1 /* 2 * Copyright 2018 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "head.h" 23 #include "base.h" 24 #include "core.h" 25 #include "curs.h" 26 #include "ovly.h" 27 #include "crc.h" 28 29 #include <nvif/class.h> 30 #include <nvif/event.h> 31 #include <nvif/cl0046.h> 32 33 #include <drm/drm_atomic.h> 34 #include <drm/drm_atomic_helper.h> 35 #include <drm/drm_crtc_helper.h> 36 #include <drm/drm_vblank.h> 37 #include "nouveau_connector.h" 38 39 void 40 nv50_head_flush_clr(struct nv50_head *head, 41 struct nv50_head_atom *asyh, bool flush) 42 { 43 union nv50_head_atom_mask clr = { 44 .mask = asyh->clr.mask & ~(flush ? 0 : asyh->set.mask), 45 }; 46 if (clr.crc) nv50_crc_atomic_clr(head); 47 if (clr.olut) head->func->olut_clr(head); 48 if (clr.core) head->func->core_clr(head); 49 if (clr.curs) head->func->curs_clr(head); 50 } 51 52 void 53 nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh) 54 { 55 if (asyh->set.view ) head->func->view (head, asyh); 56 if (asyh->set.mode ) head->func->mode (head, asyh); 57 if (asyh->set.core ) head->func->core_set(head, asyh); 58 if (asyh->set.olut ) { 59 asyh->olut.offset = nv50_lut_load(&head->olut, 60 asyh->olut.buffer, 61 asyh->state.gamma_lut, 62 asyh->olut.load); 63 head->func->olut_set(head, asyh); 64 } 65 if (asyh->set.curs ) head->func->curs_set(head, asyh); 66 if (asyh->set.base ) head->func->base (head, asyh); 67 if (asyh->set.ovly ) head->func->ovly (head, asyh); 68 if (asyh->set.dither ) head->func->dither (head, asyh); 69 if (asyh->set.procamp) head->func->procamp (head, asyh); 70 if (asyh->set.crc ) nv50_crc_atomic_set (head, asyh); 71 if (asyh->set.or ) head->func->or (head, asyh); 72 } 73 74 static void 75 nv50_head_atomic_check_procamp(struct nv50_head_atom *armh, 76 struct nv50_head_atom *asyh, 77 struct nouveau_conn_atom *asyc) 78 { 79 const int vib = asyc->procamp.color_vibrance - 100; 80 const int hue = asyc->procamp.vibrant_hue - 90; 81 const int adj = (vib > 0) ? 50 : 0; 82 asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff; 83 asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff; 84 asyh->set.procamp = true; 85 } 86 87 static void 88 nv50_head_atomic_check_dither(struct nv50_head_atom *armh, 89 struct nv50_head_atom *asyh, 90 struct nouveau_conn_atom *asyc) 91 { 92 u32 mode = 0x00; 93 94 if (asyc->dither.mode) { 95 if (asyc->dither.mode == DITHERING_MODE_AUTO) { 96 if (asyh->base.depth > asyh->or.bpc * 3) 97 mode = DITHERING_MODE_DYNAMIC2X2; 98 } else { 99 mode = asyc->dither.mode; 100 } 101 102 if (asyc->dither.depth == DITHERING_DEPTH_AUTO) { 103 if (asyh->or.bpc >= 8) 104 mode |= DITHERING_DEPTH_8BPC; 105 } else { 106 mode |= asyc->dither.depth; 107 } 108 } 109 110 asyh->dither.enable = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, ENABLE); 111 asyh->dither.bits = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, BITS); 112 asyh->dither.mode = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, MODE); 113 asyh->set.dither = true; 114 } 115 116 static void 117 nv50_head_atomic_check_view(struct nv50_head_atom *armh, 118 struct nv50_head_atom *asyh, 119 struct nouveau_conn_atom *asyc) 120 { 121 struct drm_connector *connector = asyc->state.connector; 122 struct drm_display_mode *omode = &asyh->state.adjusted_mode; 123 struct drm_display_mode *umode = &asyh->state.mode; 124 int mode = asyc->scaler.mode; 125 struct edid *edid; 126 int umode_vdisplay, omode_hdisplay, omode_vdisplay; 127 128 if (connector->edid_blob_ptr) 129 edid = (struct edid *)connector->edid_blob_ptr->data; 130 else 131 edid = NULL; 132 133 if (!asyc->scaler.full) { 134 if (mode == DRM_MODE_SCALE_NONE) 135 omode = umode; 136 } else { 137 /* Non-EDID LVDS/eDP mode. */ 138 mode = DRM_MODE_SCALE_FULLSCREEN; 139 } 140 141 /* For the user-specified mode, we must ignore doublescan and 142 * the like, but honor frame packing. 143 */ 144 umode_vdisplay = umode->vdisplay; 145 if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) 146 umode_vdisplay += umode->vtotal; 147 asyh->view.iW = umode->hdisplay; 148 asyh->view.iH = umode_vdisplay; 149 /* For the output mode, we can just use the stock helper. */ 150 drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay); 151 asyh->view.oW = omode_hdisplay; 152 asyh->view.oH = omode_vdisplay; 153 154 /* Add overscan compensation if necessary, will keep the aspect 155 * ratio the same as the backend mode unless overridden by the 156 * user setting both hborder and vborder properties. 157 */ 158 if ((asyc->scaler.underscan.mode == UNDERSCAN_ON || 159 (asyc->scaler.underscan.mode == UNDERSCAN_AUTO && 160 drm_detect_hdmi_monitor(edid)))) { 161 u32 bX = asyc->scaler.underscan.hborder; 162 u32 bY = asyc->scaler.underscan.vborder; 163 u32 r = (asyh->view.oH << 19) / asyh->view.oW; 164 165 if (bX) { 166 asyh->view.oW -= (bX * 2); 167 if (bY) asyh->view.oH -= (bY * 2); 168 else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 169 } else { 170 asyh->view.oW -= (asyh->view.oW >> 4) + 32; 171 if (bY) asyh->view.oH -= (bY * 2); 172 else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 173 } 174 } 175 176 /* Handle CENTER/ASPECT scaling, taking into account the areas 177 * removed already for overscan compensation. 178 */ 179 switch (mode) { 180 case DRM_MODE_SCALE_CENTER: 181 /* NOTE: This will cause scaling when the input is 182 * larger than the output. 183 */ 184 asyh->view.oW = min(asyh->view.iW, asyh->view.oW); 185 asyh->view.oH = min(asyh->view.iH, asyh->view.oH); 186 break; 187 case DRM_MODE_SCALE_ASPECT: 188 /* Determine whether the scaling should be on width or on 189 * height. This is done by comparing the aspect ratios of the 190 * sizes. If the output AR is larger than input AR, that means 191 * we want to change the width (letterboxed on the 192 * left/right), otherwise on the height (letterboxed on the 193 * top/bottom). 194 * 195 * E.g. 4:3 (1.333) AR image displayed on a 16:10 (1.6) AR 196 * screen will have letterboxes on the left/right. However a 197 * 16:9 (1.777) AR image on that same screen will have 198 * letterboxes on the top/bottom. 199 * 200 * inputAR = iW / iH; outputAR = oW / oH 201 * outputAR > inputAR is equivalent to oW * iH > iW * oH 202 */ 203 if (asyh->view.oW * asyh->view.iH > asyh->view.iW * asyh->view.oH) { 204 /* Recompute output width, i.e. left/right letterbox */ 205 u32 r = (asyh->view.iW << 19) / asyh->view.iH; 206 asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19; 207 } else { 208 /* Recompute output height, i.e. top/bottom letterbox */ 209 u32 r = (asyh->view.iH << 19) / asyh->view.iW; 210 asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; 211 } 212 break; 213 default: 214 break; 215 } 216 217 asyh->set.view = true; 218 } 219 220 static int 221 nv50_head_atomic_check_lut(struct nv50_head *head, 222 struct nv50_head_atom *asyh) 223 { 224 struct nv50_disp *disp = nv50_disp(head->base.base.dev); 225 struct drm_property_blob *olut = asyh->state.gamma_lut; 226 int size; 227 228 /* Determine whether core output LUT should be enabled. */ 229 if (olut) { 230 /* Check if any window(s) have stolen the core output LUT 231 * to as an input LUT for legacy gamma + I8 colour format. 232 */ 233 if (asyh->wndw.olut) { 234 /* If any window has stolen the core output LUT, 235 * all of them must. 236 */ 237 if (asyh->wndw.olut != asyh->wndw.mask) 238 return -EINVAL; 239 olut = NULL; 240 } 241 } 242 243 if (!olut) { 244 if (!head->func->olut_identity) { 245 asyh->olut.handle = 0; 246 return 0; 247 } 248 size = 0; 249 } else { 250 size = drm_color_lut_size(olut); 251 } 252 253 if (!head->func->olut(head, asyh, size)) { 254 DRM_DEBUG_KMS("Invalid olut\n"); 255 return -EINVAL; 256 } 257 asyh->olut.handle = disp->core->chan.vram.handle; 258 asyh->olut.buffer = !asyh->olut.buffer; 259 260 return 0; 261 } 262 263 static void 264 nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh) 265 { 266 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 267 struct nv50_head_mode *m = &asyh->mode; 268 u32 blankus; 269 270 drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE); 271 272 /* 273 * DRM modes are defined in terms of a repeating interval 274 * starting with the active display area. The hardware modes 275 * are defined in terms of a repeating interval starting one 276 * unit (pixel or line) into the sync pulse. So, add bias. 277 */ 278 279 m->h.active = mode->crtc_htotal; 280 m->h.synce = mode->crtc_hsync_end - mode->crtc_hsync_start - 1; 281 m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1; 282 m->h.blanks = m->h.blanke + mode->crtc_hdisplay; 283 284 m->v.active = mode->crtc_vtotal; 285 m->v.synce = mode->crtc_vsync_end - mode->crtc_vsync_start - 1; 286 m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1; 287 m->v.blanks = m->v.blanke + mode->crtc_vdisplay; 288 289 /*XXX: Safe underestimate, even "0" works */ 290 blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active; 291 blankus *= 1000; 292 blankus /= mode->crtc_clock; 293 m->v.blankus = blankus; 294 295 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 296 m->v.blank2e = m->v.active + m->v.blanke; 297 m->v.blank2s = m->v.blank2e + mode->crtc_vdisplay; 298 m->v.active = (m->v.active * 2) + 1; 299 m->interlace = true; 300 } else { 301 m->v.blank2e = 0; 302 m->v.blank2s = 1; 303 m->interlace = false; 304 } 305 m->clock = mode->crtc_clock; 306 307 asyh->or.nhsync = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); 308 asyh->or.nvsync = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); 309 asyh->set.or = head->func->or != NULL; 310 asyh->set.mode = true; 311 } 312 313 static int 314 nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) 315 { 316 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 317 crtc); 318 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 319 crtc); 320 struct nouveau_drm *drm = nouveau_drm(crtc->dev); 321 struct nv50_head *head = nv50_head(crtc); 322 struct nv50_head_atom *armh = nv50_head_atom(old_crtc_state); 323 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 324 struct nouveau_conn_atom *asyc = NULL; 325 struct drm_connector_state *conns; 326 struct drm_connector *conn; 327 int i, ret; 328 329 NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active); 330 if (asyh->state.active) { 331 for_each_new_connector_in_state(asyh->state.state, conn, conns, i) { 332 if (conns->crtc == crtc) { 333 asyc = nouveau_conn_atom(conns); 334 break; 335 } 336 } 337 338 if (armh->state.active) { 339 if (asyc) { 340 if (asyh->state.mode_changed) 341 asyc->set.scaler = true; 342 if (armh->base.depth != asyh->base.depth) 343 asyc->set.dither = true; 344 } 345 } else { 346 if (asyc) 347 asyc->set.mask = ~0; 348 asyh->set.mask = ~0; 349 asyh->set.or = head->func->or != NULL; 350 } 351 352 if (asyh->state.mode_changed || asyh->state.connectors_changed) 353 nv50_head_atomic_check_mode(head, asyh); 354 355 if (asyh->state.color_mgmt_changed || 356 memcmp(&armh->wndw, &asyh->wndw, sizeof(asyh->wndw))) { 357 int ret = nv50_head_atomic_check_lut(head, asyh); 358 if (ret) 359 return ret; 360 361 asyh->olut.visible = asyh->olut.handle != 0; 362 } 363 364 if (asyc) { 365 if (asyc->set.scaler) 366 nv50_head_atomic_check_view(armh, asyh, asyc); 367 if (asyc->set.dither) 368 nv50_head_atomic_check_dither(armh, asyh, asyc); 369 if (asyc->set.procamp) 370 nv50_head_atomic_check_procamp(armh, asyh, asyc); 371 } 372 373 if (head->func->core_calc) { 374 head->func->core_calc(head, asyh); 375 if (!asyh->core.visible) 376 asyh->olut.visible = false; 377 } 378 379 asyh->set.base = armh->base.cpp != asyh->base.cpp; 380 asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp; 381 } else { 382 asyh->olut.visible = false; 383 asyh->core.visible = false; 384 asyh->curs.visible = false; 385 asyh->base.cpp = 0; 386 asyh->ovly.cpp = 0; 387 } 388 389 if (!drm_atomic_crtc_needs_modeset(&asyh->state)) { 390 if (asyh->core.visible) { 391 if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core))) 392 asyh->set.core = true; 393 } else 394 if (armh->core.visible) { 395 asyh->clr.core = true; 396 } 397 398 if (asyh->curs.visible) { 399 if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs))) 400 asyh->set.curs = true; 401 } else 402 if (armh->curs.visible) { 403 asyh->clr.curs = true; 404 } 405 406 if (asyh->olut.visible) { 407 if (memcmp(&armh->olut, &asyh->olut, sizeof(asyh->olut))) 408 asyh->set.olut = true; 409 } else 410 if (armh->olut.visible) { 411 asyh->clr.olut = true; 412 } 413 } else { 414 asyh->clr.olut = armh->olut.visible; 415 asyh->clr.core = armh->core.visible; 416 asyh->clr.curs = armh->curs.visible; 417 asyh->set.olut = asyh->olut.visible; 418 asyh->set.core = asyh->core.visible; 419 asyh->set.curs = asyh->curs.visible; 420 } 421 422 ret = nv50_crc_atomic_check_head(head, asyh, armh); 423 if (ret) 424 return ret; 425 426 if (asyh->clr.mask || asyh->set.mask) 427 nv50_atom(asyh->state.state)->lock_core = true; 428 return 0; 429 } 430 431 static const struct drm_crtc_helper_funcs 432 nv50_head_help = { 433 .atomic_check = nv50_head_atomic_check, 434 .get_scanout_position = nouveau_display_scanoutpos, 435 }; 436 437 static void 438 nv50_head_atomic_destroy_state(struct drm_crtc *crtc, 439 struct drm_crtc_state *state) 440 { 441 struct nv50_head_atom *asyh = nv50_head_atom(state); 442 __drm_atomic_helper_crtc_destroy_state(&asyh->state); 443 kfree(asyh); 444 } 445 446 static struct drm_crtc_state * 447 nv50_head_atomic_duplicate_state(struct drm_crtc *crtc) 448 { 449 struct nv50_head_atom *armh = nv50_head_atom(crtc->state); 450 struct nv50_head_atom *asyh; 451 if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL))) 452 return NULL; 453 __drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state); 454 asyh->wndw = armh->wndw; 455 asyh->view = armh->view; 456 asyh->mode = armh->mode; 457 asyh->olut = armh->olut; 458 asyh->core = armh->core; 459 asyh->curs = armh->curs; 460 asyh->base = armh->base; 461 asyh->ovly = armh->ovly; 462 asyh->dither = armh->dither; 463 asyh->procamp = armh->procamp; 464 asyh->crc = armh->crc; 465 asyh->or = armh->or; 466 asyh->dp = armh->dp; 467 asyh->clr.mask = 0; 468 asyh->set.mask = 0; 469 return &asyh->state; 470 } 471 472 static void 473 nv50_head_reset(struct drm_crtc *crtc) 474 { 475 struct nv50_head_atom *asyh; 476 477 if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL)))) 478 return; 479 480 if (crtc->state) 481 nv50_head_atomic_destroy_state(crtc, crtc->state); 482 483 __drm_atomic_helper_crtc_reset(crtc, &asyh->state); 484 } 485 486 static int 487 nv50_head_late_register(struct drm_crtc *crtc) 488 { 489 return nv50_head_crc_late_register(nv50_head(crtc)); 490 } 491 492 static void 493 nv50_head_destroy(struct drm_crtc *crtc) 494 { 495 struct nv50_head *head = nv50_head(crtc); 496 497 nvif_notify_dtor(&head->base.vblank); 498 nv50_lut_fini(&head->olut); 499 drm_crtc_cleanup(crtc); 500 kfree(head); 501 } 502 503 static const struct drm_crtc_funcs 504 nv50_head_func = { 505 .reset = nv50_head_reset, 506 .gamma_set = drm_atomic_helper_legacy_gamma_set, 507 .destroy = nv50_head_destroy, 508 .set_config = drm_atomic_helper_set_config, 509 .page_flip = drm_atomic_helper_page_flip, 510 .atomic_duplicate_state = nv50_head_atomic_duplicate_state, 511 .atomic_destroy_state = nv50_head_atomic_destroy_state, 512 .enable_vblank = nouveau_display_vblank_enable, 513 .disable_vblank = nouveau_display_vblank_disable, 514 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 515 .late_register = nv50_head_late_register, 516 }; 517 518 static const struct drm_crtc_funcs 519 nvd9_head_func = { 520 .reset = nv50_head_reset, 521 .gamma_set = drm_atomic_helper_legacy_gamma_set, 522 .destroy = nv50_head_destroy, 523 .set_config = drm_atomic_helper_set_config, 524 .page_flip = drm_atomic_helper_page_flip, 525 .atomic_duplicate_state = nv50_head_atomic_duplicate_state, 526 .atomic_destroy_state = nv50_head_atomic_destroy_state, 527 .enable_vblank = nouveau_display_vblank_enable, 528 .disable_vblank = nouveau_display_vblank_disable, 529 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 530 .verify_crc_source = nv50_crc_verify_source, 531 .get_crc_sources = nv50_crc_get_sources, 532 .set_crc_source = nv50_crc_set_source, 533 .late_register = nv50_head_late_register, 534 }; 535 536 static int nv50_head_vblank_handler(struct nvif_notify *notify) 537 { 538 struct nouveau_crtc *nv_crtc = 539 container_of(notify, struct nouveau_crtc, vblank); 540 541 if (drm_crtc_handle_vblank(&nv_crtc->base)) 542 nv50_crc_handle_vblank(nv50_head(&nv_crtc->base)); 543 544 return NVIF_NOTIFY_KEEP; 545 } 546 547 struct nv50_head * 548 nv50_head_create(struct drm_device *dev, int index) 549 { 550 struct nouveau_drm *drm = nouveau_drm(dev); 551 struct nv50_disp *disp = nv50_disp(dev); 552 struct nv50_head *head; 553 struct nv50_wndw *base, *ovly, *curs; 554 struct nouveau_crtc *nv_crtc; 555 struct drm_crtc *crtc; 556 const struct drm_crtc_funcs *funcs; 557 int ret; 558 559 head = kzalloc(sizeof(*head), GFP_KERNEL); 560 if (!head) 561 return ERR_PTR(-ENOMEM); 562 563 head->func = disp->core->func->head; 564 head->base.index = index; 565 566 if (disp->disp->object.oclass < GF110_DISP) 567 funcs = &nv50_head_func; 568 else 569 funcs = &nvd9_head_func; 570 571 if (disp->disp->object.oclass < GV100_DISP) { 572 ret = nv50_base_new(drm, head->base.index, &base); 573 ret = nv50_ovly_new(drm, head->base.index, &ovly); 574 } else { 575 ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_PRIMARY, 576 head->base.index * 2 + 0, &base); 577 ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_OVERLAY, 578 head->base.index * 2 + 1, &ovly); 579 } 580 if (ret == 0) 581 ret = nv50_curs_new(drm, head->base.index, &curs); 582 if (ret) { 583 kfree(head); 584 return ERR_PTR(ret); 585 } 586 587 nv_crtc = &head->base; 588 crtc = &nv_crtc->base; 589 drm_crtc_init_with_planes(dev, crtc, &base->plane, &curs->plane, 590 funcs, "head-%d", head->base.index); 591 drm_crtc_helper_add(crtc, &nv50_head_help); 592 /* Keep the legacy gamma size at 256 to avoid compatibility issues */ 593 drm_mode_crtc_set_gamma_size(crtc, 256); 594 drm_crtc_enable_color_mgmt(crtc, base->func->ilut_size, 595 disp->disp->object.oclass >= GF110_DISP, 596 head->func->olut_size); 597 598 if (head->func->olut_set) { 599 ret = nv50_lut_init(disp, &drm->client.mmu, &head->olut); 600 if (ret) { 601 nv50_head_destroy(crtc); 602 return ERR_PTR(ret); 603 } 604 } 605 606 ret = nvif_notify_ctor(&disp->disp->object, "kmsVbl", nv50_head_vblank_handler, 607 false, NV04_DISP_NTFY_VBLANK, 608 &(struct nvif_notify_head_req_v0) { 609 .head = nv_crtc->index, 610 }, 611 sizeof(struct nvif_notify_head_req_v0), 612 sizeof(struct nvif_notify_head_rep_v0), 613 &nv_crtc->vblank); 614 if (ret) 615 return ERR_PTR(ret); 616 617 return head; 618 } 619