1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/backlight.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/hdmi.h> 34 #include <linux/component.h> 35 #include <linux/iopoll.h> 36 37 #include <drm/display/drm_dp_helper.h> 38 #include <drm/display/drm_scdc_helper.h> 39 #include <drm/drm_atomic.h> 40 #include <drm/drm_atomic_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_eld.h> 43 #include <drm/drm_fb_helper.h> 44 #include <drm/drm_fixed.h> 45 #include <drm/drm_probe_helper.h> 46 #include <drm/drm_vblank.h> 47 48 #include <nvif/push507c.h> 49 50 #include <nvif/class.h> 51 #include <nvif/cl0002.h> 52 #include <nvif/event.h> 53 #include <nvif/if0012.h> 54 #include <nvif/if0014.h> 55 #include <nvif/timer.h> 56 57 #include <nvhw/class/cl507c.h> 58 #include <nvhw/class/cl507d.h> 59 #include <nvhw/class/cl837d.h> 60 #include <nvhw/class/cl887d.h> 61 #include <nvhw/class/cl907d.h> 62 #include <nvhw/class/cl917d.h> 63 64 #include "nouveau_drv.h" 65 #include "nouveau_dma.h" 66 #include "nouveau_gem.h" 67 #include "nouveau_connector.h" 68 #include "nouveau_encoder.h" 69 #include "nouveau_fence.h" 70 #include "nv50_display.h" 71 72 /****************************************************************************** 73 * EVO channel 74 *****************************************************************************/ 75 76 static int 77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 78 const s32 *oclass, u8 head, void *data, u32 size, 79 struct nv50_chan *chan) 80 { 81 struct nvif_sclass *sclass; 82 int ret, i, n; 83 84 chan->device = device; 85 86 ret = n = nvif_object_sclass_get(disp, &sclass); 87 if (ret < 0) 88 return ret; 89 90 while (oclass[0]) { 91 for (i = 0; i < n; i++) { 92 if (sclass[i].oclass == oclass[0]) { 93 ret = nvif_object_ctor(disp, "kmsChan", 0, 94 oclass[0], data, size, 95 &chan->user); 96 if (ret == 0) { 97 ret = nvif_object_map(&chan->user, NULL, 0); 98 if (ret) 99 nvif_object_dtor(&chan->user); 100 } 101 nvif_object_sclass_put(&sclass); 102 return ret; 103 } 104 } 105 oclass++; 106 } 107 108 nvif_object_sclass_put(&sclass); 109 return -ENOSYS; 110 } 111 112 static void 113 nv50_chan_destroy(struct nv50_chan *chan) 114 { 115 nvif_object_dtor(&chan->user); 116 } 117 118 /****************************************************************************** 119 * DMA EVO channel 120 *****************************************************************************/ 121 122 void 123 nv50_dmac_destroy(struct nv50_dmac *dmac) 124 { 125 nvif_object_dtor(&dmac->vram); 126 nvif_object_dtor(&dmac->sync); 127 128 nv50_chan_destroy(&dmac->base); 129 130 nvif_mem_dtor(&dmac->push.mem); 131 } 132 133 static void 134 nv50_dmac_kick(struct nvif_push *push) 135 { 136 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push); 137 138 dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr; 139 if (dmac->put != dmac->cur) { 140 /* Push buffer fetches are not coherent with BAR1, we need to ensure 141 * writes have been flushed right through to VRAM before writing PUT. 142 */ 143 if (dmac->push.mem.type & NVIF_MEM_VRAM) { 144 struct nvif_device *device = dmac->base.device; 145 nvif_wr32(&device->object, 0x070000, 0x00000001); 146 nvif_msec(device, 2000, 147 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 148 break; 149 ); 150 } 151 152 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 153 dmac->put = dmac->cur; 154 } 155 156 push->bgn = push->cur; 157 } 158 159 static int 160 nv50_dmac_free(struct nv50_dmac *dmac) 161 { 162 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 163 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 164 return get - dmac->cur - 5; 165 return dmac->max - dmac->cur; 166 } 167 168 static int 169 nv50_dmac_wind(struct nv50_dmac *dmac) 170 { 171 /* Wait for GET to depart from the beginning of the push buffer to 172 * prevent writing PUT == GET, which would be ignored by HW. 173 */ 174 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 175 if (get == 0) { 176 /* Corner-case, HW idle, but non-committed work pending. */ 177 if (dmac->put == 0) 178 nv50_dmac_kick(&dmac->push); 179 180 if (nvif_msec(dmac->base.device, 2000, 181 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 182 break; 183 ) < 0) 184 return -ETIMEDOUT; 185 } 186 187 PUSH_RSVD(&dmac->push, PUSH_JUMP(&dmac->push, 0)); 188 dmac->cur = 0; 189 return 0; 190 } 191 192 static int 193 nv50_dmac_wait(struct nvif_push *push, u32 size) 194 { 195 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push); 196 int free; 197 198 if (WARN_ON(size > dmac->max)) 199 return -EINVAL; 200 201 dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr; 202 if (dmac->cur + size >= dmac->max) { 203 int ret = nv50_dmac_wind(dmac); 204 if (ret) 205 return ret; 206 207 push->cur = dmac->push.mem.object.map.ptr; 208 push->cur = push->cur + dmac->cur; 209 nv50_dmac_kick(push); 210 } 211 212 if (nvif_msec(dmac->base.device, 2000, 213 if ((free = nv50_dmac_free(dmac)) >= size) 214 break; 215 ) < 0) { 216 WARN_ON(1); 217 return -ETIMEDOUT; 218 } 219 220 push->bgn = dmac->push.mem.object.map.ptr; 221 push->bgn = push->bgn + dmac->cur; 222 push->cur = push->bgn; 223 push->end = push->cur + free; 224 return 0; 225 } 226 227 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 228 static int nv50_dmac_vram_pushbuf = -1; 229 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 230 231 int 232 nv50_dmac_create(struct nouveau_drm *drm, 233 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 234 struct nv50_dmac *dmac) 235 { 236 struct nvif_device *device = &drm->device; 237 struct nvif_object *disp = &drm->display->disp.object; 238 struct nvif_disp_chan_v0 *args = data; 239 u8 type = NVIF_MEM_COHERENT; 240 int ret; 241 242 /* Pascal added support for 47-bit physical addresses, but some 243 * parts of EVO still only accept 40-bit PAs. 244 * 245 * To avoid issues on systems with large amounts of RAM, and on 246 * systems where an IOMMU maps pages at a high address, we need 247 * to allocate push buffers in VRAM instead. 248 * 249 * This appears to match NVIDIA's behaviour on Pascal. 250 */ 251 if ((nv50_dmac_vram_pushbuf > 0) || 252 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 253 type |= NVIF_MEM_VRAM; 254 255 ret = nvif_mem_ctor_map(&drm->mmu, "kmsChanPush", type, 0x1000, &dmac->push.mem); 256 if (ret) 257 return ret; 258 259 dmac->push.wait = nv50_dmac_wait; 260 dmac->push.kick = nv50_dmac_kick; 261 dmac->push.bgn = dmac->push.mem.object.map.ptr; 262 dmac->push.cur = dmac->push.bgn; 263 dmac->push.end = dmac->push.bgn; 264 dmac->max = 0x1000/4 - 1; 265 266 /* EVO channels are affected by a HW bug where the last 12 DWORDs 267 * of the push buffer aren't able to be used safely. 268 */ 269 if (disp->oclass < GV100_DISP) 270 dmac->max -= 12; 271 272 args->pushbuf = nvif_handle(&dmac->push.mem.object); 273 274 ret = nv50_chan_create(device, disp, oclass, head, data, size, 275 &dmac->base); 276 if (ret) 277 return ret; 278 279 if (syncbuf < 0) 280 return 0; 281 282 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 283 NV_DMA_IN_MEMORY, 284 &(struct nv_dma_v0) { 285 .target = NV_DMA_V0_TARGET_VRAM, 286 .access = NV_DMA_V0_ACCESS_RDWR, 287 .start = syncbuf + 0x0000, 288 .limit = syncbuf + 0x0fff, 289 }, sizeof(struct nv_dma_v0), 290 &dmac->sync); 291 if (ret) 292 return ret; 293 294 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 295 NV_DMA_IN_MEMORY, 296 &(struct nv_dma_v0) { 297 .target = NV_DMA_V0_TARGET_VRAM, 298 .access = NV_DMA_V0_ACCESS_RDWR, 299 .start = 0, 300 .limit = device->info.ram_user - 1, 301 }, sizeof(struct nv_dma_v0), 302 &dmac->vram); 303 if (ret) 304 return ret; 305 306 return ret; 307 } 308 309 /****************************************************************************** 310 * Output path helpers 311 *****************************************************************************/ 312 static void 313 nv50_outp_dump_caps(struct nouveau_drm *drm, 314 struct nouveau_encoder *outp) 315 { 316 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 317 outp->base.base.name, outp->caps.dp_interlace); 318 } 319 320 static int 321 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 322 struct drm_crtc_state *crtc_state, 323 struct drm_connector_state *conn_state, 324 struct drm_display_mode *native_mode) 325 { 326 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 327 struct drm_display_mode *mode = &crtc_state->mode; 328 struct drm_connector *connector = conn_state->connector; 329 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 330 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 331 332 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 333 asyc->scaler.full = false; 334 if (!native_mode) 335 return 0; 336 337 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 338 switch (connector->connector_type) { 339 case DRM_MODE_CONNECTOR_LVDS: 340 case DRM_MODE_CONNECTOR_eDP: 341 /* Don't force scaler for EDID modes with 342 * same size as the native one (e.g. different 343 * refresh rate) 344 */ 345 if (mode->hdisplay == native_mode->hdisplay && 346 mode->vdisplay == native_mode->vdisplay && 347 mode->type & DRM_MODE_TYPE_DRIVER) 348 break; 349 mode = native_mode; 350 asyc->scaler.full = true; 351 break; 352 default: 353 break; 354 } 355 } else { 356 mode = native_mode; 357 } 358 359 if (!drm_mode_equal(adjusted_mode, mode)) { 360 drm_mode_copy(adjusted_mode, mode); 361 crtc_state->mode_changed = true; 362 } 363 364 return 0; 365 } 366 367 static void 368 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) 369 { 370 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 371 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 372 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 373 unsigned int max_rate, mode_rate; 374 375 switch (nv_encoder->dcb->type) { 376 case DCB_OUTPUT_DP: 377 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; 378 379 /* we don't support more than 10 anyway */ 380 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); 381 382 /* reduce the bpc until it works out */ 383 while (asyh->or.bpc > 6) { 384 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); 385 if (mode_rate <= max_rate) 386 break; 387 388 asyh->or.bpc -= 2; 389 } 390 break; 391 default: 392 break; 393 } 394 } 395 396 static int 397 nv50_outp_atomic_check(struct drm_encoder *encoder, 398 struct drm_crtc_state *crtc_state, 399 struct drm_connector_state *conn_state) 400 { 401 struct drm_connector *connector = conn_state->connector; 402 struct nouveau_connector *nv_connector = nouveau_connector(connector); 403 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 404 int ret; 405 406 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 407 nv_connector->native_mode); 408 if (ret) 409 return ret; 410 411 if (crtc_state->mode_changed || crtc_state->connectors_changed) 412 asyh->or.bpc = connector->display_info.bpc; 413 414 /* We might have to reduce the bpc */ 415 nv50_outp_atomic_fix_depth(encoder, crtc_state); 416 417 return 0; 418 } 419 420 struct nouveau_connector * 421 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 422 { 423 struct drm_connector *connector; 424 struct drm_connector_state *connector_state; 425 struct drm_encoder *encoder = to_drm_encoder(outp); 426 int i; 427 428 for_each_new_connector_in_state(state, connector, connector_state, i) { 429 if (connector_state->best_encoder == encoder) 430 return nouveau_connector(connector); 431 } 432 433 return NULL; 434 } 435 436 struct nouveau_connector * 437 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 438 { 439 struct drm_connector *connector; 440 struct drm_connector_state *connector_state; 441 struct drm_encoder *encoder = to_drm_encoder(outp); 442 int i; 443 444 for_each_old_connector_in_state(state, connector, connector_state, i) { 445 if (connector_state->best_encoder == encoder) 446 return nouveau_connector(connector); 447 } 448 449 return NULL; 450 } 451 452 static struct nouveau_crtc * 453 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 454 { 455 struct drm_crtc *crtc; 456 struct drm_crtc_state *crtc_state; 457 const u32 mask = drm_encoder_mask(&outp->base.base); 458 int i; 459 460 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 461 if (crtc_state->encoder_mask & mask) 462 return nouveau_crtc(crtc); 463 } 464 465 return NULL; 466 } 467 468 /****************************************************************************** 469 * DAC 470 *****************************************************************************/ 471 static void 472 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 473 { 474 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 475 struct nv50_core *core = nv50_disp(encoder->dev)->core; 476 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 477 478 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 479 nv_encoder->crtc = NULL; 480 } 481 482 static void 483 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 484 { 485 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 486 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 487 struct nv50_head_atom *asyh = 488 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 489 struct nv50_core *core = nv50_disp(encoder->dev)->core; 490 u32 ctrl = 0; 491 492 switch (nv_crtc->index) { 493 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 494 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 495 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 496 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 497 default: 498 WARN_ON(1); 499 break; 500 } 501 502 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 503 504 if (!nvif_outp_acquired(&nv_encoder->outp)) 505 nvif_outp_acquire_dac(&nv_encoder->outp); 506 507 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 508 asyh->or.depth = 0; 509 510 nv_encoder->crtc = &nv_crtc->base; 511 } 512 513 static enum drm_connector_status 514 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 515 { 516 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 517 u32 loadval; 518 int ret; 519 520 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 521 if (loadval == 0) 522 loadval = 340; 523 524 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 525 if (ret <= 0) 526 return connector_status_disconnected; 527 528 return connector_status_connected; 529 } 530 531 static const struct drm_encoder_helper_funcs 532 nv50_dac_help = { 533 .atomic_check = nv50_outp_atomic_check, 534 .atomic_enable = nv50_dac_atomic_enable, 535 .atomic_disable = nv50_dac_atomic_disable, 536 .detect = nv50_dac_detect 537 }; 538 539 static void 540 nv50_dac_destroy(struct drm_encoder *encoder) 541 { 542 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 543 544 nvif_outp_dtor(&nv_encoder->outp); 545 546 drm_encoder_cleanup(encoder); 547 kfree(encoder); 548 } 549 550 static const struct drm_encoder_funcs 551 nv50_dac_func = { 552 .destroy = nv50_dac_destroy, 553 }; 554 555 static int 556 nv50_dac_create(struct nouveau_encoder *nv_encoder) 557 { 558 struct drm_connector *connector = &nv_encoder->conn->base; 559 struct nouveau_drm *drm = nouveau_drm(connector->dev); 560 struct nvkm_i2c *i2c = nvxx_i2c(drm); 561 struct nvkm_i2c_bus *bus; 562 struct drm_encoder *encoder; 563 struct dcb_output *dcbe = nv_encoder->dcb; 564 int type = DRM_MODE_ENCODER_DAC; 565 566 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 567 if (bus) 568 nv_encoder->i2c = &bus->i2c; 569 570 encoder = to_drm_encoder(nv_encoder); 571 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 572 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 573 drm_encoder_helper_add(encoder, &nv50_dac_help); 574 575 drm_connector_attach_encoder(connector, encoder); 576 return 0; 577 } 578 579 /* 580 * audio component binding for ELD notification 581 */ 582 static void 583 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 584 int dev_id) 585 { 586 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 587 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 588 port, dev_id); 589 } 590 591 static int 592 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 593 bool *enabled, unsigned char *buf, int max_bytes) 594 { 595 struct nouveau_drm *drm = dev_get_drvdata(kdev); 596 struct drm_encoder *encoder; 597 struct nouveau_encoder *nv_encoder; 598 struct nouveau_crtc *nv_crtc; 599 int ret = 0; 600 601 *enabled = false; 602 603 mutex_lock(&drm->audio.lock); 604 605 drm_for_each_encoder(encoder, drm->dev) { 606 struct nouveau_connector *nv_connector = NULL; 607 608 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 609 continue; /* TODO */ 610 611 nv_encoder = nouveau_encoder(encoder); 612 nv_connector = nv_encoder->conn; 613 nv_crtc = nouveau_crtc(nv_encoder->crtc); 614 615 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 616 continue; 617 618 *enabled = nv_encoder->audio.enabled; 619 if (*enabled) { 620 ret = drm_eld_size(nv_connector->base.eld); 621 memcpy(buf, nv_connector->base.eld, 622 min(max_bytes, ret)); 623 } 624 break; 625 } 626 627 mutex_unlock(&drm->audio.lock); 628 629 return ret; 630 } 631 632 static const struct drm_audio_component_ops nv50_audio_component_ops = { 633 .get_eld = nv50_audio_component_get_eld, 634 }; 635 636 static int 637 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 638 void *data) 639 { 640 struct nouveau_drm *drm = dev_get_drvdata(kdev); 641 struct drm_audio_component *acomp = data; 642 643 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 644 return -ENOMEM; 645 646 drm_modeset_lock_all(drm->dev); 647 acomp->ops = &nv50_audio_component_ops; 648 acomp->dev = kdev; 649 drm->audio.component = acomp; 650 drm_modeset_unlock_all(drm->dev); 651 return 0; 652 } 653 654 static void 655 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 656 void *data) 657 { 658 struct nouveau_drm *drm = dev_get_drvdata(kdev); 659 struct drm_audio_component *acomp = data; 660 661 drm_modeset_lock_all(drm->dev); 662 drm->audio.component = NULL; 663 acomp->ops = NULL; 664 acomp->dev = NULL; 665 drm_modeset_unlock_all(drm->dev); 666 } 667 668 static const struct component_ops nv50_audio_component_bind_ops = { 669 .bind = nv50_audio_component_bind, 670 .unbind = nv50_audio_component_unbind, 671 }; 672 673 static void 674 nv50_audio_component_init(struct nouveau_drm *drm) 675 { 676 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 677 return; 678 679 drm->audio.component_registered = true; 680 mutex_init(&drm->audio.lock); 681 } 682 683 static void 684 nv50_audio_component_fini(struct nouveau_drm *drm) 685 { 686 if (!drm->audio.component_registered) 687 return; 688 689 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 690 drm->audio.component_registered = false; 691 mutex_destroy(&drm->audio.lock); 692 } 693 694 /****************************************************************************** 695 * Audio 696 *****************************************************************************/ 697 static bool 698 nv50_audio_supported(struct drm_encoder *encoder) 699 { 700 struct nv50_disp *disp = nv50_disp(encoder->dev); 701 702 if (disp->disp->object.oclass <= GT200_DISP || 703 disp->disp->object.oclass == GT206_DISP) 704 return false; 705 706 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 707 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 708 709 switch (nv_encoder->dcb->type) { 710 case DCB_OUTPUT_TMDS: 711 case DCB_OUTPUT_DP: 712 break; 713 default: 714 return false; 715 } 716 } 717 718 return true; 719 } 720 721 static void 722 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 723 { 724 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 725 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 726 struct nvif_outp *outp = &nv_encoder->outp; 727 728 if (!nv50_audio_supported(encoder)) 729 return; 730 731 mutex_lock(&drm->audio.lock); 732 if (nv_encoder->audio.enabled) { 733 nv_encoder->audio.enabled = false; 734 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 735 } 736 mutex_unlock(&drm->audio.lock); 737 738 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 739 } 740 741 static void 742 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 743 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 744 struct drm_display_mode *mode) 745 { 746 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 747 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 748 struct nvif_outp *outp = &nv_encoder->outp; 749 750 if (!nv50_audio_supported(encoder) || !nv_connector->base.display_info.has_audio) 751 return; 752 753 mutex_lock(&drm->audio.lock); 754 755 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 756 drm_eld_size(nv_connector->base.eld)); 757 nv_encoder->audio.enabled = true; 758 759 mutex_unlock(&drm->audio.lock); 760 761 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 762 } 763 764 /****************************************************************************** 765 * HDMI 766 *****************************************************************************/ 767 static void 768 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 769 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 770 struct drm_display_mode *mode, bool hda) 771 { 772 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 773 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 774 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 775 union hdmi_infoframe infoframe = { 0 }; 776 const u8 rekey = 56; /* binary driver, and tegra, constant */ 777 u32 max_ac_packet; 778 struct { 779 struct nvif_outp_infoframe_v0 infoframe; 780 u8 data[17]; 781 } args = { 0 }; 782 int ret, size; 783 784 max_ac_packet = mode->htotal - mode->hdisplay; 785 max_ac_packet -= rekey; 786 max_ac_packet -= 18; /* constant from tegra */ 787 max_ac_packet /= 32; 788 789 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) { 790 const bool high_tmds_clock_ratio = mode->clock > 340000; 791 u8 scdc; 792 793 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); 794 if (ret < 0) { 795 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 796 return; 797 } 798 799 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 800 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 801 scdc |= SCDC_SCRAMBLING_ENABLE; 802 if (high_tmds_clock_ratio) 803 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 804 805 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); 806 if (ret < 0) 807 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 808 scdc, ret); 809 } 810 811 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, 812 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported, 813 hdmi->scdc.scrambling.low_rates); 814 if (ret) 815 return; 816 817 /* AVI InfoFrame. */ 818 args.infoframe.version = 0; 819 args.infoframe.head = nv_crtc->index; 820 821 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 822 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 823 HDMI_QUANTIZATION_RANGE_FULL); 824 825 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 826 } else { 827 size = 0; 828 } 829 830 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); 831 832 /* Vendor InfoFrame. */ 833 memset(&args.data, 0, sizeof(args.data)); 834 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 835 &nv_connector->base, mode)) 836 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 837 else 838 size = 0; 839 840 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); 841 842 nv_encoder->hdmi.enabled = true; 843 } 844 845 /****************************************************************************** 846 * MST 847 *****************************************************************************/ 848 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 849 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 850 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 851 852 struct nv50_mstc { 853 struct nv50_mstm *mstm; 854 struct drm_dp_mst_port *port; 855 struct drm_connector connector; 856 857 struct drm_display_mode *native; 858 struct edid *edid; 859 }; 860 861 struct nv50_msto { 862 struct drm_encoder encoder; 863 864 /* head is statically assigned on msto creation */ 865 struct nv50_head *head; 866 struct nv50_mstc *mstc; 867 bool disabled; 868 bool enabled; 869 870 u32 display_id; 871 }; 872 873 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 874 { 875 struct nv50_msto *msto; 876 877 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 878 return nouveau_encoder(encoder); 879 880 msto = nv50_msto(encoder); 881 if (!msto->mstc) 882 return NULL; 883 return msto->mstc->mstm->outp; 884 } 885 886 static void 887 nv50_msto_cleanup(struct drm_atomic_state *state, 888 struct drm_dp_mst_topology_state *new_mst_state, 889 struct drm_dp_mst_topology_mgr *mgr, 890 struct nv50_msto *msto) 891 { 892 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 893 struct drm_dp_mst_atomic_payload *new_payload = 894 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port); 895 struct drm_dp_mst_topology_state *old_mst_state = 896 drm_atomic_get_old_mst_topology_state(state, mgr); 897 const struct drm_dp_mst_atomic_payload *old_payload = 898 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port); 899 struct nv50_mstc *mstc = msto->mstc; 900 struct nv50_mstm *mstm = mstc->mstm; 901 902 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 903 904 if (msto->disabled) { 905 if (msto->head->func->display_id) { 906 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id); 907 msto->display_id = 0; 908 } 909 910 msto->mstc = NULL; 911 msto->disabled = false; 912 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload); 913 } else if (msto->enabled) { 914 drm_dp_add_payload_part2(mgr, new_payload); 915 msto->enabled = false; 916 } 917 } 918 919 static void 920 nv50_msto_prepare(struct drm_atomic_state *state, 921 struct drm_dp_mst_topology_state *mst_state, 922 struct drm_dp_mst_topology_mgr *mgr, 923 struct nv50_msto *msto) 924 { 925 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 926 struct nv50_mstc *mstc = msto->mstc; 927 struct nv50_mstm *mstm = mstc->mstm; 928 struct drm_dp_mst_atomic_payload *payload; 929 int ret = 0; 930 931 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 932 933 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 934 935 if (msto->disabled) { 936 drm_dp_remove_payload_part1(mgr, mst_state, payload); 937 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 938 ret = 1; 939 } else { 940 if (msto->enabled) 941 ret = drm_dp_add_payload_part1(mgr, mst_state, payload); 942 } 943 944 if (ret == 0) { 945 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 946 payload->vc_start_slot, payload->time_slots, 947 payload->pbn, 948 payload->time_slots * dfixed_trunc(mst_state->pbn_div)); 949 } else { 950 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 951 } 952 } 953 954 static int 955 nv50_msto_atomic_check(struct drm_encoder *encoder, 956 struct drm_crtc_state *crtc_state, 957 struct drm_connector_state *conn_state) 958 { 959 struct drm_atomic_state *state = crtc_state->state; 960 struct drm_connector *connector = conn_state->connector; 961 struct drm_dp_mst_topology_state *mst_state; 962 struct nv50_mstc *mstc = nv50_mstc(connector); 963 struct nv50_mstm *mstm = mstc->mstm; 964 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 965 int slots; 966 int ret; 967 968 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 969 mstc->native); 970 if (ret) 971 return ret; 972 973 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 974 return 0; 975 976 /* 977 * When restoring duplicated states, we need to make sure that the bw 978 * remains the same and avoid recalculating it, as the connector's bpc 979 * may have changed after the state was duplicated 980 */ 981 if (!state->duplicated) { 982 const int clock = crtc_state->adjusted_mode.clock; 983 984 asyh->or.bpc = connector->display_info.bpc; 985 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3 << 4); 986 } 987 988 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 989 if (IS_ERR(mst_state)) 990 return PTR_ERR(mst_state); 991 992 if (!mst_state->pbn_div.full) { 993 struct nouveau_encoder *outp = mstc->mstm->outp; 994 995 mst_state->pbn_div = drm_dp_get_vc_payload_bw(outp->dp.link_bw, outp->dp.link_nr); 996 } 997 998 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 999 if (slots < 0) 1000 return slots; 1001 1002 asyh->dp.tu = slots; 1003 1004 return 0; 1005 } 1006 1007 static u8 1008 nv50_dp_bpc_to_depth(unsigned int bpc) 1009 { 1010 switch (bpc) { 1011 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 1012 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 1013 case 10: 1014 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1015 } 1016 } 1017 1018 static void 1019 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1020 { 1021 struct nv50_msto *msto = nv50_msto(encoder); 1022 struct nv50_head *head = msto->head; 1023 struct nv50_head_atom *asyh = 1024 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1025 struct nv50_mstc *mstc = NULL; 1026 struct nv50_mstm *mstm = NULL; 1027 struct drm_connector *connector; 1028 struct drm_connector_list_iter conn_iter; 1029 u8 proto; 1030 1031 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1032 drm_for_each_connector_iter(connector, &conn_iter) { 1033 if (connector->state->best_encoder == &msto->encoder) { 1034 mstc = nv50_mstc(connector); 1035 mstm = mstc->mstm; 1036 break; 1037 } 1038 } 1039 drm_connector_list_iter_end(&conn_iter); 1040 1041 if (WARN_ON(!mstc)) 1042 return; 1043 1044 if (!mstm->links++) { 1045 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */); 1046 nouveau_dp_train(mstm->outp, true, 0, 0); 1047 } 1048 1049 if (head->func->display_id) { 1050 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id))) 1051 head->func->display_id(head, msto->display_id); 1052 } 1053 1054 if (mstm->outp->outp.or.link & 1) 1055 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1056 else 1057 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1058 1059 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1060 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1061 1062 msto->mstc = mstc; 1063 msto->enabled = true; 1064 mstm->modified = true; 1065 } 1066 1067 static void 1068 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1069 { 1070 struct nv50_msto *msto = nv50_msto(encoder); 1071 struct nv50_mstc *mstc = msto->mstc; 1072 struct nv50_mstm *mstm = mstc->mstm; 1073 1074 if (msto->head->func->display_id) 1075 msto->head->func->display_id(msto->head, 0); 1076 1077 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1078 mstm->modified = true; 1079 if (!--mstm->links) 1080 mstm->disabled = true; 1081 msto->disabled = true; 1082 } 1083 1084 static const struct drm_encoder_helper_funcs 1085 nv50_msto_help = { 1086 .atomic_disable = nv50_msto_atomic_disable, 1087 .atomic_enable = nv50_msto_atomic_enable, 1088 .atomic_check = nv50_msto_atomic_check, 1089 }; 1090 1091 static void 1092 nv50_msto_destroy(struct drm_encoder *encoder) 1093 { 1094 struct nv50_msto *msto = nv50_msto(encoder); 1095 drm_encoder_cleanup(&msto->encoder); 1096 kfree(msto); 1097 } 1098 1099 static const struct drm_encoder_funcs 1100 nv50_msto = { 1101 .destroy = nv50_msto_destroy, 1102 }; 1103 1104 static struct nv50_msto * 1105 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1106 { 1107 struct nv50_msto *msto; 1108 int ret; 1109 1110 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1111 if (!msto) 1112 return ERR_PTR(-ENOMEM); 1113 1114 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1115 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1116 if (ret) { 1117 kfree(msto); 1118 return ERR_PTR(ret); 1119 } 1120 1121 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1122 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1123 msto->head = head; 1124 return msto; 1125 } 1126 1127 static struct drm_encoder * 1128 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1129 struct drm_atomic_state *state) 1130 { 1131 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1132 connector); 1133 struct nv50_mstc *mstc = nv50_mstc(connector); 1134 struct drm_crtc *crtc = connector_state->crtc; 1135 1136 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1137 return NULL; 1138 1139 return &nv50_head(crtc)->msto->encoder; 1140 } 1141 1142 static enum drm_mode_status 1143 nv50_mstc_mode_valid(struct drm_connector *connector, 1144 struct drm_display_mode *mode) 1145 { 1146 struct nv50_mstc *mstc = nv50_mstc(connector); 1147 struct nouveau_encoder *outp = mstc->mstm->outp; 1148 1149 /* TODO: calculate the PBN from the dotclock and validate against the 1150 * MSTB's max possible PBN 1151 */ 1152 1153 return nv50_dp_mode_valid(outp, mode, NULL); 1154 } 1155 1156 static int 1157 nv50_mstc_get_modes(struct drm_connector *connector) 1158 { 1159 struct nv50_mstc *mstc = nv50_mstc(connector); 1160 int ret = 0; 1161 1162 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1163 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1164 if (mstc->edid) 1165 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1166 1167 /* 1168 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1169 * to 8 to save bandwidth on the topology. In the future, we'll want 1170 * to properly fix this by dynamically selecting the highest possible 1171 * bpc that would fit in the topology 1172 */ 1173 if (connector->display_info.bpc) 1174 connector->display_info.bpc = 1175 clamp(connector->display_info.bpc, 6U, 8U); 1176 else 1177 connector->display_info.bpc = 8; 1178 1179 if (mstc->native) 1180 drm_mode_destroy(mstc->connector.dev, mstc->native); 1181 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1182 return ret; 1183 } 1184 1185 static int 1186 nv50_mstc_atomic_check(struct drm_connector *connector, 1187 struct drm_atomic_state *state) 1188 { 1189 struct nv50_mstc *mstc = nv50_mstc(connector); 1190 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1191 1192 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1193 } 1194 1195 static int 1196 nv50_mstc_detect(struct drm_connector *connector, 1197 struct drm_modeset_acquire_ctx *ctx, bool force) 1198 { 1199 struct nv50_mstc *mstc = nv50_mstc(connector); 1200 int ret; 1201 1202 if (drm_connector_is_unregistered(connector)) 1203 return connector_status_disconnected; 1204 1205 ret = pm_runtime_get_sync(connector->dev->dev); 1206 if (ret < 0 && ret != -EACCES) { 1207 pm_runtime_put_autosuspend(connector->dev->dev); 1208 return connector_status_disconnected; 1209 } 1210 1211 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1212 mstc->port); 1213 if (ret != connector_status_connected) 1214 goto out; 1215 1216 out: 1217 pm_runtime_mark_last_busy(connector->dev->dev); 1218 pm_runtime_put_autosuspend(connector->dev->dev); 1219 return ret; 1220 } 1221 1222 static const struct drm_connector_helper_funcs 1223 nv50_mstc_help = { 1224 .get_modes = nv50_mstc_get_modes, 1225 .mode_valid = nv50_mstc_mode_valid, 1226 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1227 .atomic_check = nv50_mstc_atomic_check, 1228 .detect_ctx = nv50_mstc_detect, 1229 }; 1230 1231 static void 1232 nv50_mstc_destroy(struct drm_connector *connector) 1233 { 1234 struct nv50_mstc *mstc = nv50_mstc(connector); 1235 1236 drm_connector_cleanup(&mstc->connector); 1237 drm_dp_mst_put_port_malloc(mstc->port); 1238 1239 kfree(mstc); 1240 } 1241 1242 static const struct drm_connector_funcs 1243 nv50_mstc = { 1244 .reset = nouveau_conn_reset, 1245 .fill_modes = drm_helper_probe_single_connector_modes, 1246 .destroy = nv50_mstc_destroy, 1247 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1248 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1249 .atomic_set_property = nouveau_conn_atomic_set_property, 1250 .atomic_get_property = nouveau_conn_atomic_get_property, 1251 }; 1252 1253 static int 1254 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1255 const char *path, struct nv50_mstc **pmstc) 1256 { 1257 struct drm_device *dev = mstm->outp->base.base.dev; 1258 struct drm_crtc *crtc; 1259 struct nv50_mstc *mstc; 1260 int ret; 1261 1262 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1263 return -ENOMEM; 1264 mstc->mstm = mstm; 1265 mstc->port = port; 1266 1267 ret = drm_connector_dynamic_init(dev, &mstc->connector, &nv50_mstc, 1268 DRM_MODE_CONNECTOR_DisplayPort, NULL); 1269 if (ret) { 1270 kfree(*pmstc); 1271 *pmstc = NULL; 1272 return ret; 1273 } 1274 1275 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1276 1277 mstc->connector.funcs->reset(&mstc->connector); 1278 nouveau_conn_attach_properties(&mstc->connector); 1279 1280 drm_for_each_crtc(crtc, dev) { 1281 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1282 continue; 1283 1284 drm_connector_attach_encoder(&mstc->connector, 1285 &nv50_head(crtc)->msto->encoder); 1286 } 1287 1288 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1289 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1290 drm_connector_set_path_property(&mstc->connector, path); 1291 drm_dp_mst_get_port_malloc(port); 1292 return 0; 1293 } 1294 1295 static void 1296 nv50_mstm_cleanup(struct drm_atomic_state *state, 1297 struct drm_dp_mst_topology_state *mst_state, 1298 struct nv50_mstm *mstm) 1299 { 1300 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1301 struct drm_encoder *encoder; 1302 1303 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1304 drm_dp_check_act_status(&mstm->mgr); 1305 1306 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1307 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1308 struct nv50_msto *msto = nv50_msto(encoder); 1309 struct nv50_mstc *mstc = msto->mstc; 1310 if (mstc && mstc->mstm == mstm) 1311 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1312 } 1313 } 1314 1315 if (mstm->disabled) { 1316 nouveau_dp_power_down(mstm->outp); 1317 nvif_outp_release(&mstm->outp->outp); 1318 mstm->disabled = false; 1319 } 1320 1321 mstm->modified = false; 1322 } 1323 1324 static void 1325 nv50_mstm_prepare(struct drm_atomic_state *state, 1326 struct drm_dp_mst_topology_state *mst_state, 1327 struct nv50_mstm *mstm) 1328 { 1329 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1330 struct drm_encoder *encoder; 1331 1332 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1333 1334 /* Disable payloads first */ 1335 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1336 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1337 struct nv50_msto *msto = nv50_msto(encoder); 1338 struct nv50_mstc *mstc = msto->mstc; 1339 if (mstc && mstc->mstm == mstm && msto->disabled) 1340 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1341 } 1342 } 1343 1344 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1345 * active) heads that may have had their VC slots shifted left after the previous step 1346 */ 1347 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1348 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1349 struct nv50_msto *msto = nv50_msto(encoder); 1350 struct nv50_mstc *mstc = msto->mstc; 1351 if (mstc && mstc->mstm == mstm && !msto->disabled) 1352 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1353 } 1354 } 1355 } 1356 1357 static struct drm_connector * 1358 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1359 struct drm_dp_mst_port *port, const char *path) 1360 { 1361 struct nv50_mstm *mstm = nv50_mstm(mgr); 1362 struct nv50_mstc *mstc; 1363 int ret; 1364 1365 ret = nv50_mstc_new(mstm, port, path, &mstc); 1366 if (ret) 1367 return NULL; 1368 1369 return &mstc->connector; 1370 } 1371 1372 static const struct drm_dp_mst_topology_cbs 1373 nv50_mstm = { 1374 .add_connector = nv50_mstm_add_connector, 1375 }; 1376 1377 bool 1378 nv50_mstm_service(struct nouveau_drm *drm, 1379 struct nouveau_connector *nv_connector, 1380 struct nv50_mstm *mstm) 1381 { 1382 struct drm_dp_aux *aux = &nv_connector->aux; 1383 bool handled = true, ret = true; 1384 int rc; 1385 u8 esi[8] = {}; 1386 1387 while (handled) { 1388 u8 ack[8] = {}; 1389 1390 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1391 if (rc != 8) { 1392 ret = false; 1393 break; 1394 } 1395 1396 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); 1397 if (!handled) 1398 break; 1399 1400 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); 1401 1402 if (rc != 1) { 1403 ret = false; 1404 break; 1405 } 1406 1407 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); 1408 } 1409 1410 if (!ret) 1411 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1412 nv_connector->base.name, rc); 1413 1414 return ret; 1415 } 1416 1417 void 1418 nv50_mstm_remove(struct nv50_mstm *mstm) 1419 { 1420 mstm->is_mst = false; 1421 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1422 } 1423 1424 int 1425 nv50_mstm_detect(struct nouveau_encoder *outp) 1426 { 1427 struct nv50_mstm *mstm = outp->dp.mstm; 1428 struct drm_dp_aux *aux; 1429 int ret; 1430 1431 if (!mstm || !mstm->can_mst) 1432 return 0; 1433 1434 aux = mstm->mgr.aux; 1435 1436 /* Clear any leftover MST state we didn't set ourselves by first 1437 * disabling MST if it was already enabled 1438 */ 1439 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1440 if (ret < 0) 1441 return ret; 1442 1443 /* And start enabling */ 1444 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1445 if (ret) 1446 return ret; 1447 1448 mstm->is_mst = true; 1449 return 1; 1450 } 1451 1452 static void 1453 nv50_mstm_fini(struct nouveau_encoder *outp) 1454 { 1455 struct nv50_mstm *mstm = outp->dp.mstm; 1456 1457 if (!mstm) 1458 return; 1459 1460 /* Don't change the MST state of this connector until we've finished 1461 * resuming, since we can't safely grab hpd_irq_lock in our resume 1462 * path to protect mstm->is_mst without potentially deadlocking 1463 */ 1464 mutex_lock(&outp->dp.hpd_irq_lock); 1465 mstm->suspended = true; 1466 mutex_unlock(&outp->dp.hpd_irq_lock); 1467 1468 if (mstm->is_mst) 1469 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1470 } 1471 1472 static void 1473 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1474 { 1475 struct nv50_mstm *mstm = outp->dp.mstm; 1476 int ret = 0; 1477 1478 if (!mstm) 1479 return; 1480 1481 if (mstm->is_mst) { 1482 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1483 if (ret == -1) 1484 nv50_mstm_remove(mstm); 1485 } 1486 1487 mutex_lock(&outp->dp.hpd_irq_lock); 1488 mstm->suspended = false; 1489 mutex_unlock(&outp->dp.hpd_irq_lock); 1490 1491 if (ret == -1) 1492 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1493 } 1494 1495 static void 1496 nv50_mstm_del(struct nv50_mstm **pmstm) 1497 { 1498 struct nv50_mstm *mstm = *pmstm; 1499 if (mstm) { 1500 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1501 kfree(*pmstm); 1502 *pmstm = NULL; 1503 } 1504 } 1505 1506 static int 1507 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1508 int conn_base_id, struct nv50_mstm **pmstm) 1509 { 1510 const int max_payloads = hweight8(outp->dcb->heads); 1511 struct drm_device *dev = outp->base.base.dev; 1512 struct nv50_mstm *mstm; 1513 int ret; 1514 1515 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1516 return -ENOMEM; 1517 mstm->outp = outp; 1518 mstm->mgr.cbs = &nv50_mstm; 1519 1520 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1521 max_payloads, conn_base_id); 1522 if (ret) 1523 return ret; 1524 1525 return 0; 1526 } 1527 1528 /****************************************************************************** 1529 * SOR 1530 *****************************************************************************/ 1531 static void 1532 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1533 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1534 { 1535 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1536 struct nv50_core *core = disp->core; 1537 1538 if (!asyh) { 1539 nv_encoder->ctrl &= ~BIT(head); 1540 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1541 nv_encoder->ctrl = 0; 1542 } else { 1543 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1544 nv_encoder->ctrl |= BIT(head); 1545 asyh->or.depth = depth; 1546 } 1547 1548 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1549 } 1550 1551 /* TODO: Should we extend this to PWM-only backlights? 1552 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1553 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1554 * fixed time delay from the vbios… 1555 */ 1556 static void 1557 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1558 { 1559 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1560 struct nv50_head *head = nv50_head(nv_encoder->crtc); 1561 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1562 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1563 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1564 struct nouveau_backlight *backlight = nv_connector->backlight; 1565 struct drm_dp_aux *aux = &nv_connector->aux; 1566 int ret; 1567 1568 if (backlight && backlight->uses_dpcd) { 1569 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1570 if (ret < 0) 1571 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1572 nv_connector->base.base.id, nv_connector->base.name, ret); 1573 } 1574 #endif 1575 1576 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) { 1577 nvif_outp_hdmi(&nv_encoder->outp, head->base.index, 1578 false, 0, 0, 0, false, false, false); 1579 nv_encoder->hdmi.enabled = false; 1580 } 1581 1582 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1583 nouveau_dp_power_down(nv_encoder); 1584 1585 if (head->func->display_id) 1586 head->func->display_id(head, 0); 1587 1588 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0); 1589 nv50_audio_disable(encoder, &head->base); 1590 nv_encoder->crtc = NULL; 1591 } 1592 1593 // common/inc/displayport/displayport.h 1594 #define DP_CONFIG_WATERMARK_ADJUST 2 1595 #define DP_CONFIG_WATERMARK_LIMIT 20 1596 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST 8 1597 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT 22 1598 1599 static bool 1600 nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp, 1601 struct nv50_head *head, struct nv50_head_atom *asyh) 1602 { 1603 bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP; 1604 u64 minRate = outp->dp.link_bw * 1000; 1605 unsigned tuSize = 64; 1606 unsigned waterMark; 1607 unsigned hBlankSym; 1608 unsigned vBlankSym; 1609 unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST; 1610 unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT; 1611 // depth is multiplied by 16 in case of DSC enable 1612 s32 hblank_symbols; 1613 // number of link clocks per line. 1614 int vblank_symbols = 0; 1615 bool bEnableDsc = false; 1616 unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke; 1617 unsigned rasterWidth = asyh->mode.h.active; 1618 unsigned depth = asyh->or.bpc * 3; 1619 unsigned DSC_FACTOR = bEnableDsc ? 16 : 1; 1620 u64 pixelClockHz = asyh->mode.clock * 1000; 1621 u64 PrecisionFactor = 100000, ratioF, watermarkF; 1622 u32 numLanesPerLink = outp->dp.link_nr; 1623 u32 numSymbolsPerLine; 1624 u32 BlankingBits; 1625 u32 surfaceWidthPerLink; 1626 u32 PixelSteeringBits; 1627 u64 NumBlankingLinkClocks; 1628 u32 MinHBlank; 1629 1630 if (outp->outp.info.dp.increased_wm) { 1631 watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST; 1632 watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT; 1633 } 1634 1635 if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR)) 1636 { 1637 return false; 1638 } 1639 1640 // 1641 // For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with 1642 // 0 active symbols. This may cause HW hang. Bug 200379426 1643 // 1644 if ((bEnableDsc) && 1645 ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64))) 1646 { 1647 return false; 1648 } 1649 1650 // 1651 // Perform the SST calculation. 1652 // For auto mode the watermark calculation does not need to track accumulated error the 1653 // formulas for manual mode will not work. So below calculation was extracted from the DTB. 1654 // 1655 ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR); 1656 1657 ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr); 1658 1659 if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below 1660 return false; 1661 1662 watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor); 1663 waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor))); 1664 1665 // 1666 // Bounds check the watermark 1667 // 1668 numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR); 1669 1670 if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine)) 1671 return false; 1672 1673 // 1674 // Clamp the low side 1675 // 1676 if (waterMark < watermarkMinimum) 1677 waterMark = watermarkMinimum; 1678 1679 //Bits to send BS/BE/Extra symbols due to pixel padding 1680 //Also accounts for enhanced framing. 1681 BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0); 1682 1683 //VBID/MVID/MAUD sent 4 times all the time 1684 BlankingBits += 3*8*4; 1685 1686 surfaceWidthPerLink = surfaceWidth; 1687 1688 //Extra bits sent due to pixel steering 1689 u32 remain; 1690 div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain); 1691 PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0; 1692 1693 BlankingBits += PixelSteeringBits; 1694 NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink)); 1695 MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor)); 1696 MinHBlank += 12; 1697 1698 if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth)) 1699 return false; 1700 1701 // Bug 702290 - Active Width should be greater than 60 1702 if (WARN_ON(surfaceWidth <= 60)) 1703 return false; 1704 1705 1706 hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz)); 1707 1708 //reduce HBlank Symbols to account for secondary data packet 1709 hblank_symbols -= 1; //Stuffer latency to send BS 1710 hblank_symbols -= 3; //SPKT latency to send data to stuffer 1711 1712 hblank_symbols -= numLanesPerLink == 1 ? 9 : numLanesPerLink == 2 ? 6 : 3; 1713 1714 hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols; 1715 1716 // Refer to dev_disp.ref for more information. 1717 // # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1; 1718 // where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 1719 if (surfaceWidth < 40) 1720 { 1721 vblank_symbols = 0; 1722 } 1723 else 1724 { 1725 vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1; 1726 1727 vblank_symbols -= numLanesPerLink == 1 ? 39 : numLanesPerLink == 2 ? 21 : 12; 1728 } 1729 1730 vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols; 1731 1732 return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym); 1733 } 1734 1735 static void 1736 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1737 { 1738 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1739 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1740 struct nv50_head_atom *asyh = 1741 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1742 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1743 struct nv50_disp *disp = nv50_disp(encoder->dev); 1744 struct nv50_head *head = nv50_head(&nv_crtc->base); 1745 struct nvif_outp *outp = &nv_encoder->outp; 1746 struct drm_device *dev = encoder->dev; 1747 struct nouveau_drm *drm = nouveau_drm(dev); 1748 struct nouveau_connector *nv_connector; 1749 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1750 struct nouveau_backlight *backlight; 1751 #endif 1752 struct nvbios *bios = &drm->vbios; 1753 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1754 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1755 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1756 1757 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1758 nv_encoder->crtc = &nv_crtc->base; 1759 1760 if ((disp->disp->object.oclass == GT214_DISP || 1761 disp->disp->object.oclass >= GF110_DISP) && 1762 nv_encoder->dcb->type != DCB_OUTPUT_LVDS && 1763 nv_connector->base.display_info.has_audio) 1764 hda = true; 1765 1766 if (!nvif_outp_acquired(outp)) 1767 nvif_outp_acquire_sor(outp, hda); 1768 1769 switch (nv_encoder->dcb->type) { 1770 case DCB_OUTPUT_TMDS: 1771 if (disp->disp->object.oclass != NV50_DISP && 1772 nv_connector->base.display_info.is_hdmi) 1773 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1774 1775 if (nv_encoder->outp.or.link & 1) { 1776 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1777 /* Only enable dual-link if: 1778 * - Need to (i.e. rate > 165MHz) 1779 * - DCB says we can 1780 * - Not an HDMI monitor, since there's no dual-link 1781 * on HDMI. 1782 */ 1783 if (mode->clock >= 165000 && 1784 nv_encoder->dcb->duallink_possible && 1785 !nv_connector->base.display_info.is_hdmi) 1786 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1787 } else { 1788 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1789 } 1790 break; 1791 case DCB_OUTPUT_LVDS: 1792 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1793 1794 if (bios->fp_no_ddc) { 1795 lvds_dual = bios->fp.dual_link; 1796 lvds_8bpc = bios->fp.if_is_24bit; 1797 } else { 1798 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1799 if (((u8 *)nv_connector->edid)[121] == 2) 1800 lvds_dual = true; 1801 } else 1802 if (mode->clock >= bios->fp.duallink_transition_clk) { 1803 lvds_dual = true; 1804 } 1805 1806 if (lvds_dual) { 1807 if (bios->fp.strapless_is_24bit & 2) 1808 lvds_8bpc = true; 1809 } else { 1810 if (bios->fp.strapless_is_24bit & 1) 1811 lvds_8bpc = true; 1812 } 1813 1814 if (asyh->or.bpc == 8) 1815 lvds_8bpc = true; 1816 } 1817 1818 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1819 break; 1820 case DCB_OUTPUT_DP: 1821 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc); 1822 nv50_sor_dp_watermark_sst(nv_encoder, head, asyh); 1823 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1824 1825 if (nv_encoder->outp.or.link & 1) 1826 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1827 else 1828 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1829 1830 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1831 backlight = nv_connector->backlight; 1832 if (backlight && backlight->uses_dpcd) 1833 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1834 (u16)backlight->dev->props.brightness); 1835 #endif 1836 1837 break; 1838 default: 1839 BUG(); 1840 break; 1841 } 1842 1843 if (head->func->display_id) 1844 head->func->display_id(head, BIT(nv_encoder->outp.id)); 1845 1846 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1847 } 1848 1849 static const struct drm_encoder_helper_funcs 1850 nv50_sor_help = { 1851 .atomic_check = nv50_outp_atomic_check, 1852 .atomic_enable = nv50_sor_atomic_enable, 1853 .atomic_disable = nv50_sor_atomic_disable, 1854 }; 1855 1856 static void 1857 nv50_sor_destroy(struct drm_encoder *encoder) 1858 { 1859 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1860 1861 nv50_mstm_del(&nv_encoder->dp.mstm); 1862 drm_encoder_cleanup(encoder); 1863 1864 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1865 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1866 1867 nvif_outp_dtor(&nv_encoder->outp); 1868 kfree(encoder); 1869 } 1870 1871 static const struct drm_encoder_funcs 1872 nv50_sor_func = { 1873 .destroy = nv50_sor_destroy, 1874 }; 1875 1876 static int 1877 nv50_sor_create(struct nouveau_encoder *nv_encoder) 1878 { 1879 struct drm_connector *connector = &nv_encoder->conn->base; 1880 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1881 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1882 struct nvkm_i2c *i2c = nvxx_i2c(drm); 1883 struct drm_encoder *encoder; 1884 struct dcb_output *dcbe = nv_encoder->dcb; 1885 struct nv50_disp *disp = nv50_disp(connector->dev); 1886 int type, ret; 1887 1888 switch (dcbe->type) { 1889 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1890 case DCB_OUTPUT_TMDS: 1891 case DCB_OUTPUT_DP: 1892 default: 1893 type = DRM_MODE_ENCODER_TMDS; 1894 break; 1895 } 1896 1897 nv_encoder->update = nv50_sor_update; 1898 1899 encoder = to_drm_encoder(nv_encoder); 1900 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1901 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1902 drm_encoder_helper_add(encoder, &nv50_sor_help); 1903 1904 drm_connector_attach_encoder(connector, encoder); 1905 1906 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1907 nv50_outp_dump_caps(drm, nv_encoder); 1908 1909 if (dcbe->type == DCB_OUTPUT_DP) { 1910 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1911 1912 if (disp->disp->object.oclass < GF110_DISP) { 1913 /* HW has no support for address-only 1914 * transactions, so we're required to 1915 * use custom I2C-over-AUX code. 1916 */ 1917 struct nvkm_i2c_aux *aux; 1918 1919 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1920 if (!aux) 1921 return -EINVAL; 1922 1923 nv_encoder->i2c = &aux->i2c; 1924 } else { 1925 nv_encoder->i2c = &nv_connector->aux.ddc; 1926 } 1927 1928 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) { 1929 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1930 16, nv_connector->base.base.id, 1931 &nv_encoder->dp.mstm); 1932 if (ret) 1933 return ret; 1934 } 1935 } else 1936 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) { 1937 struct nvkm_i2c_bus *bus = 1938 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1939 if (bus) 1940 nv_encoder->i2c = &bus->i2c; 1941 } 1942 1943 return 0; 1944 } 1945 1946 /****************************************************************************** 1947 * PIOR 1948 *****************************************************************************/ 1949 static int 1950 nv50_pior_atomic_check(struct drm_encoder *encoder, 1951 struct drm_crtc_state *crtc_state, 1952 struct drm_connector_state *conn_state) 1953 { 1954 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1955 if (ret) 1956 return ret; 1957 crtc_state->adjusted_mode.clock *= 2; 1958 return 0; 1959 } 1960 1961 static void 1962 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1963 { 1964 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1965 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1966 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1967 1968 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1969 nv_encoder->crtc = NULL; 1970 } 1971 1972 static void 1973 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1974 { 1975 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1976 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1977 struct nv50_head_atom *asyh = 1978 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1979 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1980 u32 ctrl = 0; 1981 1982 switch (nv_crtc->index) { 1983 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1984 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1985 default: 1986 WARN_ON(1); 1987 break; 1988 } 1989 1990 switch (asyh->or.bpc) { 1991 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1992 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1993 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1994 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 1995 } 1996 1997 if (!nvif_outp_acquired(&nv_encoder->outp)) 1998 nvif_outp_acquire_pior(&nv_encoder->outp); 1999 2000 switch (nv_encoder->dcb->type) { 2001 case DCB_OUTPUT_TMDS: 2002 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2003 break; 2004 case DCB_OUTPUT_DP: 2005 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2006 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6); 2007 break; 2008 default: 2009 BUG(); 2010 break; 2011 } 2012 2013 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 2014 nv_encoder->crtc = &nv_crtc->base; 2015 } 2016 2017 static const struct drm_encoder_helper_funcs 2018 nv50_pior_help = { 2019 .atomic_check = nv50_pior_atomic_check, 2020 .atomic_enable = nv50_pior_atomic_enable, 2021 .atomic_disable = nv50_pior_atomic_disable, 2022 }; 2023 2024 static void 2025 nv50_pior_destroy(struct drm_encoder *encoder) 2026 { 2027 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 2028 2029 nvif_outp_dtor(&nv_encoder->outp); 2030 2031 drm_encoder_cleanup(encoder); 2032 2033 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 2034 kfree(encoder); 2035 } 2036 2037 static const struct drm_encoder_funcs 2038 nv50_pior_func = { 2039 .destroy = nv50_pior_destroy, 2040 }; 2041 2042 static int 2043 nv50_pior_create(struct nouveau_encoder *nv_encoder) 2044 { 2045 struct drm_connector *connector = &nv_encoder->conn->base; 2046 struct drm_device *dev = connector->dev; 2047 struct nouveau_drm *drm = nouveau_drm(dev); 2048 struct nv50_disp *disp = nv50_disp(dev); 2049 struct nvkm_i2c *i2c = nvxx_i2c(drm); 2050 struct nvkm_i2c_bus *bus = NULL; 2051 struct nvkm_i2c_aux *aux = NULL; 2052 struct i2c_adapter *ddc; 2053 struct drm_encoder *encoder; 2054 struct dcb_output *dcbe = nv_encoder->dcb; 2055 int type; 2056 2057 switch (dcbe->type) { 2058 case DCB_OUTPUT_TMDS: 2059 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc); 2060 ddc = bus ? &bus->i2c : NULL; 2061 type = DRM_MODE_ENCODER_TMDS; 2062 break; 2063 case DCB_OUTPUT_DP: 2064 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux); 2065 ddc = aux ? &aux->i2c : NULL; 2066 type = DRM_MODE_ENCODER_TMDS; 2067 break; 2068 default: 2069 return -ENODEV; 2070 } 2071 2072 nv_encoder->i2c = ddc; 2073 2074 mutex_init(&nv_encoder->dp.hpd_irq_lock); 2075 2076 encoder = to_drm_encoder(nv_encoder); 2077 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 2078 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 2079 drm_encoder_helper_add(encoder, &nv50_pior_help); 2080 2081 drm_connector_attach_encoder(connector, encoder); 2082 2083 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 2084 nv50_outp_dump_caps(drm, nv_encoder); 2085 2086 return 0; 2087 } 2088 2089 /****************************************************************************** 2090 * Atomic 2091 *****************************************************************************/ 2092 2093 static void 2094 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 2095 { 2096 struct drm_dp_mst_topology_mgr *mgr; 2097 struct drm_dp_mst_topology_state *mst_state; 2098 struct nouveau_drm *drm = nouveau_drm(state->dev); 2099 struct nv50_disp *disp = nv50_disp(drm->dev); 2100 struct nv50_atom *atom = nv50_atom(state); 2101 struct nv50_core *core = disp->core; 2102 struct nv50_outp_atom *outp; 2103 struct nv50_mstm *mstm; 2104 int i; 2105 2106 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 2107 2108 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2109 mstm = nv50_mstm(mgr); 2110 if (mstm->modified) 2111 nv50_mstm_prepare(state, mst_state, mstm); 2112 } 2113 2114 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 2115 core->func->update(core, interlock, true); 2116 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 2117 disp->core->chan.base.device)) 2118 NV_ERROR(drm, "core notifier timeout\n"); 2119 2120 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2121 mstm = nv50_mstm(mgr); 2122 if (mstm->modified) 2123 nv50_mstm_cleanup(state, mst_state, mstm); 2124 } 2125 2126 list_for_each_entry(outp, &atom->outp, head) { 2127 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2128 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder); 2129 2130 if (outp->enabled) { 2131 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc), 2132 nv_encoder->conn, NULL, NULL); 2133 outp->enabled = outp->disabled = false; 2134 } else { 2135 if (outp->disabled) { 2136 nvif_outp_release(&nv_encoder->outp); 2137 outp->disabled = false; 2138 } 2139 } 2140 } 2141 } 2142 } 2143 2144 static void 2145 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 2146 { 2147 struct drm_plane_state *new_plane_state; 2148 struct drm_plane *plane; 2149 int i; 2150 2151 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2152 struct nv50_wndw *wndw = nv50_wndw(plane); 2153 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 2154 if (wndw->func->update) 2155 wndw->func->update(wndw, interlock); 2156 } 2157 } 2158 } 2159 2160 static void 2161 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 2162 { 2163 struct drm_device *dev = state->dev; 2164 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 2165 struct drm_crtc *crtc; 2166 struct drm_plane_state *new_plane_state; 2167 struct drm_plane *plane; 2168 struct nouveau_drm *drm = nouveau_drm(dev); 2169 struct nv50_disp *disp = nv50_disp(dev); 2170 struct nv50_atom *atom = nv50_atom(state); 2171 struct nv50_core *core = disp->core; 2172 struct nv50_outp_atom *outp, *outt; 2173 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2174 int i; 2175 bool flushed = false; 2176 2177 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2178 nv50_crc_atomic_stop_reporting(state); 2179 drm_atomic_helper_wait_for_fences(dev, state, false); 2180 drm_atomic_helper_wait_for_dependencies(state); 2181 drm_dp_mst_atomic_wait_for_dependencies(state); 2182 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2183 drm_atomic_helper_calc_timestamping_constants(state); 2184 2185 if (atom->lock_core) 2186 mutex_lock(&disp->mutex); 2187 2188 /* Disable head(s). */ 2189 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2190 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2191 struct nv50_head *head = nv50_head(crtc); 2192 2193 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2194 asyh->clr.mask, asyh->set.mask); 2195 2196 if (old_crtc_state->active && !new_crtc_state->active) { 2197 pm_runtime_put_noidle(dev->dev); 2198 drm_crtc_vblank_off(crtc); 2199 } 2200 2201 if (asyh->clr.mask) { 2202 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2203 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2204 } 2205 } 2206 2207 /* Disable plane(s). */ 2208 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2209 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2210 struct nv50_wndw *wndw = nv50_wndw(plane); 2211 2212 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2213 asyw->clr.mask, asyw->set.mask); 2214 if (!asyw->clr.mask) 2215 continue; 2216 2217 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2218 } 2219 2220 /* Disable output path(s). */ 2221 list_for_each_entry(outp, &atom->outp, head) { 2222 const struct drm_encoder_helper_funcs *help; 2223 struct drm_encoder *encoder; 2224 2225 encoder = outp->encoder; 2226 help = encoder->helper_private; 2227 2228 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2229 outp->clr.mask, outp->set.mask); 2230 2231 if (outp->clr.mask) { 2232 help->atomic_disable(encoder, state); 2233 outp->disabled = true; 2234 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2235 } 2236 } 2237 2238 /* Flush disable. */ 2239 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2240 if (atom->flush_disable) { 2241 nv50_disp_atomic_commit_wndw(state, interlock); 2242 nv50_disp_atomic_commit_core(state, interlock); 2243 memset(interlock, 0x00, sizeof(interlock)); 2244 2245 flushed = true; 2246 } 2247 } 2248 2249 if (flushed) 2250 nv50_crc_atomic_release_notifier_contexts(state); 2251 nv50_crc_atomic_init_notifier_contexts(state); 2252 2253 /* Update output path(s). */ 2254 list_for_each_entry(outp, &atom->outp, head) { 2255 const struct drm_encoder_helper_funcs *help; 2256 struct drm_encoder *encoder; 2257 2258 encoder = outp->encoder; 2259 help = encoder->helper_private; 2260 2261 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2262 outp->set.mask, outp->clr.mask); 2263 2264 if (outp->set.mask) { 2265 help->atomic_enable(encoder, state); 2266 outp->enabled = true; 2267 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2268 } 2269 } 2270 2271 /* Update head(s). */ 2272 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2273 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2274 struct nv50_head *head = nv50_head(crtc); 2275 2276 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2277 asyh->set.mask, asyh->clr.mask); 2278 2279 if (asyh->set.mask) { 2280 nv50_head_flush_set(head, asyh); 2281 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2282 } 2283 2284 if (new_crtc_state->active) { 2285 if (!old_crtc_state->active) { 2286 drm_crtc_vblank_on(crtc); 2287 pm_runtime_get_noresume(dev->dev); 2288 } 2289 if (new_crtc_state->event) 2290 drm_crtc_vblank_get(crtc); 2291 } 2292 } 2293 2294 /* Update window->head assignment. 2295 * 2296 * This has to happen in an update that's not interlocked with 2297 * any window channels to avoid hitting HW error checks. 2298 * 2299 *TODO: Proper handling of window ownership (Turing apparently 2300 * supports non-fixed mappings). 2301 */ 2302 if (core->assign_windows) { 2303 core->func->wndw.owner(core); 2304 nv50_disp_atomic_commit_core(state, interlock); 2305 core->assign_windows = false; 2306 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2307 } 2308 2309 /* Finish updating head(s)... 2310 * 2311 * NVD is rather picky about both where window assignments can change, 2312 * *and* about certain core and window channel states matching. 2313 * 2314 * The EFI GOP driver on newer GPUs configures window channels with a 2315 * different output format to what we do, and the core channel update 2316 * in the assign_windows case above would result in a state mismatch. 2317 * 2318 * Delay some of the head update until after that point to workaround 2319 * the issue. This only affects the initial modeset. 2320 * 2321 * TODO: handle this better when adding flexible window mapping 2322 */ 2323 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2324 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2325 struct nv50_head *head = nv50_head(crtc); 2326 2327 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2328 asyh->set.mask, asyh->clr.mask); 2329 2330 if (asyh->set.mask) { 2331 nv50_head_flush_set_wndw(head, asyh); 2332 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2333 } 2334 } 2335 2336 /* Update plane(s). */ 2337 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2338 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2339 struct nv50_wndw *wndw = nv50_wndw(plane); 2340 2341 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2342 asyw->set.mask, asyw->clr.mask); 2343 if ( !asyw->set.mask && 2344 (!asyw->clr.mask || atom->flush_disable)) 2345 continue; 2346 2347 nv50_wndw_flush_set(wndw, interlock, asyw); 2348 } 2349 2350 /* Flush update. */ 2351 nv50_disp_atomic_commit_wndw(state, interlock); 2352 2353 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2354 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2355 interlock[NV50_DISP_INTERLOCK_OVLY] || 2356 interlock[NV50_DISP_INTERLOCK_WNDW] || 2357 !atom->state.legacy_cursor_update) 2358 nv50_disp_atomic_commit_core(state, interlock); 2359 else 2360 disp->core->func->update(disp->core, interlock, false); 2361 } 2362 2363 if (atom->lock_core) 2364 mutex_unlock(&disp->mutex); 2365 2366 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2367 list_del(&outp->head); 2368 kfree(outp); 2369 } 2370 2371 /* Wait for HW to signal completion. */ 2372 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2373 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2374 struct nv50_wndw *wndw = nv50_wndw(plane); 2375 int ret = nv50_wndw_wait_armed(wndw, asyw); 2376 if (ret) 2377 NV_ERROR(drm, "%s: timeout\n", plane->name); 2378 } 2379 2380 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2381 if (new_crtc_state->event) { 2382 unsigned long flags; 2383 /* Get correct count/ts if racing with vblank irq */ 2384 if (new_crtc_state->active) 2385 drm_crtc_accurate_vblank_count(crtc); 2386 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2387 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2388 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2389 2390 new_crtc_state->event = NULL; 2391 if (new_crtc_state->active) 2392 drm_crtc_vblank_put(crtc); 2393 } 2394 } 2395 2396 nv50_crc_atomic_start_reporting(state); 2397 if (!flushed) 2398 nv50_crc_atomic_release_notifier_contexts(state); 2399 2400 drm_atomic_helper_commit_hw_done(state); 2401 drm_atomic_helper_cleanup_planes(dev, state); 2402 drm_atomic_helper_commit_cleanup_done(state); 2403 drm_atomic_state_put(state); 2404 2405 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2406 pm_runtime_mark_last_busy(dev->dev); 2407 pm_runtime_put_autosuspend(dev->dev); 2408 } 2409 2410 static void 2411 nv50_disp_atomic_commit_work(struct work_struct *work) 2412 { 2413 struct drm_atomic_state *state = 2414 container_of(work, typeof(*state), commit_work); 2415 nv50_disp_atomic_commit_tail(state); 2416 } 2417 2418 static int 2419 nv50_disp_atomic_commit(struct drm_device *dev, 2420 struct drm_atomic_state *state, bool nonblock) 2421 { 2422 struct drm_plane_state *new_plane_state; 2423 struct drm_plane *plane; 2424 int ret, i; 2425 2426 ret = pm_runtime_get_sync(dev->dev); 2427 if (ret < 0 && ret != -EACCES) { 2428 pm_runtime_put_autosuspend(dev->dev); 2429 return ret; 2430 } 2431 2432 ret = drm_atomic_helper_setup_commit(state, nonblock); 2433 if (ret) 2434 goto done; 2435 2436 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2437 2438 ret = drm_atomic_helper_prepare_planes(dev, state); 2439 if (ret) 2440 goto done; 2441 2442 if (!nonblock) { 2443 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2444 if (ret) 2445 goto err_cleanup; 2446 } 2447 2448 ret = drm_atomic_helper_swap_state(state, true); 2449 if (ret) 2450 goto err_cleanup; 2451 2452 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2453 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2454 struct nv50_wndw *wndw = nv50_wndw(plane); 2455 2456 if (asyw->set.image) 2457 nv50_wndw_ntfy_enable(wndw, asyw); 2458 } 2459 2460 drm_atomic_state_get(state); 2461 2462 /* 2463 * Grab another RPM ref for the commit tail, which will release the 2464 * ref when it's finished 2465 */ 2466 pm_runtime_get_noresume(dev->dev); 2467 2468 if (nonblock) 2469 queue_work(system_unbound_wq, &state->commit_work); 2470 else 2471 nv50_disp_atomic_commit_tail(state); 2472 2473 err_cleanup: 2474 if (ret) 2475 drm_atomic_helper_unprepare_planes(dev, state); 2476 done: 2477 pm_runtime_put_autosuspend(dev->dev); 2478 return ret; 2479 } 2480 2481 static struct nv50_outp_atom * 2482 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2483 { 2484 struct nv50_outp_atom *outp; 2485 2486 list_for_each_entry(outp, &atom->outp, head) { 2487 if (outp->encoder == encoder) 2488 return outp; 2489 } 2490 2491 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2492 if (!outp) 2493 return ERR_PTR(-ENOMEM); 2494 2495 list_add(&outp->head, &atom->outp); 2496 outp->encoder = encoder; 2497 return outp; 2498 } 2499 2500 static int 2501 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2502 struct drm_connector_state *old_connector_state) 2503 { 2504 struct drm_encoder *encoder = old_connector_state->best_encoder; 2505 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2506 struct drm_crtc *crtc; 2507 struct nv50_outp_atom *outp; 2508 2509 if (!(crtc = old_connector_state->crtc)) 2510 return 0; 2511 2512 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2513 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2514 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2515 outp = nv50_disp_outp_atomic_add(atom, encoder); 2516 if (IS_ERR(outp)) 2517 return PTR_ERR(outp); 2518 2519 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST || 2520 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP) 2521 atom->flush_disable = true; 2522 outp->clr.ctrl = true; 2523 atom->lock_core = true; 2524 } 2525 2526 return 0; 2527 } 2528 2529 static int 2530 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2531 struct drm_connector_state *connector_state) 2532 { 2533 struct drm_encoder *encoder = connector_state->best_encoder; 2534 struct drm_crtc_state *new_crtc_state; 2535 struct drm_crtc *crtc; 2536 struct nv50_outp_atom *outp; 2537 2538 if (!(crtc = connector_state->crtc)) 2539 return 0; 2540 2541 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2542 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2543 outp = nv50_disp_outp_atomic_add(atom, encoder); 2544 if (IS_ERR(outp)) 2545 return PTR_ERR(outp); 2546 2547 outp->set.ctrl = true; 2548 atom->lock_core = true; 2549 } 2550 2551 return 0; 2552 } 2553 2554 static int 2555 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2556 { 2557 struct nv50_atom *atom = nv50_atom(state); 2558 struct nv50_core *core = nv50_disp(dev)->core; 2559 struct drm_connector_state *old_connector_state, *new_connector_state; 2560 struct drm_connector *connector; 2561 struct drm_crtc_state *new_crtc_state; 2562 struct drm_crtc *crtc; 2563 struct nv50_head *head; 2564 struct nv50_head_atom *asyh; 2565 int ret, i; 2566 2567 if (core->assign_windows && core->func->head->static_wndw_map) { 2568 drm_for_each_crtc(crtc, dev) { 2569 new_crtc_state = drm_atomic_get_crtc_state(state, 2570 crtc); 2571 if (IS_ERR(new_crtc_state)) 2572 return PTR_ERR(new_crtc_state); 2573 2574 head = nv50_head(crtc); 2575 asyh = nv50_head_atom(new_crtc_state); 2576 core->func->head->static_wndw_map(head, asyh); 2577 } 2578 } 2579 2580 /* We need to handle colour management on a per-plane basis. */ 2581 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2582 if (new_crtc_state->color_mgmt_changed) { 2583 ret = drm_atomic_add_affected_planes(state, crtc); 2584 if (ret) 2585 return ret; 2586 } 2587 } 2588 2589 ret = drm_atomic_helper_check(dev, state); 2590 if (ret) 2591 return ret; 2592 2593 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2594 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2595 if (ret) 2596 return ret; 2597 2598 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2599 if (ret) 2600 return ret; 2601 } 2602 2603 ret = drm_dp_mst_atomic_check(state); 2604 if (ret) 2605 return ret; 2606 2607 nv50_crc_atomic_check_outp(atom); 2608 2609 return 0; 2610 } 2611 2612 static void 2613 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2614 { 2615 struct nv50_atom *atom = nv50_atom(state); 2616 struct nv50_outp_atom *outp, *outt; 2617 2618 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2619 list_del(&outp->head); 2620 kfree(outp); 2621 } 2622 2623 drm_atomic_state_default_clear(state); 2624 } 2625 2626 static void 2627 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2628 { 2629 struct nv50_atom *atom = nv50_atom(state); 2630 drm_atomic_state_default_release(&atom->state); 2631 kfree(atom); 2632 } 2633 2634 static struct drm_atomic_state * 2635 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2636 { 2637 struct nv50_atom *atom; 2638 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2639 drm_atomic_state_init(dev, &atom->state) < 0) { 2640 kfree(atom); 2641 return NULL; 2642 } 2643 INIT_LIST_HEAD(&atom->outp); 2644 return &atom->state; 2645 } 2646 2647 static const struct drm_mode_config_funcs 2648 nv50_disp_func = { 2649 .fb_create = nouveau_user_framebuffer_create, 2650 .atomic_check = nv50_disp_atomic_check, 2651 .atomic_commit = nv50_disp_atomic_commit, 2652 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2653 .atomic_state_clear = nv50_disp_atomic_state_clear, 2654 .atomic_state_free = nv50_disp_atomic_state_free, 2655 }; 2656 2657 static const struct drm_mode_config_helper_funcs 2658 nv50_disp_helper_func = { 2659 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2660 }; 2661 2662 /****************************************************************************** 2663 * Init 2664 *****************************************************************************/ 2665 2666 static void 2667 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2668 { 2669 struct nouveau_drm *drm = nouveau_drm(dev); 2670 struct drm_encoder *encoder; 2671 2672 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2673 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2674 nv50_mstm_fini(nouveau_encoder(encoder)); 2675 } 2676 2677 if (!runtime && !drm->headless) 2678 cancel_work_sync(&drm->hpd_work); 2679 } 2680 2681 static inline void 2682 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp, 2683 struct nouveau_encoder *outp) 2684 { 2685 struct drm_crtc *crtc; 2686 struct drm_connector_list_iter conn_iter; 2687 struct drm_connector *conn; 2688 struct nv50_head_atom *armh; 2689 const u32 encoder_mask = drm_encoder_mask(&outp->base.base); 2690 bool found_conn = false, found_head = false; 2691 u8 proto; 2692 int head_idx; 2693 int ret; 2694 2695 switch (outp->dcb->type) { 2696 case DCB_OUTPUT_TMDS: 2697 ret = nvif_outp_inherit_tmds(&outp->outp, &proto); 2698 break; 2699 case DCB_OUTPUT_DP: 2700 ret = nvif_outp_inherit_dp(&outp->outp, &proto); 2701 break; 2702 case DCB_OUTPUT_LVDS: 2703 ret = nvif_outp_inherit_lvds(&outp->outp, &proto); 2704 break; 2705 case DCB_OUTPUT_ANALOG: 2706 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto); 2707 break; 2708 default: 2709 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n", 2710 outp->base.base.name); 2711 drm_WARN_ON(dev, true); 2712 return; 2713 } 2714 2715 if (ret < 0) 2716 return; 2717 2718 head_idx = ret; 2719 2720 drm_for_each_crtc(crtc, dev) { 2721 if (crtc->index != head_idx) 2722 continue; 2723 2724 armh = nv50_head_atom(crtc->state); 2725 found_head = true; 2726 break; 2727 } 2728 if (drm_WARN_ON(dev, !found_head)) 2729 return; 2730 2731 /* Figure out which connector is being used by this encoder */ 2732 drm_connector_list_iter_begin(dev, &conn_iter); 2733 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) { 2734 if (nouveau_connector(conn)->index == outp->dcb->connector) { 2735 found_conn = true; 2736 break; 2737 } 2738 } 2739 drm_connector_list_iter_end(&conn_iter); 2740 if (drm_WARN_ON(dev, !found_conn)) 2741 return; 2742 2743 armh->state.encoder_mask = encoder_mask; 2744 armh->state.connector_mask = drm_connector_mask(conn); 2745 armh->state.active = true; 2746 armh->state.enable = true; 2747 pm_runtime_get_noresume(dev->dev); 2748 2749 outp->crtc = crtc; 2750 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index); 2751 2752 drm_connector_get(conn); 2753 conn->state->crtc = crtc; 2754 conn->state->best_encoder = &outp->base.base; 2755 } 2756 2757 /* Read back the currently programmed display state */ 2758 static void 2759 nv50_display_read_hw_state(struct nouveau_drm *drm) 2760 { 2761 struct drm_device *dev = drm->dev; 2762 struct drm_encoder *encoder; 2763 struct drm_modeset_acquire_ctx ctx; 2764 struct nv50_disp *disp = nv50_disp(dev); 2765 int ret; 2766 2767 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret); 2768 2769 drm_for_each_encoder(encoder, dev) { 2770 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 2771 continue; 2772 2773 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder)); 2774 } 2775 2776 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret); 2777 } 2778 2779 static int 2780 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2781 { 2782 struct nv50_core *core = nv50_disp(dev)->core; 2783 struct drm_encoder *encoder; 2784 2785 if (resume || runtime) 2786 core->func->init(core); 2787 2788 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2789 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2790 struct nouveau_encoder *nv_encoder = 2791 nouveau_encoder(encoder); 2792 nv50_mstm_init(nv_encoder, runtime); 2793 } 2794 } 2795 2796 if (!resume) 2797 nv50_display_read_hw_state(nouveau_drm(dev)); 2798 2799 return 0; 2800 } 2801 2802 static void 2803 nv50_display_destroy(struct drm_device *dev) 2804 { 2805 struct nv50_disp *disp = nv50_disp(dev); 2806 2807 nv50_audio_component_fini(nouveau_drm(dev)); 2808 2809 nvif_object_unmap(&disp->caps); 2810 nvif_object_dtor(&disp->caps); 2811 nv50_core_del(&disp->core); 2812 2813 nouveau_bo_unmap(disp->sync); 2814 if (disp->sync) 2815 nouveau_bo_unpin(disp->sync); 2816 nouveau_bo_fini(disp->sync); 2817 2818 nouveau_display(dev)->priv = NULL; 2819 kfree(disp); 2820 } 2821 2822 int 2823 nv50_display_create(struct drm_device *dev) 2824 { 2825 struct nouveau_drm *drm = nouveau_drm(dev); 2826 struct drm_connector *connector, *tmp; 2827 struct nv50_disp *disp; 2828 int ret, i; 2829 bool has_mst = false; 2830 2831 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2832 if (!disp) 2833 return -ENOMEM; 2834 2835 mutex_init(&disp->mutex); 2836 2837 nouveau_display(dev)->priv = disp; 2838 nouveau_display(dev)->dtor = nv50_display_destroy; 2839 nouveau_display(dev)->init = nv50_display_init; 2840 nouveau_display(dev)->fini = nv50_display_fini; 2841 disp->disp = &nouveau_display(dev)->disp; 2842 dev->mode_config.funcs = &nv50_disp_func; 2843 dev->mode_config.helper_private = &nv50_disp_helper_func; 2844 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2845 dev->mode_config.normalize_zpos = true; 2846 2847 /* small shared memory area we use for notifiers and semaphores */ 2848 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2849 NOUVEAU_GEM_DOMAIN_VRAM, 2850 0, 0x0000, NULL, NULL, &disp->sync); 2851 if (!ret) { 2852 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2853 if (!ret) { 2854 ret = nouveau_bo_map(disp->sync); 2855 if (ret) 2856 nouveau_bo_unpin(disp->sync); 2857 } 2858 if (ret) 2859 nouveau_bo_fini(disp->sync); 2860 } 2861 2862 if (ret) 2863 goto out; 2864 2865 /* allocate master evo channel */ 2866 ret = nv50_core_new(drm, &disp->core); 2867 if (ret) 2868 goto out; 2869 2870 disp->core->func->init(disp->core); 2871 if (disp->core->func->caps_init) { 2872 ret = disp->core->func->caps_init(drm, disp); 2873 if (ret) 2874 goto out; 2875 } 2876 2877 /* Assign the correct format modifiers */ 2878 if (disp->disp->object.oclass >= TU102_DISP) 2879 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2880 else 2881 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2882 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2883 else 2884 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2885 2886 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2887 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2888 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2889 * small page allocations in prepare_fb(). When this is implemented, we should also force 2890 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2891 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2892 * large pages. 2893 */ 2894 if (disp->disp->object.oclass >= GM107_DISP) { 2895 dev->mode_config.cursor_width = 256; 2896 dev->mode_config.cursor_height = 256; 2897 } else if (disp->disp->object.oclass >= GK104_DISP) { 2898 dev->mode_config.cursor_width = 128; 2899 dev->mode_config.cursor_height = 128; 2900 } else { 2901 dev->mode_config.cursor_width = 64; 2902 dev->mode_config.cursor_height = 64; 2903 } 2904 2905 /* create encoder/connector objects based on VBIOS DCB table */ 2906 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) { 2907 struct nouveau_encoder *outp; 2908 2909 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2910 if (!outp) 2911 break; 2912 2913 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp); 2914 if (ret) { 2915 kfree(outp); 2916 continue; 2917 } 2918 2919 connector = nouveau_connector_create(dev, outp->outp.info.conn); 2920 if (IS_ERR(connector)) { 2921 nvif_outp_dtor(&outp->outp); 2922 kfree(outp); 2923 continue; 2924 } 2925 2926 outp->base.base.possible_crtcs = outp->outp.info.heads; 2927 outp->base.base.possible_clones = 0; 2928 outp->conn = nouveau_connector(connector); 2929 2930 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL); 2931 if (!outp->dcb) 2932 break; 2933 2934 switch (outp->outp.info.proto) { 2935 case NVIF_OUTP_RGB_CRT: 2936 outp->dcb->type = DCB_OUTPUT_ANALOG; 2937 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max; 2938 break; 2939 case NVIF_OUTP_TMDS: 2940 outp->dcb->type = DCB_OUTPUT_TMDS; 2941 outp->dcb->duallink_possible = outp->outp.info.tmds.dual; 2942 break; 2943 case NVIF_OUTP_LVDS: 2944 outp->dcb->type = DCB_OUTPUT_LVDS; 2945 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid; 2946 break; 2947 case NVIF_OUTP_DP: 2948 outp->dcb->type = DCB_OUTPUT_DP; 2949 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr; 2950 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw; 2951 if (outp->outp.info.dp.mst) 2952 has_mst = true; 2953 break; 2954 default: 2955 WARN_ON(1); 2956 continue; 2957 } 2958 2959 outp->dcb->heads = outp->outp.info.heads; 2960 outp->dcb->connector = outp->outp.info.conn; 2961 outp->dcb->i2c_index = outp->outp.info.ddc; 2962 2963 switch (outp->outp.info.type) { 2964 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break; 2965 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break; 2966 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break; 2967 default: 2968 WARN_ON(1); 2969 continue; 2970 } 2971 2972 if (ret) { 2973 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2974 i, outp->outp.info.type, outp->outp.info.proto, ret); 2975 } 2976 } 2977 2978 /* cull any connectors we created that don't have an encoder */ 2979 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2980 if (connector->possible_encoders) 2981 continue; 2982 2983 NV_WARN(drm, "%s has no encoders, removing\n", 2984 connector->name); 2985 connector->funcs->destroy(connector); 2986 } 2987 2988 /* create crtc objects to represent the hw heads */ 2989 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) { 2990 struct nv50_head *head; 2991 2992 head = nv50_head_create(dev, i); 2993 if (IS_ERR(head)) { 2994 ret = PTR_ERR(head); 2995 goto out; 2996 } 2997 2998 if (has_mst) { 2999 head->msto = nv50_msto_new(dev, head, i); 3000 if (IS_ERR(head->msto)) { 3001 ret = PTR_ERR(head->msto); 3002 head->msto = NULL; 3003 goto out; 3004 } 3005 3006 /* 3007 * FIXME: This is a hack to workaround the following 3008 * issues: 3009 * 3010 * https://gitlab.gnome.org/GNOME/mutter/issues/759 3011 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 3012 * 3013 * Once these issues are closed, this should be 3014 * removed 3015 */ 3016 head->msto->encoder.possible_crtcs = disp->disp->head_mask; 3017 } 3018 } 3019 3020 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 3021 dev->vblank_disable_immediate = true; 3022 3023 nv50_audio_component_init(drm); 3024 3025 out: 3026 if (ret) 3027 nv50_display_destroy(dev); 3028 return ret; 3029 } 3030 3031 /****************************************************************************** 3032 * Format modifiers 3033 *****************************************************************************/ 3034 3035 /**************************************************************** 3036 * Log2(block height) ----------------------------+ * 3037 * Page Kind ----------------------------------+ | * 3038 * Gob Height/Page Kind Generation ------+ | | * 3039 * Sector layout -------+ | | | * 3040 * Compression ------+ | | | | */ 3041 const u64 disp50xx_modifiers[] = { /* | | | | | */ 3042 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 3043 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 3044 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 3045 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 3046 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 3047 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 3048 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 3049 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 3050 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 3051 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 3052 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 3053 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 3054 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 3055 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 3056 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 3057 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 3058 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 3059 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 3060 DRM_FORMAT_MOD_LINEAR, 3061 DRM_FORMAT_MOD_INVALID 3062 }; 3063 3064 /**************************************************************** 3065 * Log2(block height) ----------------------------+ * 3066 * Page Kind ----------------------------------+ | * 3067 * Gob Height/Page Kind Generation ------+ | | * 3068 * Sector layout -------+ | | | * 3069 * Compression ------+ | | | | */ 3070 const u64 disp90xx_modifiers[] = { /* | | | | | */ 3071 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 3072 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 3073 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 3074 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 3075 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 3076 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 3077 DRM_FORMAT_MOD_LINEAR, 3078 DRM_FORMAT_MOD_INVALID 3079 }; 3080