1 /* 2 * Copyright 2005-2006 Erik Waling 3 * Copyright 2006 Stephane Marchesin 4 * Copyright 2007-2009 Stuart Bennett 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 20 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF 21 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 25 #include <drm/drmP.h> 26 #define NV_DEBUG_NOTRACE 27 #include "nouveau_drv.h" 28 #include "nouveau_hw.h" 29 #include "nouveau_encoder.h" 30 #include "nouveau_gpio.h" 31 32 #include <linux/io-mapping.h> 33 #include <linux/firmware.h> 34 35 /* these defines are made up */ 36 #define NV_CIO_CRE_44_HEADA 0x0 37 #define NV_CIO_CRE_44_HEADB 0x3 38 #define FEATURE_MOBILE 0x10 /* also FEATURE_QUADRO for BMP */ 39 40 #define EDID1_LEN 128 41 42 #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg) 43 #define LOG_OLD_VALUE(x) 44 45 struct init_exec { 46 bool execute; 47 bool repeat; 48 }; 49 50 static bool nv_cksum(const uint8_t *data, unsigned int length) 51 { 52 /* 53 * There's a few checksums in the BIOS, so here's a generic checking 54 * function. 55 */ 56 int i; 57 uint8_t sum = 0; 58 59 for (i = 0; i < length; i++) 60 sum += data[i]; 61 62 if (sum) 63 return true; 64 65 return false; 66 } 67 68 static int 69 score_vbios(struct nvbios *bios, const bool writeable) 70 { 71 if (!bios->data || bios->data[0] != 0x55 || bios->data[1] != 0xAA) { 72 NV_TRACEWARN(bios->dev, "... BIOS signature not found\n"); 73 return 0; 74 } 75 76 if (nv_cksum(bios->data, bios->data[2] * 512)) { 77 NV_TRACEWARN(bios->dev, "... BIOS checksum invalid\n"); 78 /* if a ro image is somewhat bad, it's probably all rubbish */ 79 return writeable ? 2 : 1; 80 } 81 82 NV_TRACE(bios->dev, "... appears to be valid\n"); 83 return 3; 84 } 85 86 static void 87 bios_shadow_prom(struct nvbios *bios) 88 { 89 struct drm_device *dev = bios->dev; 90 struct drm_nouveau_private *dev_priv = dev->dev_private; 91 u32 pcireg, access; 92 u16 pcir; 93 int i; 94 95 /* enable access to rom */ 96 if (dev_priv->card_type >= NV_50) 97 pcireg = 0x088050; 98 else 99 pcireg = NV_PBUS_PCI_NV_20; 100 access = nv_mask(dev, pcireg, 0x00000001, 0x00000000); 101 102 /* bail if no rom signature, with a workaround for a PROM reading 103 * issue on some chipsets. the first read after a period of 104 * inactivity returns the wrong result, so retry the first header 105 * byte a few times before giving up as a workaround 106 */ 107 i = 16; 108 do { 109 if (nv_rd08(dev, NV_PROM_OFFSET + 0) == 0x55) 110 break; 111 } while (i--); 112 113 if (!i || nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa) 114 goto out; 115 116 /* additional check (see note below) - read PCI record header */ 117 pcir = nv_rd08(dev, NV_PROM_OFFSET + 0x18) | 118 nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8; 119 if (nv_rd08(dev, NV_PROM_OFFSET + pcir + 0) != 'P' || 120 nv_rd08(dev, NV_PROM_OFFSET + pcir + 1) != 'C' || 121 nv_rd08(dev, NV_PROM_OFFSET + pcir + 2) != 'I' || 122 nv_rd08(dev, NV_PROM_OFFSET + pcir + 3) != 'R') 123 goto out; 124 125 /* read entire bios image to system memory */ 126 bios->length = nv_rd08(dev, NV_PROM_OFFSET + 2) * 512; 127 bios->data = kmalloc(bios->length, GFP_KERNEL); 128 if (bios->data) { 129 for (i = 0; i < bios->length; i++) 130 bios->data[i] = nv_rd08(dev, NV_PROM_OFFSET + i); 131 } 132 133 out: 134 /* disable access to rom */ 135 nv_wr32(dev, pcireg, access); 136 } 137 138 static void 139 bios_shadow_pramin(struct nvbios *bios) 140 { 141 struct drm_device *dev = bios->dev; 142 struct drm_nouveau_private *dev_priv = dev->dev_private; 143 u32 bar0 = 0; 144 int i; 145 146 if (dev_priv->card_type >= NV_50) { 147 u64 addr = (u64)(nv_rd32(dev, 0x619f04) & 0xffffff00) << 8; 148 if (!addr) { 149 addr = (u64)nv_rd32(dev, 0x001700) << 16; 150 addr += 0xf0000; 151 } 152 153 bar0 = nv_mask(dev, 0x001700, 0xffffffff, addr >> 16); 154 } 155 156 /* bail if no rom signature */ 157 if (nv_rd08(dev, NV_PRAMIN_OFFSET + 0) != 0x55 || 158 nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa) 159 goto out; 160 161 bios->length = nv_rd08(dev, NV_PRAMIN_OFFSET + 2) * 512; 162 bios->data = kmalloc(bios->length, GFP_KERNEL); 163 if (bios->data) { 164 for (i = 0; i < bios->length; i++) 165 bios->data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i); 166 } 167 168 out: 169 if (dev_priv->card_type >= NV_50) 170 nv_wr32(dev, 0x001700, bar0); 171 } 172 173 static void 174 bios_shadow_pci(struct nvbios *bios) 175 { 176 struct pci_dev *pdev = bios->dev->pdev; 177 size_t length; 178 179 if (!pci_enable_rom(pdev)) { 180 void __iomem *rom = pci_map_rom(pdev, &length); 181 if (rom && length) { 182 bios->data = kmalloc(length, GFP_KERNEL); 183 if (bios->data) { 184 memcpy_fromio(bios->data, rom, length); 185 bios->length = length; 186 } 187 } 188 if (rom) 189 pci_unmap_rom(pdev, rom); 190 191 pci_disable_rom(pdev); 192 } 193 } 194 195 static void 196 bios_shadow_acpi(struct nvbios *bios) 197 { 198 struct pci_dev *pdev = bios->dev->pdev; 199 int cnt = 65536 / ROM_BIOS_PAGE; 200 int ret; 201 202 if (!nouveau_acpi_rom_supported(pdev)) 203 return; 204 205 bios->data = kmalloc(cnt * ROM_BIOS_PAGE, GFP_KERNEL); 206 if (!bios->data) 207 return; 208 209 bios->length = 0; 210 while (cnt--) { 211 ret = nouveau_acpi_get_bios_chunk(bios->data, bios->length, 212 ROM_BIOS_PAGE); 213 if (ret != ROM_BIOS_PAGE) 214 return; 215 216 bios->length += ROM_BIOS_PAGE; 217 } 218 } 219 220 struct methods { 221 const char desc[8]; 222 void (*shadow)(struct nvbios *); 223 const bool rw; 224 int score; 225 u32 size; 226 u8 *data; 227 }; 228 229 static bool 230 bios_shadow(struct drm_device *dev) 231 { 232 struct methods shadow_methods[] = { 233 { "PRAMIN", bios_shadow_pramin, true, 0, 0, NULL }, 234 { "PROM", bios_shadow_prom, false, 0, 0, NULL }, 235 { "ACPI", bios_shadow_acpi, true, 0, 0, NULL }, 236 { "PCIROM", bios_shadow_pci, true, 0, 0, NULL }, 237 {} 238 }; 239 struct drm_nouveau_private *dev_priv = dev->dev_private; 240 struct nvbios *bios = &dev_priv->vbios; 241 struct methods *mthd, *best; 242 const struct firmware *fw; 243 char fname[32]; 244 int ret; 245 246 if (nouveau_vbios) { 247 /* try to match one of the built-in methods */ 248 mthd = shadow_methods; 249 do { 250 if (strcasecmp(nouveau_vbios, mthd->desc)) 251 continue; 252 NV_INFO(dev, "VBIOS source: %s\n", mthd->desc); 253 254 mthd->shadow(bios); 255 mthd->score = score_vbios(bios, mthd->rw); 256 if (mthd->score) 257 return true; 258 } while ((++mthd)->shadow); 259 260 /* attempt to load firmware image */ 261 snprintf(fname, sizeof(fname), "nouveau/%s", nouveau_vbios); 262 ret = request_firmware(&fw, fname, &dev->pdev->dev); 263 if (ret == 0) { 264 bios->length = fw->size; 265 bios->data = kmemdup(fw->data, fw->size, GFP_KERNEL); 266 release_firmware(fw); 267 268 NV_INFO(dev, "VBIOS image: %s\n", nouveau_vbios); 269 if (score_vbios(bios, 1)) 270 return true; 271 272 kfree(bios->data); 273 bios->data = NULL; 274 } 275 276 NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios); 277 } 278 279 mthd = shadow_methods; 280 do { 281 NV_TRACE(dev, "Checking %s for VBIOS\n", mthd->desc); 282 mthd->shadow(bios); 283 mthd->score = score_vbios(bios, mthd->rw); 284 mthd->size = bios->length; 285 mthd->data = bios->data; 286 bios->data = NULL; 287 } while (mthd->score != 3 && (++mthd)->shadow); 288 289 mthd = shadow_methods; 290 best = mthd; 291 do { 292 if (mthd->score > best->score) { 293 kfree(best->data); 294 best = mthd; 295 } 296 } while ((++mthd)->shadow); 297 298 if (best->score) { 299 NV_TRACE(dev, "Using VBIOS from %s\n", best->desc); 300 bios->length = best->size; 301 bios->data = best->data; 302 return true; 303 } 304 305 NV_ERROR(dev, "No valid VBIOS image found\n"); 306 return false; 307 } 308 309 struct init_tbl_entry { 310 char *name; 311 uint8_t id; 312 /* Return: 313 * > 0: success, length of opcode 314 * 0: success, but abort further parsing of table (INIT_DONE etc) 315 * < 0: failure, table parsing will be aborted 316 */ 317 int (*handler)(struct nvbios *, uint16_t, struct init_exec *); 318 }; 319 320 static int parse_init_table(struct nvbios *, uint16_t, struct init_exec *); 321 322 #define MACRO_INDEX_SIZE 2 323 #define MACRO_SIZE 8 324 #define CONDITION_SIZE 12 325 #define IO_FLAG_CONDITION_SIZE 9 326 #define IO_CONDITION_SIZE 5 327 #define MEM_INIT_SIZE 66 328 329 static void still_alive(void) 330 { 331 #if 0 332 sync(); 333 mdelay(2); 334 #endif 335 } 336 337 static uint32_t 338 munge_reg(struct nvbios *bios, uint32_t reg) 339 { 340 struct drm_nouveau_private *dev_priv = bios->dev->dev_private; 341 struct dcb_entry *dcbent = bios->display.output; 342 343 if (dev_priv->card_type < NV_50) 344 return reg; 345 346 if (reg & 0x80000000) { 347 BUG_ON(bios->display.crtc < 0); 348 reg += bios->display.crtc * 0x800; 349 } 350 351 if (reg & 0x40000000) { 352 BUG_ON(!dcbent); 353 354 reg += (ffs(dcbent->or) - 1) * 0x800; 355 if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1)) 356 reg += 0x00000080; 357 } 358 359 reg &= ~0xe0000000; 360 return reg; 361 } 362 363 static int 364 valid_reg(struct nvbios *bios, uint32_t reg) 365 { 366 struct drm_nouveau_private *dev_priv = bios->dev->dev_private; 367 struct drm_device *dev = bios->dev; 368 369 /* C51 has misaligned regs on purpose. Marvellous */ 370 if (reg & 0x2 || 371 (reg & 0x1 && dev_priv->vbios.chip_version != 0x51)) 372 NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg); 373 374 /* warn on C51 regs that haven't been verified accessible in tracing */ 375 if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 && 376 reg != 0x130d && reg != 0x1311 && reg != 0x60081d) 377 NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n", 378 reg); 379 380 if (reg >= (8*1024*1024)) { 381 NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg); 382 return 0; 383 } 384 385 return 1; 386 } 387 388 static bool 389 valid_idx_port(struct nvbios *bios, uint16_t port) 390 { 391 struct drm_nouveau_private *dev_priv = bios->dev->dev_private; 392 struct drm_device *dev = bios->dev; 393 394 /* 395 * If adding more ports here, the read/write functions below will need 396 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is 397 * used for the port in question 398 */ 399 if (dev_priv->card_type < NV_50) { 400 if (port == NV_CIO_CRX__COLOR) 401 return true; 402 if (port == NV_VIO_SRX) 403 return true; 404 } else { 405 if (port == NV_CIO_CRX__COLOR) 406 return true; 407 } 408 409 NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n", 410 port); 411 412 return false; 413 } 414 415 static bool 416 valid_port(struct nvbios *bios, uint16_t port) 417 { 418 struct drm_device *dev = bios->dev; 419 420 /* 421 * If adding more ports here, the read/write functions below will need 422 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is 423 * used for the port in question 424 */ 425 if (port == NV_VIO_VSE2) 426 return true; 427 428 NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port); 429 430 return false; 431 } 432 433 static uint32_t 434 bios_rd32(struct nvbios *bios, uint32_t reg) 435 { 436 uint32_t data; 437 438 reg = munge_reg(bios, reg); 439 if (!valid_reg(bios, reg)) 440 return 0; 441 442 /* 443 * C51 sometimes uses regs with bit0 set in the address. For these 444 * cases there should exist a translation in a BIOS table to an IO 445 * port address which the BIOS uses for accessing the reg 446 * 447 * These only seem to appear for the power control regs to a flat panel, 448 * and the GPIO regs at 0x60081*. In C51 mmio traces the normal regs 449 * for 0x1308 and 0x1310 are used - hence the mask below. An S3 450 * suspend-resume mmio trace from a C51 will be required to see if this 451 * is true for the power microcode in 0x14.., or whether the direct IO 452 * port access method is needed 453 */ 454 if (reg & 0x1) 455 reg &= ~0x1; 456 457 data = nv_rd32(bios->dev, reg); 458 459 BIOSLOG(bios, " Read: Reg: 0x%08X, Data: 0x%08X\n", reg, data); 460 461 return data; 462 } 463 464 static void 465 bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data) 466 { 467 struct drm_nouveau_private *dev_priv = bios->dev->dev_private; 468 469 reg = munge_reg(bios, reg); 470 if (!valid_reg(bios, reg)) 471 return; 472 473 /* see note in bios_rd32 */ 474 if (reg & 0x1) 475 reg &= 0xfffffffe; 476 477 LOG_OLD_VALUE(bios_rd32(bios, reg)); 478 BIOSLOG(bios, " Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data); 479 480 if (dev_priv->vbios.execute) { 481 still_alive(); 482 nv_wr32(bios->dev, reg, data); 483 } 484 } 485 486 static uint8_t 487 bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index) 488 { 489 struct drm_nouveau_private *dev_priv = bios->dev->dev_private; 490 struct drm_device *dev = bios->dev; 491 uint8_t data; 492 493 if (!valid_idx_port(bios, port)) 494 return 0; 495 496 if (dev_priv->card_type < NV_50) { 497 if (port == NV_VIO_SRX) 498 data = NVReadVgaSeq(dev, bios->state.crtchead, index); 499 else /* assume NV_CIO_CRX__COLOR */ 500 data = NVReadVgaCrtc(dev, bios->state.crtchead, index); 501 } else { 502 uint32_t data32; 503 504 data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3)); 505 data = (data32 >> ((index & 3) << 3)) & 0xff; 506 } 507 508 BIOSLOG(bios, " Indexed IO read: Port: 0x%04X, Index: 0x%02X, " 509 "Head: 0x%02X, Data: 0x%02X\n", 510 port, index, bios->state.crtchead, data); 511 return data; 512 } 513 514 static void 515 bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data) 516 { 517 struct drm_nouveau_private *dev_priv = bios->dev->dev_private; 518 struct drm_device *dev = bios->dev; 519 520 if (!valid_idx_port(bios, port)) 521 return; 522 523 /* 524 * The current head is maintained in the nvbios member state.crtchead. 525 * We trap changes to CR44 and update the head variable and hence the 526 * register set written. 527 * As CR44 only exists on CRTC0, we update crtchead to head0 in advance 528 * of the write, and to head1 after the write 529 */ 530 if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 && 531 data != NV_CIO_CRE_44_HEADB) 532 bios->state.crtchead = 0; 533 534 LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index)); 535 BIOSLOG(bios, " Indexed IO write: Port: 0x%04X, Index: 0x%02X, " 536 "Head: 0x%02X, Data: 0x%02X\n", 537 port, index, bios->state.crtchead, data); 538 539 if (bios->execute && dev_priv->card_type < NV_50) { 540 still_alive(); 541 if (port == NV_VIO_SRX) 542 NVWriteVgaSeq(dev, bios->state.crtchead, index, data); 543 else /* assume NV_CIO_CRX__COLOR */ 544 NVWriteVgaCrtc(dev, bios->state.crtchead, index, data); 545 } else 546 if (bios->execute) { 547 uint32_t data32, shift = (index & 3) << 3; 548 549 still_alive(); 550 551 data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3)); 552 data32 &= ~(0xff << shift); 553 data32 |= (data << shift); 554 bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32); 555 } 556 557 if (port == NV_CIO_CRX__COLOR && 558 index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB) 559 bios->state.crtchead = 1; 560 } 561 562 static uint8_t 563 bios_port_rd(struct nvbios *bios, uint16_t port) 564 { 565 uint8_t data, head = bios->state.crtchead; 566 567 if (!valid_port(bios, port)) 568 return 0; 569 570 data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port); 571 572 BIOSLOG(bios, " IO read: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n", 573 port, head, data); 574 575 return data; 576 } 577 578 static void 579 bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data) 580 { 581 int head = bios->state.crtchead; 582 583 if (!valid_port(bios, port)) 584 return; 585 586 LOG_OLD_VALUE(bios_port_rd(bios, port)); 587 BIOSLOG(bios, " IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n", 588 port, head, data); 589 590 if (!bios->execute) 591 return; 592 593 still_alive(); 594 NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data); 595 } 596 597 static bool 598 io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond) 599 { 600 /* 601 * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte 602 * for the CRTC index; 1 byte for the mask to apply to the value 603 * retrieved from the CRTC; 1 byte for the shift right to apply to the 604 * masked CRTC value; 2 bytes for the offset to the flag array, to 605 * which the shifted value is added; 1 byte for the mask applied to the 606 * value read from the flag array; and 1 byte for the value to compare 607 * against the masked byte from the flag table. 608 */ 609 610 uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE; 611 uint16_t crtcport = ROM16(bios->data[condptr]); 612 uint8_t crtcindex = bios->data[condptr + 2]; 613 uint8_t mask = bios->data[condptr + 3]; 614 uint8_t shift = bios->data[condptr + 4]; 615 uint16_t flagarray = ROM16(bios->data[condptr + 5]); 616 uint8_t flagarraymask = bios->data[condptr + 7]; 617 uint8_t cmpval = bios->data[condptr + 8]; 618 uint8_t data; 619 620 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " 621 "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, " 622 "Cmpval: 0x%02X\n", 623 offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval); 624 625 data = bios_idxprt_rd(bios, crtcport, crtcindex); 626 627 data = bios->data[flagarray + ((data & mask) >> shift)]; 628 data &= flagarraymask; 629 630 BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n", 631 offset, data, cmpval); 632 633 return (data == cmpval); 634 } 635 636 static bool 637 bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond) 638 { 639 /* 640 * The condition table entry has 4 bytes for the address of the 641 * register to check, 4 bytes for a mask to apply to the register and 642 * 4 for a test comparison value 643 */ 644 645 uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE; 646 uint32_t reg = ROM32(bios->data[condptr]); 647 uint32_t mask = ROM32(bios->data[condptr + 4]); 648 uint32_t cmpval = ROM32(bios->data[condptr + 8]); 649 uint32_t data; 650 651 BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n", 652 offset, cond, reg, mask); 653 654 data = bios_rd32(bios, reg) & mask; 655 656 BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n", 657 offset, data, cmpval); 658 659 return (data == cmpval); 660 } 661 662 static bool 663 io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond) 664 { 665 /* 666 * The IO condition entry has 2 bytes for the IO port address; 1 byte 667 * for the index to write to io_port; 1 byte for the mask to apply to 668 * the byte read from io_port+1; and 1 byte for the value to compare 669 * against the masked byte. 670 */ 671 672 uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE; 673 uint16_t io_port = ROM16(bios->data[condptr]); 674 uint8_t port_index = bios->data[condptr + 2]; 675 uint8_t mask = bios->data[condptr + 3]; 676 uint8_t cmpval = bios->data[condptr + 4]; 677 678 uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask; 679 680 BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n", 681 offset, data, cmpval); 682 683 return (data == cmpval); 684 } 685 686 static int 687 nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk) 688 { 689 struct drm_nouveau_private *dev_priv = dev->dev_private; 690 struct nouveau_pll_vals pll; 691 struct pll_lims pll_limits; 692 u32 ctrl, mask, coef; 693 int ret; 694 695 ret = get_pll_limits(dev, reg, &pll_limits); 696 if (ret) 697 return ret; 698 699 clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll); 700 if (!clk) 701 return -ERANGE; 702 703 coef = pll.N1 << 8 | pll.M1; 704 ctrl = pll.log2P << 16; 705 mask = 0x00070000; 706 if (reg == 0x004008) { 707 mask |= 0x01f80000; 708 ctrl |= (pll_limits.log2p_bias << 19); 709 ctrl |= (pll.log2P << 22); 710 } 711 712 if (!dev_priv->vbios.execute) 713 return 0; 714 715 nv_mask(dev, reg + 0, mask, ctrl); 716 nv_wr32(dev, reg + 4, coef); 717 return 0; 718 } 719 720 static int 721 setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk) 722 { 723 struct drm_device *dev = bios->dev; 724 struct drm_nouveau_private *dev_priv = dev->dev_private; 725 /* clk in kHz */ 726 struct pll_lims pll_lim; 727 struct nouveau_pll_vals pllvals; 728 int ret; 729 730 if (dev_priv->card_type >= NV_50) 731 return nv50_pll_set(dev, reg, clk); 732 733 /* high regs (such as in the mac g5 table) are not -= 4 */ 734 ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim); 735 if (ret) 736 return ret; 737 738 clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals); 739 if (!clk) 740 return -ERANGE; 741 742 if (bios->execute) { 743 still_alive(); 744 nouveau_hw_setpll(dev, reg, &pllvals); 745 } 746 747 return 0; 748 } 749 750 static int dcb_entry_idx_from_crtchead(struct drm_device *dev) 751 { 752 struct drm_nouveau_private *dev_priv = dev->dev_private; 753 struct nvbios *bios = &dev_priv->vbios; 754 755 /* 756 * For the results of this function to be correct, CR44 must have been 757 * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0, 758 * and the DCB table parsed, before the script calling the function is 759 * run. run_digital_op_script is example of how to do such setup 760 */ 761 762 uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0); 763 764 if (dcb_entry > bios->dcb.entries) { 765 NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently " 766 "(%02X)\n", dcb_entry); 767 dcb_entry = 0x7f; /* unused / invalid marker */ 768 } 769 770 return dcb_entry; 771 } 772 773 static struct nouveau_i2c_chan * 774 init_i2c_device_find(struct drm_device *dev, int i2c_index) 775 { 776 if (i2c_index == 0xff) { 777 struct drm_nouveau_private *dev_priv = dev->dev_private; 778 struct dcb_table *dcb = &dev_priv->vbios.dcb; 779 /* note: dcb_entry_idx_from_crtchead needs pre-script set-up */ 780 int idx = dcb_entry_idx_from_crtchead(dev); 781 782 i2c_index = NV_I2C_DEFAULT(0); 783 if (idx != 0x7f && dcb->entry[idx].i2c_upper_default) 784 i2c_index = NV_I2C_DEFAULT(1); 785 } 786 787 return nouveau_i2c_find(dev, i2c_index); 788 } 789 790 static uint32_t 791 get_tmds_index_reg(struct drm_device *dev, uint8_t mlv) 792 { 793 /* 794 * For mlv < 0x80, it is an index into a table of TMDS base addresses. 795 * For mlv == 0x80 use the "or" value of the dcb_entry indexed by 796 * CR58 for CR57 = 0 to index a table of offsets to the basic 797 * 0x6808b0 address. 798 * For mlv == 0x81 use the "or" value of the dcb_entry indexed by 799 * CR58 for CR57 = 0 to index a table of offsets to the basic 800 * 0x6808b0 address, and then flip the offset by 8. 801 */ 802 803 struct drm_nouveau_private *dev_priv = dev->dev_private; 804 struct nvbios *bios = &dev_priv->vbios; 805 const int pramdac_offset[13] = { 806 0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 }; 807 const uint32_t pramdac_table[4] = { 808 0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 }; 809 810 if (mlv >= 0x80) { 811 int dcb_entry, dacoffset; 812 813 /* note: dcb_entry_idx_from_crtchead needs pre-script set-up */ 814 dcb_entry = dcb_entry_idx_from_crtchead(dev); 815 if (dcb_entry == 0x7f) 816 return 0; 817 dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or]; 818 if (mlv == 0x81) 819 dacoffset ^= 8; 820 return 0x6808b0 + dacoffset; 821 } else { 822 if (mlv >= ARRAY_SIZE(pramdac_table)) { 823 NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n", 824 mlv); 825 return 0; 826 } 827 return pramdac_table[mlv]; 828 } 829 } 830 831 static int 832 init_io_restrict_prog(struct nvbios *bios, uint16_t offset, 833 struct init_exec *iexec) 834 { 835 /* 836 * INIT_IO_RESTRICT_PROG opcode: 0x32 ('2') 837 * 838 * offset (8 bit): opcode 839 * offset + 1 (16 bit): CRTC port 840 * offset + 3 (8 bit): CRTC index 841 * offset + 4 (8 bit): mask 842 * offset + 5 (8 bit): shift 843 * offset + 6 (8 bit): count 844 * offset + 7 (32 bit): register 845 * offset + 11 (32 bit): configuration 1 846 * ... 847 * 848 * Starting at offset + 11 there are "count" 32 bit values. 849 * To find out which value to use read index "CRTC index" on "CRTC 850 * port", AND this value with "mask" and then bit shift right "shift" 851 * bits. Read the appropriate value using this index and write to 852 * "register" 853 */ 854 855 uint16_t crtcport = ROM16(bios->data[offset + 1]); 856 uint8_t crtcindex = bios->data[offset + 3]; 857 uint8_t mask = bios->data[offset + 4]; 858 uint8_t shift = bios->data[offset + 5]; 859 uint8_t count = bios->data[offset + 6]; 860 uint32_t reg = ROM32(bios->data[offset + 7]); 861 uint8_t config; 862 uint32_t configval; 863 int len = 11 + count * 4; 864 865 if (!iexec->execute) 866 return len; 867 868 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " 869 "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n", 870 offset, crtcport, crtcindex, mask, shift, count, reg); 871 872 config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift; 873 if (config > count) { 874 NV_ERROR(bios->dev, 875 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n", 876 offset, config, count); 877 return len; 878 } 879 880 configval = ROM32(bios->data[offset + 11 + config * 4]); 881 882 BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config); 883 884 bios_wr32(bios, reg, configval); 885 886 return len; 887 } 888 889 static int 890 init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 891 { 892 /* 893 * INIT_REPEAT opcode: 0x33 ('3') 894 * 895 * offset (8 bit): opcode 896 * offset + 1 (8 bit): count 897 * 898 * Execute script following this opcode up to INIT_REPEAT_END 899 * "count" times 900 */ 901 902 uint8_t count = bios->data[offset + 1]; 903 uint8_t i; 904 905 /* no iexec->execute check by design */ 906 907 BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n", 908 offset, count); 909 910 iexec->repeat = true; 911 912 /* 913 * count - 1, as the script block will execute once when we leave this 914 * opcode -- this is compatible with bios behaviour as: 915 * a) the block is always executed at least once, even if count == 0 916 * b) the bios interpreter skips to the op following INIT_END_REPEAT, 917 * while we don't 918 */ 919 for (i = 0; i < count - 1; i++) 920 parse_init_table(bios, offset + 2, iexec); 921 922 iexec->repeat = false; 923 924 return 2; 925 } 926 927 static int 928 init_io_restrict_pll(struct nvbios *bios, uint16_t offset, 929 struct init_exec *iexec) 930 { 931 /* 932 * INIT_IO_RESTRICT_PLL opcode: 0x34 ('4') 933 * 934 * offset (8 bit): opcode 935 * offset + 1 (16 bit): CRTC port 936 * offset + 3 (8 bit): CRTC index 937 * offset + 4 (8 bit): mask 938 * offset + 5 (8 bit): shift 939 * offset + 6 (8 bit): IO flag condition index 940 * offset + 7 (8 bit): count 941 * offset + 8 (32 bit): register 942 * offset + 12 (16 bit): frequency 1 943 * ... 944 * 945 * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz). 946 * Set PLL register "register" to coefficients for frequency n, 947 * selected by reading index "CRTC index" of "CRTC port" ANDed with 948 * "mask" and shifted right by "shift". 949 * 950 * If "IO flag condition index" > 0, and condition met, double 951 * frequency before setting it. 952 */ 953 954 uint16_t crtcport = ROM16(bios->data[offset + 1]); 955 uint8_t crtcindex = bios->data[offset + 3]; 956 uint8_t mask = bios->data[offset + 4]; 957 uint8_t shift = bios->data[offset + 5]; 958 int8_t io_flag_condition_idx = bios->data[offset + 6]; 959 uint8_t count = bios->data[offset + 7]; 960 uint32_t reg = ROM32(bios->data[offset + 8]); 961 uint8_t config; 962 uint16_t freq; 963 int len = 12 + count * 2; 964 965 if (!iexec->execute) 966 return len; 967 968 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " 969 "Shift: 0x%02X, IO Flag Condition: 0x%02X, " 970 "Count: 0x%02X, Reg: 0x%08X\n", 971 offset, crtcport, crtcindex, mask, shift, 972 io_flag_condition_idx, count, reg); 973 974 config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift; 975 if (config > count) { 976 NV_ERROR(bios->dev, 977 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n", 978 offset, config, count); 979 return len; 980 } 981 982 freq = ROM16(bios->data[offset + 12 + config * 2]); 983 984 if (io_flag_condition_idx > 0) { 985 if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) { 986 BIOSLOG(bios, "0x%04X: Condition fulfilled -- " 987 "frequency doubled\n", offset); 988 freq *= 2; 989 } else 990 BIOSLOG(bios, "0x%04X: Condition not fulfilled -- " 991 "frequency unchanged\n", offset); 992 } 993 994 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n", 995 offset, reg, config, freq); 996 997 setPLL(bios, reg, freq * 10); 998 999 return len; 1000 } 1001 1002 static int 1003 init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1004 { 1005 /* 1006 * INIT_END_REPEAT opcode: 0x36 ('6') 1007 * 1008 * offset (8 bit): opcode 1009 * 1010 * Marks the end of the block for INIT_REPEAT to repeat 1011 */ 1012 1013 /* no iexec->execute check by design */ 1014 1015 /* 1016 * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when 1017 * we're not in repeat mode 1018 */ 1019 if (iexec->repeat) 1020 return 0; 1021 1022 return 1; 1023 } 1024 1025 static int 1026 init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1027 { 1028 /* 1029 * INIT_COPY opcode: 0x37 ('7') 1030 * 1031 * offset (8 bit): opcode 1032 * offset + 1 (32 bit): register 1033 * offset + 5 (8 bit): shift 1034 * offset + 6 (8 bit): srcmask 1035 * offset + 7 (16 bit): CRTC port 1036 * offset + 9 (8 bit): CRTC index 1037 * offset + 10 (8 bit): mask 1038 * 1039 * Read index "CRTC index" on "CRTC port", AND with "mask", OR with 1040 * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC 1041 * port 1042 */ 1043 1044 uint32_t reg = ROM32(bios->data[offset + 1]); 1045 uint8_t shift = bios->data[offset + 5]; 1046 uint8_t srcmask = bios->data[offset + 6]; 1047 uint16_t crtcport = ROM16(bios->data[offset + 7]); 1048 uint8_t crtcindex = bios->data[offset + 9]; 1049 uint8_t mask = bios->data[offset + 10]; 1050 uint32_t data; 1051 uint8_t crtcdata; 1052 1053 if (!iexec->execute) 1054 return 11; 1055 1056 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, " 1057 "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n", 1058 offset, reg, shift, srcmask, crtcport, crtcindex, mask); 1059 1060 data = bios_rd32(bios, reg); 1061 1062 if (shift < 0x80) 1063 data >>= shift; 1064 else 1065 data <<= (0x100 - shift); 1066 1067 data &= srcmask; 1068 1069 crtcdata = bios_idxprt_rd(bios, crtcport, crtcindex) & mask; 1070 crtcdata |= (uint8_t)data; 1071 bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata); 1072 1073 return 11; 1074 } 1075 1076 static int 1077 init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1078 { 1079 /* 1080 * INIT_NOT opcode: 0x38 ('8') 1081 * 1082 * offset (8 bit): opcode 1083 * 1084 * Invert the current execute / no-execute condition (i.e. "else") 1085 */ 1086 if (iexec->execute) 1087 BIOSLOG(bios, "0x%04X: ------ Skipping following commands ------\n", offset); 1088 else 1089 BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset); 1090 1091 iexec->execute = !iexec->execute; 1092 return 1; 1093 } 1094 1095 static int 1096 init_io_flag_condition(struct nvbios *bios, uint16_t offset, 1097 struct init_exec *iexec) 1098 { 1099 /* 1100 * INIT_IO_FLAG_CONDITION opcode: 0x39 ('9') 1101 * 1102 * offset (8 bit): opcode 1103 * offset + 1 (8 bit): condition number 1104 * 1105 * Check condition "condition number" in the IO flag condition table. 1106 * If condition not met skip subsequent opcodes until condition is 1107 * inverted (INIT_NOT), or we hit INIT_RESUME 1108 */ 1109 1110 uint8_t cond = bios->data[offset + 1]; 1111 1112 if (!iexec->execute) 1113 return 2; 1114 1115 if (io_flag_condition_met(bios, offset, cond)) 1116 BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); 1117 else { 1118 BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); 1119 iexec->execute = false; 1120 } 1121 1122 return 2; 1123 } 1124 1125 static int 1126 init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1127 { 1128 /* 1129 * INIT_DP_CONDITION opcode: 0x3A ('') 1130 * 1131 * offset (8 bit): opcode 1132 * offset + 1 (8 bit): "sub" opcode 1133 * offset + 2 (8 bit): unknown 1134 * 1135 */ 1136 1137 struct dcb_entry *dcb = bios->display.output; 1138 struct drm_device *dev = bios->dev; 1139 uint8_t cond = bios->data[offset + 1]; 1140 uint8_t *table, *entry; 1141 1142 BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond); 1143 1144 if (!iexec->execute) 1145 return 3; 1146 1147 table = nouveau_dp_bios_data(dev, dcb, &entry); 1148 if (!table) 1149 return 3; 1150 1151 switch (cond) { 1152 case 0: 1153 entry = dcb_conn(dev, dcb->connector); 1154 if (!entry || entry[0] != DCB_CONNECTOR_eDP) 1155 iexec->execute = false; 1156 break; 1157 case 1: 1158 case 2: 1159 if ((table[0] < 0x40 && !(entry[5] & cond)) || 1160 (table[0] == 0x40 && !(entry[4] & cond))) 1161 iexec->execute = false; 1162 break; 1163 case 5: 1164 { 1165 struct nouveau_i2c_chan *auxch; 1166 int ret; 1167 1168 auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index); 1169 if (!auxch) { 1170 NV_ERROR(dev, "0x%04X: couldn't get auxch\n", offset); 1171 return 3; 1172 } 1173 1174 ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1); 1175 if (ret) { 1176 NV_ERROR(dev, "0x%04X: auxch rd fail: %d\n", offset, ret); 1177 return 3; 1178 } 1179 1180 if (!(cond & 1)) 1181 iexec->execute = false; 1182 } 1183 break; 1184 default: 1185 NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond); 1186 break; 1187 } 1188 1189 if (iexec->execute) 1190 BIOSLOG(bios, "0x%04X: continuing to execute\n", offset); 1191 else 1192 BIOSLOG(bios, "0x%04X: skipping following commands\n", offset); 1193 1194 return 3; 1195 } 1196 1197 static int 1198 init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1199 { 1200 /* 1201 * INIT_3B opcode: 0x3B ('') 1202 * 1203 * offset (8 bit): opcode 1204 * offset + 1 (8 bit): crtc index 1205 * 1206 */ 1207 1208 uint8_t or = ffs(bios->display.output->or) - 1; 1209 uint8_t index = bios->data[offset + 1]; 1210 uint8_t data; 1211 1212 if (!iexec->execute) 1213 return 2; 1214 1215 data = bios_idxprt_rd(bios, 0x3d4, index); 1216 bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or)); 1217 return 2; 1218 } 1219 1220 static int 1221 init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1222 { 1223 /* 1224 * INIT_3C opcode: 0x3C ('') 1225 * 1226 * offset (8 bit): opcode 1227 * offset + 1 (8 bit): crtc index 1228 * 1229 */ 1230 1231 uint8_t or = ffs(bios->display.output->or) - 1; 1232 uint8_t index = bios->data[offset + 1]; 1233 uint8_t data; 1234 1235 if (!iexec->execute) 1236 return 2; 1237 1238 data = bios_idxprt_rd(bios, 0x3d4, index); 1239 bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or)); 1240 return 2; 1241 } 1242 1243 static int 1244 init_idx_addr_latched(struct nvbios *bios, uint16_t offset, 1245 struct init_exec *iexec) 1246 { 1247 /* 1248 * INIT_INDEX_ADDRESS_LATCHED opcode: 0x49 ('I') 1249 * 1250 * offset (8 bit): opcode 1251 * offset + 1 (32 bit): control register 1252 * offset + 5 (32 bit): data register 1253 * offset + 9 (32 bit): mask 1254 * offset + 13 (32 bit): data 1255 * offset + 17 (8 bit): count 1256 * offset + 18 (8 bit): address 1 1257 * offset + 19 (8 bit): data 1 1258 * ... 1259 * 1260 * For each of "count" address and data pairs, write "data n" to 1261 * "data register", read the current value of "control register", 1262 * and write it back once ANDed with "mask", ORed with "data", 1263 * and ORed with "address n" 1264 */ 1265 1266 uint32_t controlreg = ROM32(bios->data[offset + 1]); 1267 uint32_t datareg = ROM32(bios->data[offset + 5]); 1268 uint32_t mask = ROM32(bios->data[offset + 9]); 1269 uint32_t data = ROM32(bios->data[offset + 13]); 1270 uint8_t count = bios->data[offset + 17]; 1271 int len = 18 + count * 2; 1272 uint32_t value; 1273 int i; 1274 1275 if (!iexec->execute) 1276 return len; 1277 1278 BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, " 1279 "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n", 1280 offset, controlreg, datareg, mask, data, count); 1281 1282 for (i = 0; i < count; i++) { 1283 uint8_t instaddress = bios->data[offset + 18 + i * 2]; 1284 uint8_t instdata = bios->data[offset + 19 + i * 2]; 1285 1286 BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n", 1287 offset, instaddress, instdata); 1288 1289 bios_wr32(bios, datareg, instdata); 1290 value = bios_rd32(bios, controlreg) & mask; 1291 value |= data; 1292 value |= instaddress; 1293 bios_wr32(bios, controlreg, value); 1294 } 1295 1296 return len; 1297 } 1298 1299 static int 1300 init_io_restrict_pll2(struct nvbios *bios, uint16_t offset, 1301 struct init_exec *iexec) 1302 { 1303 /* 1304 * INIT_IO_RESTRICT_PLL2 opcode: 0x4A ('J') 1305 * 1306 * offset (8 bit): opcode 1307 * offset + 1 (16 bit): CRTC port 1308 * offset + 3 (8 bit): CRTC index 1309 * offset + 4 (8 bit): mask 1310 * offset + 5 (8 bit): shift 1311 * offset + 6 (8 bit): count 1312 * offset + 7 (32 bit): register 1313 * offset + 11 (32 bit): frequency 1 1314 * ... 1315 * 1316 * Starting at offset + 11 there are "count" 32 bit frequencies (kHz). 1317 * Set PLL register "register" to coefficients for frequency n, 1318 * selected by reading index "CRTC index" of "CRTC port" ANDed with 1319 * "mask" and shifted right by "shift". 1320 */ 1321 1322 uint16_t crtcport = ROM16(bios->data[offset + 1]); 1323 uint8_t crtcindex = bios->data[offset + 3]; 1324 uint8_t mask = bios->data[offset + 4]; 1325 uint8_t shift = bios->data[offset + 5]; 1326 uint8_t count = bios->data[offset + 6]; 1327 uint32_t reg = ROM32(bios->data[offset + 7]); 1328 int len = 11 + count * 4; 1329 uint8_t config; 1330 uint32_t freq; 1331 1332 if (!iexec->execute) 1333 return len; 1334 1335 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " 1336 "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n", 1337 offset, crtcport, crtcindex, mask, shift, count, reg); 1338 1339 if (!reg) 1340 return len; 1341 1342 config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift; 1343 if (config > count) { 1344 NV_ERROR(bios->dev, 1345 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n", 1346 offset, config, count); 1347 return len; 1348 } 1349 1350 freq = ROM32(bios->data[offset + 11 + config * 4]); 1351 1352 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n", 1353 offset, reg, config, freq); 1354 1355 setPLL(bios, reg, freq); 1356 1357 return len; 1358 } 1359 1360 static int 1361 init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1362 { 1363 /* 1364 * INIT_PLL2 opcode: 0x4B ('K') 1365 * 1366 * offset (8 bit): opcode 1367 * offset + 1 (32 bit): register 1368 * offset + 5 (32 bit): freq 1369 * 1370 * Set PLL register "register" to coefficients for frequency "freq" 1371 */ 1372 1373 uint32_t reg = ROM32(bios->data[offset + 1]); 1374 uint32_t freq = ROM32(bios->data[offset + 5]); 1375 1376 if (!iexec->execute) 1377 return 9; 1378 1379 BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n", 1380 offset, reg, freq); 1381 1382 setPLL(bios, reg, freq); 1383 return 9; 1384 } 1385 1386 static int 1387 init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1388 { 1389 /* 1390 * INIT_I2C_BYTE opcode: 0x4C ('L') 1391 * 1392 * offset (8 bit): opcode 1393 * offset + 1 (8 bit): DCB I2C table entry index 1394 * offset + 2 (8 bit): I2C slave address 1395 * offset + 3 (8 bit): count 1396 * offset + 4 (8 bit): I2C register 1 1397 * offset + 5 (8 bit): mask 1 1398 * offset + 6 (8 bit): data 1 1399 * ... 1400 * 1401 * For each of "count" registers given by "I2C register n" on the device 1402 * addressed by "I2C slave address" on the I2C bus given by 1403 * "DCB I2C table entry index", read the register, AND the result with 1404 * "mask n" and OR it with "data n" before writing it back to the device 1405 */ 1406 1407 struct drm_device *dev = bios->dev; 1408 uint8_t i2c_index = bios->data[offset + 1]; 1409 uint8_t i2c_address = bios->data[offset + 2] >> 1; 1410 uint8_t count = bios->data[offset + 3]; 1411 struct nouveau_i2c_chan *chan; 1412 int len = 4 + count * 3; 1413 int ret, i; 1414 1415 if (!iexec->execute) 1416 return len; 1417 1418 BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, " 1419 "Count: 0x%02X\n", 1420 offset, i2c_index, i2c_address, count); 1421 1422 chan = init_i2c_device_find(dev, i2c_index); 1423 if (!chan) { 1424 NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset); 1425 return len; 1426 } 1427 1428 for (i = 0; i < count; i++) { 1429 uint8_t reg = bios->data[offset + 4 + i * 3]; 1430 uint8_t mask = bios->data[offset + 5 + i * 3]; 1431 uint8_t data = bios->data[offset + 6 + i * 3]; 1432 union i2c_smbus_data val; 1433 1434 ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, 1435 I2C_SMBUS_READ, reg, 1436 I2C_SMBUS_BYTE_DATA, &val); 1437 if (ret < 0) { 1438 NV_ERROR(dev, "0x%04X: i2c rd fail: %d\n", offset, ret); 1439 return len; 1440 } 1441 1442 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, " 1443 "Mask: 0x%02X, Data: 0x%02X\n", 1444 offset, reg, val.byte, mask, data); 1445 1446 if (!bios->execute) 1447 continue; 1448 1449 val.byte &= mask; 1450 val.byte |= data; 1451 ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, 1452 I2C_SMBUS_WRITE, reg, 1453 I2C_SMBUS_BYTE_DATA, &val); 1454 if (ret < 0) { 1455 NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret); 1456 return len; 1457 } 1458 } 1459 1460 return len; 1461 } 1462 1463 static int 1464 init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1465 { 1466 /* 1467 * INIT_ZM_I2C_BYTE opcode: 0x4D ('M') 1468 * 1469 * offset (8 bit): opcode 1470 * offset + 1 (8 bit): DCB I2C table entry index 1471 * offset + 2 (8 bit): I2C slave address 1472 * offset + 3 (8 bit): count 1473 * offset + 4 (8 bit): I2C register 1 1474 * offset + 5 (8 bit): data 1 1475 * ... 1476 * 1477 * For each of "count" registers given by "I2C register n" on the device 1478 * addressed by "I2C slave address" on the I2C bus given by 1479 * "DCB I2C table entry index", set the register to "data n" 1480 */ 1481 1482 struct drm_device *dev = bios->dev; 1483 uint8_t i2c_index = bios->data[offset + 1]; 1484 uint8_t i2c_address = bios->data[offset + 2] >> 1; 1485 uint8_t count = bios->data[offset + 3]; 1486 struct nouveau_i2c_chan *chan; 1487 int len = 4 + count * 2; 1488 int ret, i; 1489 1490 if (!iexec->execute) 1491 return len; 1492 1493 BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, " 1494 "Count: 0x%02X\n", 1495 offset, i2c_index, i2c_address, count); 1496 1497 chan = init_i2c_device_find(dev, i2c_index); 1498 if (!chan) { 1499 NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset); 1500 return len; 1501 } 1502 1503 for (i = 0; i < count; i++) { 1504 uint8_t reg = bios->data[offset + 4 + i * 2]; 1505 union i2c_smbus_data val; 1506 1507 val.byte = bios->data[offset + 5 + i * 2]; 1508 1509 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n", 1510 offset, reg, val.byte); 1511 1512 if (!bios->execute) 1513 continue; 1514 1515 ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, 1516 I2C_SMBUS_WRITE, reg, 1517 I2C_SMBUS_BYTE_DATA, &val); 1518 if (ret < 0) { 1519 NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret); 1520 return len; 1521 } 1522 } 1523 1524 return len; 1525 } 1526 1527 static int 1528 init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1529 { 1530 /* 1531 * INIT_ZM_I2C opcode: 0x4E ('N') 1532 * 1533 * offset (8 bit): opcode 1534 * offset + 1 (8 bit): DCB I2C table entry index 1535 * offset + 2 (8 bit): I2C slave address 1536 * offset + 3 (8 bit): count 1537 * offset + 4 (8 bit): data 1 1538 * ... 1539 * 1540 * Send "count" bytes ("data n") to the device addressed by "I2C slave 1541 * address" on the I2C bus given by "DCB I2C table entry index" 1542 */ 1543 1544 struct drm_device *dev = bios->dev; 1545 uint8_t i2c_index = bios->data[offset + 1]; 1546 uint8_t i2c_address = bios->data[offset + 2] >> 1; 1547 uint8_t count = bios->data[offset + 3]; 1548 int len = 4 + count; 1549 struct nouveau_i2c_chan *chan; 1550 struct i2c_msg msg; 1551 uint8_t data[256]; 1552 int ret, i; 1553 1554 if (!iexec->execute) 1555 return len; 1556 1557 BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, " 1558 "Count: 0x%02X\n", 1559 offset, i2c_index, i2c_address, count); 1560 1561 chan = init_i2c_device_find(dev, i2c_index); 1562 if (!chan) { 1563 NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset); 1564 return len; 1565 } 1566 1567 for (i = 0; i < count; i++) { 1568 data[i] = bios->data[offset + 4 + i]; 1569 1570 BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]); 1571 } 1572 1573 if (bios->execute) { 1574 msg.addr = i2c_address; 1575 msg.flags = 0; 1576 msg.len = count; 1577 msg.buf = data; 1578 ret = i2c_transfer(&chan->adapter, &msg, 1); 1579 if (ret != 1) { 1580 NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret); 1581 return len; 1582 } 1583 } 1584 1585 return len; 1586 } 1587 1588 static int 1589 init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1590 { 1591 /* 1592 * INIT_TMDS opcode: 0x4F ('O') (non-canon name) 1593 * 1594 * offset (8 bit): opcode 1595 * offset + 1 (8 bit): magic lookup value 1596 * offset + 2 (8 bit): TMDS address 1597 * offset + 3 (8 bit): mask 1598 * offset + 4 (8 bit): data 1599 * 1600 * Read the data reg for TMDS address "TMDS address", AND it with mask 1601 * and OR it with data, then write it back 1602 * "magic lookup value" determines which TMDS base address register is 1603 * used -- see get_tmds_index_reg() 1604 */ 1605 1606 struct drm_device *dev = bios->dev; 1607 uint8_t mlv = bios->data[offset + 1]; 1608 uint32_t tmdsaddr = bios->data[offset + 2]; 1609 uint8_t mask = bios->data[offset + 3]; 1610 uint8_t data = bios->data[offset + 4]; 1611 uint32_t reg, value; 1612 1613 if (!iexec->execute) 1614 return 5; 1615 1616 BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, " 1617 "Mask: 0x%02X, Data: 0x%02X\n", 1618 offset, mlv, tmdsaddr, mask, data); 1619 1620 reg = get_tmds_index_reg(bios->dev, mlv); 1621 if (!reg) { 1622 NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset); 1623 return 5; 1624 } 1625 1626 bios_wr32(bios, reg, 1627 tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE); 1628 value = (bios_rd32(bios, reg + 4) & mask) | data; 1629 bios_wr32(bios, reg + 4, value); 1630 bios_wr32(bios, reg, tmdsaddr); 1631 1632 return 5; 1633 } 1634 1635 static int 1636 init_zm_tmds_group(struct nvbios *bios, uint16_t offset, 1637 struct init_exec *iexec) 1638 { 1639 /* 1640 * INIT_ZM_TMDS_GROUP opcode: 0x50 ('P') (non-canon name) 1641 * 1642 * offset (8 bit): opcode 1643 * offset + 1 (8 bit): magic lookup value 1644 * offset + 2 (8 bit): count 1645 * offset + 3 (8 bit): addr 1 1646 * offset + 4 (8 bit): data 1 1647 * ... 1648 * 1649 * For each of "count" TMDS address and data pairs write "data n" to 1650 * "addr n". "magic lookup value" determines which TMDS base address 1651 * register is used -- see get_tmds_index_reg() 1652 */ 1653 1654 struct drm_device *dev = bios->dev; 1655 uint8_t mlv = bios->data[offset + 1]; 1656 uint8_t count = bios->data[offset + 2]; 1657 int len = 3 + count * 2; 1658 uint32_t reg; 1659 int i; 1660 1661 if (!iexec->execute) 1662 return len; 1663 1664 BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n", 1665 offset, mlv, count); 1666 1667 reg = get_tmds_index_reg(bios->dev, mlv); 1668 if (!reg) { 1669 NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset); 1670 return len; 1671 } 1672 1673 for (i = 0; i < count; i++) { 1674 uint8_t tmdsaddr = bios->data[offset + 3 + i * 2]; 1675 uint8_t tmdsdata = bios->data[offset + 4 + i * 2]; 1676 1677 bios_wr32(bios, reg + 4, tmdsdata); 1678 bios_wr32(bios, reg, tmdsaddr); 1679 } 1680 1681 return len; 1682 } 1683 1684 static int 1685 init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset, 1686 struct init_exec *iexec) 1687 { 1688 /* 1689 * INIT_CR_INDEX_ADDRESS_LATCHED opcode: 0x51 ('Q') 1690 * 1691 * offset (8 bit): opcode 1692 * offset + 1 (8 bit): CRTC index1 1693 * offset + 2 (8 bit): CRTC index2 1694 * offset + 3 (8 bit): baseaddr 1695 * offset + 4 (8 bit): count 1696 * offset + 5 (8 bit): data 1 1697 * ... 1698 * 1699 * For each of "count" address and data pairs, write "baseaddr + n" to 1700 * "CRTC index1" and "data n" to "CRTC index2" 1701 * Once complete, restore initial value read from "CRTC index1" 1702 */ 1703 uint8_t crtcindex1 = bios->data[offset + 1]; 1704 uint8_t crtcindex2 = bios->data[offset + 2]; 1705 uint8_t baseaddr = bios->data[offset + 3]; 1706 uint8_t count = bios->data[offset + 4]; 1707 int len = 5 + count; 1708 uint8_t oldaddr, data; 1709 int i; 1710 1711 if (!iexec->execute) 1712 return len; 1713 1714 BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, " 1715 "BaseAddr: 0x%02X, Count: 0x%02X\n", 1716 offset, crtcindex1, crtcindex2, baseaddr, count); 1717 1718 oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1); 1719 1720 for (i = 0; i < count; i++) { 1721 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, 1722 baseaddr + i); 1723 data = bios->data[offset + 5 + i]; 1724 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data); 1725 } 1726 1727 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr); 1728 1729 return len; 1730 } 1731 1732 static int 1733 init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1734 { 1735 /* 1736 * INIT_CR opcode: 0x52 ('R') 1737 * 1738 * offset (8 bit): opcode 1739 * offset + 1 (8 bit): CRTC index 1740 * offset + 2 (8 bit): mask 1741 * offset + 3 (8 bit): data 1742 * 1743 * Assign the value of at "CRTC index" ANDed with mask and ORed with 1744 * data back to "CRTC index" 1745 */ 1746 1747 uint8_t crtcindex = bios->data[offset + 1]; 1748 uint8_t mask = bios->data[offset + 2]; 1749 uint8_t data = bios->data[offset + 3]; 1750 uint8_t value; 1751 1752 if (!iexec->execute) 1753 return 4; 1754 1755 BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n", 1756 offset, crtcindex, mask, data); 1757 1758 value = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask; 1759 value |= data; 1760 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value); 1761 1762 return 4; 1763 } 1764 1765 static int 1766 init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1767 { 1768 /* 1769 * INIT_ZM_CR opcode: 0x53 ('S') 1770 * 1771 * offset (8 bit): opcode 1772 * offset + 1 (8 bit): CRTC index 1773 * offset + 2 (8 bit): value 1774 * 1775 * Assign "value" to CRTC register with index "CRTC index". 1776 */ 1777 1778 uint8_t crtcindex = ROM32(bios->data[offset + 1]); 1779 uint8_t data = bios->data[offset + 2]; 1780 1781 if (!iexec->execute) 1782 return 3; 1783 1784 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data); 1785 1786 return 3; 1787 } 1788 1789 static int 1790 init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1791 { 1792 /* 1793 * INIT_ZM_CR_GROUP opcode: 0x54 ('T') 1794 * 1795 * offset (8 bit): opcode 1796 * offset + 1 (8 bit): count 1797 * offset + 2 (8 bit): CRTC index 1 1798 * offset + 3 (8 bit): value 1 1799 * ... 1800 * 1801 * For "count", assign "value n" to CRTC register with index 1802 * "CRTC index n". 1803 */ 1804 1805 uint8_t count = bios->data[offset + 1]; 1806 int len = 2 + count * 2; 1807 int i; 1808 1809 if (!iexec->execute) 1810 return len; 1811 1812 for (i = 0; i < count; i++) 1813 init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec); 1814 1815 return len; 1816 } 1817 1818 static int 1819 init_condition_time(struct nvbios *bios, uint16_t offset, 1820 struct init_exec *iexec) 1821 { 1822 /* 1823 * INIT_CONDITION_TIME opcode: 0x56 ('V') 1824 * 1825 * offset (8 bit): opcode 1826 * offset + 1 (8 bit): condition number 1827 * offset + 2 (8 bit): retries / 50 1828 * 1829 * Check condition "condition number" in the condition table. 1830 * Bios code then sleeps for 2ms if the condition is not met, and 1831 * repeats up to "retries" times, but on one C51 this has proved 1832 * insufficient. In mmiotraces the driver sleeps for 20ms, so we do 1833 * this, and bail after "retries" times, or 2s, whichever is less. 1834 * If still not met after retries, clear execution flag for this table. 1835 */ 1836 1837 uint8_t cond = bios->data[offset + 1]; 1838 uint16_t retries = bios->data[offset + 2] * 50; 1839 unsigned cnt; 1840 1841 if (!iexec->execute) 1842 return 3; 1843 1844 if (retries > 100) 1845 retries = 100; 1846 1847 BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n", 1848 offset, cond, retries); 1849 1850 if (!bios->execute) /* avoid 2s delays when "faking" execution */ 1851 retries = 1; 1852 1853 for (cnt = 0; cnt < retries; cnt++) { 1854 if (bios_condition_met(bios, offset, cond)) { 1855 BIOSLOG(bios, "0x%04X: Condition met, continuing\n", 1856 offset); 1857 break; 1858 } else { 1859 BIOSLOG(bios, "0x%04X: " 1860 "Condition not met, sleeping for 20ms\n", 1861 offset); 1862 mdelay(20); 1863 } 1864 } 1865 1866 if (!bios_condition_met(bios, offset, cond)) { 1867 NV_WARN(bios->dev, 1868 "0x%04X: Condition still not met after %dms, " 1869 "skipping following opcodes\n", offset, 20 * retries); 1870 iexec->execute = false; 1871 } 1872 1873 return 3; 1874 } 1875 1876 static int 1877 init_ltime(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1878 { 1879 /* 1880 * INIT_LTIME opcode: 0x57 ('V') 1881 * 1882 * offset (8 bit): opcode 1883 * offset + 1 (16 bit): time 1884 * 1885 * Sleep for "time" milliseconds. 1886 */ 1887 1888 unsigned time = ROM16(bios->data[offset + 1]); 1889 1890 if (!iexec->execute) 1891 return 3; 1892 1893 BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X milliseconds\n", 1894 offset, time); 1895 1896 mdelay(time); 1897 1898 return 3; 1899 } 1900 1901 static int 1902 init_zm_reg_sequence(struct nvbios *bios, uint16_t offset, 1903 struct init_exec *iexec) 1904 { 1905 /* 1906 * INIT_ZM_REG_SEQUENCE opcode: 0x58 ('X') 1907 * 1908 * offset (8 bit): opcode 1909 * offset + 1 (32 bit): base register 1910 * offset + 5 (8 bit): count 1911 * offset + 6 (32 bit): value 1 1912 * ... 1913 * 1914 * Starting at offset + 6 there are "count" 32 bit values. 1915 * For "count" iterations set "base register" + 4 * current_iteration 1916 * to "value current_iteration" 1917 */ 1918 1919 uint32_t basereg = ROM32(bios->data[offset + 1]); 1920 uint32_t count = bios->data[offset + 5]; 1921 int len = 6 + count * 4; 1922 int i; 1923 1924 if (!iexec->execute) 1925 return len; 1926 1927 BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n", 1928 offset, basereg, count); 1929 1930 for (i = 0; i < count; i++) { 1931 uint32_t reg = basereg + i * 4; 1932 uint32_t data = ROM32(bios->data[offset + 6 + i * 4]); 1933 1934 bios_wr32(bios, reg, data); 1935 } 1936 1937 return len; 1938 } 1939 1940 static int 1941 init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1942 { 1943 /* 1944 * INIT_SUB_DIRECT opcode: 0x5B ('[') 1945 * 1946 * offset (8 bit): opcode 1947 * offset + 1 (16 bit): subroutine offset (in bios) 1948 * 1949 * Calls a subroutine that will execute commands until INIT_DONE 1950 * is found. 1951 */ 1952 1953 uint16_t sub_offset = ROM16(bios->data[offset + 1]); 1954 1955 if (!iexec->execute) 1956 return 3; 1957 1958 BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n", 1959 offset, sub_offset); 1960 1961 parse_init_table(bios, sub_offset, iexec); 1962 1963 BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset); 1964 1965 return 3; 1966 } 1967 1968 static int 1969 init_jump(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1970 { 1971 /* 1972 * INIT_JUMP opcode: 0x5C ('\') 1973 * 1974 * offset (8 bit): opcode 1975 * offset + 1 (16 bit): offset (in bios) 1976 * 1977 * Continue execution of init table from 'offset' 1978 */ 1979 1980 uint16_t jmp_offset = ROM16(bios->data[offset + 1]); 1981 1982 if (!iexec->execute) 1983 return 3; 1984 1985 BIOSLOG(bios, "0x%04X: Jump to 0x%04X\n", offset, jmp_offset); 1986 return jmp_offset - offset; 1987 } 1988 1989 static int 1990 init_i2c_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 1991 { 1992 /* 1993 * INIT_I2C_IF opcode: 0x5E ('^') 1994 * 1995 * offset (8 bit): opcode 1996 * offset + 1 (8 bit): DCB I2C table entry index 1997 * offset + 2 (8 bit): I2C slave address 1998 * offset + 3 (8 bit): I2C register 1999 * offset + 4 (8 bit): mask 2000 * offset + 5 (8 bit): data 2001 * 2002 * Read the register given by "I2C register" on the device addressed 2003 * by "I2C slave address" on the I2C bus given by "DCB I2C table 2004 * entry index". Compare the result AND "mask" to "data". 2005 * If they're not equal, skip subsequent opcodes until condition is 2006 * inverted (INIT_NOT), or we hit INIT_RESUME 2007 */ 2008 2009 uint8_t i2c_index = bios->data[offset + 1]; 2010 uint8_t i2c_address = bios->data[offset + 2] >> 1; 2011 uint8_t reg = bios->data[offset + 3]; 2012 uint8_t mask = bios->data[offset + 4]; 2013 uint8_t data = bios->data[offset + 5]; 2014 struct nouveau_i2c_chan *chan; 2015 union i2c_smbus_data val; 2016 int ret; 2017 2018 /* no execute check by design */ 2019 2020 BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n", 2021 offset, i2c_index, i2c_address); 2022 2023 chan = init_i2c_device_find(bios->dev, i2c_index); 2024 if (!chan) 2025 return -ENODEV; 2026 2027 ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, 2028 I2C_SMBUS_READ, reg, 2029 I2C_SMBUS_BYTE_DATA, &val); 2030 if (ret < 0) { 2031 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: [no device], " 2032 "Mask: 0x%02X, Data: 0x%02X\n", 2033 offset, reg, mask, data); 2034 iexec->execute = 0; 2035 return 6; 2036 } 2037 2038 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, " 2039 "Mask: 0x%02X, Data: 0x%02X\n", 2040 offset, reg, val.byte, mask, data); 2041 2042 iexec->execute = ((val.byte & mask) == data); 2043 2044 return 6; 2045 } 2046 2047 static int 2048 init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2049 { 2050 /* 2051 * INIT_COPY_NV_REG opcode: 0x5F ('_') 2052 * 2053 * offset (8 bit): opcode 2054 * offset + 1 (32 bit): src reg 2055 * offset + 5 (8 bit): shift 2056 * offset + 6 (32 bit): src mask 2057 * offset + 10 (32 bit): xor 2058 * offset + 14 (32 bit): dst reg 2059 * offset + 18 (32 bit): dst mask 2060 * 2061 * Shift REGVAL("src reg") right by (signed) "shift", AND result with 2062 * "src mask", then XOR with "xor". Write this OR'd with 2063 * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg" 2064 */ 2065 2066 uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1])); 2067 uint8_t shift = bios->data[offset + 5]; 2068 uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6])); 2069 uint32_t xor = *((uint32_t *)(&bios->data[offset + 10])); 2070 uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14])); 2071 uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18])); 2072 uint32_t srcvalue, dstvalue; 2073 2074 if (!iexec->execute) 2075 return 22; 2076 2077 BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, " 2078 "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n", 2079 offset, srcreg, shift, srcmask, xor, dstreg, dstmask); 2080 2081 srcvalue = bios_rd32(bios, srcreg); 2082 2083 if (shift < 0x80) 2084 srcvalue >>= shift; 2085 else 2086 srcvalue <<= (0x100 - shift); 2087 2088 srcvalue = (srcvalue & srcmask) ^ xor; 2089 2090 dstvalue = bios_rd32(bios, dstreg) & dstmask; 2091 2092 bios_wr32(bios, dstreg, dstvalue | srcvalue); 2093 2094 return 22; 2095 } 2096 2097 static int 2098 init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2099 { 2100 /* 2101 * INIT_ZM_INDEX_IO opcode: 0x62 ('b') 2102 * 2103 * offset (8 bit): opcode 2104 * offset + 1 (16 bit): CRTC port 2105 * offset + 3 (8 bit): CRTC index 2106 * offset + 4 (8 bit): data 2107 * 2108 * Write "data" to index "CRTC index" of "CRTC port" 2109 */ 2110 uint16_t crtcport = ROM16(bios->data[offset + 1]); 2111 uint8_t crtcindex = bios->data[offset + 3]; 2112 uint8_t data = bios->data[offset + 4]; 2113 2114 if (!iexec->execute) 2115 return 5; 2116 2117 bios_idxprt_wr(bios, crtcport, crtcindex, data); 2118 2119 return 5; 2120 } 2121 2122 static inline void 2123 bios_md32(struct nvbios *bios, uint32_t reg, 2124 uint32_t mask, uint32_t val) 2125 { 2126 bios_wr32(bios, reg, (bios_rd32(bios, reg) & ~mask) | val); 2127 } 2128 2129 static uint32_t 2130 peek_fb(struct drm_device *dev, struct io_mapping *fb, 2131 uint32_t off) 2132 { 2133 uint32_t val = 0; 2134 2135 if (off < pci_resource_len(dev->pdev, 1)) { 2136 uint8_t __iomem *p = 2137 io_mapping_map_atomic_wc(fb, off & PAGE_MASK); 2138 2139 val = ioread32(p + (off & ~PAGE_MASK)); 2140 2141 io_mapping_unmap_atomic(p); 2142 } 2143 2144 return val; 2145 } 2146 2147 static void 2148 poke_fb(struct drm_device *dev, struct io_mapping *fb, 2149 uint32_t off, uint32_t val) 2150 { 2151 if (off < pci_resource_len(dev->pdev, 1)) { 2152 uint8_t __iomem *p = 2153 io_mapping_map_atomic_wc(fb, off & PAGE_MASK); 2154 2155 iowrite32(val, p + (off & ~PAGE_MASK)); 2156 wmb(); 2157 2158 io_mapping_unmap_atomic(p); 2159 } 2160 } 2161 2162 static inline bool 2163 read_back_fb(struct drm_device *dev, struct io_mapping *fb, 2164 uint32_t off, uint32_t val) 2165 { 2166 poke_fb(dev, fb, off, val); 2167 return val == peek_fb(dev, fb, off); 2168 } 2169 2170 static int 2171 nv04_init_compute_mem(struct nvbios *bios) 2172 { 2173 struct drm_device *dev = bios->dev; 2174 uint32_t patt = 0xdeadbeef; 2175 struct io_mapping *fb; 2176 int i; 2177 2178 /* Map the framebuffer aperture */ 2179 fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), 2180 pci_resource_len(dev->pdev, 1)); 2181 if (!fb) 2182 return -ENOMEM; 2183 2184 /* Sequencer and refresh off */ 2185 NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20); 2186 bios_md32(bios, NV04_PFB_DEBUG_0, 0, NV04_PFB_DEBUG_0_REFRESH_OFF); 2187 2188 bios_md32(bios, NV04_PFB_BOOT_0, ~0, 2189 NV04_PFB_BOOT_0_RAM_AMOUNT_16MB | 2190 NV04_PFB_BOOT_0_RAM_WIDTH_128 | 2191 NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_16MBIT); 2192 2193 for (i = 0; i < 4; i++) 2194 poke_fb(dev, fb, 4 * i, patt); 2195 2196 poke_fb(dev, fb, 0x400000, patt + 1); 2197 2198 if (peek_fb(dev, fb, 0) == patt + 1) { 2199 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE, 2200 NV04_PFB_BOOT_0_RAM_TYPE_SDRAM_16MBIT); 2201 bios_md32(bios, NV04_PFB_DEBUG_0, 2202 NV04_PFB_DEBUG_0_REFRESH_OFF, 0); 2203 2204 for (i = 0; i < 4; i++) 2205 poke_fb(dev, fb, 4 * i, patt); 2206 2207 if ((peek_fb(dev, fb, 0xc) & 0xffff) != (patt & 0xffff)) 2208 bios_md32(bios, NV04_PFB_BOOT_0, 2209 NV04_PFB_BOOT_0_RAM_WIDTH_128 | 2210 NV04_PFB_BOOT_0_RAM_AMOUNT, 2211 NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); 2212 2213 } else if ((peek_fb(dev, fb, 0xc) & 0xffff0000) != 2214 (patt & 0xffff0000)) { 2215 bios_md32(bios, NV04_PFB_BOOT_0, 2216 NV04_PFB_BOOT_0_RAM_WIDTH_128 | 2217 NV04_PFB_BOOT_0_RAM_AMOUNT, 2218 NV04_PFB_BOOT_0_RAM_AMOUNT_4MB); 2219 2220 } else if (peek_fb(dev, fb, 0) != patt) { 2221 if (read_back_fb(dev, fb, 0x800000, patt)) 2222 bios_md32(bios, NV04_PFB_BOOT_0, 2223 NV04_PFB_BOOT_0_RAM_AMOUNT, 2224 NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); 2225 else 2226 bios_md32(bios, NV04_PFB_BOOT_0, 2227 NV04_PFB_BOOT_0_RAM_AMOUNT, 2228 NV04_PFB_BOOT_0_RAM_AMOUNT_4MB); 2229 2230 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE, 2231 NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_8MBIT); 2232 2233 } else if (!read_back_fb(dev, fb, 0x800000, patt)) { 2234 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, 2235 NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); 2236 2237 } 2238 2239 /* Refresh on, sequencer on */ 2240 bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0); 2241 NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20); 2242 2243 io_mapping_free(fb); 2244 return 0; 2245 } 2246 2247 static const uint8_t * 2248 nv05_memory_config(struct nvbios *bios) 2249 { 2250 /* Defaults for BIOSes lacking a memory config table */ 2251 static const uint8_t default_config_tab[][2] = { 2252 { 0x24, 0x00 }, 2253 { 0x28, 0x00 }, 2254 { 0x24, 0x01 }, 2255 { 0x1f, 0x00 }, 2256 { 0x0f, 0x00 }, 2257 { 0x17, 0x00 }, 2258 { 0x06, 0x00 }, 2259 { 0x00, 0x00 } 2260 }; 2261 int i = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 2262 NV_PEXTDEV_BOOT_0_RAMCFG) >> 2; 2263 2264 if (bios->legacy.mem_init_tbl_ptr) 2265 return &bios->data[bios->legacy.mem_init_tbl_ptr + 2 * i]; 2266 else 2267 return default_config_tab[i]; 2268 } 2269 2270 static int 2271 nv05_init_compute_mem(struct nvbios *bios) 2272 { 2273 struct drm_device *dev = bios->dev; 2274 const uint8_t *ramcfg = nv05_memory_config(bios); 2275 uint32_t patt = 0xdeadbeef; 2276 struct io_mapping *fb; 2277 int i, v; 2278 2279 /* Map the framebuffer aperture */ 2280 fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), 2281 pci_resource_len(dev->pdev, 1)); 2282 if (!fb) 2283 return -ENOMEM; 2284 2285 /* Sequencer off */ 2286 NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20); 2287 2288 if (bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_UMA_ENABLE) 2289 goto out; 2290 2291 bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0); 2292 2293 /* If present load the hardcoded scrambling table */ 2294 if (bios->legacy.mem_init_tbl_ptr) { 2295 uint32_t *scramble_tab = (uint32_t *)&bios->data[ 2296 bios->legacy.mem_init_tbl_ptr + 0x10]; 2297 2298 for (i = 0; i < 8; i++) 2299 bios_wr32(bios, NV04_PFB_SCRAMBLE(i), 2300 ROM32(scramble_tab[i])); 2301 } 2302 2303 /* Set memory type/width/length defaults depending on the straps */ 2304 bios_md32(bios, NV04_PFB_BOOT_0, 0x3f, ramcfg[0]); 2305 2306 if (ramcfg[1] & 0x80) 2307 bios_md32(bios, NV04_PFB_CFG0, 0, NV04_PFB_CFG0_SCRAMBLE); 2308 2309 bios_md32(bios, NV04_PFB_CFG1, 0x700001, (ramcfg[1] & 1) << 20); 2310 bios_md32(bios, NV04_PFB_CFG1, 0, 1); 2311 2312 /* Probe memory bus width */ 2313 for (i = 0; i < 4; i++) 2314 poke_fb(dev, fb, 4 * i, patt); 2315 2316 if (peek_fb(dev, fb, 0xc) != patt) 2317 bios_md32(bios, NV04_PFB_BOOT_0, 2318 NV04_PFB_BOOT_0_RAM_WIDTH_128, 0); 2319 2320 /* Probe memory length */ 2321 v = bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_RAM_AMOUNT; 2322 2323 if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_32MB && 2324 (!read_back_fb(dev, fb, 0x1000000, ++patt) || 2325 !read_back_fb(dev, fb, 0, ++patt))) 2326 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, 2327 NV04_PFB_BOOT_0_RAM_AMOUNT_16MB); 2328 2329 if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_16MB && 2330 !read_back_fb(dev, fb, 0x800000, ++patt)) 2331 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, 2332 NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); 2333 2334 if (!read_back_fb(dev, fb, 0x400000, ++patt)) 2335 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, 2336 NV04_PFB_BOOT_0_RAM_AMOUNT_4MB); 2337 2338 out: 2339 /* Sequencer on */ 2340 NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20); 2341 2342 io_mapping_free(fb); 2343 return 0; 2344 } 2345 2346 static int 2347 nv10_init_compute_mem(struct nvbios *bios) 2348 { 2349 struct drm_device *dev = bios->dev; 2350 struct drm_nouveau_private *dev_priv = bios->dev->dev_private; 2351 const int mem_width[] = { 0x10, 0x00, 0x20 }; 2352 const int mem_width_count = (dev_priv->chipset >= 0x17 ? 3 : 2); 2353 uint32_t patt = 0xdeadbeef; 2354 struct io_mapping *fb; 2355 int i, j, k; 2356 2357 /* Map the framebuffer aperture */ 2358 fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), 2359 pci_resource_len(dev->pdev, 1)); 2360 if (!fb) 2361 return -ENOMEM; 2362 2363 bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1); 2364 2365 /* Probe memory bus width */ 2366 for (i = 0; i < mem_width_count; i++) { 2367 bios_md32(bios, NV04_PFB_CFG0, 0x30, mem_width[i]); 2368 2369 for (j = 0; j < 4; j++) { 2370 for (k = 0; k < 4; k++) 2371 poke_fb(dev, fb, 0x1c, 0); 2372 2373 poke_fb(dev, fb, 0x1c, patt); 2374 poke_fb(dev, fb, 0x3c, 0); 2375 2376 if (peek_fb(dev, fb, 0x1c) == patt) 2377 goto mem_width_found; 2378 } 2379 } 2380 2381 mem_width_found: 2382 patt <<= 1; 2383 2384 /* Probe amount of installed memory */ 2385 for (i = 0; i < 4; i++) { 2386 int off = bios_rd32(bios, NV04_PFB_FIFO_DATA) - 0x100000; 2387 2388 poke_fb(dev, fb, off, patt); 2389 poke_fb(dev, fb, 0, 0); 2390 2391 peek_fb(dev, fb, 0); 2392 peek_fb(dev, fb, 0); 2393 peek_fb(dev, fb, 0); 2394 peek_fb(dev, fb, 0); 2395 2396 if (peek_fb(dev, fb, off) == patt) 2397 goto amount_found; 2398 } 2399 2400 /* IC missing - disable the upper half memory space. */ 2401 bios_md32(bios, NV04_PFB_CFG0, 0x1000, 0); 2402 2403 amount_found: 2404 io_mapping_free(fb); 2405 return 0; 2406 } 2407 2408 static int 2409 nv20_init_compute_mem(struct nvbios *bios) 2410 { 2411 struct drm_device *dev = bios->dev; 2412 struct drm_nouveau_private *dev_priv = bios->dev->dev_private; 2413 uint32_t mask = (dev_priv->chipset >= 0x25 ? 0x300 : 0x900); 2414 uint32_t amount, off; 2415 struct io_mapping *fb; 2416 2417 /* Map the framebuffer aperture */ 2418 fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), 2419 pci_resource_len(dev->pdev, 1)); 2420 if (!fb) 2421 return -ENOMEM; 2422 2423 bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1); 2424 2425 /* Allow full addressing */ 2426 bios_md32(bios, NV04_PFB_CFG0, 0, mask); 2427 2428 amount = bios_rd32(bios, NV04_PFB_FIFO_DATA); 2429 for (off = amount; off > 0x2000000; off -= 0x2000000) 2430 poke_fb(dev, fb, off - 4, off); 2431 2432 amount = bios_rd32(bios, NV04_PFB_FIFO_DATA); 2433 if (amount != peek_fb(dev, fb, amount - 4)) 2434 /* IC missing - disable the upper half memory space. */ 2435 bios_md32(bios, NV04_PFB_CFG0, mask, 0); 2436 2437 io_mapping_free(fb); 2438 return 0; 2439 } 2440 2441 static int 2442 init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2443 { 2444 /* 2445 * INIT_COMPUTE_MEM opcode: 0x63 ('c') 2446 * 2447 * offset (8 bit): opcode 2448 * 2449 * This opcode is meant to set the PFB memory config registers 2450 * appropriately so that we can correctly calculate how much VRAM it 2451 * has (on nv10 and better chipsets the amount of installed VRAM is 2452 * subsequently reported in NV_PFB_CSTATUS (0x10020C)). 2453 * 2454 * The implementation of this opcode in general consists of several 2455 * parts: 2456 * 2457 * 1) Determination of memory type and density. Only necessary for 2458 * really old chipsets, the memory type reported by the strap bits 2459 * (0x101000) is assumed to be accurate on nv05 and newer. 2460 * 2461 * 2) Determination of the memory bus width. Usually done by a cunning 2462 * combination of writes to offsets 0x1c and 0x3c in the fb, and 2463 * seeing whether the written values are read back correctly. 2464 * 2465 * Only necessary on nv0x-nv1x and nv34, on the other cards we can 2466 * trust the straps. 2467 * 2468 * 3) Determination of how many of the card's RAM pads have ICs 2469 * attached, usually done by a cunning combination of writes to an 2470 * offset slightly less than the maximum memory reported by 2471 * NV_PFB_CSTATUS, then seeing if the test pattern can be read back. 2472 * 2473 * This appears to be a NOP on IGPs and NV4x or newer chipsets, both io 2474 * logs of the VBIOS and kmmio traces of the binary driver POSTing the 2475 * card show nothing being done for this opcode. Why is it still listed 2476 * in the table?! 2477 */ 2478 2479 /* no iexec->execute check by design */ 2480 2481 struct drm_nouveau_private *dev_priv = bios->dev->dev_private; 2482 int ret; 2483 2484 if (dev_priv->chipset >= 0x40 || 2485 dev_priv->chipset == 0x1a || 2486 dev_priv->chipset == 0x1f) 2487 ret = 0; 2488 else if (dev_priv->chipset >= 0x20 && 2489 dev_priv->chipset != 0x34) 2490 ret = nv20_init_compute_mem(bios); 2491 else if (dev_priv->chipset >= 0x10) 2492 ret = nv10_init_compute_mem(bios); 2493 else if (dev_priv->chipset >= 0x5) 2494 ret = nv05_init_compute_mem(bios); 2495 else 2496 ret = nv04_init_compute_mem(bios); 2497 2498 if (ret) 2499 return ret; 2500 2501 return 1; 2502 } 2503 2504 static int 2505 init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2506 { 2507 /* 2508 * INIT_RESET opcode: 0x65 ('e') 2509 * 2510 * offset (8 bit): opcode 2511 * offset + 1 (32 bit): register 2512 * offset + 5 (32 bit): value1 2513 * offset + 9 (32 bit): value2 2514 * 2515 * Assign "value1" to "register", then assign "value2" to "register" 2516 */ 2517 2518 uint32_t reg = ROM32(bios->data[offset + 1]); 2519 uint32_t value1 = ROM32(bios->data[offset + 5]); 2520 uint32_t value2 = ROM32(bios->data[offset + 9]); 2521 uint32_t pci_nv_19, pci_nv_20; 2522 2523 /* no iexec->execute check by design */ 2524 2525 pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19); 2526 bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19 & ~0xf00); 2527 2528 bios_wr32(bios, reg, value1); 2529 2530 udelay(10); 2531 2532 bios_wr32(bios, reg, value2); 2533 bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19); 2534 2535 pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20); 2536 pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED; /* 0xfffffffe */ 2537 bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20); 2538 2539 return 13; 2540 } 2541 2542 static int 2543 init_configure_mem(struct nvbios *bios, uint16_t offset, 2544 struct init_exec *iexec) 2545 { 2546 /* 2547 * INIT_CONFIGURE_MEM opcode: 0x66 ('f') 2548 * 2549 * offset (8 bit): opcode 2550 * 2551 * Equivalent to INIT_DONE on bios version 3 or greater. 2552 * For early bios versions, sets up the memory registers, using values 2553 * taken from the memory init table 2554 */ 2555 2556 /* no iexec->execute check by design */ 2557 2558 uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4); 2559 uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6; 2560 uint32_t reg, data; 2561 2562 if (bios->major_version > 2) 2563 return 0; 2564 2565 bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd( 2566 bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20); 2567 2568 if (bios->data[meminitoffs] & 1) 2569 seqtbloffs = bios->legacy.ddr_seq_tbl_ptr; 2570 2571 for (reg = ROM32(bios->data[seqtbloffs]); 2572 reg != 0xffffffff; 2573 reg = ROM32(bios->data[seqtbloffs += 4])) { 2574 2575 switch (reg) { 2576 case NV04_PFB_PRE: 2577 data = NV04_PFB_PRE_CMD_PRECHARGE; 2578 break; 2579 case NV04_PFB_PAD: 2580 data = NV04_PFB_PAD_CKE_NORMAL; 2581 break; 2582 case NV04_PFB_REF: 2583 data = NV04_PFB_REF_CMD_REFRESH; 2584 break; 2585 default: 2586 data = ROM32(bios->data[meminitdata]); 2587 meminitdata += 4; 2588 if (data == 0xffffffff) 2589 continue; 2590 } 2591 2592 bios_wr32(bios, reg, data); 2593 } 2594 2595 return 1; 2596 } 2597 2598 static int 2599 init_configure_clk(struct nvbios *bios, uint16_t offset, 2600 struct init_exec *iexec) 2601 { 2602 /* 2603 * INIT_CONFIGURE_CLK opcode: 0x67 ('g') 2604 * 2605 * offset (8 bit): opcode 2606 * 2607 * Equivalent to INIT_DONE on bios version 3 or greater. 2608 * For early bios versions, sets up the NVClk and MClk PLLs, using 2609 * values taken from the memory init table 2610 */ 2611 2612 /* no iexec->execute check by design */ 2613 2614 uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4); 2615 int clock; 2616 2617 if (bios->major_version > 2) 2618 return 0; 2619 2620 clock = ROM16(bios->data[meminitoffs + 4]) * 10; 2621 setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock); 2622 2623 clock = ROM16(bios->data[meminitoffs + 2]) * 10; 2624 if (bios->data[meminitoffs] & 1) /* DDR */ 2625 clock *= 2; 2626 setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock); 2627 2628 return 1; 2629 } 2630 2631 static int 2632 init_configure_preinit(struct nvbios *bios, uint16_t offset, 2633 struct init_exec *iexec) 2634 { 2635 /* 2636 * INIT_CONFIGURE_PREINIT opcode: 0x68 ('h') 2637 * 2638 * offset (8 bit): opcode 2639 * 2640 * Equivalent to INIT_DONE on bios version 3 or greater. 2641 * For early bios versions, does early init, loading ram and crystal 2642 * configuration from straps into CR3C 2643 */ 2644 2645 /* no iexec->execute check by design */ 2646 2647 uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0); 2648 uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & 0x40) >> 6; 2649 2650 if (bios->major_version > 2) 2651 return 0; 2652 2653 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, 2654 NV_CIO_CRE_SCRATCH4__INDEX, cr3c); 2655 2656 return 1; 2657 } 2658 2659 static int 2660 init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2661 { 2662 /* 2663 * INIT_IO opcode: 0x69 ('i') 2664 * 2665 * offset (8 bit): opcode 2666 * offset + 1 (16 bit): CRTC port 2667 * offset + 3 (8 bit): mask 2668 * offset + 4 (8 bit): data 2669 * 2670 * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port" 2671 */ 2672 2673 struct drm_nouveau_private *dev_priv = bios->dev->dev_private; 2674 uint16_t crtcport = ROM16(bios->data[offset + 1]); 2675 uint8_t mask = bios->data[offset + 3]; 2676 uint8_t data = bios->data[offset + 4]; 2677 2678 if (!iexec->execute) 2679 return 5; 2680 2681 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n", 2682 offset, crtcport, mask, data); 2683 2684 /* 2685 * I have no idea what this does, but NVIDIA do this magic sequence 2686 * in the places where this INIT_IO happens.. 2687 */ 2688 if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) { 2689 int i; 2690 2691 bios_wr32(bios, 0x614100, (bios_rd32( 2692 bios, 0x614100) & 0x0fffffff) | 0x00800000); 2693 2694 bios_wr32(bios, 0x00e18c, bios_rd32( 2695 bios, 0x00e18c) | 0x00020000); 2696 2697 bios_wr32(bios, 0x614900, (bios_rd32( 2698 bios, 0x614900) & 0x0fffffff) | 0x00800000); 2699 2700 bios_wr32(bios, 0x000200, bios_rd32( 2701 bios, 0x000200) & ~0x40000000); 2702 2703 mdelay(10); 2704 2705 bios_wr32(bios, 0x00e18c, bios_rd32( 2706 bios, 0x00e18c) & ~0x00020000); 2707 2708 bios_wr32(bios, 0x000200, bios_rd32( 2709 bios, 0x000200) | 0x40000000); 2710 2711 bios_wr32(bios, 0x614100, 0x00800018); 2712 bios_wr32(bios, 0x614900, 0x00800018); 2713 2714 mdelay(10); 2715 2716 bios_wr32(bios, 0x614100, 0x10000018); 2717 bios_wr32(bios, 0x614900, 0x10000018); 2718 2719 for (i = 0; i < 3; i++) 2720 bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32( 2721 bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0); 2722 2723 for (i = 0; i < 2; i++) 2724 bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32( 2725 bios, 0x614300 + (i*0x800)) & 0xfffff0f0); 2726 2727 for (i = 0; i < 3; i++) 2728 bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32( 2729 bios, 0x614380 + (i*0x800)) & 0xfffff0f0); 2730 2731 for (i = 0; i < 2; i++) 2732 bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32( 2733 bios, 0x614200 + (i*0x800)) & 0xfffffff0); 2734 2735 for (i = 0; i < 2; i++) 2736 bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32( 2737 bios, 0x614108 + (i*0x800)) & 0x0fffffff); 2738 return 5; 2739 } 2740 2741 bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) | 2742 data); 2743 return 5; 2744 } 2745 2746 static int 2747 init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2748 { 2749 /* 2750 * INIT_SUB opcode: 0x6B ('k') 2751 * 2752 * offset (8 bit): opcode 2753 * offset + 1 (8 bit): script number 2754 * 2755 * Execute script number "script number", as a subroutine 2756 */ 2757 2758 uint8_t sub = bios->data[offset + 1]; 2759 2760 if (!iexec->execute) 2761 return 2; 2762 2763 BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub); 2764 2765 parse_init_table(bios, 2766 ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]), 2767 iexec); 2768 2769 BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub); 2770 2771 return 2; 2772 } 2773 2774 static int 2775 init_ram_condition(struct nvbios *bios, uint16_t offset, 2776 struct init_exec *iexec) 2777 { 2778 /* 2779 * INIT_RAM_CONDITION opcode: 0x6D ('m') 2780 * 2781 * offset (8 bit): opcode 2782 * offset + 1 (8 bit): mask 2783 * offset + 2 (8 bit): cmpval 2784 * 2785 * Test if (NV04_PFB_BOOT_0 & "mask") equals "cmpval". 2786 * If condition not met skip subsequent opcodes until condition is 2787 * inverted (INIT_NOT), or we hit INIT_RESUME 2788 */ 2789 2790 uint8_t mask = bios->data[offset + 1]; 2791 uint8_t cmpval = bios->data[offset + 2]; 2792 uint8_t data; 2793 2794 if (!iexec->execute) 2795 return 3; 2796 2797 data = bios_rd32(bios, NV04_PFB_BOOT_0) & mask; 2798 2799 BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n", 2800 offset, data, cmpval); 2801 2802 if (data == cmpval) 2803 BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); 2804 else { 2805 BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); 2806 iexec->execute = false; 2807 } 2808 2809 return 3; 2810 } 2811 2812 static int 2813 init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2814 { 2815 /* 2816 * INIT_NV_REG opcode: 0x6E ('n') 2817 * 2818 * offset (8 bit): opcode 2819 * offset + 1 (32 bit): register 2820 * offset + 5 (32 bit): mask 2821 * offset + 9 (32 bit): data 2822 * 2823 * Assign ((REGVAL("register") & "mask") | "data") to "register" 2824 */ 2825 2826 uint32_t reg = ROM32(bios->data[offset + 1]); 2827 uint32_t mask = ROM32(bios->data[offset + 5]); 2828 uint32_t data = ROM32(bios->data[offset + 9]); 2829 2830 if (!iexec->execute) 2831 return 13; 2832 2833 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n", 2834 offset, reg, mask, data); 2835 2836 bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data); 2837 2838 return 13; 2839 } 2840 2841 static int 2842 init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2843 { 2844 /* 2845 * INIT_MACRO opcode: 0x6F ('o') 2846 * 2847 * offset (8 bit): opcode 2848 * offset + 1 (8 bit): macro number 2849 * 2850 * Look up macro index "macro number" in the macro index table. 2851 * The macro index table entry has 1 byte for the index in the macro 2852 * table, and 1 byte for the number of times to repeat the macro. 2853 * The macro table entry has 4 bytes for the register address and 2854 * 4 bytes for the value to write to that register 2855 */ 2856 2857 uint8_t macro_index_tbl_idx = bios->data[offset + 1]; 2858 uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE); 2859 uint8_t macro_tbl_idx = bios->data[tmp]; 2860 uint8_t count = bios->data[tmp + 1]; 2861 uint32_t reg, data; 2862 int i; 2863 2864 if (!iexec->execute) 2865 return 2; 2866 2867 BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, " 2868 "Count: 0x%02X\n", 2869 offset, macro_index_tbl_idx, macro_tbl_idx, count); 2870 2871 for (i = 0; i < count; i++) { 2872 uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE; 2873 2874 reg = ROM32(bios->data[macroentryptr]); 2875 data = ROM32(bios->data[macroentryptr + 4]); 2876 2877 bios_wr32(bios, reg, data); 2878 } 2879 2880 return 2; 2881 } 2882 2883 static int 2884 init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2885 { 2886 /* 2887 * INIT_DONE opcode: 0x71 ('q') 2888 * 2889 * offset (8 bit): opcode 2890 * 2891 * End the current script 2892 */ 2893 2894 /* mild retval abuse to stop parsing this table */ 2895 return 0; 2896 } 2897 2898 static int 2899 init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2900 { 2901 /* 2902 * INIT_RESUME opcode: 0x72 ('r') 2903 * 2904 * offset (8 bit): opcode 2905 * 2906 * End the current execute / no-execute condition 2907 */ 2908 2909 if (iexec->execute) 2910 return 1; 2911 2912 iexec->execute = true; 2913 BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset); 2914 2915 return 1; 2916 } 2917 2918 static int 2919 init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2920 { 2921 /* 2922 * INIT_TIME opcode: 0x74 ('t') 2923 * 2924 * offset (8 bit): opcode 2925 * offset + 1 (16 bit): time 2926 * 2927 * Sleep for "time" microseconds. 2928 */ 2929 2930 unsigned time = ROM16(bios->data[offset + 1]); 2931 2932 if (!iexec->execute) 2933 return 3; 2934 2935 BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n", 2936 offset, time); 2937 2938 if (time < 1000) 2939 udelay(time); 2940 else 2941 mdelay((time + 900) / 1000); 2942 2943 return 3; 2944 } 2945 2946 static int 2947 init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2948 { 2949 /* 2950 * INIT_CONDITION opcode: 0x75 ('u') 2951 * 2952 * offset (8 bit): opcode 2953 * offset + 1 (8 bit): condition number 2954 * 2955 * Check condition "condition number" in the condition table. 2956 * If condition not met skip subsequent opcodes until condition is 2957 * inverted (INIT_NOT), or we hit INIT_RESUME 2958 */ 2959 2960 uint8_t cond = bios->data[offset + 1]; 2961 2962 if (!iexec->execute) 2963 return 2; 2964 2965 BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond); 2966 2967 if (bios_condition_met(bios, offset, cond)) 2968 BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); 2969 else { 2970 BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); 2971 iexec->execute = false; 2972 } 2973 2974 return 2; 2975 } 2976 2977 static int 2978 init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 2979 { 2980 /* 2981 * INIT_IO_CONDITION opcode: 0x76 2982 * 2983 * offset (8 bit): opcode 2984 * offset + 1 (8 bit): condition number 2985 * 2986 * Check condition "condition number" in the io condition table. 2987 * If condition not met skip subsequent opcodes until condition is 2988 * inverted (INIT_NOT), or we hit INIT_RESUME 2989 */ 2990 2991 uint8_t cond = bios->data[offset + 1]; 2992 2993 if (!iexec->execute) 2994 return 2; 2995 2996 BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond); 2997 2998 if (io_condition_met(bios, offset, cond)) 2999 BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); 3000 else { 3001 BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); 3002 iexec->execute = false; 3003 } 3004 3005 return 2; 3006 } 3007 3008 static int 3009 init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3010 { 3011 /* 3012 * INIT_INDEX_IO opcode: 0x78 ('x') 3013 * 3014 * offset (8 bit): opcode 3015 * offset + 1 (16 bit): CRTC port 3016 * offset + 3 (8 bit): CRTC index 3017 * offset + 4 (8 bit): mask 3018 * offset + 5 (8 bit): data 3019 * 3020 * Read value at index "CRTC index" on "CRTC port", AND with "mask", 3021 * OR with "data", write-back 3022 */ 3023 3024 uint16_t crtcport = ROM16(bios->data[offset + 1]); 3025 uint8_t crtcindex = bios->data[offset + 3]; 3026 uint8_t mask = bios->data[offset + 4]; 3027 uint8_t data = bios->data[offset + 5]; 3028 uint8_t value; 3029 3030 if (!iexec->execute) 3031 return 6; 3032 3033 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " 3034 "Data: 0x%02X\n", 3035 offset, crtcport, crtcindex, mask, data); 3036 3037 value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data; 3038 bios_idxprt_wr(bios, crtcport, crtcindex, value); 3039 3040 return 6; 3041 } 3042 3043 static int 3044 init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3045 { 3046 /* 3047 * INIT_PLL opcode: 0x79 ('y') 3048 * 3049 * offset (8 bit): opcode 3050 * offset + 1 (32 bit): register 3051 * offset + 5 (16 bit): freq 3052 * 3053 * Set PLL register "register" to coefficients for frequency (10kHz) 3054 * "freq" 3055 */ 3056 3057 uint32_t reg = ROM32(bios->data[offset + 1]); 3058 uint16_t freq = ROM16(bios->data[offset + 5]); 3059 3060 if (!iexec->execute) 3061 return 7; 3062 3063 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq); 3064 3065 setPLL(bios, reg, freq * 10); 3066 3067 return 7; 3068 } 3069 3070 static int 3071 init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3072 { 3073 /* 3074 * INIT_ZM_REG opcode: 0x7A ('z') 3075 * 3076 * offset (8 bit): opcode 3077 * offset + 1 (32 bit): register 3078 * offset + 5 (32 bit): value 3079 * 3080 * Assign "value" to "register" 3081 */ 3082 3083 uint32_t reg = ROM32(bios->data[offset + 1]); 3084 uint32_t value = ROM32(bios->data[offset + 5]); 3085 3086 if (!iexec->execute) 3087 return 9; 3088 3089 if (reg == 0x000200) 3090 value |= 1; 3091 3092 bios_wr32(bios, reg, value); 3093 3094 return 9; 3095 } 3096 3097 static int 3098 init_ram_restrict_pll(struct nvbios *bios, uint16_t offset, 3099 struct init_exec *iexec) 3100 { 3101 /* 3102 * INIT_RAM_RESTRICT_PLL opcode: 0x87 ('') 3103 * 3104 * offset (8 bit): opcode 3105 * offset + 1 (8 bit): PLL type 3106 * offset + 2 (32 bit): frequency 0 3107 * 3108 * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at 3109 * ram_restrict_table_ptr. The value read from there is used to select 3110 * a frequency from the table starting at 'frequency 0' to be 3111 * programmed into the PLL corresponding to 'type'. 3112 * 3113 * The PLL limits table on cards using this opcode has a mapping of 3114 * 'type' to the relevant registers. 3115 */ 3116 3117 struct drm_device *dev = bios->dev; 3118 uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2; 3119 uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap]; 3120 uint8_t type = bios->data[offset + 1]; 3121 uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]); 3122 uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry; 3123 int len = 2 + bios->ram_restrict_group_count * 4; 3124 int i; 3125 3126 if (!iexec->execute) 3127 return len; 3128 3129 if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) { 3130 NV_ERROR(dev, "PLL limits table not version 3.x\n"); 3131 return len; /* deliberate, allow default clocks to remain */ 3132 } 3133 3134 entry = pll_limits + pll_limits[1]; 3135 for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) { 3136 if (entry[0] == type) { 3137 uint32_t reg = ROM32(entry[3]); 3138 3139 BIOSLOG(bios, "0x%04X: " 3140 "Type %02x Reg 0x%08x Freq %dKHz\n", 3141 offset, type, reg, freq); 3142 3143 setPLL(bios, reg, freq); 3144 return len; 3145 } 3146 } 3147 3148 NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type); 3149 return len; 3150 } 3151 3152 static int 3153 init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3154 { 3155 /* 3156 * INIT_8C opcode: 0x8C ('') 3157 * 3158 * NOP so far.... 3159 * 3160 */ 3161 3162 return 1; 3163 } 3164 3165 static int 3166 init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3167 { 3168 /* 3169 * INIT_8D opcode: 0x8D ('') 3170 * 3171 * NOP so far.... 3172 * 3173 */ 3174 3175 return 1; 3176 } 3177 3178 static int 3179 init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3180 { 3181 /* 3182 * INIT_GPIO opcode: 0x8E ('') 3183 * 3184 * offset (8 bit): opcode 3185 * 3186 * Loop over all entries in the DCB GPIO table, and initialise 3187 * each GPIO according to various values listed in each entry 3188 */ 3189 3190 if (iexec->execute && bios->execute) 3191 nouveau_gpio_reset(bios->dev); 3192 3193 return 1; 3194 } 3195 3196 static int 3197 init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset, 3198 struct init_exec *iexec) 3199 { 3200 /* 3201 * INIT_RAM_RESTRICT_ZM_REG_GROUP opcode: 0x8F ('') 3202 * 3203 * offset (8 bit): opcode 3204 * offset + 1 (32 bit): reg 3205 * offset + 5 (8 bit): regincrement 3206 * offset + 6 (8 bit): count 3207 * offset + 7 (32 bit): value 1,1 3208 * ... 3209 * 3210 * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at 3211 * ram_restrict_table_ptr. The value read from here is 'n', and 3212 * "value 1,n" gets written to "reg". This repeats "count" times and on 3213 * each iteration 'm', "reg" increases by "regincrement" and 3214 * "value m,n" is used. The extent of n is limited by a number read 3215 * from the 'M' BIT table, herein called "blocklen" 3216 */ 3217 3218 uint32_t reg = ROM32(bios->data[offset + 1]); 3219 uint8_t regincrement = bios->data[offset + 5]; 3220 uint8_t count = bios->data[offset + 6]; 3221 uint32_t strap_ramcfg, data; 3222 /* previously set by 'M' BIT table */ 3223 uint16_t blocklen = bios->ram_restrict_group_count * 4; 3224 int len = 7 + count * blocklen; 3225 uint8_t index; 3226 int i; 3227 3228 /* critical! to know the length of the opcode */; 3229 if (!blocklen) { 3230 NV_ERROR(bios->dev, 3231 "0x%04X: Zero block length - has the M table " 3232 "been parsed?\n", offset); 3233 return -EINVAL; 3234 } 3235 3236 if (!iexec->execute) 3237 return len; 3238 3239 strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf; 3240 index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg]; 3241 3242 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, " 3243 "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n", 3244 offset, reg, regincrement, count, strap_ramcfg, index); 3245 3246 for (i = 0; i < count; i++) { 3247 data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]); 3248 3249 bios_wr32(bios, reg, data); 3250 3251 reg += regincrement; 3252 } 3253 3254 return len; 3255 } 3256 3257 static int 3258 init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3259 { 3260 /* 3261 * INIT_COPY_ZM_REG opcode: 0x90 ('') 3262 * 3263 * offset (8 bit): opcode 3264 * offset + 1 (32 bit): src reg 3265 * offset + 5 (32 bit): dst reg 3266 * 3267 * Put contents of "src reg" into "dst reg" 3268 */ 3269 3270 uint32_t srcreg = ROM32(bios->data[offset + 1]); 3271 uint32_t dstreg = ROM32(bios->data[offset + 5]); 3272 3273 if (!iexec->execute) 3274 return 9; 3275 3276 bios_wr32(bios, dstreg, bios_rd32(bios, srcreg)); 3277 3278 return 9; 3279 } 3280 3281 static int 3282 init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset, 3283 struct init_exec *iexec) 3284 { 3285 /* 3286 * INIT_ZM_REG_GROUP_ADDRESS_LATCHED opcode: 0x91 ('') 3287 * 3288 * offset (8 bit): opcode 3289 * offset + 1 (32 bit): dst reg 3290 * offset + 5 (8 bit): count 3291 * offset + 6 (32 bit): data 1 3292 * ... 3293 * 3294 * For each of "count" values write "data n" to "dst reg" 3295 */ 3296 3297 uint32_t reg = ROM32(bios->data[offset + 1]); 3298 uint8_t count = bios->data[offset + 5]; 3299 int len = 6 + count * 4; 3300 int i; 3301 3302 if (!iexec->execute) 3303 return len; 3304 3305 for (i = 0; i < count; i++) { 3306 uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]); 3307 bios_wr32(bios, reg, data); 3308 } 3309 3310 return len; 3311 } 3312 3313 static int 3314 init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3315 { 3316 /* 3317 * INIT_RESERVED opcode: 0x92 ('') 3318 * 3319 * offset (8 bit): opcode 3320 * 3321 * Seemingly does nothing 3322 */ 3323 3324 return 1; 3325 } 3326 3327 static int 3328 init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3329 { 3330 /* 3331 * INIT_96 opcode: 0x96 ('') 3332 * 3333 * offset (8 bit): opcode 3334 * offset + 1 (32 bit): sreg 3335 * offset + 5 (8 bit): sshift 3336 * offset + 6 (8 bit): smask 3337 * offset + 7 (8 bit): index 3338 * offset + 8 (32 bit): reg 3339 * offset + 12 (32 bit): mask 3340 * offset + 16 (8 bit): shift 3341 * 3342 */ 3343 3344 uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2); 3345 uint32_t reg = ROM32(bios->data[offset + 8]); 3346 uint32_t mask = ROM32(bios->data[offset + 12]); 3347 uint32_t val; 3348 3349 val = bios_rd32(bios, ROM32(bios->data[offset + 1])); 3350 if (bios->data[offset + 5] < 0x80) 3351 val >>= bios->data[offset + 5]; 3352 else 3353 val <<= (0x100 - bios->data[offset + 5]); 3354 val &= bios->data[offset + 6]; 3355 3356 val = bios->data[ROM16(bios->data[xlatptr]) + val]; 3357 val <<= bios->data[offset + 16]; 3358 3359 if (!iexec->execute) 3360 return 17; 3361 3362 bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val); 3363 return 17; 3364 } 3365 3366 static int 3367 init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3368 { 3369 /* 3370 * INIT_97 opcode: 0x97 ('') 3371 * 3372 * offset (8 bit): opcode 3373 * offset + 1 (32 bit): register 3374 * offset + 5 (32 bit): mask 3375 * offset + 9 (32 bit): value 3376 * 3377 * Adds "value" to "register" preserving the fields specified 3378 * by "mask" 3379 */ 3380 3381 uint32_t reg = ROM32(bios->data[offset + 1]); 3382 uint32_t mask = ROM32(bios->data[offset + 5]); 3383 uint32_t add = ROM32(bios->data[offset + 9]); 3384 uint32_t val; 3385 3386 val = bios_rd32(bios, reg); 3387 val = (val & mask) | ((val + add) & ~mask); 3388 3389 if (!iexec->execute) 3390 return 13; 3391 3392 bios_wr32(bios, reg, val); 3393 return 13; 3394 } 3395 3396 static int 3397 init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3398 { 3399 /* 3400 * INIT_AUXCH opcode: 0x98 ('') 3401 * 3402 * offset (8 bit): opcode 3403 * offset + 1 (32 bit): address 3404 * offset + 5 (8 bit): count 3405 * offset + 6 (8 bit): mask 0 3406 * offset + 7 (8 bit): data 0 3407 * ... 3408 * 3409 */ 3410 3411 struct drm_device *dev = bios->dev; 3412 struct nouveau_i2c_chan *auxch; 3413 uint32_t addr = ROM32(bios->data[offset + 1]); 3414 uint8_t count = bios->data[offset + 5]; 3415 int len = 6 + count * 2; 3416 int ret, i; 3417 3418 if (!bios->display.output) { 3419 NV_ERROR(dev, "INIT_AUXCH: no active output\n"); 3420 return len; 3421 } 3422 3423 auxch = init_i2c_device_find(dev, bios->display.output->i2c_index); 3424 if (!auxch) { 3425 NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n", 3426 bios->display.output->i2c_index); 3427 return len; 3428 } 3429 3430 if (!iexec->execute) 3431 return len; 3432 3433 offset += 6; 3434 for (i = 0; i < count; i++, offset += 2) { 3435 uint8_t data; 3436 3437 ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1); 3438 if (ret) { 3439 NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret); 3440 return len; 3441 } 3442 3443 data &= bios->data[offset + 0]; 3444 data |= bios->data[offset + 1]; 3445 3446 ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1); 3447 if (ret) { 3448 NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret); 3449 return len; 3450 } 3451 } 3452 3453 return len; 3454 } 3455 3456 static int 3457 init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3458 { 3459 /* 3460 * INIT_ZM_AUXCH opcode: 0x99 ('') 3461 * 3462 * offset (8 bit): opcode 3463 * offset + 1 (32 bit): address 3464 * offset + 5 (8 bit): count 3465 * offset + 6 (8 bit): data 0 3466 * ... 3467 * 3468 */ 3469 3470 struct drm_device *dev = bios->dev; 3471 struct nouveau_i2c_chan *auxch; 3472 uint32_t addr = ROM32(bios->data[offset + 1]); 3473 uint8_t count = bios->data[offset + 5]; 3474 int len = 6 + count; 3475 int ret, i; 3476 3477 if (!bios->display.output) { 3478 NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n"); 3479 return len; 3480 } 3481 3482 auxch = init_i2c_device_find(dev, bios->display.output->i2c_index); 3483 if (!auxch) { 3484 NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n", 3485 bios->display.output->i2c_index); 3486 return len; 3487 } 3488 3489 if (!iexec->execute) 3490 return len; 3491 3492 offset += 6; 3493 for (i = 0; i < count; i++, offset++) { 3494 ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1); 3495 if (ret) { 3496 NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret); 3497 return len; 3498 } 3499 } 3500 3501 return len; 3502 } 3503 3504 static int 3505 init_i2c_long_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3506 { 3507 /* 3508 * INIT_I2C_LONG_IF opcode: 0x9A ('') 3509 * 3510 * offset (8 bit): opcode 3511 * offset + 1 (8 bit): DCB I2C table entry index 3512 * offset + 2 (8 bit): I2C slave address 3513 * offset + 3 (16 bit): I2C register 3514 * offset + 5 (8 bit): mask 3515 * offset + 6 (8 bit): data 3516 * 3517 * Read the register given by "I2C register" on the device addressed 3518 * by "I2C slave address" on the I2C bus given by "DCB I2C table 3519 * entry index". Compare the result AND "mask" to "data". 3520 * If they're not equal, skip subsequent opcodes until condition is 3521 * inverted (INIT_NOT), or we hit INIT_RESUME 3522 */ 3523 3524 uint8_t i2c_index = bios->data[offset + 1]; 3525 uint8_t i2c_address = bios->data[offset + 2] >> 1; 3526 uint8_t reglo = bios->data[offset + 3]; 3527 uint8_t reghi = bios->data[offset + 4]; 3528 uint8_t mask = bios->data[offset + 5]; 3529 uint8_t data = bios->data[offset + 6]; 3530 struct nouveau_i2c_chan *chan; 3531 uint8_t buf0[2] = { reghi, reglo }; 3532 uint8_t buf1[1]; 3533 struct i2c_msg msg[2] = { 3534 { i2c_address, 0, 1, buf0 }, 3535 { i2c_address, I2C_M_RD, 1, buf1 }, 3536 }; 3537 int ret; 3538 3539 /* no execute check by design */ 3540 3541 BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n", 3542 offset, i2c_index, i2c_address); 3543 3544 chan = init_i2c_device_find(bios->dev, i2c_index); 3545 if (!chan) 3546 return -ENODEV; 3547 3548 3549 ret = i2c_transfer(&chan->adapter, msg, 2); 3550 if (ret < 0) { 3551 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: [no device], " 3552 "Mask: 0x%02X, Data: 0x%02X\n", 3553 offset, reghi, reglo, mask, data); 3554 iexec->execute = 0; 3555 return 7; 3556 } 3557 3558 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: 0x%02X, " 3559 "Mask: 0x%02X, Data: 0x%02X\n", 3560 offset, reghi, reglo, buf1[0], mask, data); 3561 3562 iexec->execute = ((buf1[0] & mask) == data); 3563 3564 return 7; 3565 } 3566 3567 static struct init_tbl_entry itbl_entry[] = { 3568 /* command name , id , length , offset , mult , command handler */ 3569 /* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */ 3570 { "INIT_IO_RESTRICT_PROG" , 0x32, init_io_restrict_prog }, 3571 { "INIT_REPEAT" , 0x33, init_repeat }, 3572 { "INIT_IO_RESTRICT_PLL" , 0x34, init_io_restrict_pll }, 3573 { "INIT_END_REPEAT" , 0x36, init_end_repeat }, 3574 { "INIT_COPY" , 0x37, init_copy }, 3575 { "INIT_NOT" , 0x38, init_not }, 3576 { "INIT_IO_FLAG_CONDITION" , 0x39, init_io_flag_condition }, 3577 { "INIT_DP_CONDITION" , 0x3A, init_dp_condition }, 3578 { "INIT_OP_3B" , 0x3B, init_op_3b }, 3579 { "INIT_OP_3C" , 0x3C, init_op_3c }, 3580 { "INIT_INDEX_ADDRESS_LATCHED" , 0x49, init_idx_addr_latched }, 3581 { "INIT_IO_RESTRICT_PLL2" , 0x4A, init_io_restrict_pll2 }, 3582 { "INIT_PLL2" , 0x4B, init_pll2 }, 3583 { "INIT_I2C_BYTE" , 0x4C, init_i2c_byte }, 3584 { "INIT_ZM_I2C_BYTE" , 0x4D, init_zm_i2c_byte }, 3585 { "INIT_ZM_I2C" , 0x4E, init_zm_i2c }, 3586 { "INIT_TMDS" , 0x4F, init_tmds }, 3587 { "INIT_ZM_TMDS_GROUP" , 0x50, init_zm_tmds_group }, 3588 { "INIT_CR_INDEX_ADDRESS_LATCHED" , 0x51, init_cr_idx_adr_latch }, 3589 { "INIT_CR" , 0x52, init_cr }, 3590 { "INIT_ZM_CR" , 0x53, init_zm_cr }, 3591 { "INIT_ZM_CR_GROUP" , 0x54, init_zm_cr_group }, 3592 { "INIT_CONDITION_TIME" , 0x56, init_condition_time }, 3593 { "INIT_LTIME" , 0x57, init_ltime }, 3594 { "INIT_ZM_REG_SEQUENCE" , 0x58, init_zm_reg_sequence }, 3595 /* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */ 3596 { "INIT_SUB_DIRECT" , 0x5B, init_sub_direct }, 3597 { "INIT_JUMP" , 0x5C, init_jump }, 3598 { "INIT_I2C_IF" , 0x5E, init_i2c_if }, 3599 { "INIT_COPY_NV_REG" , 0x5F, init_copy_nv_reg }, 3600 { "INIT_ZM_INDEX_IO" , 0x62, init_zm_index_io }, 3601 { "INIT_COMPUTE_MEM" , 0x63, init_compute_mem }, 3602 { "INIT_RESET" , 0x65, init_reset }, 3603 { "INIT_CONFIGURE_MEM" , 0x66, init_configure_mem }, 3604 { "INIT_CONFIGURE_CLK" , 0x67, init_configure_clk }, 3605 { "INIT_CONFIGURE_PREINIT" , 0x68, init_configure_preinit }, 3606 { "INIT_IO" , 0x69, init_io }, 3607 { "INIT_SUB" , 0x6B, init_sub }, 3608 { "INIT_RAM_CONDITION" , 0x6D, init_ram_condition }, 3609 { "INIT_NV_REG" , 0x6E, init_nv_reg }, 3610 { "INIT_MACRO" , 0x6F, init_macro }, 3611 { "INIT_DONE" , 0x71, init_done }, 3612 { "INIT_RESUME" , 0x72, init_resume }, 3613 /* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */ 3614 { "INIT_TIME" , 0x74, init_time }, 3615 { "INIT_CONDITION" , 0x75, init_condition }, 3616 { "INIT_IO_CONDITION" , 0x76, init_io_condition }, 3617 { "INIT_INDEX_IO" , 0x78, init_index_io }, 3618 { "INIT_PLL" , 0x79, init_pll }, 3619 { "INIT_ZM_REG" , 0x7A, init_zm_reg }, 3620 { "INIT_RAM_RESTRICT_PLL" , 0x87, init_ram_restrict_pll }, 3621 { "INIT_8C" , 0x8C, init_8c }, 3622 { "INIT_8D" , 0x8D, init_8d }, 3623 { "INIT_GPIO" , 0x8E, init_gpio }, 3624 { "INIT_RAM_RESTRICT_ZM_REG_GROUP" , 0x8F, init_ram_restrict_zm_reg_group }, 3625 { "INIT_COPY_ZM_REG" , 0x90, init_copy_zm_reg }, 3626 { "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched }, 3627 { "INIT_RESERVED" , 0x92, init_reserved }, 3628 { "INIT_96" , 0x96, init_96 }, 3629 { "INIT_97" , 0x97, init_97 }, 3630 { "INIT_AUXCH" , 0x98, init_auxch }, 3631 { "INIT_ZM_AUXCH" , 0x99, init_zm_auxch }, 3632 { "INIT_I2C_LONG_IF" , 0x9A, init_i2c_long_if }, 3633 { NULL , 0 , NULL } 3634 }; 3635 3636 #define MAX_TABLE_OPS 1000 3637 3638 static int 3639 parse_init_table(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) 3640 { 3641 /* 3642 * Parses all commands in an init table. 3643 * 3644 * We start out executing all commands found in the init table. Some 3645 * opcodes may change the status of iexec->execute to SKIP, which will 3646 * cause the following opcodes to perform no operation until the value 3647 * is changed back to EXECUTE. 3648 */ 3649 3650 int count = 0, i, ret; 3651 uint8_t id; 3652 3653 /* catch NULL script pointers */ 3654 if (offset == 0) 3655 return 0; 3656 3657 /* 3658 * Loop until INIT_DONE causes us to break out of the loop 3659 * (or until offset > bios length just in case... ) 3660 * (and no more than MAX_TABLE_OPS iterations, just in case... ) 3661 */ 3662 while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) { 3663 id = bios->data[offset]; 3664 3665 /* Find matching id in itbl_entry */ 3666 for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++) 3667 ; 3668 3669 if (!itbl_entry[i].name) { 3670 NV_ERROR(bios->dev, 3671 "0x%04X: Init table command not found: " 3672 "0x%02X\n", offset, id); 3673 return -ENOENT; 3674 } 3675 3676 BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset, 3677 itbl_entry[i].id, itbl_entry[i].name); 3678 3679 /* execute eventual command handler */ 3680 ret = (*itbl_entry[i].handler)(bios, offset, iexec); 3681 if (ret < 0) { 3682 NV_ERROR(bios->dev, "0x%04X: Failed parsing init " 3683 "table opcode: %s %d\n", offset, 3684 itbl_entry[i].name, ret); 3685 } 3686 3687 if (ret <= 0) 3688 break; 3689 3690 /* 3691 * Add the offset of the current command including all data 3692 * of that command. The offset will then be pointing on the 3693 * next op code. 3694 */ 3695 offset += ret; 3696 } 3697 3698 if (offset >= bios->length) 3699 NV_WARN(bios->dev, 3700 "Offset 0x%04X greater than known bios image length. " 3701 "Corrupt image?\n", offset); 3702 if (count >= MAX_TABLE_OPS) 3703 NV_WARN(bios->dev, 3704 "More than %d opcodes to a table is unlikely, " 3705 "is the bios image corrupt?\n", MAX_TABLE_OPS); 3706 3707 return 0; 3708 } 3709 3710 static void 3711 parse_init_tables(struct nvbios *bios) 3712 { 3713 /* Loops and calls parse_init_table() for each present table. */ 3714 3715 int i = 0; 3716 uint16_t table; 3717 struct init_exec iexec = {true, false}; 3718 3719 if (bios->old_style_init) { 3720 if (bios->init_script_tbls_ptr) 3721 parse_init_table(bios, bios->init_script_tbls_ptr, &iexec); 3722 if (bios->extra_init_script_tbl_ptr) 3723 parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec); 3724 3725 return; 3726 } 3727 3728 while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) { 3729 NV_INFO(bios->dev, 3730 "Parsing VBIOS init table %d at offset 0x%04X\n", 3731 i / 2, table); 3732 BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table); 3733 3734 parse_init_table(bios, table, &iexec); 3735 i += 2; 3736 } 3737 } 3738 3739 static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk) 3740 { 3741 int compare_record_len, i = 0; 3742 uint16_t compareclk, scriptptr = 0; 3743 3744 if (bios->major_version < 5) /* pre BIT */ 3745 compare_record_len = 3; 3746 else 3747 compare_record_len = 4; 3748 3749 do { 3750 compareclk = ROM16(bios->data[clktable + compare_record_len * i]); 3751 if (pxclk >= compareclk * 10) { 3752 if (bios->major_version < 5) { 3753 uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i]; 3754 scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]); 3755 } else 3756 scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]); 3757 break; 3758 } 3759 i++; 3760 } while (compareclk); 3761 3762 return scriptptr; 3763 } 3764 3765 static void 3766 run_digital_op_script(struct drm_device *dev, uint16_t scriptptr, 3767 struct dcb_entry *dcbent, int head, bool dl) 3768 { 3769 struct drm_nouveau_private *dev_priv = dev->dev_private; 3770 struct nvbios *bios = &dev_priv->vbios; 3771 struct init_exec iexec = {true, false}; 3772 3773 NV_TRACE(dev, "0x%04X: Parsing digital output script table\n", 3774 scriptptr); 3775 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44, 3776 head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA); 3777 /* note: if dcb entries have been merged, index may be misleading */ 3778 NVWriteVgaCrtc5758(dev, head, 0, dcbent->index); 3779 parse_init_table(bios, scriptptr, &iexec); 3780 3781 nv04_dfp_bind_head(dev, dcbent, head, dl); 3782 } 3783 3784 static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script) 3785 { 3786 struct drm_nouveau_private *dev_priv = dev->dev_private; 3787 struct nvbios *bios = &dev_priv->vbios; 3788 uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0); 3789 uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]); 3790 3791 if (!bios->fp.xlated_entry || !sub || !scriptofs) 3792 return -EINVAL; 3793 3794 run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link); 3795 3796 if (script == LVDS_PANEL_OFF) { 3797 /* off-on delay in ms */ 3798 mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7])); 3799 } 3800 #ifdef __powerpc__ 3801 /* Powerbook specific quirks */ 3802 if (script == LVDS_RESET && 3803 (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 || 3804 dev->pci_device == 0x0329)) 3805 nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72); 3806 #endif 3807 3808 return 0; 3809 } 3810 3811 static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk) 3812 { 3813 /* 3814 * The BIT LVDS table's header has the information to setup the 3815 * necessary registers. Following the standard 4 byte header are: 3816 * A bitmask byte and a dual-link transition pxclk value for use in 3817 * selecting the init script when not using straps; 4 script pointers 3818 * for panel power, selected by output and on/off; and 8 table pointers 3819 * for panel init, the needed one determined by output, and bits in the 3820 * conf byte. These tables are similar to the TMDS tables, consisting 3821 * of a list of pxclks and script pointers. 3822 */ 3823 struct drm_nouveau_private *dev_priv = dev->dev_private; 3824 struct nvbios *bios = &dev_priv->vbios; 3825 unsigned int outputset = (dcbent->or == 4) ? 1 : 0; 3826 uint16_t scriptptr = 0, clktable; 3827 3828 /* 3829 * For now we assume version 3.0 table - g80 support will need some 3830 * changes 3831 */ 3832 3833 switch (script) { 3834 case LVDS_INIT: 3835 return -ENOSYS; 3836 case LVDS_BACKLIGHT_ON: 3837 case LVDS_PANEL_ON: 3838 scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]); 3839 break; 3840 case LVDS_BACKLIGHT_OFF: 3841 case LVDS_PANEL_OFF: 3842 scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]); 3843 break; 3844 case LVDS_RESET: 3845 clktable = bios->fp.lvdsmanufacturerpointer + 15; 3846 if (dcbent->or == 4) 3847 clktable += 8; 3848 3849 if (dcbent->lvdsconf.use_straps_for_mode) { 3850 if (bios->fp.dual_link) 3851 clktable += 4; 3852 if (bios->fp.if_is_24bit) 3853 clktable += 2; 3854 } else { 3855 /* using EDID */ 3856 int cmpval_24bit = (dcbent->or == 4) ? 4 : 1; 3857 3858 if (bios->fp.dual_link) { 3859 clktable += 4; 3860 cmpval_24bit <<= 1; 3861 } 3862 3863 if (bios->fp.strapless_is_24bit & cmpval_24bit) 3864 clktable += 2; 3865 } 3866 3867 clktable = ROM16(bios->data[clktable]); 3868 if (!clktable) { 3869 NV_ERROR(dev, "Pixel clock comparison table not found\n"); 3870 return -ENOENT; 3871 } 3872 scriptptr = clkcmptable(bios, clktable, pxclk); 3873 } 3874 3875 if (!scriptptr) { 3876 NV_ERROR(dev, "LVDS output init script not found\n"); 3877 return -ENOENT; 3878 } 3879 run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link); 3880 3881 return 0; 3882 } 3883 3884 int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk) 3885 { 3886 /* 3887 * LVDS operations are multiplexed in an effort to present a single API 3888 * which works with two vastly differing underlying structures. 3889 * This acts as the demux 3890 */ 3891 3892 struct drm_nouveau_private *dev_priv = dev->dev_private; 3893 struct nvbios *bios = &dev_priv->vbios; 3894 uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer]; 3895 uint32_t sel_clk_binding, sel_clk; 3896 int ret; 3897 3898 if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver || 3899 (lvds_ver >= 0x30 && script == LVDS_INIT)) 3900 return 0; 3901 3902 if (!bios->fp.lvds_init_run) { 3903 bios->fp.lvds_init_run = true; 3904 call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk); 3905 } 3906 3907 if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change) 3908 call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk); 3909 if (script == LVDS_RESET && bios->fp.power_off_for_reset) 3910 call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk); 3911 3912 NV_TRACE(dev, "Calling LVDS script %d:\n", script); 3913 3914 /* don't let script change pll->head binding */ 3915 sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000; 3916 3917 if (lvds_ver < 0x30) 3918 ret = call_lvds_manufacturer_script(dev, dcbent, head, script); 3919 else 3920 ret = run_lvds_table(dev, dcbent, head, script, pxclk); 3921 3922 bios->fp.last_script_invoc = (script << 1 | head); 3923 3924 sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000; 3925 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding); 3926 /* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */ 3927 nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0); 3928 3929 return ret; 3930 } 3931 3932 struct lvdstableheader { 3933 uint8_t lvds_ver, headerlen, recordlen; 3934 }; 3935 3936 static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth) 3937 { 3938 /* 3939 * BMP version (0xa) LVDS table has a simple header of version and 3940 * record length. The BIT LVDS table has the typical BIT table header: 3941 * version byte, header length byte, record length byte, and a byte for 3942 * the maximum number of records that can be held in the table. 3943 */ 3944 3945 uint8_t lvds_ver, headerlen, recordlen; 3946 3947 memset(lth, 0, sizeof(struct lvdstableheader)); 3948 3949 if (bios->fp.lvdsmanufacturerpointer == 0x0) { 3950 NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n"); 3951 return -EINVAL; 3952 } 3953 3954 lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer]; 3955 3956 switch (lvds_ver) { 3957 case 0x0a: /* pre NV40 */ 3958 headerlen = 2; 3959 recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; 3960 break; 3961 case 0x30: /* NV4x */ 3962 headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; 3963 if (headerlen < 0x1f) { 3964 NV_ERROR(dev, "LVDS table header not understood\n"); 3965 return -EINVAL; 3966 } 3967 recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2]; 3968 break; 3969 case 0x40: /* G80/G90 */ 3970 headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; 3971 if (headerlen < 0x7) { 3972 NV_ERROR(dev, "LVDS table header not understood\n"); 3973 return -EINVAL; 3974 } 3975 recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2]; 3976 break; 3977 default: 3978 NV_ERROR(dev, 3979 "LVDS table revision %d.%d not currently supported\n", 3980 lvds_ver >> 4, lvds_ver & 0xf); 3981 return -ENOSYS; 3982 } 3983 3984 lth->lvds_ver = lvds_ver; 3985 lth->headerlen = headerlen; 3986 lth->recordlen = recordlen; 3987 3988 return 0; 3989 } 3990 3991 static int 3992 get_fp_strap(struct drm_device *dev, struct nvbios *bios) 3993 { 3994 struct drm_nouveau_private *dev_priv = dev->dev_private; 3995 3996 /* 3997 * The fp strap is normally dictated by the "User Strap" in 3998 * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the 3999 * Internal_Flags struct at 0x48 is set, the user strap gets overriden 4000 * by the PCI subsystem ID during POST, but not before the previous user 4001 * strap has been committed to CR58 for CR57=0xf on head A, which may be 4002 * read and used instead 4003 */ 4004 4005 if (bios->major_version < 5 && bios->data[0x48] & 0x4) 4006 return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf; 4007 4008 if (dev_priv->card_type >= NV_50) 4009 return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf; 4010 else 4011 return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf; 4012 } 4013 4014 static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios) 4015 { 4016 uint8_t *fptable; 4017 uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex; 4018 int ret, ofs, fpstrapping; 4019 struct lvdstableheader lth; 4020 4021 if (bios->fp.fptablepointer == 0x0) { 4022 /* Apple cards don't have the fp table; the laptops use DDC */ 4023 /* The table is also missing on some x86 IGPs */ 4024 #ifndef __powerpc__ 4025 NV_ERROR(dev, "Pointer to flat panel table invalid\n"); 4026 #endif 4027 bios->digital_min_front_porch = 0x4b; 4028 return 0; 4029 } 4030 4031 fptable = &bios->data[bios->fp.fptablepointer]; 4032 fptable_ver = fptable[0]; 4033 4034 switch (fptable_ver) { 4035 /* 4036 * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no 4037 * version field, and miss one of the spread spectrum/PWM bytes. 4038 * This could affect early GF2Go parts (not seen any appropriate ROMs 4039 * though). Here we assume that a version of 0x05 matches this case 4040 * (combining with a BMP version check would be better), as the 4041 * common case for the panel type field is 0x0005, and that is in 4042 * fact what we are reading the first byte of. 4043 */ 4044 case 0x05: /* some NV10, 11, 15, 16 */ 4045 recordlen = 42; 4046 ofs = -1; 4047 break; 4048 case 0x10: /* some NV15/16, and NV11+ */ 4049 recordlen = 44; 4050 ofs = 0; 4051 break; 4052 case 0x20: /* NV40+ */ 4053 headerlen = fptable[1]; 4054 recordlen = fptable[2]; 4055 fpentries = fptable[3]; 4056 /* 4057 * fptable[4] is the minimum 4058 * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap 4059 */ 4060 bios->digital_min_front_porch = fptable[4]; 4061 ofs = -7; 4062 break; 4063 default: 4064 NV_ERROR(dev, 4065 "FP table revision %d.%d not currently supported\n", 4066 fptable_ver >> 4, fptable_ver & 0xf); 4067 return -ENOSYS; 4068 } 4069 4070 if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */ 4071 return 0; 4072 4073 ret = parse_lvds_manufacturer_table_header(dev, bios, <h); 4074 if (ret) 4075 return ret; 4076 4077 if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) { 4078 bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer + 4079 lth.headerlen + 1; 4080 bios->fp.xlatwidth = lth.recordlen; 4081 } 4082 if (bios->fp.fpxlatetableptr == 0x0) { 4083 NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n"); 4084 return -EINVAL; 4085 } 4086 4087 fpstrapping = get_fp_strap(dev, bios); 4088 4089 fpindex = bios->data[bios->fp.fpxlatetableptr + 4090 fpstrapping * bios->fp.xlatwidth]; 4091 4092 if (fpindex > fpentries) { 4093 NV_ERROR(dev, "Bad flat panel table index\n"); 4094 return -ENOENT; 4095 } 4096 4097 /* nv4x cards need both a strap value and fpindex of 0xf to use DDC */ 4098 if (lth.lvds_ver > 0x10) 4099 bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf; 4100 4101 /* 4102 * If either the strap or xlated fpindex value are 0xf there is no 4103 * panel using a strap-derived bios mode present. this condition 4104 * includes, but is different from, the DDC panel indicator above 4105 */ 4106 if (fpstrapping == 0xf || fpindex == 0xf) 4107 return 0; 4108 4109 bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen + 4110 recordlen * fpindex + ofs; 4111 4112 NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n", 4113 ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1, 4114 ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1, 4115 ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10); 4116 4117 return 0; 4118 } 4119 4120 bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode) 4121 { 4122 struct drm_nouveau_private *dev_priv = dev->dev_private; 4123 struct nvbios *bios = &dev_priv->vbios; 4124 uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr]; 4125 4126 if (!mode) /* just checking whether we can produce a mode */ 4127 return bios->fp.mode_ptr; 4128 4129 memset(mode, 0, sizeof(struct drm_display_mode)); 4130 /* 4131 * For version 1.0 (version in byte 0): 4132 * bytes 1-2 are "panel type", including bits on whether Colour/mono, 4133 * single/dual link, and type (TFT etc.) 4134 * bytes 3-6 are bits per colour in RGBX 4135 */ 4136 mode->clock = ROM16(mode_entry[7]) * 10; 4137 /* bytes 9-10 is HActive */ 4138 mode->hdisplay = ROM16(mode_entry[11]) + 1; 4139 /* 4140 * bytes 13-14 is HValid Start 4141 * bytes 15-16 is HValid End 4142 */ 4143 mode->hsync_start = ROM16(mode_entry[17]) + 1; 4144 mode->hsync_end = ROM16(mode_entry[19]) + 1; 4145 mode->htotal = ROM16(mode_entry[21]) + 1; 4146 /* bytes 23-24, 27-30 similarly, but vertical */ 4147 mode->vdisplay = ROM16(mode_entry[25]) + 1; 4148 mode->vsync_start = ROM16(mode_entry[31]) + 1; 4149 mode->vsync_end = ROM16(mode_entry[33]) + 1; 4150 mode->vtotal = ROM16(mode_entry[35]) + 1; 4151 mode->flags |= (mode_entry[37] & 0x10) ? 4152 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 4153 mode->flags |= (mode_entry[37] & 0x1) ? 4154 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 4155 /* 4156 * bytes 38-39 relate to spread spectrum settings 4157 * bytes 40-43 are something to do with PWM 4158 */ 4159 4160 mode->status = MODE_OK; 4161 mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED; 4162 drm_mode_set_name(mode); 4163 return bios->fp.mode_ptr; 4164 } 4165 4166 int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit) 4167 { 4168 /* 4169 * The LVDS table header is (mostly) described in 4170 * parse_lvds_manufacturer_table_header(): the BIT header additionally 4171 * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if 4172 * straps are not being used for the panel, this specifies the frequency 4173 * at which modes should be set up in the dual link style. 4174 * 4175 * Following the header, the BMP (ver 0xa) table has several records, 4176 * indexed by a separate xlat table, indexed in turn by the fp strap in 4177 * EXTDEV_BOOT. Each record had a config byte, followed by 6 script 4178 * numbers for use by INIT_SUB which controlled panel init and power, 4179 * and finally a dword of ms to sleep between power off and on 4180 * operations. 4181 * 4182 * In the BIT versions, the table following the header serves as an 4183 * integrated config and xlat table: the records in the table are 4184 * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has 4185 * two bytes - the first as a config byte, the second for indexing the 4186 * fp mode table pointed to by the BIT 'D' table 4187 * 4188 * DDC is not used until after card init, so selecting the correct table 4189 * entry and setting the dual link flag for EDID equipped panels, 4190 * requiring tests against the native-mode pixel clock, cannot be done 4191 * until later, when this function should be called with non-zero pxclk 4192 */ 4193 struct drm_nouveau_private *dev_priv = dev->dev_private; 4194 struct nvbios *bios = &dev_priv->vbios; 4195 int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0; 4196 struct lvdstableheader lth; 4197 uint16_t lvdsofs; 4198 int ret, chip_version = bios->chip_version; 4199 4200 ret = parse_lvds_manufacturer_table_header(dev, bios, <h); 4201 if (ret) 4202 return ret; 4203 4204 switch (lth.lvds_ver) { 4205 case 0x0a: /* pre NV40 */ 4206 lvdsmanufacturerindex = bios->data[ 4207 bios->fp.fpxlatemanufacturertableptr + 4208 fpstrapping]; 4209 4210 /* we're done if this isn't the EDID panel case */ 4211 if (!pxclk) 4212 break; 4213 4214 if (chip_version < 0x25) { 4215 /* nv17 behaviour 4216 * 4217 * It seems the old style lvds script pointer is reused 4218 * to select 18/24 bit colour depth for EDID panels. 4219 */ 4220 lvdsmanufacturerindex = 4221 (bios->legacy.lvds_single_a_script_ptr & 1) ? 4222 2 : 0; 4223 if (pxclk >= bios->fp.duallink_transition_clk) 4224 lvdsmanufacturerindex++; 4225 } else if (chip_version < 0x30) { 4226 /* nv28 behaviour (off-chip encoder) 4227 * 4228 * nv28 does a complex dance of first using byte 121 of 4229 * the EDID to choose the lvdsmanufacturerindex, then 4230 * later attempting to match the EDID manufacturer and 4231 * product IDs in a table (signature 'pidt' (panel id 4232 * table?)), setting an lvdsmanufacturerindex of 0 and 4233 * an fp strap of the match index (or 0xf if none) 4234 */ 4235 lvdsmanufacturerindex = 0; 4236 } else { 4237 /* nv31, nv34 behaviour */ 4238 lvdsmanufacturerindex = 0; 4239 if (pxclk >= bios->fp.duallink_transition_clk) 4240 lvdsmanufacturerindex = 2; 4241 if (pxclk >= 140000) 4242 lvdsmanufacturerindex = 3; 4243 } 4244 4245 /* 4246 * nvidia set the high nibble of (cr57=f, cr58) to 4247 * lvdsmanufacturerindex in this case; we don't 4248 */ 4249 break; 4250 case 0x30: /* NV4x */ 4251 case 0x40: /* G80/G90 */ 4252 lvdsmanufacturerindex = fpstrapping; 4253 break; 4254 default: 4255 NV_ERROR(dev, "LVDS table revision not currently supported\n"); 4256 return -ENOSYS; 4257 } 4258 4259 lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex; 4260 switch (lth.lvds_ver) { 4261 case 0x0a: 4262 bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1; 4263 bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2; 4264 bios->fp.dual_link = bios->data[lvdsofs] & 4; 4265 bios->fp.link_c_increment = bios->data[lvdsofs] & 8; 4266 *if_is_24bit = bios->data[lvdsofs] & 16; 4267 break; 4268 case 0x30: 4269 case 0x40: 4270 /* 4271 * No sign of the "power off for reset" or "reset for panel 4272 * on" bits, but it's safer to assume we should 4273 */ 4274 bios->fp.power_off_for_reset = true; 4275 bios->fp.reset_after_pclk_change = true; 4276 4277 /* 4278 * It's ok lvdsofs is wrong for nv4x edid case; dual_link is 4279 * over-written, and if_is_24bit isn't used 4280 */ 4281 bios->fp.dual_link = bios->data[lvdsofs] & 1; 4282 bios->fp.if_is_24bit = bios->data[lvdsofs] & 2; 4283 bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4]; 4284 bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10; 4285 break; 4286 } 4287 4288 /* set dual_link flag for EDID case */ 4289 if (pxclk && (chip_version < 0x25 || chip_version > 0x28)) 4290 bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk); 4291 4292 *dl = bios->fp.dual_link; 4293 4294 return 0; 4295 } 4296 4297 /* BIT 'U'/'d' table encoder subtables have hashes matching them to 4298 * a particular set of encoders. 4299 * 4300 * This function returns true if a particular DCB entry matches. 4301 */ 4302 bool 4303 bios_encoder_match(struct dcb_entry *dcb, u32 hash) 4304 { 4305 if ((hash & 0x000000f0) != (dcb->location << 4)) 4306 return false; 4307 if ((hash & 0x0000000f) != dcb->type) 4308 return false; 4309 if (!(hash & (dcb->or << 16))) 4310 return false; 4311 4312 switch (dcb->type) { 4313 case OUTPUT_TMDS: 4314 case OUTPUT_LVDS: 4315 case OUTPUT_DP: 4316 if (hash & 0x00c00000) { 4317 if (!(hash & (dcb->sorconf.link << 22))) 4318 return false; 4319 } 4320 default: 4321 return true; 4322 } 4323 } 4324 4325 int 4326 nouveau_bios_run_display_table(struct drm_device *dev, u16 type, int pclk, 4327 struct dcb_entry *dcbent, int crtc) 4328 { 4329 /* 4330 * The display script table is located by the BIT 'U' table. 4331 * 4332 * It contains an array of pointers to various tables describing 4333 * a particular output type. The first 32-bits of the output 4334 * tables contains similar information to a DCB entry, and is 4335 * used to decide whether that particular table is suitable for 4336 * the output you want to access. 4337 * 4338 * The "record header length" field here seems to indicate the 4339 * offset of the first configuration entry in the output tables. 4340 * This is 10 on most cards I've seen, but 12 has been witnessed 4341 * on DP cards, and there's another script pointer within the 4342 * header. 4343 * 4344 * offset + 0 ( 8 bits): version 4345 * offset + 1 ( 8 bits): header length 4346 * offset + 2 ( 8 bits): record length 4347 * offset + 3 ( 8 bits): number of records 4348 * offset + 4 ( 8 bits): record header length 4349 * offset + 5 (16 bits): pointer to first output script table 4350 */ 4351 4352 struct drm_nouveau_private *dev_priv = dev->dev_private; 4353 struct nvbios *bios = &dev_priv->vbios; 4354 uint8_t *table = &bios->data[bios->display.script_table_ptr]; 4355 uint8_t *otable = NULL; 4356 uint16_t script; 4357 int i; 4358 4359 if (!bios->display.script_table_ptr) { 4360 NV_ERROR(dev, "No pointer to output script table\n"); 4361 return 1; 4362 } 4363 4364 /* 4365 * Nothing useful has been in any of the pre-2.0 tables I've seen, 4366 * so until they are, we really don't need to care. 4367 */ 4368 if (table[0] < 0x20) 4369 return 1; 4370 4371 if (table[0] != 0x20 && table[0] != 0x21) { 4372 NV_ERROR(dev, "Output script table version 0x%02x unknown\n", 4373 table[0]); 4374 return 1; 4375 } 4376 4377 /* 4378 * The output script tables describing a particular output type 4379 * look as follows: 4380 * 4381 * offset + 0 (32 bits): output this table matches (hash of DCB) 4382 * offset + 4 ( 8 bits): unknown 4383 * offset + 5 ( 8 bits): number of configurations 4384 * offset + 6 (16 bits): pointer to some script 4385 * offset + 8 (16 bits): pointer to some script 4386 * 4387 * headerlen == 10 4388 * offset + 10 : configuration 0 4389 * 4390 * headerlen == 12 4391 * offset + 10 : pointer to some script 4392 * offset + 12 : configuration 0 4393 * 4394 * Each config entry is as follows: 4395 * 4396 * offset + 0 (16 bits): unknown, assumed to be a match value 4397 * offset + 2 (16 bits): pointer to script table (clock set?) 4398 * offset + 4 (16 bits): pointer to script table (reset?) 4399 * 4400 * There doesn't appear to be a count value to say how many 4401 * entries exist in each script table, instead, a 0 value in 4402 * the first 16-bit word seems to indicate both the end of the 4403 * list and the default entry. The second 16-bit word in the 4404 * script tables is a pointer to the script to execute. 4405 */ 4406 4407 NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n", 4408 dcbent->type, dcbent->location, dcbent->or); 4409 for (i = 0; i < table[3]; i++) { 4410 otable = ROMPTR(dev, table[table[1] + (i * table[2])]); 4411 if (otable && bios_encoder_match(dcbent, ROM32(otable[0]))) 4412 break; 4413 } 4414 4415 if (!otable) { 4416 NV_DEBUG_KMS(dev, "failed to match any output table\n"); 4417 return 1; 4418 } 4419 4420 if (pclk < -2 || pclk > 0) { 4421 /* Try to find matching script table entry */ 4422 for (i = 0; i < otable[5]; i++) { 4423 if (ROM16(otable[table[4] + i*6]) == type) 4424 break; 4425 } 4426 4427 if (i == otable[5]) { 4428 NV_ERROR(dev, "Table 0x%04x not found for %d/%d, " 4429 "using first\n", 4430 type, dcbent->type, dcbent->or); 4431 i = 0; 4432 } 4433 } 4434 4435 if (pclk == 0) { 4436 script = ROM16(otable[6]); 4437 if (!script) { 4438 NV_DEBUG_KMS(dev, "output script 0 not found\n"); 4439 return 1; 4440 } 4441 4442 NV_DEBUG_KMS(dev, "0x%04X: parsing output script 0\n", script); 4443 nouveau_bios_run_init_table(dev, script, dcbent, crtc); 4444 } else 4445 if (pclk == -1) { 4446 script = ROM16(otable[8]); 4447 if (!script) { 4448 NV_DEBUG_KMS(dev, "output script 1 not found\n"); 4449 return 1; 4450 } 4451 4452 NV_DEBUG_KMS(dev, "0x%04X: parsing output script 1\n", script); 4453 nouveau_bios_run_init_table(dev, script, dcbent, crtc); 4454 } else 4455 if (pclk == -2) { 4456 if (table[4] >= 12) 4457 script = ROM16(otable[10]); 4458 else 4459 script = 0; 4460 if (!script) { 4461 NV_DEBUG_KMS(dev, "output script 2 not found\n"); 4462 return 1; 4463 } 4464 4465 NV_DEBUG_KMS(dev, "0x%04X: parsing output script 2\n", script); 4466 nouveau_bios_run_init_table(dev, script, dcbent, crtc); 4467 } else 4468 if (pclk > 0) { 4469 script = ROM16(otable[table[4] + i*6 + 2]); 4470 if (script) 4471 script = clkcmptable(bios, script, pclk); 4472 if (!script) { 4473 NV_DEBUG_KMS(dev, "clock script 0 not found\n"); 4474 return 1; 4475 } 4476 4477 NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 0\n", script); 4478 nouveau_bios_run_init_table(dev, script, dcbent, crtc); 4479 } else 4480 if (pclk < 0) { 4481 script = ROM16(otable[table[4] + i*6 + 4]); 4482 if (script) 4483 script = clkcmptable(bios, script, -pclk); 4484 if (!script) { 4485 NV_DEBUG_KMS(dev, "clock script 1 not found\n"); 4486 return 1; 4487 } 4488 4489 NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 1\n", script); 4490 nouveau_bios_run_init_table(dev, script, dcbent, crtc); 4491 } 4492 4493 return 0; 4494 } 4495 4496 4497 int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk) 4498 { 4499 /* 4500 * the pxclk parameter is in kHz 4501 * 4502 * This runs the TMDS regs setting code found on BIT bios cards 4503 * 4504 * For ffs(or) == 1 use the first table, for ffs(or) == 2 and 4505 * ffs(or) == 3, use the second. 4506 */ 4507 4508 struct drm_nouveau_private *dev_priv = dev->dev_private; 4509 struct nvbios *bios = &dev_priv->vbios; 4510 int cv = bios->chip_version; 4511 uint16_t clktable = 0, scriptptr; 4512 uint32_t sel_clk_binding, sel_clk; 4513 4514 /* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */ 4515 if (cv >= 0x17 && cv != 0x1a && cv != 0x20 && 4516 dcbent->location != DCB_LOC_ON_CHIP) 4517 return 0; 4518 4519 switch (ffs(dcbent->or)) { 4520 case 1: 4521 clktable = bios->tmds.output0_script_ptr; 4522 break; 4523 case 2: 4524 case 3: 4525 clktable = bios->tmds.output1_script_ptr; 4526 break; 4527 } 4528 4529 if (!clktable) { 4530 NV_ERROR(dev, "Pixel clock comparison table not found\n"); 4531 return -EINVAL; 4532 } 4533 4534 scriptptr = clkcmptable(bios, clktable, pxclk); 4535 4536 if (!scriptptr) { 4537 NV_ERROR(dev, "TMDS output init script not found\n"); 4538 return -ENOENT; 4539 } 4540 4541 /* don't let script change pll->head binding */ 4542 sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000; 4543 run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000); 4544 sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000; 4545 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding); 4546 4547 return 0; 4548 } 4549 4550 struct pll_mapping { 4551 u8 type; 4552 u32 reg; 4553 }; 4554 4555 static struct pll_mapping nv04_pll_mapping[] = { 4556 { PLL_CORE , NV_PRAMDAC_NVPLL_COEFF }, 4557 { PLL_MEMORY, NV_PRAMDAC_MPLL_COEFF }, 4558 { PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF }, 4559 { PLL_VPLL1 , NV_RAMDAC_VPLL2 }, 4560 {} 4561 }; 4562 4563 static struct pll_mapping nv40_pll_mapping[] = { 4564 { PLL_CORE , 0x004000 }, 4565 { PLL_MEMORY, 0x004020 }, 4566 { PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF }, 4567 { PLL_VPLL1 , NV_RAMDAC_VPLL2 }, 4568 {} 4569 }; 4570 4571 static struct pll_mapping nv50_pll_mapping[] = { 4572 { PLL_CORE , 0x004028 }, 4573 { PLL_SHADER, 0x004020 }, 4574 { PLL_UNK03 , 0x004000 }, 4575 { PLL_MEMORY, 0x004008 }, 4576 { PLL_UNK40 , 0x00e810 }, 4577 { PLL_UNK41 , 0x00e818 }, 4578 { PLL_UNK42 , 0x00e824 }, 4579 { PLL_VPLL0 , 0x614100 }, 4580 { PLL_VPLL1 , 0x614900 }, 4581 {} 4582 }; 4583 4584 static struct pll_mapping nv84_pll_mapping[] = { 4585 { PLL_CORE , 0x004028 }, 4586 { PLL_SHADER, 0x004020 }, 4587 { PLL_MEMORY, 0x004008 }, 4588 { PLL_VDEC , 0x004030 }, 4589 { PLL_UNK41 , 0x00e818 }, 4590 { PLL_VPLL0 , 0x614100 }, 4591 { PLL_VPLL1 , 0x614900 }, 4592 {} 4593 }; 4594 4595 u32 4596 get_pll_register(struct drm_device *dev, enum pll_types type) 4597 { 4598 struct drm_nouveau_private *dev_priv = dev->dev_private; 4599 struct nvbios *bios = &dev_priv->vbios; 4600 struct pll_mapping *map; 4601 int i; 4602 4603 if (dev_priv->card_type < NV_40) 4604 map = nv04_pll_mapping; 4605 else 4606 if (dev_priv->card_type < NV_50) 4607 map = nv40_pll_mapping; 4608 else { 4609 u8 *plim = &bios->data[bios->pll_limit_tbl_ptr]; 4610 4611 if (plim[0] >= 0x30) { 4612 u8 *entry = plim + plim[1]; 4613 for (i = 0; i < plim[3]; i++, entry += plim[2]) { 4614 if (entry[0] == type) 4615 return ROM32(entry[3]); 4616 } 4617 4618 return 0; 4619 } 4620 4621 if (dev_priv->chipset == 0x50) 4622 map = nv50_pll_mapping; 4623 else 4624 map = nv84_pll_mapping; 4625 } 4626 4627 while (map->reg) { 4628 if (map->type == type) 4629 return map->reg; 4630 map++; 4631 } 4632 4633 return 0; 4634 } 4635 4636 int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim) 4637 { 4638 /* 4639 * PLL limits table 4640 * 4641 * Version 0x10: NV30, NV31 4642 * One byte header (version), one record of 24 bytes 4643 * Version 0x11: NV36 - Not implemented 4644 * Seems to have same record style as 0x10, but 3 records rather than 1 4645 * Version 0x20: Found on Geforce 6 cards 4646 * Trivial 4 byte BIT header. 31 (0x1f) byte record length 4647 * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards 4648 * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record 4649 * length in general, some (integrated) have an extra configuration byte 4650 * Version 0x30: Found on Geforce 8, separates the register mapping 4651 * from the limits tables. 4652 */ 4653 4654 struct drm_nouveau_private *dev_priv = dev->dev_private; 4655 struct nvbios *bios = &dev_priv->vbios; 4656 int cv = bios->chip_version, pllindex = 0; 4657 uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0; 4658 uint32_t crystal_strap_mask, crystal_straps; 4659 4660 if (!bios->pll_limit_tbl_ptr) { 4661 if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 || 4662 cv >= 0x40) { 4663 NV_ERROR(dev, "Pointer to PLL limits table invalid\n"); 4664 return -EINVAL; 4665 } 4666 } else 4667 pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr]; 4668 4669 crystal_strap_mask = 1 << 6; 4670 /* open coded dev->twoHeads test */ 4671 if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20) 4672 crystal_strap_mask |= 1 << 22; 4673 crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 4674 crystal_strap_mask; 4675 4676 switch (pll_lim_ver) { 4677 /* 4678 * We use version 0 to indicate a pre limit table bios (single stage 4679 * pll) and load the hard coded limits instead. 4680 */ 4681 case 0: 4682 break; 4683 case 0x10: 4684 case 0x11: 4685 /* 4686 * Strictly v0x11 has 3 entries, but the last two don't seem 4687 * to get used. 4688 */ 4689 headerlen = 1; 4690 recordlen = 0x18; 4691 entries = 1; 4692 pllindex = 0; 4693 break; 4694 case 0x20: 4695 case 0x21: 4696 case 0x30: 4697 case 0x40: 4698 headerlen = bios->data[bios->pll_limit_tbl_ptr + 1]; 4699 recordlen = bios->data[bios->pll_limit_tbl_ptr + 2]; 4700 entries = bios->data[bios->pll_limit_tbl_ptr + 3]; 4701 break; 4702 default: 4703 NV_ERROR(dev, "PLL limits table revision 0x%X not currently " 4704 "supported\n", pll_lim_ver); 4705 return -ENOSYS; 4706 } 4707 4708 /* initialize all members to zero */ 4709 memset(pll_lim, 0, sizeof(struct pll_lims)); 4710 4711 /* if we were passed a type rather than a register, figure 4712 * out the register and store it 4713 */ 4714 if (limit_match > PLL_MAX) 4715 pll_lim->reg = limit_match; 4716 else { 4717 pll_lim->reg = get_pll_register(dev, limit_match); 4718 if (!pll_lim->reg) 4719 return -ENOENT; 4720 } 4721 4722 if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) { 4723 uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex]; 4724 4725 pll_lim->vco1.minfreq = ROM32(pll_rec[0]); 4726 pll_lim->vco1.maxfreq = ROM32(pll_rec[4]); 4727 pll_lim->vco2.minfreq = ROM32(pll_rec[8]); 4728 pll_lim->vco2.maxfreq = ROM32(pll_rec[12]); 4729 pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]); 4730 pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]); 4731 pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX; 4732 4733 /* these values taken from nv30/31/36 */ 4734 pll_lim->vco1.min_n = 0x1; 4735 if (cv == 0x36) 4736 pll_lim->vco1.min_n = 0x5; 4737 pll_lim->vco1.max_n = 0xff; 4738 pll_lim->vco1.min_m = 0x1; 4739 pll_lim->vco1.max_m = 0xd; 4740 pll_lim->vco2.min_n = 0x4; 4741 /* 4742 * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this 4743 * table version (apart from nv35)), N2 is compared to 4744 * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and 4745 * save a comparison 4746 */ 4747 pll_lim->vco2.max_n = 0x28; 4748 if (cv == 0x30 || cv == 0x35) 4749 /* only 5 bits available for N2 on nv30/35 */ 4750 pll_lim->vco2.max_n = 0x1f; 4751 pll_lim->vco2.min_m = 0x1; 4752 pll_lim->vco2.max_m = 0x4; 4753 pll_lim->max_log2p = 0x7; 4754 pll_lim->max_usable_log2p = 0x6; 4755 } else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) { 4756 uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen; 4757 uint8_t *pll_rec; 4758 int i; 4759 4760 /* 4761 * First entry is default match, if nothing better. warn if 4762 * reg field nonzero 4763 */ 4764 if (ROM32(bios->data[plloffs])) 4765 NV_WARN(dev, "Default PLL limit entry has non-zero " 4766 "register field\n"); 4767 4768 for (i = 1; i < entries; i++) 4769 if (ROM32(bios->data[plloffs + recordlen * i]) == pll_lim->reg) { 4770 pllindex = i; 4771 break; 4772 } 4773 4774 if ((dev_priv->card_type >= NV_50) && (pllindex == 0)) { 4775 NV_ERROR(dev, "Register 0x%08x not found in PLL " 4776 "limits table", pll_lim->reg); 4777 return -ENOENT; 4778 } 4779 4780 pll_rec = &bios->data[plloffs + recordlen * pllindex]; 4781 4782 BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n", 4783 pllindex ? pll_lim->reg : 0); 4784 4785 /* 4786 * Frequencies are stored in tables in MHz, kHz are more 4787 * useful, so we convert. 4788 */ 4789 4790 /* What output frequencies can each VCO generate? */ 4791 pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000; 4792 pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000; 4793 pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000; 4794 pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000; 4795 4796 /* What input frequencies they accept (past the m-divider)? */ 4797 pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000; 4798 pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000; 4799 pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000; 4800 pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000; 4801 4802 /* What values are accepted as multiplier and divider? */ 4803 pll_lim->vco1.min_n = pll_rec[20]; 4804 pll_lim->vco1.max_n = pll_rec[21]; 4805 pll_lim->vco1.min_m = pll_rec[22]; 4806 pll_lim->vco1.max_m = pll_rec[23]; 4807 pll_lim->vco2.min_n = pll_rec[24]; 4808 pll_lim->vco2.max_n = pll_rec[25]; 4809 pll_lim->vco2.min_m = pll_rec[26]; 4810 pll_lim->vco2.max_m = pll_rec[27]; 4811 4812 pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29]; 4813 if (pll_lim->max_log2p > 0x7) 4814 /* pll decoding in nv_hw.c assumes never > 7 */ 4815 NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n", 4816 pll_lim->max_log2p); 4817 if (cv < 0x60) 4818 pll_lim->max_usable_log2p = 0x6; 4819 pll_lim->log2p_bias = pll_rec[30]; 4820 4821 if (recordlen > 0x22) 4822 pll_lim->refclk = ROM32(pll_rec[31]); 4823 4824 if (recordlen > 0x23 && pll_rec[35]) 4825 NV_WARN(dev, 4826 "Bits set in PLL configuration byte (%x)\n", 4827 pll_rec[35]); 4828 4829 /* C51 special not seen elsewhere */ 4830 if (cv == 0x51 && !pll_lim->refclk) { 4831 uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK); 4832 4833 if ((pll_lim->reg == NV_PRAMDAC_VPLL_COEFF && sel_clk & 0x20) || 4834 (pll_lim->reg == NV_RAMDAC_VPLL2 && sel_clk & 0x80)) { 4835 if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3) 4836 pll_lim->refclk = 200000; 4837 else 4838 pll_lim->refclk = 25000; 4839 } 4840 } 4841 } else if (pll_lim_ver == 0x30) { /* ver 0x30 */ 4842 uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen]; 4843 uint8_t *record = NULL; 4844 int i; 4845 4846 BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n", 4847 pll_lim->reg); 4848 4849 for (i = 0; i < entries; i++, entry += recordlen) { 4850 if (ROM32(entry[3]) == pll_lim->reg) { 4851 record = &bios->data[ROM16(entry[1])]; 4852 break; 4853 } 4854 } 4855 4856 if (!record) { 4857 NV_ERROR(dev, "Register 0x%08x not found in PLL " 4858 "limits table", pll_lim->reg); 4859 return -ENOENT; 4860 } 4861 4862 pll_lim->vco1.minfreq = ROM16(record[0]) * 1000; 4863 pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000; 4864 pll_lim->vco2.minfreq = ROM16(record[4]) * 1000; 4865 pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000; 4866 pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000; 4867 pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000; 4868 pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000; 4869 pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000; 4870 pll_lim->vco1.min_n = record[16]; 4871 pll_lim->vco1.max_n = record[17]; 4872 pll_lim->vco1.min_m = record[18]; 4873 pll_lim->vco1.max_m = record[19]; 4874 pll_lim->vco2.min_n = record[20]; 4875 pll_lim->vco2.max_n = record[21]; 4876 pll_lim->vco2.min_m = record[22]; 4877 pll_lim->vco2.max_m = record[23]; 4878 pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25]; 4879 pll_lim->log2p_bias = record[27]; 4880 pll_lim->refclk = ROM32(record[28]); 4881 } else if (pll_lim_ver) { /* ver 0x40 */ 4882 uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen]; 4883 uint8_t *record = NULL; 4884 int i; 4885 4886 BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n", 4887 pll_lim->reg); 4888 4889 for (i = 0; i < entries; i++, entry += recordlen) { 4890 if (ROM32(entry[3]) == pll_lim->reg) { 4891 record = &bios->data[ROM16(entry[1])]; 4892 break; 4893 } 4894 } 4895 4896 if (!record) { 4897 NV_ERROR(dev, "Register 0x%08x not found in PLL " 4898 "limits table", pll_lim->reg); 4899 return -ENOENT; 4900 } 4901 4902 pll_lim->vco1.minfreq = ROM16(record[0]) * 1000; 4903 pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000; 4904 pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000; 4905 pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000; 4906 pll_lim->vco1.min_m = record[8]; 4907 pll_lim->vco1.max_m = record[9]; 4908 pll_lim->vco1.min_n = record[10]; 4909 pll_lim->vco1.max_n = record[11]; 4910 pll_lim->min_p = record[12]; 4911 pll_lim->max_p = record[13]; 4912 pll_lim->refclk = ROM16(entry[9]) * 1000; 4913 } 4914 4915 /* 4916 * By now any valid limit table ought to have set a max frequency for 4917 * vco1, so if it's zero it's either a pre limit table bios, or one 4918 * with an empty limit table (seen on nv18) 4919 */ 4920 if (!pll_lim->vco1.maxfreq) { 4921 pll_lim->vco1.minfreq = bios->fminvco; 4922 pll_lim->vco1.maxfreq = bios->fmaxvco; 4923 pll_lim->vco1.min_inputfreq = 0; 4924 pll_lim->vco1.max_inputfreq = INT_MAX; 4925 pll_lim->vco1.min_n = 0x1; 4926 pll_lim->vco1.max_n = 0xff; 4927 pll_lim->vco1.min_m = 0x1; 4928 if (crystal_straps == 0) { 4929 /* nv05 does this, nv11 doesn't, nv10 unknown */ 4930 if (cv < 0x11) 4931 pll_lim->vco1.min_m = 0x7; 4932 pll_lim->vco1.max_m = 0xd; 4933 } else { 4934 if (cv < 0x11) 4935 pll_lim->vco1.min_m = 0x8; 4936 pll_lim->vco1.max_m = 0xe; 4937 } 4938 if (cv < 0x17 || cv == 0x1a || cv == 0x20) 4939 pll_lim->max_log2p = 4; 4940 else 4941 pll_lim->max_log2p = 5; 4942 pll_lim->max_usable_log2p = pll_lim->max_log2p; 4943 } 4944 4945 if (!pll_lim->refclk) 4946 switch (crystal_straps) { 4947 case 0: 4948 pll_lim->refclk = 13500; 4949 break; 4950 case (1 << 6): 4951 pll_lim->refclk = 14318; 4952 break; 4953 case (1 << 22): 4954 pll_lim->refclk = 27000; 4955 break; 4956 case (1 << 22 | 1 << 6): 4957 pll_lim->refclk = 25000; 4958 break; 4959 } 4960 4961 NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq); 4962 NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq); 4963 NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq); 4964 NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq); 4965 NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n); 4966 NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n); 4967 NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m); 4968 NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m); 4969 if (pll_lim->vco2.maxfreq) { 4970 NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq); 4971 NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq); 4972 NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq); 4973 NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq); 4974 NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n); 4975 NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n); 4976 NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m); 4977 NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m); 4978 } 4979 if (!pll_lim->max_p) { 4980 NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p); 4981 NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias); 4982 } else { 4983 NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p); 4984 NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p); 4985 } 4986 NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk); 4987 4988 return 0; 4989 } 4990 4991 static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset) 4992 { 4993 /* 4994 * offset + 0 (8 bits): Micro version 4995 * offset + 1 (8 bits): Minor version 4996 * offset + 2 (8 bits): Chip version 4997 * offset + 3 (8 bits): Major version 4998 */ 4999 5000 bios->major_version = bios->data[offset + 3]; 5001 bios->chip_version = bios->data[offset + 2]; 5002 NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n", 5003 bios->data[offset + 3], bios->data[offset + 2], 5004 bios->data[offset + 1], bios->data[offset]); 5005 } 5006 5007 static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset) 5008 { 5009 /* 5010 * Parses the init table segment for pointers used in script execution. 5011 * 5012 * offset + 0 (16 bits): init script tables pointer 5013 * offset + 2 (16 bits): macro index table pointer 5014 * offset + 4 (16 bits): macro table pointer 5015 * offset + 6 (16 bits): condition table pointer 5016 * offset + 8 (16 bits): io condition table pointer 5017 * offset + 10 (16 bits): io flag condition table pointer 5018 * offset + 12 (16 bits): init function table pointer 5019 */ 5020 5021 bios->init_script_tbls_ptr = ROM16(bios->data[offset]); 5022 bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]); 5023 bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]); 5024 bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]); 5025 bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]); 5026 bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]); 5027 bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]); 5028 } 5029 5030 static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) 5031 { 5032 /* 5033 * Parses the load detect values for g80 cards. 5034 * 5035 * offset + 0 (16 bits): loadval table pointer 5036 */ 5037 5038 uint16_t load_table_ptr; 5039 uint8_t version, headerlen, entrylen, num_entries; 5040 5041 if (bitentry->length != 3) { 5042 NV_ERROR(dev, "Do not understand BIT A table\n"); 5043 return -EINVAL; 5044 } 5045 5046 load_table_ptr = ROM16(bios->data[bitentry->offset]); 5047 5048 if (load_table_ptr == 0x0) { 5049 NV_DEBUG(dev, "Pointer to BIT loadval table invalid\n"); 5050 return -EINVAL; 5051 } 5052 5053 version = bios->data[load_table_ptr]; 5054 5055 if (version != 0x10) { 5056 NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n", 5057 version >> 4, version & 0xF); 5058 return -ENOSYS; 5059 } 5060 5061 headerlen = bios->data[load_table_ptr + 1]; 5062 entrylen = bios->data[load_table_ptr + 2]; 5063 num_entries = bios->data[load_table_ptr + 3]; 5064 5065 if (headerlen != 4 || entrylen != 4 || num_entries != 2) { 5066 NV_ERROR(dev, "Do not understand BIT loadval table\n"); 5067 return -EINVAL; 5068 } 5069 5070 /* First entry is normal dac, 2nd tv-out perhaps? */ 5071 bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff; 5072 5073 return 0; 5074 } 5075 5076 static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) 5077 { 5078 /* 5079 * offset + 8 (16 bits): PLL limits table pointer 5080 * 5081 * There's more in here, but that's unknown. 5082 */ 5083 5084 if (bitentry->length < 10) { 5085 NV_ERROR(dev, "Do not understand BIT C table\n"); 5086 return -EINVAL; 5087 } 5088 5089 bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]); 5090 5091 return 0; 5092 } 5093 5094 static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) 5095 { 5096 /* 5097 * Parses the flat panel table segment that the bit entry points to. 5098 * Starting at bitentry->offset: 5099 * 5100 * offset + 0 (16 bits): ??? table pointer - seems to have 18 byte 5101 * records beginning with a freq. 5102 * offset + 2 (16 bits): mode table pointer 5103 */ 5104 5105 if (bitentry->length != 4) { 5106 NV_ERROR(dev, "Do not understand BIT display table\n"); 5107 return -EINVAL; 5108 } 5109 5110 bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]); 5111 5112 return 0; 5113 } 5114 5115 static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) 5116 { 5117 /* 5118 * Parses the init table segment that the bit entry points to. 5119 * 5120 * See parse_script_table_pointers for layout 5121 */ 5122 5123 if (bitentry->length < 14) { 5124 NV_ERROR(dev, "Do not understand init table\n"); 5125 return -EINVAL; 5126 } 5127 5128 parse_script_table_pointers(bios, bitentry->offset); 5129 5130 if (bitentry->length >= 16) 5131 bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]); 5132 if (bitentry->length >= 18) 5133 bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]); 5134 5135 return 0; 5136 } 5137 5138 static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) 5139 { 5140 /* 5141 * BIT 'i' (info?) table 5142 * 5143 * offset + 0 (32 bits): BIOS version dword (as in B table) 5144 * offset + 5 (8 bits): BIOS feature byte (same as for BMP?) 5145 * offset + 13 (16 bits): pointer to table containing DAC load 5146 * detection comparison values 5147 * 5148 * There's other things in the table, purpose unknown 5149 */ 5150 5151 uint16_t daccmpoffset; 5152 uint8_t dacver, dacheaderlen; 5153 5154 if (bitentry->length < 6) { 5155 NV_ERROR(dev, "BIT i table too short for needed information\n"); 5156 return -EINVAL; 5157 } 5158 5159 parse_bios_version(dev, bios, bitentry->offset); 5160 5161 /* 5162 * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's 5163 * Quadro identity crisis), other bits possibly as for BMP feature byte 5164 */ 5165 bios->feature_byte = bios->data[bitentry->offset + 5]; 5166 bios->is_mobile = bios->feature_byte & FEATURE_MOBILE; 5167 5168 if (bitentry->length < 15) { 5169 NV_WARN(dev, "BIT i table not long enough for DAC load " 5170 "detection comparison table\n"); 5171 return -EINVAL; 5172 } 5173 5174 daccmpoffset = ROM16(bios->data[bitentry->offset + 13]); 5175 5176 /* doesn't exist on g80 */ 5177 if (!daccmpoffset) 5178 return 0; 5179 5180 /* 5181 * The first value in the table, following the header, is the 5182 * comparison value, the second entry is a comparison value for 5183 * TV load detection. 5184 */ 5185 5186 dacver = bios->data[daccmpoffset]; 5187 dacheaderlen = bios->data[daccmpoffset + 1]; 5188 5189 if (dacver != 0x00 && dacver != 0x10) { 5190 NV_WARN(dev, "DAC load detection comparison table version " 5191 "%d.%d not known\n", dacver >> 4, dacver & 0xf); 5192 return -ENOSYS; 5193 } 5194 5195 bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]); 5196 bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]); 5197 5198 return 0; 5199 } 5200 5201 static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) 5202 { 5203 /* 5204 * Parses the LVDS table segment that the bit entry points to. 5205 * Starting at bitentry->offset: 5206 * 5207 * offset + 0 (16 bits): LVDS strap xlate table pointer 5208 */ 5209 5210 if (bitentry->length != 2) { 5211 NV_ERROR(dev, "Do not understand BIT LVDS table\n"); 5212 return -EINVAL; 5213 } 5214 5215 /* 5216 * No idea if it's still called the LVDS manufacturer table, but 5217 * the concept's close enough. 5218 */ 5219 bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]); 5220 5221 return 0; 5222 } 5223 5224 static int 5225 parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios, 5226 struct bit_entry *bitentry) 5227 { 5228 /* 5229 * offset + 2 (8 bits): number of options in an 5230 * INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set 5231 * offset + 3 (16 bits): pointer to strap xlate table for RAM 5232 * restrict option selection 5233 * 5234 * There's a bunch of bits in this table other than the RAM restrict 5235 * stuff that we don't use - their use currently unknown 5236 */ 5237 5238 /* 5239 * Older bios versions don't have a sufficiently long table for 5240 * what we want 5241 */ 5242 if (bitentry->length < 0x5) 5243 return 0; 5244 5245 if (bitentry->version < 2) { 5246 bios->ram_restrict_group_count = bios->data[bitentry->offset + 2]; 5247 bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]); 5248 } else { 5249 bios->ram_restrict_group_count = bios->data[bitentry->offset + 0]; 5250 bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]); 5251 } 5252 5253 return 0; 5254 } 5255 5256 static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) 5257 { 5258 /* 5259 * Parses the pointer to the TMDS table 5260 * 5261 * Starting at bitentry->offset: 5262 * 5263 * offset + 0 (16 bits): TMDS table pointer 5264 * 5265 * The TMDS table is typically found just before the DCB table, with a 5266 * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being 5267 * length?) 5268 * 5269 * At offset +7 is a pointer to a script, which I don't know how to 5270 * run yet. 5271 * At offset +9 is a pointer to another script, likewise 5272 * Offset +11 has a pointer to a table where the first word is a pxclk 5273 * frequency and the second word a pointer to a script, which should be 5274 * run if the comparison pxclk frequency is less than the pxclk desired. 5275 * This repeats for decreasing comparison frequencies 5276 * Offset +13 has a pointer to a similar table 5277 * The selection of table (and possibly +7/+9 script) is dictated by 5278 * "or" from the DCB. 5279 */ 5280 5281 uint16_t tmdstableptr, script1, script2; 5282 5283 if (bitentry->length != 2) { 5284 NV_ERROR(dev, "Do not understand BIT TMDS table\n"); 5285 return -EINVAL; 5286 } 5287 5288 tmdstableptr = ROM16(bios->data[bitentry->offset]); 5289 if (!tmdstableptr) { 5290 NV_ERROR(dev, "Pointer to TMDS table invalid\n"); 5291 return -EINVAL; 5292 } 5293 5294 NV_INFO(dev, "TMDS table version %d.%d\n", 5295 bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf); 5296 5297 /* nv50+ has v2.0, but we don't parse it atm */ 5298 if (bios->data[tmdstableptr] != 0x11) 5299 return -ENOSYS; 5300 5301 /* 5302 * These two scripts are odd: they don't seem to get run even when 5303 * they are not stubbed. 5304 */ 5305 script1 = ROM16(bios->data[tmdstableptr + 7]); 5306 script2 = ROM16(bios->data[tmdstableptr + 9]); 5307 if (bios->data[script1] != 'q' || bios->data[script2] != 'q') 5308 NV_WARN(dev, "TMDS table script pointers not stubbed\n"); 5309 5310 bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]); 5311 bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]); 5312 5313 return 0; 5314 } 5315 5316 static int 5317 parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios, 5318 struct bit_entry *bitentry) 5319 { 5320 /* 5321 * Parses the pointer to the G80 output script tables 5322 * 5323 * Starting at bitentry->offset: 5324 * 5325 * offset + 0 (16 bits): output script table pointer 5326 */ 5327 5328 uint16_t outputscripttableptr; 5329 5330 if (bitentry->length != 3) { 5331 NV_ERROR(dev, "Do not understand BIT U table\n"); 5332 return -EINVAL; 5333 } 5334 5335 outputscripttableptr = ROM16(bios->data[bitentry->offset]); 5336 bios->display.script_table_ptr = outputscripttableptr; 5337 return 0; 5338 } 5339 5340 struct bit_table { 5341 const char id; 5342 int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *); 5343 }; 5344 5345 #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry }) 5346 5347 int 5348 bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit) 5349 { 5350 struct drm_nouveau_private *dev_priv = dev->dev_private; 5351 struct nvbios *bios = &dev_priv->vbios; 5352 u8 entries, *entry; 5353 5354 if (bios->type != NVBIOS_BIT) 5355 return -ENODEV; 5356 5357 entries = bios->data[bios->offset + 10]; 5358 entry = &bios->data[bios->offset + 12]; 5359 while (entries--) { 5360 if (entry[0] == id) { 5361 bit->id = entry[0]; 5362 bit->version = entry[1]; 5363 bit->length = ROM16(entry[2]); 5364 bit->offset = ROM16(entry[4]); 5365 bit->data = ROMPTR(dev, entry[4]); 5366 return 0; 5367 } 5368 5369 entry += bios->data[bios->offset + 9]; 5370 } 5371 5372 return -ENOENT; 5373 } 5374 5375 static int 5376 parse_bit_table(struct nvbios *bios, const uint16_t bitoffset, 5377 struct bit_table *table) 5378 { 5379 struct drm_device *dev = bios->dev; 5380 struct bit_entry bitentry; 5381 5382 if (bit_table(dev, table->id, &bitentry) == 0) 5383 return table->parse_fn(dev, bios, &bitentry); 5384 5385 NV_INFO(dev, "BIT table '%c' not found\n", table->id); 5386 return -ENOSYS; 5387 } 5388 5389 static int 5390 parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset) 5391 { 5392 int ret; 5393 5394 /* 5395 * The only restriction on parsing order currently is having 'i' first 5396 * for use of bios->*_version or bios->feature_byte while parsing; 5397 * functions shouldn't be actually *doing* anything apart from pulling 5398 * data from the image into the bios struct, thus no interdependencies 5399 */ 5400 ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i)); 5401 if (ret) /* info? */ 5402 return ret; 5403 if (bios->major_version >= 0x60) /* g80+ */ 5404 parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A)); 5405 ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C)); 5406 if (ret) 5407 return ret; 5408 parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display)); 5409 ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init)); 5410 if (ret) 5411 return ret; 5412 parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */ 5413 parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds)); 5414 parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds)); 5415 parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U)); 5416 5417 return 0; 5418 } 5419 5420 static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset) 5421 { 5422 /* 5423 * Parses the BMP structure for useful things, but does not act on them 5424 * 5425 * offset + 5: BMP major version 5426 * offset + 6: BMP minor version 5427 * offset + 9: BMP feature byte 5428 * offset + 10: BCD encoded BIOS version 5429 * 5430 * offset + 18: init script table pointer (for bios versions < 5.10h) 5431 * offset + 20: extra init script table pointer (for bios 5432 * versions < 5.10h) 5433 * 5434 * offset + 24: memory init table pointer (used on early bios versions) 5435 * offset + 26: SDR memory sequencing setup data table 5436 * offset + 28: DDR memory sequencing setup data table 5437 * 5438 * offset + 54: index of I2C CRTC pair to use for CRT output 5439 * offset + 55: index of I2C CRTC pair to use for TV output 5440 * offset + 56: index of I2C CRTC pair to use for flat panel output 5441 * offset + 58: write CRTC index for I2C pair 0 5442 * offset + 59: read CRTC index for I2C pair 0 5443 * offset + 60: write CRTC index for I2C pair 1 5444 * offset + 61: read CRTC index for I2C pair 1 5445 * 5446 * offset + 67: maximum internal PLL frequency (single stage PLL) 5447 * offset + 71: minimum internal PLL frequency (single stage PLL) 5448 * 5449 * offset + 75: script table pointers, as described in 5450 * parse_script_table_pointers 5451 * 5452 * offset + 89: TMDS single link output A table pointer 5453 * offset + 91: TMDS single link output B table pointer 5454 * offset + 95: LVDS single link output A table pointer 5455 * offset + 105: flat panel timings table pointer 5456 * offset + 107: flat panel strapping translation table pointer 5457 * offset + 117: LVDS manufacturer panel config table pointer 5458 * offset + 119: LVDS manufacturer strapping translation table pointer 5459 * 5460 * offset + 142: PLL limits table pointer 5461 * 5462 * offset + 156: minimum pixel clock for LVDS dual link 5463 */ 5464 5465 uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor; 5466 uint16_t bmplength; 5467 uint16_t legacy_scripts_offset, legacy_i2c_offset; 5468 5469 /* load needed defaults in case we can't parse this info */ 5470 bios->digital_min_front_porch = 0x4b; 5471 bios->fmaxvco = 256000; 5472 bios->fminvco = 128000; 5473 bios->fp.duallink_transition_clk = 90000; 5474 5475 bmp_version_major = bmp[5]; 5476 bmp_version_minor = bmp[6]; 5477 5478 NV_TRACE(dev, "BMP version %d.%d\n", 5479 bmp_version_major, bmp_version_minor); 5480 5481 /* 5482 * Make sure that 0x36 is blank and can't be mistaken for a DCB 5483 * pointer on early versions 5484 */ 5485 if (bmp_version_major < 5) 5486 *(uint16_t *)&bios->data[0x36] = 0; 5487 5488 /* 5489 * Seems that the minor version was 1 for all major versions prior 5490 * to 5. Version 6 could theoretically exist, but I suspect BIT 5491 * happened instead. 5492 */ 5493 if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) { 5494 NV_ERROR(dev, "You have an unsupported BMP version. " 5495 "Please send in your bios\n"); 5496 return -ENOSYS; 5497 } 5498 5499 if (bmp_version_major == 0) 5500 /* nothing that's currently useful in this version */ 5501 return 0; 5502 else if (bmp_version_major == 1) 5503 bmplength = 44; /* exact for 1.01 */ 5504 else if (bmp_version_major == 2) 5505 bmplength = 48; /* exact for 2.01 */ 5506 else if (bmp_version_major == 3) 5507 bmplength = 54; 5508 /* guessed - mem init tables added in this version */ 5509 else if (bmp_version_major == 4 || bmp_version_minor < 0x1) 5510 /* don't know if 5.0 exists... */ 5511 bmplength = 62; 5512 /* guessed - BMP I2C indices added in version 4*/ 5513 else if (bmp_version_minor < 0x6) 5514 bmplength = 67; /* exact for 5.01 */ 5515 else if (bmp_version_minor < 0x10) 5516 bmplength = 75; /* exact for 5.06 */ 5517 else if (bmp_version_minor == 0x10) 5518 bmplength = 89; /* exact for 5.10h */ 5519 else if (bmp_version_minor < 0x14) 5520 bmplength = 118; /* exact for 5.11h */ 5521 else if (bmp_version_minor < 0x24) 5522 /* 5523 * Not sure of version where pll limits came in; 5524 * certainly exist by 0x24 though. 5525 */ 5526 /* length not exact: this is long enough to get lvds members */ 5527 bmplength = 123; 5528 else if (bmp_version_minor < 0x27) 5529 /* 5530 * Length not exact: this is long enough to get pll limit 5531 * member 5532 */ 5533 bmplength = 144; 5534 else 5535 /* 5536 * Length not exact: this is long enough to get dual link 5537 * transition clock. 5538 */ 5539 bmplength = 158; 5540 5541 /* checksum */ 5542 if (nv_cksum(bmp, 8)) { 5543 NV_ERROR(dev, "Bad BMP checksum\n"); 5544 return -EINVAL; 5545 } 5546 5547 /* 5548 * Bit 4 seems to indicate either a mobile bios or a quadro card -- 5549 * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl 5550 * (not nv10gl), bit 5 that the flat panel tables are present, and 5551 * bit 6 a tv bios. 5552 */ 5553 bios->feature_byte = bmp[9]; 5554 5555 parse_bios_version(dev, bios, offset + 10); 5556 5557 if (bmp_version_major < 5 || bmp_version_minor < 0x10) 5558 bios->old_style_init = true; 5559 legacy_scripts_offset = 18; 5560 if (bmp_version_major < 2) 5561 legacy_scripts_offset -= 4; 5562 bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]); 5563 bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]); 5564 5565 if (bmp_version_major > 2) { /* appears in BMP 3 */ 5566 bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]); 5567 bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]); 5568 bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]); 5569 } 5570 5571 legacy_i2c_offset = 0x48; /* BMP version 2 & 3 */ 5572 if (bmplength > 61) 5573 legacy_i2c_offset = offset + 54; 5574 bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset]; 5575 bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1]; 5576 bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2]; 5577 5578 if (bmplength > 74) { 5579 bios->fmaxvco = ROM32(bmp[67]); 5580 bios->fminvco = ROM32(bmp[71]); 5581 } 5582 if (bmplength > 88) 5583 parse_script_table_pointers(bios, offset + 75); 5584 if (bmplength > 94) { 5585 bios->tmds.output0_script_ptr = ROM16(bmp[89]); 5586 bios->tmds.output1_script_ptr = ROM16(bmp[91]); 5587 /* 5588 * Never observed in use with lvds scripts, but is reused for 5589 * 18/24 bit panel interface default for EDID equipped panels 5590 * (if_is_24bit not set directly to avoid any oscillation). 5591 */ 5592 bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]); 5593 } 5594 if (bmplength > 108) { 5595 bios->fp.fptablepointer = ROM16(bmp[105]); 5596 bios->fp.fpxlatetableptr = ROM16(bmp[107]); 5597 bios->fp.xlatwidth = 1; 5598 } 5599 if (bmplength > 120) { 5600 bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]); 5601 bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]); 5602 } 5603 if (bmplength > 143) 5604 bios->pll_limit_tbl_ptr = ROM16(bmp[142]); 5605 5606 if (bmplength > 157) 5607 bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10; 5608 5609 return 0; 5610 } 5611 5612 static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len) 5613 { 5614 int i, j; 5615 5616 for (i = 0; i <= (n - len); i++) { 5617 for (j = 0; j < len; j++) 5618 if (data[i + j] != str[j]) 5619 break; 5620 if (j == len) 5621 return i; 5622 } 5623 5624 return 0; 5625 } 5626 5627 void * 5628 dcb_table(struct drm_device *dev) 5629 { 5630 struct drm_nouveau_private *dev_priv = dev->dev_private; 5631 u8 *dcb = NULL; 5632 5633 if (dev_priv->card_type > NV_04) 5634 dcb = ROMPTR(dev, dev_priv->vbios.data[0x36]); 5635 if (!dcb) { 5636 NV_WARNONCE(dev, "No DCB data found in VBIOS\n"); 5637 return NULL; 5638 } 5639 5640 if (dcb[0] >= 0x41) { 5641 NV_WARNONCE(dev, "DCB version 0x%02x unknown\n", dcb[0]); 5642 return NULL; 5643 } else 5644 if (dcb[0] >= 0x30) { 5645 if (ROM32(dcb[6]) == 0x4edcbdcb) 5646 return dcb; 5647 } else 5648 if (dcb[0] >= 0x20) { 5649 if (ROM32(dcb[4]) == 0x4edcbdcb) 5650 return dcb; 5651 } else 5652 if (dcb[0] >= 0x15) { 5653 if (!memcmp(&dcb[-7], "DEV_REC", 7)) 5654 return dcb; 5655 } else { 5656 /* 5657 * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but 5658 * always has the same single (crt) entry, even when tv-out 5659 * present, so the conclusion is this version cannot really 5660 * be used. 5661 * 5662 * v1.2 tables (some NV6/10, and NV15+) normally have the 5663 * same 5 entries, which are not specific to the card and so 5664 * no use. 5665 * 5666 * v1.2 does have an I2C table that read_dcb_i2c_table can 5667 * handle, but cards exist (nv11 in #14821) with a bad i2c 5668 * table pointer, so use the indices parsed in 5669 * parse_bmp_structure. 5670 * 5671 * v1.1 (NV5+, maybe some NV4) is entirely unhelpful 5672 */ 5673 NV_WARNONCE(dev, "No useful DCB data in VBIOS\n"); 5674 return NULL; 5675 } 5676 5677 NV_WARNONCE(dev, "DCB header validation failed\n"); 5678 return NULL; 5679 } 5680 5681 void * 5682 dcb_outp(struct drm_device *dev, u8 idx) 5683 { 5684 u8 *dcb = dcb_table(dev); 5685 if (dcb && dcb[0] >= 0x30) { 5686 if (idx < dcb[2]) 5687 return dcb + dcb[1] + (idx * dcb[3]); 5688 } else 5689 if (dcb && dcb[0] >= 0x20) { 5690 u8 *i2c = ROMPTR(dev, dcb[2]); 5691 u8 *ent = dcb + 8 + (idx * 8); 5692 if (i2c && ent < i2c) 5693 return ent; 5694 } else 5695 if (dcb && dcb[0] >= 0x15) { 5696 u8 *i2c = ROMPTR(dev, dcb[2]); 5697 u8 *ent = dcb + 4 + (idx * 10); 5698 if (i2c && ent < i2c) 5699 return ent; 5700 } 5701 5702 return NULL; 5703 } 5704 5705 int 5706 dcb_outp_foreach(struct drm_device *dev, void *data, 5707 int (*exec)(struct drm_device *, void *, int idx, u8 *outp)) 5708 { 5709 int ret, idx = -1; 5710 u8 *outp = NULL; 5711 while ((outp = dcb_outp(dev, ++idx))) { 5712 if (ROM32(outp[0]) == 0x00000000) 5713 break; /* seen on an NV11 with DCB v1.5 */ 5714 if (ROM32(outp[0]) == 0xffffffff) 5715 break; /* seen on an NV17 with DCB v2.0 */ 5716 5717 if ((outp[0] & 0x0f) == OUTPUT_UNUSED) 5718 continue; 5719 if ((outp[0] & 0x0f) == OUTPUT_EOL) 5720 break; 5721 5722 ret = exec(dev, data, idx, outp); 5723 if (ret) 5724 return ret; 5725 } 5726 5727 return 0; 5728 } 5729 5730 u8 * 5731 dcb_conntab(struct drm_device *dev) 5732 { 5733 u8 *dcb = dcb_table(dev); 5734 if (dcb && dcb[0] >= 0x30 && dcb[1] >= 0x16) { 5735 u8 *conntab = ROMPTR(dev, dcb[0x14]); 5736 if (conntab && conntab[0] >= 0x30 && conntab[0] <= 0x40) 5737 return conntab; 5738 } 5739 return NULL; 5740 } 5741 5742 u8 * 5743 dcb_conn(struct drm_device *dev, u8 idx) 5744 { 5745 u8 *conntab = dcb_conntab(dev); 5746 if (conntab && idx < conntab[2]) 5747 return conntab + conntab[1] + (idx * conntab[3]); 5748 return NULL; 5749 } 5750 5751 static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb) 5752 { 5753 struct dcb_entry *entry = &dcb->entry[dcb->entries]; 5754 5755 memset(entry, 0, sizeof(struct dcb_entry)); 5756 entry->index = dcb->entries++; 5757 5758 return entry; 5759 } 5760 5761 static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c, 5762 int heads, int or) 5763 { 5764 struct dcb_entry *entry = new_dcb_entry(dcb); 5765 5766 entry->type = type; 5767 entry->i2c_index = i2c; 5768 entry->heads = heads; 5769 if (type != OUTPUT_ANALOG) 5770 entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */ 5771 entry->or = or; 5772 } 5773 5774 static bool 5775 parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb, 5776 uint32_t conn, uint32_t conf, struct dcb_entry *entry) 5777 { 5778 entry->type = conn & 0xf; 5779 entry->i2c_index = (conn >> 4) & 0xf; 5780 entry->heads = (conn >> 8) & 0xf; 5781 entry->connector = (conn >> 12) & 0xf; 5782 entry->bus = (conn >> 16) & 0xf; 5783 entry->location = (conn >> 20) & 0x3; 5784 entry->or = (conn >> 24) & 0xf; 5785 5786 switch (entry->type) { 5787 case OUTPUT_ANALOG: 5788 /* 5789 * Although the rest of a CRT conf dword is usually 5790 * zeros, mac biosen have stuff there so we must mask 5791 */ 5792 entry->crtconf.maxfreq = (dcb->version < 0x30) ? 5793 (conf & 0xffff) * 10 : 5794 (conf & 0xff) * 10000; 5795 break; 5796 case OUTPUT_LVDS: 5797 { 5798 uint32_t mask; 5799 if (conf & 0x1) 5800 entry->lvdsconf.use_straps_for_mode = true; 5801 if (dcb->version < 0x22) { 5802 mask = ~0xd; 5803 /* 5804 * The laptop in bug 14567 lies and claims to not use 5805 * straps when it does, so assume all DCB 2.0 laptops 5806 * use straps, until a broken EDID using one is produced 5807 */ 5808 entry->lvdsconf.use_straps_for_mode = true; 5809 /* 5810 * Both 0x4 and 0x8 show up in v2.0 tables; assume they 5811 * mean the same thing (probably wrong, but might work) 5812 */ 5813 if (conf & 0x4 || conf & 0x8) 5814 entry->lvdsconf.use_power_scripts = true; 5815 } else { 5816 mask = ~0x7; 5817 if (conf & 0x2) 5818 entry->lvdsconf.use_acpi_for_edid = true; 5819 if (conf & 0x4) 5820 entry->lvdsconf.use_power_scripts = true; 5821 entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4; 5822 } 5823 if (conf & mask) { 5824 /* 5825 * Until we even try to use these on G8x, it's 5826 * useless reporting unknown bits. They all are. 5827 */ 5828 if (dcb->version >= 0x40) 5829 break; 5830 5831 NV_ERROR(dev, "Unknown LVDS configuration bits, " 5832 "please report\n"); 5833 } 5834 break; 5835 } 5836 case OUTPUT_TV: 5837 { 5838 if (dcb->version >= 0x30) 5839 entry->tvconf.has_component_output = conf & (0x8 << 4); 5840 else 5841 entry->tvconf.has_component_output = false; 5842 5843 break; 5844 } 5845 case OUTPUT_DP: 5846 entry->dpconf.sor.link = (conf & 0x00000030) >> 4; 5847 switch ((conf & 0x00e00000) >> 21) { 5848 case 0: 5849 entry->dpconf.link_bw = 162000; 5850 break; 5851 default: 5852 entry->dpconf.link_bw = 270000; 5853 break; 5854 } 5855 switch ((conf & 0x0f000000) >> 24) { 5856 case 0xf: 5857 entry->dpconf.link_nr = 4; 5858 break; 5859 case 0x3: 5860 entry->dpconf.link_nr = 2; 5861 break; 5862 default: 5863 entry->dpconf.link_nr = 1; 5864 break; 5865 } 5866 break; 5867 case OUTPUT_TMDS: 5868 if (dcb->version >= 0x40) 5869 entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4; 5870 else if (dcb->version >= 0x30) 5871 entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8; 5872 else if (dcb->version >= 0x22) 5873 entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4; 5874 5875 break; 5876 case OUTPUT_EOL: 5877 /* weird g80 mobile type that "nv" treats as a terminator */ 5878 dcb->entries--; 5879 return false; 5880 default: 5881 break; 5882 } 5883 5884 if (dcb->version < 0x40) { 5885 /* Normal entries consist of a single bit, but dual link has 5886 * the next most significant bit set too 5887 */ 5888 entry->duallink_possible = 5889 ((1 << (ffs(entry->or) - 1)) * 3 == entry->or); 5890 } else { 5891 entry->duallink_possible = (entry->sorconf.link == 3); 5892 } 5893 5894 /* unsure what DCB version introduces this, 3.0? */ 5895 if (conf & 0x100000) 5896 entry->i2c_upper_default = true; 5897 5898 return true; 5899 } 5900 5901 static bool 5902 parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb, 5903 uint32_t conn, uint32_t conf, struct dcb_entry *entry) 5904 { 5905 switch (conn & 0x0000000f) { 5906 case 0: 5907 entry->type = OUTPUT_ANALOG; 5908 break; 5909 case 1: 5910 entry->type = OUTPUT_TV; 5911 break; 5912 case 2: 5913 case 4: 5914 if (conn & 0x10) 5915 entry->type = OUTPUT_LVDS; 5916 else 5917 entry->type = OUTPUT_TMDS; 5918 break; 5919 case 3: 5920 entry->type = OUTPUT_LVDS; 5921 break; 5922 default: 5923 NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f); 5924 return false; 5925 } 5926 5927 entry->i2c_index = (conn & 0x0003c000) >> 14; 5928 entry->heads = ((conn & 0x001c0000) >> 18) + 1; 5929 entry->or = entry->heads; /* same as heads, hopefully safe enough */ 5930 entry->location = (conn & 0x01e00000) >> 21; 5931 entry->bus = (conn & 0x0e000000) >> 25; 5932 entry->duallink_possible = false; 5933 5934 switch (entry->type) { 5935 case OUTPUT_ANALOG: 5936 entry->crtconf.maxfreq = (conf & 0xffff) * 10; 5937 break; 5938 case OUTPUT_TV: 5939 entry->tvconf.has_component_output = false; 5940 break; 5941 case OUTPUT_LVDS: 5942 if ((conn & 0x00003f00) >> 8 != 0x10) 5943 entry->lvdsconf.use_straps_for_mode = true; 5944 entry->lvdsconf.use_power_scripts = true; 5945 break; 5946 default: 5947 break; 5948 } 5949 5950 return true; 5951 } 5952 5953 static 5954 void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb) 5955 { 5956 /* 5957 * DCB v2.0 lists each output combination separately. 5958 * Here we merge compatible entries to have fewer outputs, with 5959 * more options 5960 */ 5961 5962 int i, newentries = 0; 5963 5964 for (i = 0; i < dcb->entries; i++) { 5965 struct dcb_entry *ient = &dcb->entry[i]; 5966 int j; 5967 5968 for (j = i + 1; j < dcb->entries; j++) { 5969 struct dcb_entry *jent = &dcb->entry[j]; 5970 5971 if (jent->type == 100) /* already merged entry */ 5972 continue; 5973 5974 /* merge heads field when all other fields the same */ 5975 if (jent->i2c_index == ient->i2c_index && 5976 jent->type == ient->type && 5977 jent->location == ient->location && 5978 jent->or == ient->or) { 5979 NV_TRACE(dev, "Merging DCB entries %d and %d\n", 5980 i, j); 5981 ient->heads |= jent->heads; 5982 jent->type = 100; /* dummy value */ 5983 } 5984 } 5985 } 5986 5987 /* Compact entries merged into others out of dcb */ 5988 for (i = 0; i < dcb->entries; i++) { 5989 if (dcb->entry[i].type == 100) 5990 continue; 5991 5992 if (newentries != i) { 5993 dcb->entry[newentries] = dcb->entry[i]; 5994 dcb->entry[newentries].index = newentries; 5995 } 5996 newentries++; 5997 } 5998 5999 dcb->entries = newentries; 6000 } 6001 6002 static bool 6003 apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf) 6004 { 6005 struct drm_nouveau_private *dev_priv = dev->dev_private; 6006 struct dcb_table *dcb = &dev_priv->vbios.dcb; 6007 6008 /* Dell Precision M6300 6009 * DCB entry 2: 02025312 00000010 6010 * DCB entry 3: 02026312 00000020 6011 * 6012 * Identical, except apparently a different connector on a 6013 * different SOR link. Not a clue how we're supposed to know 6014 * which one is in use if it even shares an i2c line... 6015 * 6016 * Ignore the connector on the second SOR link to prevent 6017 * nasty problems until this is sorted (assuming it's not a 6018 * VBIOS bug). 6019 */ 6020 if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) { 6021 if (*conn == 0x02026312 && *conf == 0x00000020) 6022 return false; 6023 } 6024 6025 /* GeForce3 Ti 200 6026 * 6027 * DCB reports an LVDS output that should be TMDS: 6028 * DCB entry 1: f2005014 ffffffff 6029 */ 6030 if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) { 6031 if (*conn == 0xf2005014 && *conf == 0xffffffff) { 6032 fabricate_dcb_output(dcb, OUTPUT_TMDS, 1, 1, 1); 6033 return false; 6034 } 6035 } 6036 6037 /* XFX GT-240X-YA 6038 * 6039 * So many things wrong here, replace the entire encoder table.. 6040 */ 6041 if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) { 6042 if (idx == 0) { 6043 *conn = 0x02001300; /* VGA, connector 1 */ 6044 *conf = 0x00000028; 6045 } else 6046 if (idx == 1) { 6047 *conn = 0x01010312; /* DVI, connector 0 */ 6048 *conf = 0x00020030; 6049 } else 6050 if (idx == 2) { 6051 *conn = 0x01010310; /* VGA, connector 0 */ 6052 *conf = 0x00000028; 6053 } else 6054 if (idx == 3) { 6055 *conn = 0x02022362; /* HDMI, connector 2 */ 6056 *conf = 0x00020010; 6057 } else { 6058 *conn = 0x0000000e; /* EOL */ 6059 *conf = 0x00000000; 6060 } 6061 } 6062 6063 /* Some other twisted XFX board (rhbz#694914) 6064 * 6065 * The DVI/VGA encoder combo that's supposed to represent the 6066 * DVI-I connector actually point at two different ones, and 6067 * the HDMI connector ends up paired with the VGA instead. 6068 * 6069 * Connector table is missing anything for VGA at all, pointing it 6070 * an invalid conntab entry 2 so we figure it out ourself. 6071 */ 6072 if (nv_match_device(dev, 0x0615, 0x1682, 0x2605)) { 6073 if (idx == 0) { 6074 *conn = 0x02002300; /* VGA, connector 2 */ 6075 *conf = 0x00000028; 6076 } else 6077 if (idx == 1) { 6078 *conn = 0x01010312; /* DVI, connector 0 */ 6079 *conf = 0x00020030; 6080 } else 6081 if (idx == 2) { 6082 *conn = 0x04020310; /* VGA, connector 0 */ 6083 *conf = 0x00000028; 6084 } else 6085 if (idx == 3) { 6086 *conn = 0x02021322; /* HDMI, connector 1 */ 6087 *conf = 0x00020010; 6088 } else { 6089 *conn = 0x0000000e; /* EOL */ 6090 *conf = 0x00000000; 6091 } 6092 } 6093 6094 /* fdo#50830: connector indices for VGA and DVI-I are backwards */ 6095 if (nv_match_device(dev, 0x0421, 0x3842, 0xc793)) { 6096 if (idx == 0 && *conn == 0x02000300) 6097 *conn = 0x02011300; 6098 else 6099 if (idx == 1 && *conn == 0x04011310) 6100 *conn = 0x04000310; 6101 else 6102 if (idx == 2 && *conn == 0x02011312) 6103 *conn = 0x02000312; 6104 } 6105 6106 return true; 6107 } 6108 6109 static void 6110 fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios) 6111 { 6112 struct dcb_table *dcb = &bios->dcb; 6113 int all_heads = (nv_two_heads(dev) ? 3 : 1); 6114 6115 #ifdef __powerpc__ 6116 /* Apple iMac G4 NV17 */ 6117 if (of_machine_is_compatible("PowerMac4,5")) { 6118 fabricate_dcb_output(dcb, OUTPUT_TMDS, 0, all_heads, 1); 6119 fabricate_dcb_output(dcb, OUTPUT_ANALOG, 1, all_heads, 2); 6120 return; 6121 } 6122 #endif 6123 6124 /* Make up some sane defaults */ 6125 fabricate_dcb_output(dcb, OUTPUT_ANALOG, 6126 bios->legacy.i2c_indices.crt, 1, 1); 6127 6128 if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0) 6129 fabricate_dcb_output(dcb, OUTPUT_TV, 6130 bios->legacy.i2c_indices.tv, 6131 all_heads, 0); 6132 6133 else if (bios->tmds.output0_script_ptr || 6134 bios->tmds.output1_script_ptr) 6135 fabricate_dcb_output(dcb, OUTPUT_TMDS, 6136 bios->legacy.i2c_indices.panel, 6137 all_heads, 1); 6138 } 6139 6140 static int 6141 parse_dcb_entry(struct drm_device *dev, void *data, int idx, u8 *outp) 6142 { 6143 struct drm_nouveau_private *dev_priv = dev->dev_private; 6144 struct dcb_table *dcb = &dev_priv->vbios.dcb; 6145 u32 conf = (dcb->version >= 0x20) ? ROM32(outp[4]) : ROM32(outp[6]); 6146 u32 conn = ROM32(outp[0]); 6147 bool ret; 6148 6149 if (apply_dcb_encoder_quirks(dev, idx, &conn, &conf)) { 6150 struct dcb_entry *entry = new_dcb_entry(dcb); 6151 6152 NV_TRACEWARN(dev, "DCB outp %02d: %08x %08x\n", idx, conn, conf); 6153 6154 if (dcb->version >= 0x20) 6155 ret = parse_dcb20_entry(dev, dcb, conn, conf, entry); 6156 else 6157 ret = parse_dcb15_entry(dev, dcb, conn, conf, entry); 6158 if (!ret) 6159 return 1; /* stop parsing */ 6160 6161 /* Ignore the I2C index for on-chip TV-out, as there 6162 * are cards with bogus values (nv31m in bug 23212), 6163 * and it's otherwise useless. 6164 */ 6165 if (entry->type == OUTPUT_TV && 6166 entry->location == DCB_LOC_ON_CHIP) 6167 entry->i2c_index = 0x0f; 6168 } 6169 6170 return 0; 6171 } 6172 6173 static void 6174 dcb_fake_connectors(struct nvbios *bios) 6175 { 6176 struct dcb_table *dcbt = &bios->dcb; 6177 u8 map[16] = { }; 6178 int i, idx = 0; 6179 6180 /* heuristic: if we ever get a non-zero connector field, assume 6181 * that all the indices are valid and we don't need fake them. 6182 * 6183 * and, as usual, a blacklist of boards with bad bios data.. 6184 */ 6185 if (!nv_match_device(bios->dev, 0x0392, 0x107d, 0x20a2)) { 6186 for (i = 0; i < dcbt->entries; i++) { 6187 if (dcbt->entry[i].connector) 6188 return; 6189 } 6190 } 6191 6192 /* no useful connector info available, we need to make it up 6193 * ourselves. the rule here is: anything on the same i2c bus 6194 * is considered to be on the same connector. any output 6195 * without an associated i2c bus is assigned its own unique 6196 * connector index. 6197 */ 6198 for (i = 0; i < dcbt->entries; i++) { 6199 u8 i2c = dcbt->entry[i].i2c_index; 6200 if (i2c == 0x0f) { 6201 dcbt->entry[i].connector = idx++; 6202 } else { 6203 if (!map[i2c]) 6204 map[i2c] = ++idx; 6205 dcbt->entry[i].connector = map[i2c] - 1; 6206 } 6207 } 6208 6209 /* if we created more than one connector, destroy the connector 6210 * table - just in case it has random, rather than stub, entries. 6211 */ 6212 if (i > 1) { 6213 u8 *conntab = dcb_conntab(bios->dev); 6214 if (conntab) 6215 conntab[0] = 0x00; 6216 } 6217 } 6218 6219 static int 6220 parse_dcb_table(struct drm_device *dev, struct nvbios *bios) 6221 { 6222 struct dcb_table *dcb = &bios->dcb; 6223 u8 *dcbt, *conn; 6224 int idx; 6225 6226 dcbt = dcb_table(dev); 6227 if (!dcbt) { 6228 /* handle pre-DCB boards */ 6229 if (bios->type == NVBIOS_BMP) { 6230 fabricate_dcb_encoder_table(dev, bios); 6231 return 0; 6232 } 6233 6234 return -EINVAL; 6235 } 6236 6237 NV_TRACE(dev, "DCB version %d.%d\n", dcbt[0] >> 4, dcbt[0] & 0xf); 6238 6239 dcb->version = dcbt[0]; 6240 dcb_outp_foreach(dev, NULL, parse_dcb_entry); 6241 6242 /* 6243 * apart for v2.1+ not being known for requiring merging, this 6244 * guarantees dcbent->index is the index of the entry in the rom image 6245 */ 6246 if (dcb->version < 0x21) 6247 merge_like_dcb_entries(dev, dcb); 6248 6249 if (!dcb->entries) 6250 return -ENXIO; 6251 6252 /* dump connector table entries to log, if any exist */ 6253 idx = -1; 6254 while ((conn = dcb_conn(dev, ++idx))) { 6255 if (conn[0] != 0xff) { 6256 NV_TRACE(dev, "DCB conn %02d: ", idx); 6257 if (dcb_conntab(dev)[3] < 4) 6258 printk("%04x\n", ROM16(conn[0])); 6259 else 6260 printk("%08x\n", ROM32(conn[0])); 6261 } 6262 } 6263 dcb_fake_connectors(bios); 6264 return 0; 6265 } 6266 6267 static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry) 6268 { 6269 /* 6270 * The header following the "HWSQ" signature has the number of entries, 6271 * and the entry size 6272 * 6273 * An entry consists of a dword to write to the sequencer control reg 6274 * (0x00001304), followed by the ucode bytes, written sequentially, 6275 * starting at reg 0x00001400 6276 */ 6277 6278 uint8_t bytes_to_write; 6279 uint16_t hwsq_entry_offset; 6280 int i; 6281 6282 if (bios->data[hwsq_offset] <= entry) { 6283 NV_ERROR(dev, "Too few entries in HW sequencer table for " 6284 "requested entry\n"); 6285 return -ENOENT; 6286 } 6287 6288 bytes_to_write = bios->data[hwsq_offset + 1]; 6289 6290 if (bytes_to_write != 36) { 6291 NV_ERROR(dev, "Unknown HW sequencer entry size\n"); 6292 return -EINVAL; 6293 } 6294 6295 NV_TRACE(dev, "Loading NV17 power sequencing microcode\n"); 6296 6297 hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write; 6298 6299 /* set sequencer control */ 6300 bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset])); 6301 bytes_to_write -= 4; 6302 6303 /* write ucode */ 6304 for (i = 0; i < bytes_to_write; i += 4) 6305 bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4])); 6306 6307 /* twiddle NV_PBUS_DEBUG_4 */ 6308 bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18); 6309 6310 return 0; 6311 } 6312 6313 static int load_nv17_hw_sequencer_ucode(struct drm_device *dev, 6314 struct nvbios *bios) 6315 { 6316 /* 6317 * BMP based cards, from NV17, need a microcode loading to correctly 6318 * control the GPIO etc for LVDS panels 6319 * 6320 * BIT based cards seem to do this directly in the init scripts 6321 * 6322 * The microcode entries are found by the "HWSQ" signature. 6323 */ 6324 6325 const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' }; 6326 const int sz = sizeof(hwsq_signature); 6327 int hwsq_offset; 6328 6329 hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz); 6330 if (!hwsq_offset) 6331 return 0; 6332 6333 /* always use entry 0? */ 6334 return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0); 6335 } 6336 6337 uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev) 6338 { 6339 struct drm_nouveau_private *dev_priv = dev->dev_private; 6340 struct nvbios *bios = &dev_priv->vbios; 6341 const uint8_t edid_sig[] = { 6342 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; 6343 uint16_t offset = 0; 6344 uint16_t newoffset; 6345 int searchlen = NV_PROM_SIZE; 6346 6347 if (bios->fp.edid) 6348 return bios->fp.edid; 6349 6350 while (searchlen) { 6351 newoffset = findstr(&bios->data[offset], searchlen, 6352 edid_sig, 8); 6353 if (!newoffset) 6354 return NULL; 6355 offset += newoffset; 6356 if (!nv_cksum(&bios->data[offset], EDID1_LEN)) 6357 break; 6358 6359 searchlen -= offset; 6360 offset++; 6361 } 6362 6363 NV_TRACE(dev, "Found EDID in BIOS\n"); 6364 6365 return bios->fp.edid = &bios->data[offset]; 6366 } 6367 6368 void 6369 nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table, 6370 struct dcb_entry *dcbent, int crtc) 6371 { 6372 struct drm_nouveau_private *dev_priv = dev->dev_private; 6373 struct nvbios *bios = &dev_priv->vbios; 6374 struct init_exec iexec = { true, false }; 6375 6376 spin_lock_bh(&bios->lock); 6377 bios->display.output = dcbent; 6378 bios->display.crtc = crtc; 6379 parse_init_table(bios, table, &iexec); 6380 bios->display.output = NULL; 6381 spin_unlock_bh(&bios->lock); 6382 } 6383 6384 void 6385 nouveau_bios_init_exec(struct drm_device *dev, uint16_t table) 6386 { 6387 struct drm_nouveau_private *dev_priv = dev->dev_private; 6388 struct nvbios *bios = &dev_priv->vbios; 6389 struct init_exec iexec = { true, false }; 6390 6391 parse_init_table(bios, table, &iexec); 6392 } 6393 6394 static bool NVInitVBIOS(struct drm_device *dev) 6395 { 6396 struct drm_nouveau_private *dev_priv = dev->dev_private; 6397 struct nvbios *bios = &dev_priv->vbios; 6398 6399 memset(bios, 0, sizeof(struct nvbios)); 6400 spin_lock_init(&bios->lock); 6401 bios->dev = dev; 6402 6403 return bios_shadow(dev); 6404 } 6405 6406 static int nouveau_parse_vbios_struct(struct drm_device *dev) 6407 { 6408 struct drm_nouveau_private *dev_priv = dev->dev_private; 6409 struct nvbios *bios = &dev_priv->vbios; 6410 const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' }; 6411 const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 }; 6412 int offset; 6413 6414 offset = findstr(bios->data, bios->length, 6415 bit_signature, sizeof(bit_signature)); 6416 if (offset) { 6417 NV_TRACE(dev, "BIT BIOS found\n"); 6418 bios->type = NVBIOS_BIT; 6419 bios->offset = offset; 6420 return parse_bit_structure(bios, offset + 6); 6421 } 6422 6423 offset = findstr(bios->data, bios->length, 6424 bmp_signature, sizeof(bmp_signature)); 6425 if (offset) { 6426 NV_TRACE(dev, "BMP BIOS found\n"); 6427 bios->type = NVBIOS_BMP; 6428 bios->offset = offset; 6429 return parse_bmp_structure(dev, bios, offset); 6430 } 6431 6432 NV_ERROR(dev, "No known BIOS signature found\n"); 6433 return -ENODEV; 6434 } 6435 6436 int 6437 nouveau_run_vbios_init(struct drm_device *dev) 6438 { 6439 struct drm_nouveau_private *dev_priv = dev->dev_private; 6440 struct nvbios *bios = &dev_priv->vbios; 6441 int i, ret = 0; 6442 6443 /* Reset the BIOS head to 0. */ 6444 bios->state.crtchead = 0; 6445 6446 if (bios->major_version < 5) /* BMP only */ 6447 load_nv17_hw_sequencer_ucode(dev, bios); 6448 6449 if (bios->execute) { 6450 bios->fp.last_script_invoc = 0; 6451 bios->fp.lvds_init_run = false; 6452 } 6453 6454 parse_init_tables(bios); 6455 6456 /* 6457 * Runs some additional script seen on G8x VBIOSen. The VBIOS' 6458 * parser will run this right after the init tables, the binary 6459 * driver appears to run it at some point later. 6460 */ 6461 if (bios->some_script_ptr) { 6462 struct init_exec iexec = {true, false}; 6463 6464 NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n", 6465 bios->some_script_ptr); 6466 parse_init_table(bios, bios->some_script_ptr, &iexec); 6467 } 6468 6469 if (dev_priv->card_type >= NV_50) { 6470 for (i = 0; i < bios->dcb.entries; i++) { 6471 nouveau_bios_run_display_table(dev, 0, 0, 6472 &bios->dcb.entry[i], -1); 6473 } 6474 } 6475 6476 return ret; 6477 } 6478 6479 static bool 6480 nouveau_bios_posted(struct drm_device *dev) 6481 { 6482 struct drm_nouveau_private *dev_priv = dev->dev_private; 6483 unsigned htotal; 6484 6485 if (dev_priv->card_type >= NV_50) { 6486 if (NVReadVgaCrtc(dev, 0, 0x00) == 0 && 6487 NVReadVgaCrtc(dev, 0, 0x1a) == 0) 6488 return false; 6489 return true; 6490 } 6491 6492 htotal = NVReadVgaCrtc(dev, 0, 0x06); 6493 htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8; 6494 htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4; 6495 htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10; 6496 htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11; 6497 6498 return (htotal != 0); 6499 } 6500 6501 int 6502 nouveau_bios_init(struct drm_device *dev) 6503 { 6504 struct drm_nouveau_private *dev_priv = dev->dev_private; 6505 struct nvbios *bios = &dev_priv->vbios; 6506 int ret; 6507 6508 if (!NVInitVBIOS(dev)) 6509 return -ENODEV; 6510 6511 ret = nouveau_parse_vbios_struct(dev); 6512 if (ret) 6513 return ret; 6514 6515 ret = nouveau_i2c_init(dev); 6516 if (ret) 6517 return ret; 6518 6519 ret = nouveau_mxm_init(dev); 6520 if (ret) 6521 return ret; 6522 6523 ret = parse_dcb_table(dev, bios); 6524 if (ret) 6525 return ret; 6526 6527 if (!bios->major_version) /* we don't run version 0 bios */ 6528 return 0; 6529 6530 /* init script execution disabled */ 6531 bios->execute = false; 6532 6533 /* ... unless card isn't POSTed already */ 6534 if (!nouveau_bios_posted(dev)) { 6535 NV_INFO(dev, "Adaptor not initialised, " 6536 "running VBIOS init tables.\n"); 6537 bios->execute = true; 6538 } 6539 if (nouveau_force_post) 6540 bios->execute = true; 6541 6542 ret = nouveau_run_vbios_init(dev); 6543 if (ret) 6544 return ret; 6545 6546 /* feature_byte on BMP is poor, but init always sets CR4B */ 6547 if (bios->major_version < 5) 6548 bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40; 6549 6550 /* all BIT systems need p_f_m_t for digital_min_front_porch */ 6551 if (bios->is_mobile || bios->major_version >= 5) 6552 ret = parse_fp_mode_table(dev, bios); 6553 6554 /* allow subsequent scripts to execute */ 6555 bios->execute = true; 6556 6557 return 0; 6558 } 6559 6560 void 6561 nouveau_bios_takedown(struct drm_device *dev) 6562 { 6563 struct drm_nouveau_private *dev_priv = dev->dev_private; 6564 6565 nouveau_mxm_fini(dev); 6566 nouveau_i2c_fini(dev); 6567 6568 kfree(dev_priv->vbios.data); 6569 } 6570