xref: /linux/drivers/gpu/drm/nouveau/dispnv50/head.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "head.h"
23 #include "base.h"
24 #include "core.h"
25 #include "curs.h"
26 #include "ovly.h"
27 
28 #include <nvif/class.h>
29 
30 #include <drm/drm_atomic_helper.h>
31 #include <drm/drm_crtc_helper.h>
32 #include "nouveau_connector.h"
33 void
34 nv50_head_flush_clr(struct nv50_head *head,
35 		    struct nv50_head_atom *asyh, bool flush)
36 {
37 	union nv50_head_atom_mask clr = {
38 		.mask = asyh->clr.mask & ~(flush ? 0 : asyh->set.mask),
39 	};
40 	if (clr.olut) head->func->olut_clr(head);
41 	if (clr.core) head->func->core_clr(head);
42 	if (clr.curs) head->func->curs_clr(head);
43 }
44 
45 void
46 nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh)
47 {
48 	if (asyh->set.view   ) head->func->view    (head, asyh);
49 	if (asyh->set.mode   ) head->func->mode    (head, asyh);
50 	if (asyh->set.core   ) head->func->core_set(head, asyh);
51 	if (asyh->set.olut   ) {
52 		asyh->olut.offset = nv50_lut_load(&head->olut,
53 						  asyh->olut.buffer,
54 						  asyh->state.gamma_lut,
55 						  asyh->olut.load);
56 		head->func->olut_set(head, asyh);
57 	}
58 	if (asyh->set.curs   ) head->func->curs_set(head, asyh);
59 	if (asyh->set.base   ) head->func->base    (head, asyh);
60 	if (asyh->set.ovly   ) head->func->ovly    (head, asyh);
61 	if (asyh->set.dither ) head->func->dither  (head, asyh);
62 	if (asyh->set.procamp) head->func->procamp (head, asyh);
63 	if (asyh->set.or     ) head->func->or      (head, asyh);
64 }
65 
66 static void
67 nv50_head_atomic_check_procamp(struct nv50_head_atom *armh,
68 			       struct nv50_head_atom *asyh,
69 			       struct nouveau_conn_atom *asyc)
70 {
71 	const int vib = asyc->procamp.color_vibrance - 100;
72 	const int hue = asyc->procamp.vibrant_hue - 90;
73 	const int adj = (vib > 0) ? 50 : 0;
74 	asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff;
75 	asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff;
76 	asyh->set.procamp = true;
77 }
78 
79 static void
80 nv50_head_atomic_check_dither(struct nv50_head_atom *armh,
81 			      struct nv50_head_atom *asyh,
82 			      struct nouveau_conn_atom *asyc)
83 {
84 	struct drm_connector *connector = asyc->state.connector;
85 	u32 mode = 0x00;
86 
87 	if (asyc->dither.mode == DITHERING_MODE_AUTO) {
88 		if (asyh->base.depth > connector->display_info.bpc * 3)
89 			mode = DITHERING_MODE_DYNAMIC2X2;
90 	} else {
91 		mode = asyc->dither.mode;
92 	}
93 
94 	if (asyc->dither.depth == DITHERING_DEPTH_AUTO) {
95 		if (connector->display_info.bpc >= 8)
96 			mode |= DITHERING_DEPTH_8BPC;
97 	} else {
98 		mode |= asyc->dither.depth;
99 	}
100 
101 	asyh->dither.enable = mode;
102 	asyh->dither.bits = mode >> 1;
103 	asyh->dither.mode = mode >> 3;
104 	asyh->set.dither = true;
105 }
106 
107 static void
108 nv50_head_atomic_check_view(struct nv50_head_atom *armh,
109 			    struct nv50_head_atom *asyh,
110 			    struct nouveau_conn_atom *asyc)
111 {
112 	struct drm_connector *connector = asyc->state.connector;
113 	struct drm_display_mode *omode = &asyh->state.adjusted_mode;
114 	struct drm_display_mode *umode = &asyh->state.mode;
115 	int mode = asyc->scaler.mode;
116 	struct edid *edid;
117 	int umode_vdisplay, omode_hdisplay, omode_vdisplay;
118 
119 	if (connector->edid_blob_ptr)
120 		edid = (struct edid *)connector->edid_blob_ptr->data;
121 	else
122 		edid = NULL;
123 
124 	if (!asyc->scaler.full) {
125 		if (mode == DRM_MODE_SCALE_NONE)
126 			omode = umode;
127 	} else {
128 		/* Non-EDID LVDS/eDP mode. */
129 		mode = DRM_MODE_SCALE_FULLSCREEN;
130 	}
131 
132 	/* For the user-specified mode, we must ignore doublescan and
133 	 * the like, but honor frame packing.
134 	 */
135 	umode_vdisplay = umode->vdisplay;
136 	if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
137 		umode_vdisplay += umode->vtotal;
138 	asyh->view.iW = umode->hdisplay;
139 	asyh->view.iH = umode_vdisplay;
140 	/* For the output mode, we can just use the stock helper. */
141 	drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay);
142 	asyh->view.oW = omode_hdisplay;
143 	asyh->view.oH = omode_vdisplay;
144 
145 	/* Add overscan compensation if necessary, will keep the aspect
146 	 * ratio the same as the backend mode unless overridden by the
147 	 * user setting both hborder and vborder properties.
148 	 */
149 	if ((asyc->scaler.underscan.mode == UNDERSCAN_ON ||
150 	    (asyc->scaler.underscan.mode == UNDERSCAN_AUTO &&
151 	     drm_detect_hdmi_monitor(edid)))) {
152 		u32 bX = asyc->scaler.underscan.hborder;
153 		u32 bY = asyc->scaler.underscan.vborder;
154 		u32 r = (asyh->view.oH << 19) / asyh->view.oW;
155 
156 		if (bX) {
157 			asyh->view.oW -= (bX * 2);
158 			if (bY) asyh->view.oH -= (bY * 2);
159 			else    asyh->view.oH  = ((asyh->view.oW * r) + (r / 2)) >> 19;
160 		} else {
161 			asyh->view.oW -= (asyh->view.oW >> 4) + 32;
162 			if (bY) asyh->view.oH -= (bY * 2);
163 			else    asyh->view.oH  = ((asyh->view.oW * r) + (r / 2)) >> 19;
164 		}
165 	}
166 
167 	/* Handle CENTER/ASPECT scaling, taking into account the areas
168 	 * removed already for overscan compensation.
169 	 */
170 	switch (mode) {
171 	case DRM_MODE_SCALE_CENTER:
172 		/* NOTE: This will cause scaling when the input is
173 		 * larger than the output.
174 		 */
175 		asyh->view.oW = min(asyh->view.iW, asyh->view.oW);
176 		asyh->view.oH = min(asyh->view.iH, asyh->view.oH);
177 		break;
178 	case DRM_MODE_SCALE_ASPECT:
179 		/* Determine whether the scaling should be on width or on
180 		 * height. This is done by comparing the aspect ratios of the
181 		 * sizes. If the output AR is larger than input AR, that means
182 		 * we want to change the width (letterboxed on the
183 		 * left/right), otherwise on the height (letterboxed on the
184 		 * top/bottom).
185 		 *
186 		 * E.g. 4:3 (1.333) AR image displayed on a 16:10 (1.6) AR
187 		 * screen will have letterboxes on the left/right. However a
188 		 * 16:9 (1.777) AR image on that same screen will have
189 		 * letterboxes on the top/bottom.
190 		 *
191 		 * inputAR = iW / iH; outputAR = oW / oH
192 		 * outputAR > inputAR is equivalent to oW * iH > iW * oH
193 		 */
194 		if (asyh->view.oW * asyh->view.iH > asyh->view.iW * asyh->view.oH) {
195 			/* Recompute output width, i.e. left/right letterbox */
196 			u32 r = (asyh->view.iW << 19) / asyh->view.iH;
197 			asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19;
198 		} else {
199 			/* Recompute output height, i.e. top/bottom letterbox */
200 			u32 r = (asyh->view.iH << 19) / asyh->view.iW;
201 			asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
202 		}
203 		break;
204 	default:
205 		break;
206 	}
207 
208 	asyh->set.view = true;
209 }
210 
211 static int
212 nv50_head_atomic_check_lut(struct nv50_head *head,
213 			   struct nv50_head_atom *asyh)
214 {
215 	struct nv50_disp *disp = nv50_disp(head->base.base.dev);
216 	struct drm_property_blob *olut = asyh->state.gamma_lut;
217 
218 	/* Determine whether core output LUT should be enabled. */
219 	if (olut) {
220 		/* Check if any window(s) have stolen the core output LUT
221 		 * to as an input LUT for legacy gamma + I8 colour format.
222 		 */
223 		if (asyh->wndw.olut) {
224 			/* If any window has stolen the core output LUT,
225 			 * all of them must.
226 			 */
227 			if (asyh->wndw.olut != asyh->wndw.mask)
228 				return -EINVAL;
229 			olut = NULL;
230 		}
231 	}
232 
233 	if (!olut && !head->func->olut_identity) {
234 		asyh->olut.handle = 0;
235 		return 0;
236 	}
237 
238 	asyh->olut.handle = disp->core->chan.vram.handle;
239 	asyh->olut.buffer = !asyh->olut.buffer;
240 	head->func->olut(head, asyh);
241 	return 0;
242 }
243 
244 static void
245 nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh)
246 {
247 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
248 	struct nv50_head_mode *m = &asyh->mode;
249 	u32 blankus;
250 
251 	drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE);
252 
253 	/*
254 	 * DRM modes are defined in terms of a repeating interval
255 	 * starting with the active display area.  The hardware modes
256 	 * are defined in terms of a repeating interval starting one
257 	 * unit (pixel or line) into the sync pulse.  So, add bias.
258 	 */
259 
260 	m->h.active = mode->crtc_htotal;
261 	m->h.synce  = mode->crtc_hsync_end - mode->crtc_hsync_start - 1;
262 	m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1;
263 	m->h.blanks = m->h.blanke + mode->crtc_hdisplay;
264 
265 	m->v.active = mode->crtc_vtotal;
266 	m->v.synce  = mode->crtc_vsync_end - mode->crtc_vsync_start - 1;
267 	m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1;
268 	m->v.blanks = m->v.blanke + mode->crtc_vdisplay;
269 
270 	/*XXX: Safe underestimate, even "0" works */
271 	blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active;
272 	blankus *= 1000;
273 	blankus /= mode->crtc_clock;
274 	m->v.blankus = blankus;
275 
276 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
277 		m->v.blank2e =  m->v.active + m->v.blanke;
278 		m->v.blank2s =  m->v.blank2e + mode->crtc_vdisplay;
279 		m->v.active  = (m->v.active * 2) + 1;
280 		m->interlace = true;
281 	} else {
282 		m->v.blank2e = 0;
283 		m->v.blank2s = 1;
284 		m->interlace = false;
285 	}
286 	m->clock = mode->crtc_clock;
287 
288 	asyh->or.nhsync = !!(mode->flags & DRM_MODE_FLAG_NHSYNC);
289 	asyh->or.nvsync = !!(mode->flags & DRM_MODE_FLAG_NVSYNC);
290 	asyh->set.or = head->func->or != NULL;
291 	asyh->set.mode = true;
292 }
293 
294 static int
295 nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state)
296 {
297 	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
298 	struct nv50_head *head = nv50_head(crtc);
299 	struct nv50_head_atom *armh = nv50_head_atom(crtc->state);
300 	struct nv50_head_atom *asyh = nv50_head_atom(state);
301 	struct nouveau_conn_atom *asyc = NULL;
302 	struct drm_connector_state *conns;
303 	struct drm_connector *conn;
304 	int i;
305 
306 	NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active);
307 	if (asyh->state.active) {
308 		for_each_new_connector_in_state(asyh->state.state, conn, conns, i) {
309 			if (conns->crtc == crtc) {
310 				asyc = nouveau_conn_atom(conns);
311 				break;
312 			}
313 		}
314 
315 		if (armh->state.active) {
316 			if (asyc) {
317 				if (asyh->state.mode_changed)
318 					asyc->set.scaler = true;
319 				if (armh->base.depth != asyh->base.depth)
320 					asyc->set.dither = true;
321 			}
322 		} else {
323 			if (asyc)
324 				asyc->set.mask = ~0;
325 			asyh->set.mask = ~0;
326 			asyh->set.or = head->func->or != NULL;
327 		}
328 
329 		if (asyh->state.mode_changed || asyh->state.connectors_changed)
330 			nv50_head_atomic_check_mode(head, asyh);
331 
332 		if (asyh->state.color_mgmt_changed ||
333 		    memcmp(&armh->wndw, &asyh->wndw, sizeof(asyh->wndw))) {
334 			int ret = nv50_head_atomic_check_lut(head, asyh);
335 			if (ret)
336 				return ret;
337 
338 			asyh->olut.visible = asyh->olut.handle != 0;
339 		}
340 
341 		if (asyc) {
342 			if (asyc->set.scaler)
343 				nv50_head_atomic_check_view(armh, asyh, asyc);
344 			if (asyc->set.dither)
345 				nv50_head_atomic_check_dither(armh, asyh, asyc);
346 			if (asyc->set.procamp)
347 				nv50_head_atomic_check_procamp(armh, asyh, asyc);
348 		}
349 
350 		if (head->func->core_calc) {
351 			head->func->core_calc(head, asyh);
352 			if (!asyh->core.visible)
353 				asyh->olut.visible = false;
354 		}
355 
356 		asyh->set.base = armh->base.cpp != asyh->base.cpp;
357 		asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp;
358 	} else {
359 		asyh->olut.visible = false;
360 		asyh->core.visible = false;
361 		asyh->curs.visible = false;
362 		asyh->base.cpp = 0;
363 		asyh->ovly.cpp = 0;
364 	}
365 
366 	if (!drm_atomic_crtc_needs_modeset(&asyh->state)) {
367 		if (asyh->core.visible) {
368 			if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core)))
369 				asyh->set.core = true;
370 		} else
371 		if (armh->core.visible) {
372 			asyh->clr.core = true;
373 		}
374 
375 		if (asyh->curs.visible) {
376 			if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs)))
377 				asyh->set.curs = true;
378 		} else
379 		if (armh->curs.visible) {
380 			asyh->clr.curs = true;
381 		}
382 
383 		if (asyh->olut.visible) {
384 			if (memcmp(&armh->olut, &asyh->olut, sizeof(asyh->olut)))
385 				asyh->set.olut = true;
386 		} else
387 		if (armh->olut.visible) {
388 			asyh->clr.olut = true;
389 		}
390 	} else {
391 		asyh->clr.olut = armh->olut.visible;
392 		asyh->clr.core = armh->core.visible;
393 		asyh->clr.curs = armh->curs.visible;
394 		asyh->set.olut = asyh->olut.visible;
395 		asyh->set.core = asyh->core.visible;
396 		asyh->set.curs = asyh->curs.visible;
397 	}
398 
399 	if (asyh->clr.mask || asyh->set.mask)
400 		nv50_atom(asyh->state.state)->lock_core = true;
401 	return 0;
402 }
403 
404 static const struct drm_crtc_helper_funcs
405 nv50_head_help = {
406 	.atomic_check = nv50_head_atomic_check,
407 };
408 
409 static void
410 nv50_head_atomic_destroy_state(struct drm_crtc *crtc,
411 			       struct drm_crtc_state *state)
412 {
413 	struct nv50_head_atom *asyh = nv50_head_atom(state);
414 	__drm_atomic_helper_crtc_destroy_state(&asyh->state);
415 	kfree(asyh);
416 }
417 
418 static struct drm_crtc_state *
419 nv50_head_atomic_duplicate_state(struct drm_crtc *crtc)
420 {
421 	struct nv50_head_atom *armh = nv50_head_atom(crtc->state);
422 	struct nv50_head_atom *asyh;
423 	if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL)))
424 		return NULL;
425 	__drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state);
426 	asyh->wndw = armh->wndw;
427 	asyh->view = armh->view;
428 	asyh->mode = armh->mode;
429 	asyh->olut = armh->olut;
430 	asyh->core = armh->core;
431 	asyh->curs = armh->curs;
432 	asyh->base = armh->base;
433 	asyh->ovly = armh->ovly;
434 	asyh->dither = armh->dither;
435 	asyh->procamp = armh->procamp;
436 	asyh->or = armh->or;
437 	asyh->dp = armh->dp;
438 	asyh->clr.mask = 0;
439 	asyh->set.mask = 0;
440 	return &asyh->state;
441 }
442 
443 static void
444 nv50_head_reset(struct drm_crtc *crtc)
445 {
446 	struct nv50_head_atom *asyh;
447 
448 	if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL))))
449 		return;
450 
451 	if (crtc->state)
452 		nv50_head_atomic_destroy_state(crtc, crtc->state);
453 
454 	__drm_atomic_helper_crtc_reset(crtc, &asyh->state);
455 }
456 
457 static void
458 nv50_head_destroy(struct drm_crtc *crtc)
459 {
460 	struct nv50_head *head = nv50_head(crtc);
461 	nv50_lut_fini(&head->olut);
462 	drm_crtc_cleanup(crtc);
463 	kfree(head);
464 }
465 
466 static const struct drm_crtc_funcs
467 nv50_head_func = {
468 	.reset = nv50_head_reset,
469 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
470 	.destroy = nv50_head_destroy,
471 	.set_config = drm_atomic_helper_set_config,
472 	.page_flip = drm_atomic_helper_page_flip,
473 	.atomic_duplicate_state = nv50_head_atomic_duplicate_state,
474 	.atomic_destroy_state = nv50_head_atomic_destroy_state,
475 };
476 
477 int
478 nv50_head_create(struct drm_device *dev, int index)
479 {
480 	struct nouveau_drm *drm = nouveau_drm(dev);
481 	struct nv50_disp *disp = nv50_disp(dev);
482 	struct nv50_head *head;
483 	struct nv50_wndw *base, *ovly, *curs;
484 	struct drm_crtc *crtc;
485 	int ret;
486 
487 	head = kzalloc(sizeof(*head), GFP_KERNEL);
488 	if (!head)
489 		return -ENOMEM;
490 
491 	head->func = disp->core->func->head;
492 	head->base.index = index;
493 
494 	if (disp->disp->object.oclass < GV100_DISP) {
495 		ret = nv50_base_new(drm, head->base.index, &base);
496 		ret = nv50_ovly_new(drm, head->base.index, &ovly);
497 	} else {
498 		ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_PRIMARY,
499 				    head->base.index * 2 + 0, &base);
500 		ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_OVERLAY,
501 				    head->base.index * 2 + 1, &ovly);
502 	}
503 	if (ret == 0)
504 		ret = nv50_curs_new(drm, head->base.index, &curs);
505 	if (ret) {
506 		kfree(head);
507 		return ret;
508 	}
509 
510 	crtc = &head->base.base;
511 	drm_crtc_init_with_planes(dev, crtc, &base->plane, &curs->plane,
512 				  &nv50_head_func, "head-%d", head->base.index);
513 	drm_crtc_helper_add(crtc, &nv50_head_help);
514 	drm_mode_crtc_set_gamma_size(crtc, 256);
515 	if (disp->disp->object.oclass >= GF110_DISP)
516 		drm_crtc_enable_color_mgmt(crtc, 256, true, 256);
517 	else
518 		drm_crtc_enable_color_mgmt(crtc, 0, false, 256);
519 
520 	if (head->func->olut_set) {
521 		ret = nv50_lut_init(disp, &drm->client.mmu, &head->olut);
522 		if (ret)
523 			goto out;
524 	}
525 
526 out:
527 	if (ret)
528 		nv50_head_destroy(crtc);
529 	return ret;
530 }
531