xref: /linux/drivers/gpu/drm/nouveau/dispnv50/head.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "head.h"
23 #include "base.h"
24 #include "core.h"
25 #include "curs.h"
26 #include "ovly.h"
27 
28 #include <nvif/class.h>
29 
30 #include <drm/drm_atomic_helper.h>
31 #include <drm/drm_crtc_helper.h>
32 #include <drm/drm_vblank.h>
33 #include "nouveau_connector.h"
34 void
35 nv50_head_flush_clr(struct nv50_head *head,
36 		    struct nv50_head_atom *asyh, bool flush)
37 {
38 	union nv50_head_atom_mask clr = {
39 		.mask = asyh->clr.mask & ~(flush ? 0 : asyh->set.mask),
40 	};
41 	if (clr.olut) head->func->olut_clr(head);
42 	if (clr.core) head->func->core_clr(head);
43 	if (clr.curs) head->func->curs_clr(head);
44 }
45 
46 void
47 nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh)
48 {
49 	if (asyh->set.view   ) head->func->view    (head, asyh);
50 	if (asyh->set.mode   ) head->func->mode    (head, asyh);
51 	if (asyh->set.core   ) head->func->core_set(head, asyh);
52 	if (asyh->set.olut   ) {
53 		asyh->olut.offset = nv50_lut_load(&head->olut,
54 						  asyh->olut.buffer,
55 						  asyh->state.gamma_lut,
56 						  asyh->olut.load);
57 		head->func->olut_set(head, asyh);
58 	}
59 	if (asyh->set.curs   ) head->func->curs_set(head, asyh);
60 	if (asyh->set.base   ) head->func->base    (head, asyh);
61 	if (asyh->set.ovly   ) head->func->ovly    (head, asyh);
62 	if (asyh->set.dither ) head->func->dither  (head, asyh);
63 	if (asyh->set.procamp) head->func->procamp (head, asyh);
64 	if (asyh->set.or     ) head->func->or      (head, asyh);
65 }
66 
67 static void
68 nv50_head_atomic_check_procamp(struct nv50_head_atom *armh,
69 			       struct nv50_head_atom *asyh,
70 			       struct nouveau_conn_atom *asyc)
71 {
72 	const int vib = asyc->procamp.color_vibrance - 100;
73 	const int hue = asyc->procamp.vibrant_hue - 90;
74 	const int adj = (vib > 0) ? 50 : 0;
75 	asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff;
76 	asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff;
77 	asyh->set.procamp = true;
78 }
79 
80 static void
81 nv50_head_atomic_check_dither(struct nv50_head_atom *armh,
82 			      struct nv50_head_atom *asyh,
83 			      struct nouveau_conn_atom *asyc)
84 {
85 	u32 mode = 0x00;
86 
87 	if (asyc->dither.mode == DITHERING_MODE_AUTO) {
88 		if (asyh->base.depth > asyh->or.bpc * 3)
89 			mode = DITHERING_MODE_DYNAMIC2X2;
90 	} else {
91 		mode = asyc->dither.mode;
92 	}
93 
94 	if (asyc->dither.depth == DITHERING_DEPTH_AUTO) {
95 		if (asyh->or.bpc >= 8)
96 			mode |= DITHERING_DEPTH_8BPC;
97 	} else {
98 		mode |= asyc->dither.depth;
99 	}
100 
101 	asyh->dither.enable = mode;
102 	asyh->dither.bits = mode >> 1;
103 	asyh->dither.mode = mode >> 3;
104 	asyh->set.dither = true;
105 }
106 
107 static void
108 nv50_head_atomic_check_view(struct nv50_head_atom *armh,
109 			    struct nv50_head_atom *asyh,
110 			    struct nouveau_conn_atom *asyc)
111 {
112 	struct drm_connector *connector = asyc->state.connector;
113 	struct drm_display_mode *omode = &asyh->state.adjusted_mode;
114 	struct drm_display_mode *umode = &asyh->state.mode;
115 	int mode = asyc->scaler.mode;
116 	struct edid *edid;
117 	int umode_vdisplay, omode_hdisplay, omode_vdisplay;
118 
119 	if (connector->edid_blob_ptr)
120 		edid = (struct edid *)connector->edid_blob_ptr->data;
121 	else
122 		edid = NULL;
123 
124 	if (!asyc->scaler.full) {
125 		if (mode == DRM_MODE_SCALE_NONE)
126 			omode = umode;
127 	} else {
128 		/* Non-EDID LVDS/eDP mode. */
129 		mode = DRM_MODE_SCALE_FULLSCREEN;
130 	}
131 
132 	/* For the user-specified mode, we must ignore doublescan and
133 	 * the like, but honor frame packing.
134 	 */
135 	umode_vdisplay = umode->vdisplay;
136 	if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
137 		umode_vdisplay += umode->vtotal;
138 	asyh->view.iW = umode->hdisplay;
139 	asyh->view.iH = umode_vdisplay;
140 	/* For the output mode, we can just use the stock helper. */
141 	drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay);
142 	asyh->view.oW = omode_hdisplay;
143 	asyh->view.oH = omode_vdisplay;
144 
145 	/* Add overscan compensation if necessary, will keep the aspect
146 	 * ratio the same as the backend mode unless overridden by the
147 	 * user setting both hborder and vborder properties.
148 	 */
149 	if ((asyc->scaler.underscan.mode == UNDERSCAN_ON ||
150 	    (asyc->scaler.underscan.mode == UNDERSCAN_AUTO &&
151 	     drm_detect_hdmi_monitor(edid)))) {
152 		u32 bX = asyc->scaler.underscan.hborder;
153 		u32 bY = asyc->scaler.underscan.vborder;
154 		u32 r = (asyh->view.oH << 19) / asyh->view.oW;
155 
156 		if (bX) {
157 			asyh->view.oW -= (bX * 2);
158 			if (bY) asyh->view.oH -= (bY * 2);
159 			else    asyh->view.oH  = ((asyh->view.oW * r) + (r / 2)) >> 19;
160 		} else {
161 			asyh->view.oW -= (asyh->view.oW >> 4) + 32;
162 			if (bY) asyh->view.oH -= (bY * 2);
163 			else    asyh->view.oH  = ((asyh->view.oW * r) + (r / 2)) >> 19;
164 		}
165 	}
166 
167 	/* Handle CENTER/ASPECT scaling, taking into account the areas
168 	 * removed already for overscan compensation.
169 	 */
170 	switch (mode) {
171 	case DRM_MODE_SCALE_CENTER:
172 		/* NOTE: This will cause scaling when the input is
173 		 * larger than the output.
174 		 */
175 		asyh->view.oW = min(asyh->view.iW, asyh->view.oW);
176 		asyh->view.oH = min(asyh->view.iH, asyh->view.oH);
177 		break;
178 	case DRM_MODE_SCALE_ASPECT:
179 		/* Determine whether the scaling should be on width or on
180 		 * height. This is done by comparing the aspect ratios of the
181 		 * sizes. If the output AR is larger than input AR, that means
182 		 * we want to change the width (letterboxed on the
183 		 * left/right), otherwise on the height (letterboxed on the
184 		 * top/bottom).
185 		 *
186 		 * E.g. 4:3 (1.333) AR image displayed on a 16:10 (1.6) AR
187 		 * screen will have letterboxes on the left/right. However a
188 		 * 16:9 (1.777) AR image on that same screen will have
189 		 * letterboxes on the top/bottom.
190 		 *
191 		 * inputAR = iW / iH; outputAR = oW / oH
192 		 * outputAR > inputAR is equivalent to oW * iH > iW * oH
193 		 */
194 		if (asyh->view.oW * asyh->view.iH > asyh->view.iW * asyh->view.oH) {
195 			/* Recompute output width, i.e. left/right letterbox */
196 			u32 r = (asyh->view.iW << 19) / asyh->view.iH;
197 			asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19;
198 		} else {
199 			/* Recompute output height, i.e. top/bottom letterbox */
200 			u32 r = (asyh->view.iH << 19) / asyh->view.iW;
201 			asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
202 		}
203 		break;
204 	default:
205 		break;
206 	}
207 
208 	asyh->set.view = true;
209 }
210 
211 static int
212 nv50_head_atomic_check_lut(struct nv50_head *head,
213 			   struct nv50_head_atom *asyh)
214 {
215 	struct nv50_disp *disp = nv50_disp(head->base.base.dev);
216 	struct drm_property_blob *olut = asyh->state.gamma_lut;
217 	int size;
218 
219 	/* Determine whether core output LUT should be enabled. */
220 	if (olut) {
221 		/* Check if any window(s) have stolen the core output LUT
222 		 * to as an input LUT for legacy gamma + I8 colour format.
223 		 */
224 		if (asyh->wndw.olut) {
225 			/* If any window has stolen the core output LUT,
226 			 * all of them must.
227 			 */
228 			if (asyh->wndw.olut != asyh->wndw.mask)
229 				return -EINVAL;
230 			olut = NULL;
231 		}
232 	}
233 
234 	if (!olut) {
235 		if (!head->func->olut_identity) {
236 			asyh->olut.handle = 0;
237 			return 0;
238 		}
239 		size = 0;
240 	} else {
241 		size = drm_color_lut_size(olut);
242 	}
243 
244 	if (!head->func->olut(head, asyh, size)) {
245 		DRM_DEBUG_KMS("Invalid olut\n");
246 		return -EINVAL;
247 	}
248 	asyh->olut.handle = disp->core->chan.vram.handle;
249 	asyh->olut.buffer = !asyh->olut.buffer;
250 
251 	return 0;
252 }
253 
254 static void
255 nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh)
256 {
257 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
258 	struct nv50_head_mode *m = &asyh->mode;
259 	u32 blankus;
260 
261 	drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE);
262 
263 	/*
264 	 * DRM modes are defined in terms of a repeating interval
265 	 * starting with the active display area.  The hardware modes
266 	 * are defined in terms of a repeating interval starting one
267 	 * unit (pixel or line) into the sync pulse.  So, add bias.
268 	 */
269 
270 	m->h.active = mode->crtc_htotal;
271 	m->h.synce  = mode->crtc_hsync_end - mode->crtc_hsync_start - 1;
272 	m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1;
273 	m->h.blanks = m->h.blanke + mode->crtc_hdisplay;
274 
275 	m->v.active = mode->crtc_vtotal;
276 	m->v.synce  = mode->crtc_vsync_end - mode->crtc_vsync_start - 1;
277 	m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1;
278 	m->v.blanks = m->v.blanke + mode->crtc_vdisplay;
279 
280 	/*XXX: Safe underestimate, even "0" works */
281 	blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active;
282 	blankus *= 1000;
283 	blankus /= mode->crtc_clock;
284 	m->v.blankus = blankus;
285 
286 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
287 		m->v.blank2e =  m->v.active + m->v.blanke;
288 		m->v.blank2s =  m->v.blank2e + mode->crtc_vdisplay;
289 		m->v.active  = (m->v.active * 2) + 1;
290 		m->interlace = true;
291 	} else {
292 		m->v.blank2e = 0;
293 		m->v.blank2s = 1;
294 		m->interlace = false;
295 	}
296 	m->clock = mode->crtc_clock;
297 
298 	asyh->or.nhsync = !!(mode->flags & DRM_MODE_FLAG_NHSYNC);
299 	asyh->or.nvsync = !!(mode->flags & DRM_MODE_FLAG_NVSYNC);
300 	asyh->set.or = head->func->or != NULL;
301 	asyh->set.mode = true;
302 }
303 
304 static int
305 nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state)
306 {
307 	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
308 	struct nv50_head *head = nv50_head(crtc);
309 	struct nv50_head_atom *armh = nv50_head_atom(crtc->state);
310 	struct nv50_head_atom *asyh = nv50_head_atom(state);
311 	struct nouveau_conn_atom *asyc = NULL;
312 	struct drm_connector_state *conns;
313 	struct drm_connector *conn;
314 	int i;
315 
316 	NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active);
317 	if (asyh->state.active) {
318 		for_each_new_connector_in_state(asyh->state.state, conn, conns, i) {
319 			if (conns->crtc == crtc) {
320 				asyc = nouveau_conn_atom(conns);
321 				break;
322 			}
323 		}
324 
325 		if (armh->state.active) {
326 			if (asyc) {
327 				if (asyh->state.mode_changed)
328 					asyc->set.scaler = true;
329 				if (armh->base.depth != asyh->base.depth)
330 					asyc->set.dither = true;
331 			}
332 		} else {
333 			if (asyc)
334 				asyc->set.mask = ~0;
335 			asyh->set.mask = ~0;
336 			asyh->set.or = head->func->or != NULL;
337 		}
338 
339 		if (asyh->state.mode_changed || asyh->state.connectors_changed)
340 			nv50_head_atomic_check_mode(head, asyh);
341 
342 		if (asyh->state.color_mgmt_changed ||
343 		    memcmp(&armh->wndw, &asyh->wndw, sizeof(asyh->wndw))) {
344 			int ret = nv50_head_atomic_check_lut(head, asyh);
345 			if (ret)
346 				return ret;
347 
348 			asyh->olut.visible = asyh->olut.handle != 0;
349 		}
350 
351 		if (asyc) {
352 			if (asyc->set.scaler)
353 				nv50_head_atomic_check_view(armh, asyh, asyc);
354 			if (asyc->set.dither)
355 				nv50_head_atomic_check_dither(armh, asyh, asyc);
356 			if (asyc->set.procamp)
357 				nv50_head_atomic_check_procamp(armh, asyh, asyc);
358 		}
359 
360 		if (head->func->core_calc) {
361 			head->func->core_calc(head, asyh);
362 			if (!asyh->core.visible)
363 				asyh->olut.visible = false;
364 		}
365 
366 		asyh->set.base = armh->base.cpp != asyh->base.cpp;
367 		asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp;
368 	} else {
369 		asyh->olut.visible = false;
370 		asyh->core.visible = false;
371 		asyh->curs.visible = false;
372 		asyh->base.cpp = 0;
373 		asyh->ovly.cpp = 0;
374 	}
375 
376 	if (!drm_atomic_crtc_needs_modeset(&asyh->state)) {
377 		if (asyh->core.visible) {
378 			if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core)))
379 				asyh->set.core = true;
380 		} else
381 		if (armh->core.visible) {
382 			asyh->clr.core = true;
383 		}
384 
385 		if (asyh->curs.visible) {
386 			if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs)))
387 				asyh->set.curs = true;
388 		} else
389 		if (armh->curs.visible) {
390 			asyh->clr.curs = true;
391 		}
392 
393 		if (asyh->olut.visible) {
394 			if (memcmp(&armh->olut, &asyh->olut, sizeof(asyh->olut)))
395 				asyh->set.olut = true;
396 		} else
397 		if (armh->olut.visible) {
398 			asyh->clr.olut = true;
399 		}
400 	} else {
401 		asyh->clr.olut = armh->olut.visible;
402 		asyh->clr.core = armh->core.visible;
403 		asyh->clr.curs = armh->curs.visible;
404 		asyh->set.olut = asyh->olut.visible;
405 		asyh->set.core = asyh->core.visible;
406 		asyh->set.curs = asyh->curs.visible;
407 	}
408 
409 	if (asyh->clr.mask || asyh->set.mask)
410 		nv50_atom(asyh->state.state)->lock_core = true;
411 	return 0;
412 }
413 
414 static const struct drm_crtc_helper_funcs
415 nv50_head_help = {
416 	.atomic_check = nv50_head_atomic_check,
417 	.get_scanout_position = nouveau_display_scanoutpos,
418 };
419 
420 static void
421 nv50_head_atomic_destroy_state(struct drm_crtc *crtc,
422 			       struct drm_crtc_state *state)
423 {
424 	struct nv50_head_atom *asyh = nv50_head_atom(state);
425 	__drm_atomic_helper_crtc_destroy_state(&asyh->state);
426 	kfree(asyh);
427 }
428 
429 static struct drm_crtc_state *
430 nv50_head_atomic_duplicate_state(struct drm_crtc *crtc)
431 {
432 	struct nv50_head_atom *armh = nv50_head_atom(crtc->state);
433 	struct nv50_head_atom *asyh;
434 	if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL)))
435 		return NULL;
436 	__drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state);
437 	asyh->wndw = armh->wndw;
438 	asyh->view = armh->view;
439 	asyh->mode = armh->mode;
440 	asyh->olut = armh->olut;
441 	asyh->core = armh->core;
442 	asyh->curs = armh->curs;
443 	asyh->base = armh->base;
444 	asyh->ovly = armh->ovly;
445 	asyh->dither = armh->dither;
446 	asyh->procamp = armh->procamp;
447 	asyh->or = armh->or;
448 	asyh->dp = armh->dp;
449 	asyh->clr.mask = 0;
450 	asyh->set.mask = 0;
451 	return &asyh->state;
452 }
453 
454 static void
455 nv50_head_reset(struct drm_crtc *crtc)
456 {
457 	struct nv50_head_atom *asyh;
458 
459 	if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL))))
460 		return;
461 
462 	if (crtc->state)
463 		nv50_head_atomic_destroy_state(crtc, crtc->state);
464 
465 	__drm_atomic_helper_crtc_reset(crtc, &asyh->state);
466 }
467 
468 static void
469 nv50_head_destroy(struct drm_crtc *crtc)
470 {
471 	struct nv50_head *head = nv50_head(crtc);
472 	nv50_lut_fini(&head->olut);
473 	drm_crtc_cleanup(crtc);
474 	kfree(head);
475 }
476 
477 static const struct drm_crtc_funcs
478 nv50_head_func = {
479 	.reset = nv50_head_reset,
480 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
481 	.destroy = nv50_head_destroy,
482 	.set_config = drm_atomic_helper_set_config,
483 	.page_flip = drm_atomic_helper_page_flip,
484 	.atomic_duplicate_state = nv50_head_atomic_duplicate_state,
485 	.atomic_destroy_state = nv50_head_atomic_destroy_state,
486 	.enable_vblank = nouveau_display_vblank_enable,
487 	.disable_vblank = nouveau_display_vblank_disable,
488 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
489 };
490 
491 struct nv50_head *
492 nv50_head_create(struct drm_device *dev, int index)
493 {
494 	struct nouveau_drm *drm = nouveau_drm(dev);
495 	struct nv50_disp *disp = nv50_disp(dev);
496 	struct nv50_head *head;
497 	struct nv50_wndw *base, *ovly, *curs;
498 	struct drm_crtc *crtc;
499 	int ret;
500 
501 	head = kzalloc(sizeof(*head), GFP_KERNEL);
502 	if (!head)
503 		return ERR_PTR(-ENOMEM);
504 
505 	head->func = disp->core->func->head;
506 	head->base.index = index;
507 
508 	if (disp->disp->object.oclass < GV100_DISP) {
509 		ret = nv50_base_new(drm, head->base.index, &base);
510 		ret = nv50_ovly_new(drm, head->base.index, &ovly);
511 	} else {
512 		ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_PRIMARY,
513 				    head->base.index * 2 + 0, &base);
514 		ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_OVERLAY,
515 				    head->base.index * 2 + 1, &ovly);
516 	}
517 	if (ret == 0)
518 		ret = nv50_curs_new(drm, head->base.index, &curs);
519 	if (ret) {
520 		kfree(head);
521 		return ERR_PTR(ret);
522 	}
523 
524 	crtc = &head->base.base;
525 	drm_crtc_init_with_planes(dev, crtc, &base->plane, &curs->plane,
526 				  &nv50_head_func, "head-%d", head->base.index);
527 	drm_crtc_helper_add(crtc, &nv50_head_help);
528 	/* Keep the legacy gamma size at 256 to avoid compatibility issues */
529 	drm_mode_crtc_set_gamma_size(crtc, 256);
530 	drm_crtc_enable_color_mgmt(crtc, base->func->ilut_size,
531 				   disp->disp->object.oclass >= GF110_DISP,
532 				   head->func->olut_size);
533 
534 	if (head->func->olut_set) {
535 		ret = nv50_lut_init(disp, &drm->client.mmu, &head->olut);
536 		if (ret) {
537 			nv50_head_destroy(crtc);
538 			return ERR_PTR(ret);
539 		}
540 	}
541 
542 	return head;
543 }
544