			*conf = 0x00020010;
6378 		} else {
6379 			*conn = 0x0000000e; /* EOL */
6380 			*conf = 0x00000000;
6381 		}
6382 	}
6383 
6384 	/* Some other twisted XFX board (rhbz#694914)
6385 	 *
6386 	 * The DVI/VGA encoder combo that's supposed to represent the
6387 	 * DVI-I connector actually point at two different ones, and
6388 	 * the HDMI connector ends up paired with the VGA instead.
6389 	 *
6390 	 * Connector table is missing anything for VGA at all, pointing it
6391 	 * an invalid conntab entry 2 so we figure it out ourself.
6392 	 */
6393 	if (nv_match_device(dev, 0x0615, 0x1682, 0x2605)) {
6394 		if (idx == 0) {
6395 			*conn = 0x02002300; /* VGA, connector 2 */
6396 			*conf = 0x00000028;
6397 		} else
6398 		if (idx == 1) {
6399 			*conn = 0x01010312; /* DVI, connector 0 */
6400 			*conf = 0x00020030;
6401 		} else
6402 		if (idx == 2) {
6403 			*conn = 0x04020310; /* VGA, connector 0 */
6404 			*conf = 0x00000028;
6405 		} else
6406 		if (idx == 3) {
6407 			*conn = 0x02021322; /* HDMI, connector 1 */
6408 			*conf = 0x00020010;
6409 		} else {
6410 			*conn = 0x0000000e; /* EOL */
6411 			*conf = 0x00000000;
6412 		}
6413 	}
6414 
6415 	return true;
6416 }
6417 
6418 static void
6419 fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios)
6420 {
6421 	struct dcb_table *dcb = &bios->dcb;
6422 	int all_heads = (nv_two_heads(dev) ? 3 : 1);
6423 
6424 #ifdef __powerpc__
6425 	/* Apple iMac G4 NV17 */
6426 	if (of_machine_is_compatible("PowerMac4,5")) {
6427 		fabricate_dcb_output(dcb, OUTPUT_TMDS, 0, all_heads, 1);
6428 		fabricate_dcb_output(dcb, OUTPUT_ANALOG, 1, all_heads, 2);
6429 		return;
6430 	}
6431 #endif
6432 
6433 	/* Make up some sane defaults */
6434 	fabricate_dcb_output(dcb, OUTPUT_ANALOG, LEGACY_I2C_CRT, 1, 1);
6435 
6436 	if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0)
6437 		fabricate_dcb_output(dcb, OUTPUT_TV, LEGACY_I2C_TV,
6438 				     all_heads, 0);
6439 
6440 	else if (bios->tmds.output0_script_ptr ||
6441 		 bios->tmds.output1_script_ptr)
6442 		fabricate_dcb_output(dcb, OUTPUT_TMDS, LEGACY_I2C_PANEL,
6443 				     all_heads, 1);
6444 }
6445 
6446 static int
6447 parse_dcb_table(struct drm_device *dev, struct nvbios *bios)
6448 {
6449 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6450 	struct dcb_table *dcb = &bios->dcb;
6451 	uint16_t dcbptr = 0, i2ctabptr = 0;
6452 	uint8_t *dcbtable;
6453 	uint8_t headerlen = 0x4, entries = DCB_MAX_NUM_ENTRIES;
6454 	bool configblock = true;
6455 	int recordlength = 8, confofs = 4;
6456 	int i;
6457 
6458 	/* get the offset from 0x36 */
6459 	if (dev_priv->card_type > NV_04) {
6460 		dcbptr = ROM16(bios->data[0x36]);
6461 		if (dcbptr == 0x0000)
6462 			NV_WARN(dev, "No output data (DCB) found in BIOS\n");
6463 	}
6464 
6465 	/* this situation likely means a really old card, pre DCB */
6466 	if (dcbptr == 0x0) {
6467 		fabricate_dcb_encoder_table(dev, bios);
6468 		return 0;
6469 	}
6470 
6471 	dcbtable = &bios->data[dcbptr];
6472 
6473 	/* get DCB version */
6474 	dcb->version = dcbtable[0];
6475 	NV_TRACE(dev, "Found Display Configuration Block version %d.%d\n",
6476 		 dcb->version >> 4, dcb->version & 0xf);
6477 
6478 	if (dcb->version >= 0x20) { /* NV17+ */
6479 		uint32_t sig;
6480 
6481 		if (dcb->version >= 0x30) { /* NV40+ */
6482 			headerlen = dcbtable[1];
6483 			entries = dcbtable[2];
6484 			recordlength = dcbtable[3];
6485 			i2ctabptr = ROM16(dcbtable[4]);
6486 			sig = ROM32(dcbtable[6]);
6487 			dcb->gpio_table_ptr = ROM16(dcbtable[10]);
6488 			dcb->connector_table_ptr = ROM16(dcbtable[20]);
6489 		} else {
6490 			i2ctabptr = ROM16(dcbtable[2]);
6491 			sig = ROM32(dcbtable[4]);
6492 			headerlen = 8;
6493 		}
6494 
6495 		if (sig != 0x4edcbdcb) {
6496 			NV_ERROR(dev, "Bad Display Configuration Block "
6497 					"signature (%08X)\n", sig);
6498 			return -EINVAL;
6499 		}
6500 	} else if (dcb->version >= 0x15) { /* some NV11 and NV20 */
6501 		char sig[8] = { 0 };
6502 
6503 		strncpy(sig, (char *)&dcbtable[-7], 7);
6504 		i2ctabptr = ROM16(dcbtable[2]);
6505 		recordlength = 10;
6506 		confofs = 6;
6507 
6508 		if (strcmp(sig, "DEV_REC")) {
6509 			NV_ERROR(dev, "Bad Display Configuration Block "
6510 					"signature (%s)\n", sig);
6511 			return -EINVAL;
6512 		}
6513 	} else {
6514 		/*
6515 		 * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but always
6516 		 * has the same single (crt) entry, even when tv-out present, so
6517 		 * the conclusion is this version cannot really be used.
6518 		 * v1.2 tables (some NV6/10, and NV15+) normally have the same
6519 		 * 5 entries, which are not specific to the card and so no use.
6520 		 * v1.2 does have an I2C table that read_dcb_i2c_table can
6521 		 * handle, but cards exist (nv11 in #14821) with a bad i2c table
6522 		 * pointer, so use the indices parsed in parse_bmp_structure.
6523 		 * v1.1 (NV5+, maybe some NV4) is entirely unhelpful
6524 		 */
6525 		NV_TRACEWARN(dev, "No useful information in BIOS output table; "
6526 				  "adding all possible outputs\n");
6527 		fabricate_dcb_encoder_table(dev, bios);
6528 		return 0;
6529 	}
6530 
6531 	if (!i2ctabptr)
6532 		NV_WARN(dev, "No pointer to DCB I2C port table\n");
6533 	else {
6534 		dcb->i2c_table = &bios->data[i2ctabptr];
6535 		if (dcb->version >= 0x30)
6536 			dcb->i2c_default_indices = dcb->i2c_table[4];
6537 
6538 		/*
6539 		 * Parse the "management" I2C bus, used for hardware
6540 		 * monitoring and some external TMDS transmitters.
6541 		 */
6542 		if (dcb->version >= 0x22) {
6543 			int idx = (dcb->version >= 0x40 ?
6544 				   dcb->i2c_default_indices & 0xf :
6545 				   2);
6546 
6547 			read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
6548 					   idx, &dcb->i2c[idx]);
6549 		}
6550 	}
6551 
6552 	if (entries > DCB_MAX_NUM_ENTRIES)
6553 		entries = DCB_MAX_NUM_ENTRIES;
6554 
6555 	for (i = 0; i < entries; i++) {
6556 		uint32_t connection, config = 0;
6557 
6558 		connection = ROM32(dcbtable[headerlen + recordlength * i]);
6559 		if (configblock)
6560 			config = ROM32(dcbtable[headerlen + confofs + recordlength * i]);
6561 
6562 		/* seen on an NV11 with DCB v1.5 */
6563 		if (connection == 0x00000000)
6564 			break;
6565 
6566 		/* seen on an NV17 with DCB v2.0 */
6567 		if (connection == 0xffffffff)
6568 			break;
6569 
6570 		if ((connection & 0x0000000f) == 0x0000000f)
6571 			continue;
6572 
6573 		if (!apply_dcb_encoder_quirks(dev, i, &connection, &config))
6574 			continue;
6575 
6576 		NV_TRACEWARN(dev, "Raw DCB entry %d: %08x %08x\n",
6577 			     dcb->entries, connection, config);
6578 
6579 		if (!parse_dcb_entry(dev, dcb, connection, config))
6580 			break;
6581 	}
6582 
6583 	/*
6584 	 * apart for v2.1+ not being known for requiring merging, this
6585 	 * guarantees dcbent->index is the index of the entry in the rom image
6586 	 */
6587 	if (dcb->version < 0x21)
6588 		merge_like_dcb_entries(dev, dcb);
6589 
6590 	if (!dcb->entries)
6591 		return -ENXIO;
6592 
6593 	parse_dcb_gpio_table(bios);
6594 	parse_dcb_connector_table(bios);
6595 	return 0;
6596 }
6597 
6598 static void
6599 fixup_legacy_connector(struct nvbios *bios)
6600 {
6601 	struct dcb_table *dcb = &bios->dcb;
6602 	int i, i2c, i2c_conn[DCB_MAX_NUM_I2C_ENTRIES] = { };
6603 
6604 	/*
6605 	 * DCB 3.0 also has the table in most cases, but there are some cards
6606 	 * where the table is filled with stub entries, and the DCB entriy
6607 	 * indices are all 0.  We don't need the connector indices on pre-G80
6608 	 * chips (yet?) so limit the use to DCB 4.0 and above.
6609 	 */
6610 	if (dcb->version >= 0x40)
6611 		return;
6612 
6613 	dcb->connector.entries = 0;
6614 
6615 	/*
6616 	 * No known connector info before v3.0, so make it up.  the rule here
6617 	 * is: anything on the same i2c bus is considered to be on the same
6618 	 * connector.  any output without an associated i2c bus is assigned
6619 	 * its own unique connector index.
6620 	 */
6621 	for (i = 0; i < dcb->entries; i++) {
6622 		/*
6623 		 * Ignore the I2C index for on-chip TV-out, as there
6624 		 * are cards with bogus values (nv31m in bug 23212),
6625 		 * and it's otherwise useless.
6626 		 */
6627 		if (dcb->entry[i].type == OUTPUT_TV &&
6628 		    dcb->entry[i].location == DCB_LOC_ON_CHIP)
6629 			dcb->entry[i].i2c_index = 0xf;
6630 		i2c = dcb->entry[i].i2c_index;
6631 
6632 		if (i2c_conn[i2c]) {
6633 			dcb->entry[i].connector = i2c_conn[i2c] - 1;
6634 			continue;
6635 		}
6636 
6637 		dcb->entry[i].connector = dcb->connector.entries++;
6638 		if (i2c != 0xf)
6639 			i2c_conn[i2c] = dcb->connector.entries;
6640 	}
6641 
6642 	/* Fake the connector table as well as just connector indices */
6643 	for (i = 0; i < dcb->connector.entries; i++) {
6644 		dcb->connector.entry[i].index = i;
6645 		dcb->connector.entry[i].type = divine_connector_type(bios, i);
6646 		dcb->connector.entry[i].gpio_tag = 0xff;
6647 	}
6648 }
6649 
6650 static void
6651 fixup_legacy_i2c(struct nvbios *bios)
6652 {
6653 	struct dcb_table *dcb = &bios->dcb;
6654 	int i;
6655 
6656 	for (i = 0; i < dcb->entries; i++) {
6657 		if (dcb->entry[i].i2c_index == LEGACY_I2C_CRT)
6658 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.crt;
6659 		if (dcb->entry[i].i2c_index == LEGACY_I2C_PANEL)
6660 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.panel;
6661 		if (dcb->entry[i].i2c_index == LEGACY_I2C_TV)
6662 			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.tv;
6663 	}
6664 }
6665 
6666 static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry)
6667 {
6668 	/*
6669 	 * The header following the "HWSQ" signature has the number of entries,
6670 	 * and the entry size
6671 	 *
6672 	 * An entry consists of a dword to write to the sequencer control reg
6673 	 * (0x00001304), followed by the ucode bytes, written sequentially,
6674 	 * starting at reg 0x00001400
6675 	 */
6676 
6677 	uint8_t bytes_to_write;
6678 	uint16_t hwsq_entry_offset;
6679 	int i;
6680 
6681 	if (bios->data[hwsq_offset] <= entry) {
6682 		NV_ERROR(dev, "Too few entries in HW sequencer table for "
6683 				"requested entry\n");
6684 		return -ENOENT;
6685 	}
6686 
6687 	bytes_to_write = bios->data[hwsq_offset + 1];
6688 
6689 	if (bytes_to_write != 36) {
6690 		NV_ERROR(dev, "Unknown HW sequencer entry size\n");
6691 		return -EINVAL;
6692 	}
6693 
6694 	NV_TRACE(dev, "Loading NV17 power sequencing microcode\n");
6695 
6696 	hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write;
6697 
6698 	/* set sequencer control */
6699 	bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset]));
6700 	bytes_to_write -= 4;
6701 
6702 	/* write ucode */
6703 	for (i = 0; i < bytes_to_write; i += 4)
6704 		bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4]));
6705 
6706 	/* twiddle NV_PBUS_DEBUG_4 */
6707 	bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18);
6708 
6709 	return 0;
6710 }
6711 
6712 static int load_nv17_hw_sequencer_ucode(struct drm_device *dev,
6713 					struct nvbios *bios)
6714 {
6715 	/*
6716 	 * BMP based cards, from NV17, need a microcode loading to correctly
6717 	 * control the GPIO etc for LVDS panels
6718 	 *
6719 	 * BIT based cards seem to do this directly in the init scripts
6720 	 *
6721 	 * The microcode entries are found by the "HWSQ" signature.
6722 	 */
6723 
6724 	const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' };
6725 	const int sz = sizeof(hwsq_signature);
6726 	int hwsq_offset;
6727 
6728 	hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz);
6729 	if (!hwsq_offset)
6730 		return 0;
6731 
6732 	/* always use entry 0? */
6733 	return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0);
6734 }
6735 
6736 uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev)
6737 {
6738 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6739 	struct nvbios *bios = &dev_priv->vbios;
6740 	const uint8_t edid_sig[] = {
6741 			0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 };
6742 	uint16_t offset = 0;
6743 	uint16_t newoffset;
6744 	int searchlen = NV_PROM_SIZE;
6745 
6746 	if (bios->fp.edid)
6747 		return bios->fp.edid;
6748 
6749 	while (searchlen) {
6750 		newoffset = findstr(&bios->data[offset], searchlen,
6751 								edid_sig, 8);
6752 		if (!newoffset)
6753 			return NULL;
6754 		offset += newoffset;
6755 		if (!nv_cksum(&bios->data[offset], EDID1_LEN))
6756 			break;
6757 
6758 		searchlen -= offset;
6759 		offset++;
6760 	}
6761 
6762 	NV_TRACE(dev, "Found EDID in BIOS\n");
6763 
6764 	return bios->fp.edid = &bios->data[offset];
6765 }
6766 
6767 void
6768 nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table,
6769 			    struct dcb_entry *dcbent, int crtc)
6770 {
6771 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6772 	struct nvbios *bios = &dev_priv->vbios;
6773 	struct init_exec iexec = { true, false };
6774 
6775 	spin_lock_bh(&bios->lock);
6776 	bios->display.output = dcbent;
6777 	bios->display.crtc = crtc;
6778 	parse_init_table(bios, table, &iexec);
6779 	bios->display.output = NULL;
6780 	spin_unlock_bh(&bios->lock);
6781 }
6782 
6783 void
6784 nouveau_bios_init_exec(struct drm_device *dev, uint16_t table)
6785 {
6786 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6787 	struct nvbios *bios = &dev_priv->vbios;
6788 	struct init_exec iexec = { true, false };
6789 
6790 	parse_init_table(bios, table, &iexec);
6791 }
6792 
6793 static bool NVInitVBIOS(struct drm_device *dev)
6794 {
6795 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6796 	struct nvbios *bios = &dev_priv->vbios;
6797 
6798 	memset(bios, 0, sizeof(struct nvbios));
6799 	spin_lock_init(&bios->lock);
6800 	bios->dev = dev;
6801 
6802 	if (!NVShadowVBIOS(dev, bios->data))
6803 		return false;
6804 
6805 	bios->length = NV_PROM_SIZE;
6806 	return true;
6807 }
6808 
6809 static int nouveau_parse_vbios_struct(struct drm_device *dev)
6810 {
6811 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6812 	struct nvbios *bios = &dev_priv->vbios;
6813 	const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' };
6814 	const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 };
6815 	int offset;
6816 
6817 	offset = findstr(bios->data, bios->length,
6818 					bit_signature, sizeof(bit_signature));
6819 	if (offset) {
6820 		NV_TRACE(dev, "BIT BIOS found\n");
6821 		bios->type = NVBIOS_BIT;
6822 		bios->offset = offset;
6823 		return parse_bit_structure(bios, offset + 6);
6824 	}
6825 
6826 	offset = findstr(bios->data, bios->length,
6827 					bmp_signature, sizeof(bmp_signature));
6828 	if (offset) {
6829 		NV_TRACE(dev, "BMP BIOS found\n");
6830 		bios->type = NVBIOS_BMP;
6831 		bios->offset = offset;
6832 		return parse_bmp_structure(dev, bios, offset);
6833 	}
6834 
6835 	NV_ERROR(dev, "No known BIOS signature found\n");
6836 	return -ENODEV;
6837 }
6838 
6839 int
6840 nouveau_run_vbios_init(struct drm_device *dev)
6841 {
6842 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6843 	struct nvbios *bios = &dev_priv->vbios;
6844 	int i, ret = 0;
6845 
6846 	/* Reset the BIOS head to 0. */
6847 	bios->state.crtchead = 0;
6848 
6849 	if (bios->major_version < 5)	/* BMP only */
6850 		load_nv17_hw_sequencer_ucode(dev, bios);
6851 
6852 	if (bios->execute) {
6853 		bios->fp.last_script_invoc = 0;
6854 		bios->fp.lvds_init_run = false;
6855 	}
6856 
6857 	parse_init_tables(bios);
6858 
6859 	/*
6860 	 * Runs some additional script seen on G8x VBIOSen.  The VBIOS'
6861 	 * parser will run this right after the init tables, the binary
6862 	 * driver appears to run it at some point later.
6863 	 */
6864 	if (bios->some_script_ptr) {
6865 		struct init_exec iexec = {true, false};
6866 
6867 		NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n",
6868 			bios->some_script_ptr);
6869 		parse_init_table(bios, bios->some_script_ptr, &iexec);
6870 	}
6871 
6872 	if (dev_priv->card_type >= NV_50) {
6873 		for (i = 0; i < bios->dcb.entries; i++) {
6874 			nouveau_bios_run_display_table(dev, 0, 0,
6875 						       &bios->dcb.entry[i], -1);
6876 		}
6877 	}
6878 
6879 	return ret;
6880 }
6881 
6882 static void
6883 nouveau_bios_i2c_devices_takedown(struct drm_device *dev)
6884 {
6885 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6886 	struct nvbios *bios = &dev_priv->vbios;
6887 	struct dcb_i2c_entry *entry;
6888 	int i;
6889 
6890 	entry = &bios->dcb.i2c[0];
6891 	for (i = 0; i < DCB_MAX_NUM_I2C_ENTRIES; i++, entry++)
6892 		nouveau_i2c_fini(dev, entry);
6893 }
6894 
6895 static bool
6896 nouveau_bios_posted(struct drm_device *dev)
6897 {
6898 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6899 	unsigned htotal;
6900 
6901 	if (dev_priv->card_type >= NV_50) {
6902 		if (NVReadVgaCrtc(dev, 0, 0x00) == 0 &&
6903 		    NVReadVgaCrtc(dev, 0, 0x1a) == 0)
6904 			return false;
6905 		return true;
6906 	}
6907 
6908 	htotal  = NVReadVgaCrtc(dev, 0, 0x06);
6909 	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8;
6910 	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4;
6911 	htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10;
6912 	htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11;
6913 
6914 	return (htotal != 0);
6915 }
6916 
6917 int
6918 nouveau_bios_init(struct drm_device *dev)
6919 {
6920 	struct drm_nouveau_private *dev_priv = dev->dev_private;
6921 	struct nvbios *bios = &dev_priv->vbios;
6922 	int ret;
6923 
6924 	if (!NVInitVBIOS(dev))
6925 		return -ENODEV;
6926 
6927 	ret = nouveau_parse_vbios_struct(dev);
6928 	if (ret)
6929 		return ret;
6930 
6931 	ret = parse_dcb_table(dev, bios);
6932 	if (ret)
6933 		return ret;
6934 
6935 	fixup_legacy_i2c(bios);
6936 	fixup_legacy_connector(bios);
6937 
6938 	if (!bios->major_version)	/* we don't run version 0 bios */
6939 		return 0;
6940 
6941 	/* init script execution disabled */
6942 	bios->execute = false;
6943 
6944 	/* ... unless card isn't POSTed already */
6945 	if (!nouveau_bios_posted(dev)) {
6946 		NV_INFO(dev, "Adaptor not initialised, "
6947 			"running VBIOS init tables.\n");
6948 		bios->execute = true;
6949 	}
6950 	if (nouveau_force_post)
6951 		bios->execute = true;
6952 
6953 	ret = nouveau_run_vbios_init(dev);
6954 	if (ret)
6955 		return ret;
6956 
6957 	/* feature_byte on BMP is poor, but init always sets CR4B */
6958 	if (bios->major_version < 5)
6959 		bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40;
6960 
6961 	/* all BIT systems need p_f_m_t for digital_min_front_porch */
6962 	if (bios->is_mobile || bios->major_version >= 5)
6963 		ret = parse_fp_mode_table(dev, bios);
6964 
6965 	/* allow subsequent scripts to execute */
6966 	bios->execute = true;
6967 
6968 	return 0;
6969 }
6970 
6971 void
6972 nouveau_bios_takedown(struct drm_device *dev)
6973 {
6974 	nouveau_bios_i2c_devices_takedown(dev);
6975 }
6976